FEUILLE D'EXERCICES nº 7

Normes, Normes matricielles, suite

Exercice 1 – Soit $A = (a_{i,j}) \in M_n(K)$. Montrer les égalités

$$|||A|||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$$
 et $|||A|||_{1} = \max_{j} \sum_{i} |a_{ij}|$.

Exercice 2 – On considère l'application de $M_n(\mathbb{C})$ dans \mathbb{R} définie par

$$||A|| = \sum_{i,j} |a_{ij}|.$$

- 1) Montrer que || || est une norme sur $M_n(K)$.
- **2)** Montrer que si N est une norme de $M_n(K)$ subordonnée à une norme de $M_{n,1}(\mathbb{C})$, alors $N(I_n)=1$.
- 3) Qu'en déduire sur || ||?
- 4) La norme | | | est elle une norme matricielle?

Exercice 3 – Donner un exemple de norme de $M_n(\mathbb{C})$ qui n'est pas matricielle.

Exercice 4 – Soit $Q \in GL_n(\mathbb{C})$. Pour tout $v \in M_{n,1}(\mathbb{C})$, on pose $N(v) = ||Qv||_{\infty}$.

- 1) Montrer que N définit une norme sur $M_{n,1}(\mathbb{C})$.
- 2) On note N' sa norme subordonnée sur $M_n(\mathbb{C})$. Montrer que $N'(M) = |||QMQ^{-1}|||_{\infty}$ pour tout $M \in M_n(\mathbb{C})$.

Exercice 5 – Soit $A = (a_{i,j}) \in M_n(\mathbb{C})$. On se propose ici de démontrer que

$$|||A|||_2 = \sqrt{\rho(t\overline{A}A)}.$$

1) Montrer qu'il existe une matrice unitaire U et une matrice diagonale $D \in M_n(\mathbb{R})$ à coefficients diagonaux positifs ou nuls telles que

$${}^{t}\overline{A}A = {}^{t}\overline{U}DU.$$

2) Montrer que

$$\sup_{||x||_2=1} ||Ax||_2^2 = \sup_{||y||_2=1} {}^t \overline{y} Dy = \rho(D)$$

Conclure.

Exercice 6 -

- 1) Montrer qu'à toute norme matricielle on peut associer une norme de \mathbb{C}^n avec laquelle elle est compatible.
- 2) Montrer que pour toute norme matricielle N de $M_n(\mathbb{C})$ et toute matrice A on a

$$\rho(A) \leqslant N(A)$$
.

3) Soit $N(A) = \max_{i,j} |a_{i,j}|$. Est-ce une norme sur $M_n(\mathbb{C})$? Montrer que si $n \ge 2$, il existe $A \in M_n(\mathbb{C})$ telle que $\rho(A) > N(A)$.

Exercice 7 – Soit $K = \mathbb{R}$ ou \mathbb{C} .

- 1) Montrer que si $A \in M_n(K)$ et $B \in GL_n(K)$, le polynôme caractéristique de AB est égal à celui de BA.
- 2) Montrer que le résultat reste vrai si $B \in M_n(K)$ n'est pas inversible (on pourra utiliser une suite de la forme $B + \frac{1}{k}I_n$).
- ${f 3}$) Montrer ce résultat dans le cas plus général où K est un anneau commutatif quelconque, en calculant le produit suivant.

$$\begin{pmatrix} I_n & 0 \\ B & I_n \end{pmatrix} \begin{pmatrix} XI_n - AB & -A \\ 0 & XI_n \end{pmatrix} \begin{pmatrix} I_n & 0 \\ -B & I_n \end{pmatrix}.$$

Exercice 8 – On considère l'application de $M_n(K)$ dans $\mathbb R$ définie par

$$||A||_s = \sqrt{\operatorname{Tr}({}^t \overline{A} A)}.$$

1) Montrer que

$$||A||_s = \sqrt{\sum_{i,j} |a_{i,j}|^2}.$$

- 2) Montrer que $|| \cdot ||_s$ est une norme de $M_n(K)$. On l'appelle norme de Schur.
- 3) Montrer que $|| \cdot ||_s$ n'est pas une norme induite par une norme de K^n .
- 4) Montrer que $|| \cdot ||_s$ est une norme matricielle.
- 5) Montrer que la norme de Schur est compatible avec $|| \cdot ||_2$.
- 6) montrer que

$$\rho(A) \leqslant \sqrt{\sum_{i,j} |a_{i,j}|^2}.$$