$$\operatorname{DM}$ $\ensuremath{\text{N}}^{\circ}1$ À rendre au plus tard le 20 octobre

Exercice 1. On considère l'application $q: M_2(\mathbb{R}) \to \mathbb{R}$ donnée par $q(A) = \det(A)$.

1. Montrer que l'application q est une forme quadratique sur le \mathbb{R} -espace vectoriel $E = M_2(\mathbb{R})$. Si $A = (a_{ij}) \in M_2(\mathbb{R})$, on a $q(A) = a_{11}a_{22} - a_{12}a_{21}$. On commence par vérifier que si $\lambda \in \mathbb{R}$, on a $q(\lambda A) = \lambda^2 A$, ce qui est direct. Ensuite, on calcule

$$b(A,B) = \frac{1}{2}(q(A+B) - q(A) - q(B)) = \frac{1}{2}(a_{11}b_{22} + a_{22}b_{11} - b_{12}a_{21} - a_{12}b_{21}),$$

et on vérifie la bilinéarité. Comme la formule donnant b(A, B) est symétrique en A et B, il suffit de montrer que b est linéaire à droite, ce qu'on montre directement par un calcul.

2. Dire si q est positive. Si elle l'est, expliquer pourquoi. Sinon, donner un contre-exemple. La forme quadratique q n'est pas positive : on peut par exemple prendre pour A la matrice dont les coefficients sont $a_{11} = a_{22} = 0$ et $a_{12} = a_{21} = 1$.

Exercice 2. Soit E un espace euclidien, dont on note $(\cdot|\cdot)$ le produit scalaire. On rappelle que si F est un sous-espace vectoriel de E, on note $F^{\perp} = \{x \in E : \forall y \in F, (x|y) = 0\}$.

1. Montrer que F^{\perp} est un sous-espace vectoriel de E.

Il suffit de montrer que F^{\perp} est stable par combinaison linéaire. Soient $\lambda, \mu \in \mathbb{R}$ et soient $x, y \in F^{\perp}$. Comme x et y sont dans F^{\perp} , pour tout $z \in F$, on a (x|z) = (y|z) = 0. Soit $z \in F$, alors

$$(\lambda x + \mu y|z) = \lambda(x|z) + \mu(y|z)$$

par bilinéarité, et donc $(\lambda x + \mu y|z) = 0$. On en déduit que pour tout $z \in F$, $(\lambda x + \mu y|z) = 0$ et donc $\lambda x + \mu y|z$ appartient à F^{\perp} .

2. Montrer que pour tout sous-espace vectoriel F de E, on a l'égalité $(F^{\perp})^{\perp} = F$.

Par définition de F^{\perp} , pour tout $x \in F$ et pour tout $y \in F^{\perp}$, on a (x|y) = 0, de sorte que $F \subset (F^{\perp})^{\perp}$.

On sait d'après le cours que pour tout sous-espace vectoriel G de E, on a $G \oplus G^{\perp} = E$. En appliquant le résultat à F, on obtient $\dim(F^{\perp}) + \dim(F) = \dim(E)$, et en appliquant le résultat à F^{\perp} , on obtient $\dim(F^{\perp}) + \dim((F^{\perp})^{\perp}) = \dim(E)$.

On en déduit donc que $\dim(F)=\dim((F^{\perp})^{\perp})$, et donc l'égalité $(F^{\perp})^{\perp}=F$ puisque $F\subset (F^{\perp})^{\perp}$.

- 3. Pour $x \in E$, on définit l'application $\varphi_x : y \in E \mapsto (x|y)$. On admettra sans avoir besoin de le démontrer que pour tout x dans E, l'application φ_x est une forme linéaire sur E.
 - (a) Montrer que l'application $x \mapsto \varphi_x$ est injective.

On doit montrer que $\varphi_x=0$ si et seulement si x=0. Si $\varphi_x=0$, alors en particulier $\varphi_x(x)=0$ et donc (x|x)=0, ce qui implique bien que x=0 puisque le produit scalaire est par définition une forme bilinéaire symétrique qui est définie positive.

(b) En déduire que pour toute forme linéaire φ sur E, il existe un élément $x \in E$ tel que $\varphi = \varphi_x$.

On a montré à la question précédente que l'application $x\mapsto \varphi_x$ était injective. Cette application est clairement linéaire (on vérifie directement que $\varphi_{\lambda x+\mu y}=\lambda \varphi_x+\mu \varphi_y$ pour $x,y\in E$ par bilinéarité du produit scalaire), et est à valeurs dans $E^*=\mathcal{L}(E,\mathbb{R})$. Cet espace est de dimension égale à la dimension de E, et donc l'application $x\mapsto \varphi_x$ est également surjective (c'est une conséquence directe du théorème du rang : si on note h l'application $x\mapsto \varphi_x$, on a dim(ker h) + dim(Im(h)) = dim(E)). Comme elle est surjective, toute forme linéaire φ sur E peut s'écrire sous la forme φ_x pour un certain $x\in E$.

(c) Expliquer comment, à partir de φ , trouver $x \in E$ tel que $\varphi = \varphi_x$ (Indication : on pourra chercher à déterminer le noyau de φ_x).

Si $\varphi = 0$, on prend x = 0.

Soit $x \in E$, $x \neq 0$. On va déterminer le noyau de φ_x . Soit $y \in E$. On a $\varphi_x(y) = 0$ si et seulement si (x|y) = 0. Autrement dit, le noyau de φ_x est l'ensemble des éléments orthogonaux à x, de sorte que $\ker(\varphi_x) = (\operatorname{Vect}(x))^{\perp}$. Par la question 2, on en déduit que $(\ker(\varphi_x))^{\perp} = \operatorname{Vect}(x)$.

Si x est tel que $\varphi_x = \varphi$, on en déduit que $x \in (\ker(\varphi))^{\perp}$, qui est une droite de E (c'est encore une fois une conséquence directe du théorème du rang). On choisit z un vecteur directeur de cette droite et on sait que le x qu'on cherche est de la forme $\mu \cdot z$. On va donc chercher à déterminer μ .

On veut $\varphi_{\mu \cdot z}(z) = \varphi(z)$, et on sait que $\varphi_{\mu \cdot z}(z) = \mu(z|z)$. Autrement dit, si on pose $\mu = \frac{\varphi(z)}{(z|z)}$, on a alors que $\varphi_{\mu \cdot z}(z) = \varphi(z)$.

On pose maintenant $x = \frac{\varphi(z)}{(z|z)} \cdot z$ (remarque : si on choisit z comme étant un vecteur directeur de $(\ker(\varphi))^{\perp}$ de norme 1, on a juste à poser $x = \varphi(z) \cdot z$). On va vérifier que $\varphi = \varphi_x$.

Comme on a $\ker(\varphi) \oplus (\ker(\varphi))^{\perp} = E$, tout élément y de E peut s'écrire de façon unique sous la forme $y_0 + y_1$, avec $y_0 \in \ker(\varphi)$ et $y_1 \in (\ker(\varphi))^{\perp} = \operatorname{Vect}(z) = \operatorname{Vect}(x)$. En particulier, $y_1 = \lambda z$ pour un certain $\lambda \in \mathbb{R}$. Alors

$$\varphi(y) = \varphi(y_0) + \lambda \varphi(z) = \lambda \varphi(z)$$

car $y_0 \in \ker(\varphi)$. De plus,

$$\varphi_x(y) = (x|y) = (x|y_0) + \lambda \varphi_x(z) = \lambda \varphi_x(z) = \lambda \varphi(z),$$

puisque $(x|y_0) = 0$ (car $y_0 \in \ker(\varphi)$ et $x \in (\ker(\varphi))^{\perp}$) et $\varphi_x(z) = \varphi(z)$ (par construction du x ci-dessus).

On a donc $\varphi(y) = \varphi_x(y)$ pour tout y dans E, ce qu'on souhaitait.

On considère à présent le cas où $E = \mathrm{M}_n(\mathbb{R})$. On pourra utiliser le résultat suivant sans avoir besoin de le démontrer : pour toutes matrices A, B dans E, on a $\mathrm{Tr}(AB) = \mathrm{Tr}(BA)$.

4. Montrer que l'application $q: A \mapsto \operatorname{Tr}({}^tAA)$ définit une forme quadratique sur E.

On commence par remarquer que, si $\lambda \in \mathbb{R}$, on a $q(\lambda A) = \lambda^2 A$, ce qui est direct. Ensuite, on pose b(A, B) = q(A + B) - q(A) - q(B).

On a

$$q(A + B) - q(A) - q(B) = \text{Tr}(^{t}(A + B)(A + B)) - \text{Tr}(^{t}AA) - \text{Tr}(^{t}BB)$$

ce qui donne en développant $Tr(^t(A+B)(A+B))$:

$$q(A+B) - q(A) - q(B) = \operatorname{Tr}({}^{t}AB) + \operatorname{Tr}({}^{t}BA)$$

qui est bien bilinéaire symétrique, de sorte que q est bien une forme quadratique. En utilisant le fait admis dans l'énoncé et le fait que la trace de la transposée d'une matrice est égale à la trace de cette matrice, on trouve que la forme bilinéaire symétrique associée à q est $h(A,B) = \text{Tr}(^tAB)$.

5. L'application q est-elle positive? Définie positive?

Un calcul direct sur les coefficients de $A=(a_{ij})$ donne $q(A)=\sum_{1\leq i,j\leq n}|a_{ij}^2|$, de sorte que q(A)>0 sauf si A=0. On trouve donc que q est définie positive.

6. En déduire que pour tout hyperplan H de E, il existe une matrice $A \neq 0$ telle que $H = \{M \in E : \text{Tr}(AM) = 0\}.$

Soit H un hyperplan de E. On sait que les hyperplans sont exactement les noyaux des formes linéaires non nulles, de sorte qu'il existe φ forme linéaire sur E telle que $H = \ker(\varphi)$. Par la question 3 de l'exercice, appliquée à l'espace euclidien $E = \mathrm{M}_n(\mathbb{R})$ muni du produit scalaire correspondant à la forme quadratique qu'on a définie ci-dessus, il existe une matrice $A \in E$ telle que $\varphi = \varphi_{t_A}$, en reprenant les notations de la question 3. Si on réécrit exactement

ce que ça signifie, on trouve que $\ker(\varphi)$ est l'ensemble des éléments orthogonaux à tA pour ce produit scalaire, c'est-à-dire que

$$\ker(\varphi) = \{ M \in E : \operatorname{Tr}(AM) = 0 \}.$$

7. Montrer que tout hyperplan de $M_n(\mathbb{R})$ contient une matrice inversible (Indication : on pourra utiliser sans le démontrer le fait qu'une matrice A de rang r de $M_n(\mathbb{R})$ peut s'écrire sous la forme PJ_rQ , où $P,Q \in GL_n(\mathbb{R})$ et J_r est la matrice diagonale dont les r premiers coefficients sur la diagonale sont des 1 et les autres coefficients diagonaux sont nuls, et on pourra ensuite penser aux matrices de permutation vues en cours).

On va suivre les indications au fur et à mesure. Soit H un hyperplan de $M_n(\mathbb{R})$. D'après la question précédente, on sait qu'il existe une matrice A (forcément non nulle) telle que $H = \{M \in E : \text{Tr}(AM) = 0\}$.

On veut montrer qu'il existe M inversible telle que $\operatorname{Tr}(AM)=0$. Notons r le rang de A, de sorte qu'il existe $P,Q\in\operatorname{GL}_n(\mathbb{R})$ tels que $A=PJ_rQ$. On doit donc montrer qu'on peut trouver M inversible telle que $\operatorname{Tr}(PJ_rQM)=0$ et donc que $\operatorname{Tr}(J_r(QMP))=0$, en utilisant le fait admis sur la trace d'un produit. Comme Q et P sont inversibles, montrer qu'on peut trouver M inversible telle que $\operatorname{Tr}(J_r(QMP))=0$ est équivalent à montrer qu'on peut trouver M' inversible telle que $\operatorname{Tr}(J_rM')=0$ (il suffit alors de prendre $M=Q^{-1}M'P^{-1}$).

Soit maintenant M' la matrice de permutation associée au cycle $(12\cdots n)$. C'est une matrice de permutation donc elle est inversible, et la matrice J_rM' n'a que des coefficients nuls sur la diagonale (la matrice J_rM' est égale à la matrice dont les r premières lignes sont égales à celles de M', et les n-r suivantes sont nulles, et M' n'a que des zéros sur sa diagonale puisqu'un cycle de S_n de longueur n n'a aucun point fixe), donc sa trace est nulle.

Finalement, on a trouvé une matrice inversible dans H.