FEUILLE D'EXERCICES nº 2

Pivot de Gauss - Décomposition PLU

Exercice 1 – Soient
$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$.

- 1) Résoudre AX = B et décomposer A sous la forme LU.
- $\mathbf{2}$) Calculer $\det A$.
- 3) Soit (e_1, e_2, e_3) la base canonique de $M_{3,1}(\mathbb{R})$. Pour $i \in [[1, 3]]$, résoudre l'équation $AX = e_i$. En déduire A^{-1} .

Exercice 2 – Soient
$$A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 8 & 8 \\ 3 & 6 & 10 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 \\ -4 \\ 4 \end{pmatrix}$.

- 1) Résoudre AX = B et trouver une factorisation A = PLU.
- **2)** Calculer $\det A$.

Exercice 3 – Soit
$$A = \begin{pmatrix} 0 & 2 & -1 & 1 \\ -1 & 1 & 2 & -1 \\ 1 & 1 & -3 & 1 \\ 1 & -1 & -1 & 3 \end{pmatrix}$$
.

- 1) Trouver une factorisation A = PLU.
- **2)** Calculer $\det A$.

Exercice 4 – Même exercice avec
$$A = \begin{pmatrix} 1 & -1 & 2 & -1 \\ 2 & -2 & 4 & -3 \\ 1 & 1 & 1 & 0 \\ 1 & -1 & 4 & 3 \end{pmatrix}$$
.

Exercice 5 – [Unicité de la décomposition LU]

1) Montrer que si T et T' sont des matrices inversibles de $\mathcal{T}^1_{\inf,n}(K)$ (resp. $\mathcal{T}_{\inf,n}(K)$), alors TT' et T^{-1} appartiennent à $\mathcal{T}^1_{\inf,n}(K)$ (resp. $\mathcal{T}_{\inf,n}(K)$). En déduire un résultat similaire pour les matrices triangulaires supérieures. Indications. Pour TT', on calculera $(TT')_{i,j}$ pour i < j. Pour T^{-1} , on pourra par exemple considérer l'équation $TX = e_i$ pour $i = 1, \ldots, n$.

2) Soit A une matrice de $GL_n(K)$ admettant une décomposition LU. Montrer que cette décomposition est unique.

Exercice 6 – [Complexité: résolution d'un système triangulaire]

- 1) Évaluer le nombre d'opérations nécessaires pour résoudre un système triangulaire.
- 2) Évaluer le nombre d'opérations nécessaires pour calculer l'inverse d'une matrice A en utilisant une factorisation A = PLU (supposée connue).

Exercice 7 – Pour résoudre $A^2X = B$ connaissant A et B, vaut-il mieux calculer A^2 puis appliquer le pivot de Gauss, ou procéder autrement?

Exercice 8 – [CONDITION D'EXISTENCE DE LA FACTORISATION A = LU] Soit $A \in GL_n(K)$. Pour tout $k \in \{1, \ldots, n\}$, on note A_k la matrice $(a_{ij})_{(i,j)\in\{1,\ldots,k\}^2}$. Montrer que A admet une décomposition A = LU si et seulement si A_k est inversible pour tout $k \in \{1, \ldots, n\}$ et que dans ce cas, pour tout $k \in \{1, \ldots, n\}$, on a

$$U_{kk} = \frac{\det A_k}{\det A_{k-1}} ,$$

avec la convention $\det A_0 = 1$.

Indications. Il y a deux implications à démontrer. Pour le sens direct, on suppose que A=LU. On peut décomposer chacune de ces matrices par blocs

$$A = \begin{pmatrix} A_k & B \\ C & D \end{pmatrix}$$
, $L = \begin{pmatrix} L_k & 0 \\ L' & L'' \end{pmatrix}$, $U = \begin{pmatrix} U_k & U' \\ 0 & U'' \end{pmatrix}$.

Pour la réciproque (plus difficile), on peut raisonner par récurrence.

Exercice 9 – Soient σ et τ deux éléments de S_n . Démontrer les assertions suivantes.

- $(1) \quad P_{\sigma}e_i = e_{\sigma(i)}.$
- $(2) \quad P_{\sigma \circ \tau} = P_{\sigma} P_{\tau}.$
- (3) $P_{\text{Id}} = I_n$, où Id désigne l'application identique sur $\{1, \dots, n\}$.
- (4) P_{σ} est inversible d'inverse $P_{\sigma^{-1}} = {}^{t}P_{\sigma}$.
- (5) det $P_{\sigma} = \varepsilon(\sigma)$ (où $\varepsilon(\sigma)$ désigne la signature de σ).

Exercice 10 – [Sommes d'entiers]

1) Rappeler la méthode du petit Gauss pour démontrer l'égalité

$$S_n := \sum_{i=1}^n i = \frac{n(n+1)}{2}$$

2) Retrouver cette égalité en utilisant le fait que

$$\sum_{i=1}^{n+1} i^2 = \sum_{i=0}^{n} (i+1)^2$$

3) Donner une expression simple de $\sum_{i=1}^n i^2$ en utilisant une méthode similaire à celle de la question précédente.