$\begin{array}{c} \text{DSI} \\ \text{Le } 14 \text{ NOVEMBRE } 2023 \end{array}$

Les notes de cours ne sont pas autorisées Durée : 1h30

Le barème est indicatif

Exercice 1. [5 points] Soit $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 7 & 18 \\ 4 & 13 & 38 \end{pmatrix}$. Décomposer A sous la forme LU et en déduire le déterminant de A.

On dispose les calculs comme dans le cours

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 7 & 18 \\ 4 & 13 & 38 \end{pmatrix}$$

$$2 \quad 3 \quad \rangle$$

$$\begin{pmatrix} 1 & 2 & 3 \\ (2) & 3 & 12 \\ (4) & 5 & 26 \end{pmatrix} \qquad \begin{array}{c} l_2 \longleftarrow l_2 - 2l_1 \\ l_3 \longleftarrow l_3 - 4l_1 \end{array}$$

Les coefficients entre parenthèses et en rouge remplacent des 0 dans la nouvelle matrice. Ce sont les opposés des multiplicateurs. Puis on continue

$$\begin{pmatrix} 1 & 2 & 3 \\ (2) & 3 & 12 \\ (4) & (\frac{5}{3}) & 6 \end{pmatrix} \qquad l_3 \longleftarrow l_3 - \frac{5}{3} l_2$$

On retrouve la matrice U en haut à droite et la matrice L formée d'une diagonale de 1 et de la partie inférieure gauche (en rouge et entre parenthèses).

$$U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 12 \\ 0 & 0 & 6 \end{pmatrix} \quad , \quad L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & \frac{5}{3} & 1 \end{pmatrix}$$

et on trouve $det(A) = det(U) = 1 \times 3 \times 6 = 18$.

Exercice 2. [7 points] Soit
$$A = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}$$
.

(1) Montrer, sans les calculer, que les valeurs propres de A sont réelles et strictement positives (penser à Gershgorin-Hadamard).

Solution : la matrice A est symétrique à coefficients réels, donc ses valeurs propres sont réelles. Par Gershgorin-Hadamard, elles sont contenues dans la réunion des disques fermés de centre 3 et de rayon 2, donc dans le disque fermé de centre 3 et de rayon 2. Comme elles sont de plus réelles, on en déduit qu'elles appartiennent à l'intervalle [1,5] et sont donc strictement positives.

(2) Montrer que A est définie positive.

Comme A est symétrique réelle, elle est diagonalisable en base orthonormée, de sorte qu'il existe une base orthonormée (u,v) de \mathbb{R}^2 dans laquelle $Au=\lambda u$ et $Av=\mu v$, avec λ et μ des réels strictement positifs par la question précédente. Soit $X\in\mathbb{R}^2$. On peut écrire $X=x_1u+x_2v$, avec $x_1,x_2\in\mathbb{R}$. Calculons ${}^tXAX:{}^tXAX={}^t(x_1u+x_2v)A(x_1u+x_2v)={}^t(x_1u+x_2v)(x_1\lambda u+x_2\mu v)=\lambda x_1^2+\mu x_2^2$ puisque la base (u,v) est orthonormée. Comme λ et μ sont strictement positifs, on en déduit que ${}^tXAX\geqslant 0$, et que ${}^tXAX=0$ si et seulement si $x_1=x_2=0$, donc si et seulement si X=0. Cela permet de conclure que X=00 est définie positive.

On définit un produit scalaire sur \mathbb{R}^2 par $(X|Y) = {}^t XAY$.

(3) Dire quelle est la matrice de Gram associée à ce produit scalaire dans la base canonique de \mathbb{R}^2 .

La matrice de Gram associée à ce produit scalaire dans la base canonique de \mathbb{R}^2 est A: c'est la matrice dont le terme général est donné par te_iAe_j , or ${}^te_iAe_j=a_{ij}$.

(4) En utilisant le procédé d'orthonormalisation de Gram-Schmidt, trouver une matrice R telle que ${}^tRR=A$.

Il faut orthonormaliser la base canonique (e_1, e_2) pour le produit scalaire donné par A. On effectue donc les calculs :

On pose $e_1^* = e_1$,

$$e_2^* = e_2 - \frac{(e_2 \mid e_1^*)}{(e_1^* \mid e_1^*)} e_1^*$$

avec $(e_2 \mid e_1^*) = -2$ et $(e_1^* \mid e_1^*) = 3$. Soit $e_2^* = e_2 + (2/3)e_1^* = (2/3, 1)$ et

$$(e_2^* \mid e_2^*) = 3(2/3)^2 - 2(4/3) + 3 = 5/3.$$

Déterminons la matrice de passage de $e' = (e'_i)$ à $e = (e_i)$:

$$e_1 = e_1'||e_1^*|| = \sqrt{3}e_1'$$
,

$$e_2 = e_2^* - \frac{2}{3}e_1^* = ||e_2^*||e_2' - \frac{2||e_1^*||}{3}e_1' = \frac{\sqrt{5}}{\sqrt{3}}e_2' - \frac{2}{\sqrt{3}}e_1'$$

soit

$$R = \begin{pmatrix} \sqrt{3} & -\frac{2}{\sqrt{3}} \\ 0 & \frac{\sqrt{5}}{\sqrt{3}} \end{pmatrix} .$$

Exercice 3. [9 points] Soit $n \ge 1$ un entier, et soit $E = \mathbb{R}_n[X]$, l'espace vectoriel des polynômes réels de dont le degré est inférieur ou égal à n. On définit deux applications $q, q' : E \to \mathbb{R}$ par les formules

$$q(P) = \int_0^1 P(t)P'(t)dt$$

 et

$$q'(P) = \int_0^1 P^2(t)dt.$$

(1) Montrer que q et q' sont des formes quadratiques sur E. Préciser si q' est définie positive.

Commençons par q: on écrit $b(P,Q)=\frac{1}{2}(q(P+Q)-q(P)-q(Q))$, et le calcul donne $b(P,Q)=\frac{1}{2}\int_0^1 P(t)Q'(t)+P'(t)Q(t)dt$. On vérifie que b(P,P)=q(P) (ou si on préfère, que $q(\lambda P)=\lambda^2 q(P)$ pour $\lambda\in\mathbb{R}$ et $P\in E$). L'écriture $b(P,Q)=\frac{1}{2}(q(P+Q)-q(P)-q(Q))$ montre que cette application est symétrique en (P,Q). Il reste donc à montrer que l'application $(P,Q)\mapsto b(P,Q)$ est linéaire à droite, puisque par symétrie elle sera alors bilinéaire.

On calcule $b(P, \lambda Q + \mu R) = \frac{1}{2} \int_0^1 P(t)(\lambda Q + \mu R)'(t) + P'(t)(\lambda Q + \mu R)(t)dt$ et on obtient en développant $b(P, \lambda Q + \mu R) = \lambda b(P, Q) + \mu b(P, R)$, qui est bien ce qu'on voulait.

De la même façon, pour q', on écrit $b'(P,Q) = \frac{1}{2}(q'(P+Q)-q'(P)-q'(Q))$ et le calcul donne $b(P,Q) = \int_0^1 P(t)Q(t)dt$. Là encore, On vérifie que b'(P,P) = q'(P) (ou si on préfère, que $q'(\lambda P) = \lambda^2 q'(P)$ pour $\lambda \in \mathbb{R}$ et $P \in E$). On montre comme précédemment que l'application $(P,Q) \mapsto b'(P,Q)$ est bilinéaire (elle est là encore symétrique via l'écriture $b'(P,Q) = \frac{1}{2}(q'(P+Q)-q'(P)-q'(Q)))$.

Il reste à voir que q' est définie positive : q'(P) est l'intégrale entre 0 et 1 d'une fonction positive, donc $q'(P) \ge 0$. Si q'(P) = 0, c'est que $P^2(t) = 0$ pour tout $t \in [0,1]$ et donc que P est le polynôme nul car il a alors une infinité de racines.

Calculer les matrices de Gram associées aux formes bilinéaires symétriques correspondant à q et q' dans la base $(1, X, \dots, X^n)$ de E (on rappelle que la matrice de Gram M associée à une forme bilinéaire b et une famille de vecteurs (f_1, \dots, f_r) est donnée par la formule $M_{ij} = b(f_i, f_j)$). On notera respectivement A et B les matrices de Gram obtenues.

Notons b la forme bilinéaire symétrique associée à q, et b' la forme bilinéaire symétrique associée à q'. On a pour $(i, j) \neq (0, 0)$:

$$b(X^{i}, X^{j}) = \frac{1}{2} \int_{0}^{1} t^{i} j t^{j-1} + i t^{i-1} t^{j} dt$$

soit

$$b(X^{i}, X^{j}) = \frac{1}{2} \int_{0}^{1} (i+j)t^{i+j-1}dt$$

et donc $b(X^i, X^j) = \frac{1}{2}$. Si i = j = 0, on trouve b(1, 1) = 0. La matrice de Gram correspondante est donc la matrice A dont le terme général égal à $\frac{1}{2}$, sauf le tout premier coefficient a_{11} qui est nul.

Pour q', on fait le même genre de calculs :

$$b'(X^i, X^j) = \int_0^1 t^i t^j dt = \frac{1}{i+j+1}$$

et donc la matrice de Gram B correspondante est la matrice de terme général $(\frac{1}{i+j+1})$.

(3) Montrer qu'il existe $Q \in GL_n(\mathbb{R})$ telle que ${}^tQBQ = I_n$.

Comme q' est définie positive, elle définit un produit scalaire sur \mathbb{R}^n . On peut donc appliquer le procédé d'orthonormalisation de Gram-Schmidt à la base canonique pour ce produit scalaire. Si on note $Q \in \mathrm{GL}_n(\mathbb{R})$ la matrice de passage de la base canonique de \mathbb{R}^n à la base orthonormée pour le produit scalaire associé à q', on trouve que ${}^tQBQ = I_n$, le fait que la matrice à l'arrivée soit I_n étant simplement la traduction du fait que la base est orthonormée pour le produit scalaire.

(4) En utilisant la question précédente, montrer qu'il existe une matrice inversible P telle que ${}^tPBP = I_n$ et telle que tPAP est diagonale (on pourra appliquer le théorème spectral à la matrice tQAQ).

La matrice A étant symétrique (c'est la matrice de Gram associée à une forme quadratique), on vérifie que la matrice tQAQ l'est aussi. On peut donc lui appliquer le théorème spectral : il existe une matrice R orthogonale telle que ${}^tR^tQAQR$ soit diagonale. On réécrit cette matrice sous la forme : ${}^tR^tQAQR = {}^t(QR)AQR$. Il reste à voir que ${}^t(QR)BQR$ est bien égale à I_n : ${}^t(QR)BQR = {}^tR^tQBQR = {}^tRI_nR = I_n$ car R est orthogonale.