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Chapitre 1

Introduction

1.1. Objectifs

Dans ce cours, nous commençons par étudier comment coder différents
objets mathématiques sur machine : les entiers, polynômes et éléments d’un
quotient. Nous étudions ensuite des algorithmes pour effectuer les opérations
élémentaires sur ces objets. En particulier, nous étudions des algorithmes de
complexité sous-quadratique pour la multiplication.

Ensuite, nous étudions quelques algorithmes liés à la factorisation sur les
anneaux Z, k[X], où k est un corps. Pour cela, nous travaillerons beaucoup
dans des quotients Z/nZ et k[X]/Pk[X].

Enfin, nous voyons comment travailler dans k[X1, . . . , Xn]. En particulier,
nous nous intéressons aux idéaux et verrons certains systèmes privilégiés de
générateurs de ces idéaux : les bases de Gröbner.

1.2. Algorithmes

Définition 1.2.1. 1. Un algorithme est une suite d’instructions bien dé-
terminées exécutées sur des entrées. Le ou les résultats sont appelées
sorties.

2. Les entrées sont des données binaires : des suites finies de 0 et de 1
appelés bits.

3. La taille s d’une entrée est le nombre de bits qui la représentent.
4. Les opérations se ramènent à des opérations dites élémentaires sur les

bits : affectations, comparaisons, additions, soustractions, multiplica-
tions.

5. Le temps de calcul d’un algorithme est le nombre T (s) de ces opérations
élémentaires exprimé en fonction de la taille s des entrées.
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6 CHAPITRE 1. INTRODUCTION

Par exemple, soit n un entier naturel. On introduit les notations suivantes
pour l’écriture binaire de n, lorsque n ≥ 1 :

n =
s−1∑
i=0

ni2
i, avec ni ∈ {0, 1} et ns−1 = 1.

On note aussi
{n}2 = ns−1 . . . n0

Alors la taille s(n) de n est le nombre de chiffres dans son écriture binaire,
soit s(n) = s. On pose s(0) = 1. On a la formule :

s(n) = ⌊log2 n⌋+ 1

En effet,

2s−1 ≤ n ≤
s−1∑
i=0

2i = 2s − 1

ce qui veut dire que 2s−1 ≤ n⟨2s donc que s = ⌊log2 n⌋+ 1.

Notation. Sauf mention contraire, on écrira log = log2.

1.3. Ordres de grandeurs O et O tilde

On s’intéresse à l’ordre de grandeur de T (s). Soient deux fonctions f et
g de R+ dans R+.

Définition 1.3.1. On note f(s) = O(g(s)) s’il existe M⟩0 tel que

f(s) ≤Mg(s) pour tout s.

— Si T (s) = O(s), on dit que le temps de calcul est linéaire.
— Si T (s) = O(s2), on dit que le temps de calcul est quadratique.
— Si T (s) = O(sk), (où k ≥ 1) on dit que le temps de calcul est polyno-

mial.
— Dans le cas où T (s) = O(exp(csk)), où c⟩0 et k⟩0, on dit que le temps

de calcul est sous-exponentiel si k⟨1 et on dit qu’il est exponentiel si
k ≥ 1.

Définition 1.3.2. On note f(s) = Õ(g(s)) s’il existe k⟩0 tel que f(s) =
O
(
g(s)(log g(s))k

)
.

Par exemple, si f(s) = O(sa(log s)b(log(log s))c) où a, b, c⟩0, f(s) = Õ(sa).



Chapitre 2

Premiers algorithmes sur les entiers

2.1. Addition

Soient a et b deux entiers strictement positifs. Soit s un entier tel que
s ≥ s(a) et s ≥ s(b). Alors a et b s’écrivent

a =
s−1∑
i=0

ai2
i et b =

s−1∑
i=0

bi2
i

On note
{a}2 = as−1 . . . a0 et {b}2 = bs−1 . . . b0

où les ai et bi appartiennent à {0, 1}.

Algorithme 2.1.1. [Add : Addition d’entiers]
Entrées : a, b comme ci-dessus.
Sortie : c = a+ b
1. (Initialisation de la retenue) r ← 0
2. Pour i de 0 à s− 1 :
3. (ci, r)← reste et quotient de ai + bi + r par 2
4. cs ← r

5. Sortir c =
s∑
i=0

ci2
i

À l’étape 2. on rentre dans une boucle de longueur s, dont chaque exécu-
tion est un nombre borné d’opérations élémentaires. Cet algorithme est donc
linéaire : T (s) = O(s).

On ne peut pas faire mieux qu’un temps linéaire car il faut au moins le
temps de lecture des données.
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8 CHAPITRE 2. PREMIERS ALGORITHMES SUR LES ENTIERS

Exercice 2.1.2. Écrire un algorithme qui effectue la soustraction a− b dont
le temps de calcul est en O(s(a)) (a étant supposé supérieur à b).

On pourra considérer la soustraction sur un bit avec retenue comme une
opération élémentaire pré-programmée ((ci, r)← (1, 1) si (ai, bi+ r) = (0, 1),
(ci, r)← (ai, 1) si bi = r = 1 et (ci, r)← (ai − bi − r, 0) dans les autres cas).

2.2. Multiplication

On écrit

ab =
s−1∑
i=0

ai2
ib

où s = s(a). Dans cette somme, si ai = 0 alors ai2ib = 0 et si ai = 1,
ai2

ib = 2ib : cette opération est un décalage dans l’écriture binaire.
Si l’écriture binaire de b est {b}2 = bt−1bt−2 . . . b0, celle de 2ib est

{2ib}2 = bt−1bt−2 . . . b0 0 . . . 0︸ ︷︷ ︸
i×0

Algorithme 2.2.1. [Mult : Multiplication d’entiers]
Entrées : a, b
Sortie : c = ab

1. (initialisation) b′ ← b, c← 0, s← s(a)

2. Pour i de 0 à s− 1 :
3. Si ai = 1, c← c+ b′

4. b′ ← 2b′

5. Sortir c

À chaque étape i, la somme c + b′ revient à la somme (écrite en bi-
naire) (ci+t−1 . . . ci) + (bt−1 . . . b0), où t = s(b) (on remplace directement les
bits concernés dans la liste représentant c et on ne touche pas à la partie
(ci−1 . . . c0)). C’est en O(t). Comme il y a s(a) passages dans la boucle, on
obtient le résultat suivant.

Proposition 2.2.2. La multiplication de a par b peut se faire en O(s(a)s(b)).

Remarque. C’est donc un algorithme quadratique. On verra qu’on peut
faire mieux, notamment avec la transformée de Fourier rapide, on aura un
algorithme quasi linéaire.
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2.3. Division euclidienne

On suppose ici que b ̸= 0. On cherche q et r tels que

a = qb+ r et 0 ≤ r⟨b

Pour comparer a et b, on compare les écritures binaires pour l’ordre lexico-
graphique, ce qui se fait en temps linéaire. On écrira q sous la forme

q =
k∑
i=0

qi2
i

où qi ∈ {0, 1} pour tout i ∈ [[0, k]] et où qk = 1, c’est-à-dire k = s(q)− 1.

Exercice 2.3.1. Si a ≥ b, montrer que k ∈ {s(a)− s(b), s(a)− s(b)− 1}.

Algorithme 2.3.2. [Div : Division euclidienne]
Entrées : a, b
Sorties : le quotient et le reste q et r
1. (initialisation) a′ ← a, s← s(a), t← s(b)
2. (initialisation) Pour i de 0 à s− t : qi ← 0
3. tant que a′ ≥ b :
4. b′ ← 2s−tb
5. si b′ ≤ a′ :
6. qs−t ← 1
7. a′ ← a′ − b′
8. sinon :
9. qs−t−1 ← 1
10. b′ ← b′/2
11. a′ ← a′ − b′
12. s← s(a′)

13. sortir q =
s(a)−s(b)∑
i=0

qi2
i, r = a′

Démonstration. Exercice.

Exercice 2.3.3. Exécuter l’algorithme pour (a, b) = (23, 4), puis (23, 7).

Proposition 2.3.4. Le temps de calcul de l’algorithme 2.3.2 est en

O(s(b)(s(a)− s(b) + 1))

Ce temps de calcul est donc quadratique : si s(a)⟨s et s(b)⟨s, il est en O(s2).
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Démonstration. Le nombre de passages dans la boucle “tant que” (3) est
inférieur à s(q), qui est égal à s(a) − s(b) + 1 ou à s(a) − s(b). À chaque
passage, on calcule a′ − b′, ce qui peut se faire en modifiant les s(b′) ou
s(b′) + 1 premiers bits de a′. Chaque exécution de la boucle est donc en
O(s(b)).



Chapitre 3

Représentation

Nous avons vu comment représenter les entiers avec les bits. Passons
maintenant en revue la représentation de quelques objets supplémentaires.

3.1. Nombres entiers relatifs

On ajoute un bit de plus à la représentation de la valeur absolue pour
spécifier le signe. Ainsi, si k ∈ Z, la taille de k est

s(k) = 1 + s(|k|) = ⌊log |k|⌋+ 2 ∼ log |k|

3.2. Nombres rationnels

Tout élément de Q s’écrit de manière unique sous la forme q =
a

b
où

a, b ∈ Z, b⟩0 et pgcd(a, b) = 1. On représente alors q par le couple (a, b) et

s(q) = s(a) + s(b)

3.3. Polynômes à coefficients entiers

Soit P ∈ Z[X]. On écrit

P =
d∑
i=0

aiX
i

où les ai appartiennent à Z et où ad ̸= 0 si P ̸= 0. On représente ce polynôme
par (a0, . . . , ad) et donc

s(P ) =
d∑
i=0

s(ai)

11
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3.4. L’anneau quotient Z/NZ

Cet anneau est en bijection avec son système de représentants RN =
{0, 1, . . . , N − 1}. Tout élément x de Z/NZ peut être représenté de façon
unique par un élément de r ∈ RN et

s(x) = s(r)⟨s(N) ∼ logN

3.5. Principe général

Soit A un anneau. On suppose que l’on sache représenter chaque élément
a de A. On note toujours s(a) la taille d’un tel élément. On en déduit la taille
des éléments de A[X]

s

(
d∑
i=0

aiX
i

)
=

d∑
i=0

s(ai)

ceux de Ak

s((a1, . . . , ak)) =
k∑
i=1

s(ai)

etc.
Soit I un idéal de A. La taille d’un élément x de A/I dépend de l’élément

choisi pour représenter x.

Notation. Soit a ∈ A, on note [a]I la classe de a modulo I.

Si l’on choisit de représenter x par a ∈ A (où bien sûr x = [a]I), s(x) =
s(a).

Exemple. Soit A = Fp[X]/(P ), où p est un nombre premier, où P ∈ Fp[X]
et où d = degP , tout élément de A peut se représenter par un polynôme de
degré inférieur ou égal à d− 1. Soit Q un tel élément.

Q =
d−1∑
i=0

qiX
i

et

s(Q) =
d−1∑
i=0

s(qi) ≤ d (⌊log(p− 1)⌋+ 1) ∼ d log p

Rappelons au passage que A est un corps si et seulement si P est irréductible
dans Fp[X]. On note alors R = Fpd .
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3.6. Complexité binaire, complexité algébrique

3.6.1 Définitions

La complexité binaire d’un algorithme est son temps de calcul. C’est
donc le nombre d’opérations élémentaires sur les bits exprimé en fonction de
la taille des entrées.

Si l’on écrit un algorithme sur des polynômes, par exemple l’addition, on
n’a pas besoin de spécifier l’anneau de base A. On compte alors le nombre
d’opérations sur les éléments de A. De façon plus générale, on écrit souvent
des algorithmes dont les entrées sont des éléments d’un anneau A. La com-
plexité algébrique est alors le nombre d’opérations à effectuer sur ces entrées :
affectation, addition, multiplication, division, comparaison.

3.6.2 Exemple 1 : addition dans Ak

Soit A un anneau. La complexité algébrique de l’addition dans Ak est
égale à k.

Si A = Fp, la complexité binaire de l’addition dans Ak est en O(k log p).
Si A = Z, cette complexité binaire dépend de la taille des entiers en jeu.

Pour additionner a = (ai) et b = (bi) dans Zk, la complexité binaire est∑
i

max(s(ai), s(bi)).

3.6.3 Exemple 2 : Multiplication dans A[X]

Soient P et Q deux polynômes de A[X] de degrés respectifs m et n. On
peut adapter l’algorithme 2.2.1 pour la multiplication de P par Q. L’algo-
rithme obtenu à une complexité algébrique en O((m + 1)(n + 1)) : cette
complexité est quadratique puisque si m,n⟨d, elle est en O(d2).

Exercice 3.6.1. Écrire cet algorithme et évaluer sa complexité algébrique.

Par exemple, si m,n⟨d et si A = Z/NZ (où N⟩1), la complexité binaire
de l’algorithme est en O(d2 log2N).
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Chapitre 4

Diviser pour régner

Dans ce chapitre, on étudie plusieurs algorithmes basés sur une stratégie
commune, qui consiste à diviser récursivement un calcul en plusieurs calculs
sur des objets plus petits. En particulier, on obtient l’algorithme rapide de la
transformée de Fourier discrète (appelé FFT pour Fast Fourier Transform),
qui conduit à un algorithme quasi linéaire pour la multiplication des poly-
nômes, ainsi que pour celle des nombres entiers.

4.1. Exponentiation rapide

Soit (M, ·) un monoïde (un ensemble M muni d’une loi interne · associa-
tive admettant un élément neutre dans M) et n un élément de N∖ {0}. On
veut calculer la puissance n-ème xn d’un élément x de M .

Si l’on utilise la première méthode qui vient à l’esprit : x2 = x · x, x3 =
x · x2, ... , xn = x · xn−1, on obtient le résultat en n− 1 multiplications.

Si n = 2k où k⟩0, on voit bien que l’on peut faire autrement :

xn = (xn/2)2 =
(
. . . (x2)2 . . .

)2
Ce calcul se fait en k = log n multiplications.

On peut généraliser cette stratégie lorsque n n’est pas une puissance de 2,
en s’appuyant sur son écriture binaire. Voyons par exemple comment calculer

x13 = x8 · x4 · x

On peut écrire
x13 =

(
(x2 · x)2

)2 · x
On obtient x13 en exécutant les opérations suivantes :

15
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x → x2 · x → (x2 · x)2 →
(
(x2 · x)2

)2 · x
Ce calcul demande 5 multiplications au lieu de 12. On observe que chaque
étape est soit l’élévation au carré, soit l’élévation au carré suivie de la multi-
plication par x, en fonction de la valeur des chiffres binaires de 13 (pour que
ce soit plus frappant, on rajoute ci-dessous une étape initiale inutile) :

1 → x → x2 · x → (x2 · x)2 →
(
(x2 · x)2

)2 · x
□× □× □ □×
1 1 0 1

L’algorithme correspondant s’appelle l’algorithme d’exponentiation ra-
pide, ou bien l’algorithme square and multiply.

Algorithme 4.1.1. [Exponentiation rapide]

Entrées : x et n = 0 ou n =
r∑
i=0

ni2
i (ni ∈ {0, 1} pour tout i et nr = 1)

Sortie : xn

1. Si n = 0 : sortir 1

2. (initialisation) y ← x

3. Pour i de 1 à r :
4. si nr−i = 0 : y ← y2

5. si nr−i = 1 : y ← y2 · x
6. sortir y

Démonstration. Par récurrence sur r. Le cas r = 0 correspond à n = 0
ou n = 1, et l’algorithme sort bien respectivement 1 ou x. Pour l’hérédité,
on écrit n = n0 + 2n′ ; si {n}2 = nr+1nr . . . n0, alors {n′}2 = nr+1nr . . . n1 ;
l’écriture binaire de n′ est celle de n, tronquée de son dernier bit n0. Noter que
l’algorithme parcourt les bits de n de gauche à droite, i.e. des poids forts aux
poids faibles. Par hypothèse de récurrence, à l’issue des r premières étapes
de la boucle, on a y = xn

′ . La dernière instruction calcule bien y2 = x2n
′ si

n0 = 0, ou y2 · x = x2n
′+1 si n0 = 1, c’est-à-dire xn.

Proposition 4.1.2. L’algorithme d’exponentiation rapide calcule xn en au
plus 2s(n)− 2 multiplications dans M .

Démonstration. La boucle “pour” au pas 3 est de longueur r = s(n) − 1, et
chaque étape nécessite au plus 2 multiplications.
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Exemple. Soit N un entier naturel non nul. Soient x ∈ Z/NZ et n ∈ N.
La complexité binaire du calcul de xn est en O((log n)M(N)) où M(N) est
la complexité binaire de la multiplication modulo N . Avec les algorithmes
classiques de multiplication et de division décrits plus haut, la complexité
binaire est donc en O((log n)(logN)2). On verra avec FFT que cela peut
aussi se faire avec une complexité binaire de Õ(log n logN).

Remarque. L’algorithme d’exponentiation rapide est très performant dans
l’exemple ci-dessus, et plus généralement quand la taille des éléments du
monoïde considéré est bornée*. Il est beaucoup moins intéressant lorsque ce
n’est pas le cas. Par exemple, si l’on calcule 5n dans Z, cet algorithme conduit
à des multiplications entre entiers de plus en plus grands, alors qu’en itérant
des multiplications par 5, il y a davantage de multiplications, mais chacune
de ces multiplications est moins coûteuse.

4.2. Algorithme de Karatsuba

Soient P et Q deux polynômes de degré inférieur à n. On peut calculer
P + Q avec une complexité algébrique en O(n). On sait aussi que l’on peut
calculer PQ avec une complexité algébrique en O(n2).

On décrit ici un algorithme de complexité algébrique inférieur pour effec-
tuer le produit de deux polynômes.

La première étape consiste à couper les polynômes en deux. On suppose
que degP ⟨n, degQ⟨n et que n est une puissance de 2 : n = 2k. On écrit

P (X) = P0(X) +Xn/2P1(X)

Q(X) = Q0(X) +Xn/2Q1(X)
(4.1)

où le degré des polynômes P0, P1, Q0, Q1 est strictement inférieur à n/2. Ce
sont les divisions euclidiennes de P et Q par Xn/2, qui s’obtiennent simple-
ment en coupant en deux les listes qui représentent chacun des deux poly-
nômes. Plus précisément, soit

P (X) =
n−1∑
i=0

aiX
i

Le polynôme P est représenté par la liste

[a0, . . . , an−1]

Les polynômes P0 et P1 sont respectivement représentés par les listes

[a0, . . . , an/2−1] et [an/2, . . . , an−1]
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Alors

PQ(X) = P0Q0(X) +Xn/2(P0Q1 + P1Q0)(X) +XnP1Q1(X) (4.2)

ce qui donne 4 multiplications entre polynômes de degré inférieur à n/2. On
peut arranger cette égalité autrement.

PQ(X) =P0Q0(X)

+Xn/2 ((P0 + P1)(Q0 +Q1)− P0Q0 − P1Q1) (X)

+XnP1Q1(X)

(4.3)

Le calcul de PQ en utilisant cette égalité ne demande que 3 multiplications :
P0Q0, P1Q1 et (P0 + P1)(Q0 +Q1). Cela mène à l’algorithme suivant.

Algorithme 4.2.1. [Karatsuba]
Entrées : n (puissance de 2), P,Q ∈ A[X] tels que degP ⟨n, degQ⟨n
Sortie : PQ
1. Si n = 1, sortir PQ
2. P0, P1, Q0, Q1 ← les polynômes définis en (4.1)
3. R0 ← Karatsuba(n/2, P0, Q0)
4. R2 ← Karatsuba(n/2, P1, Q1)
5. S ← Karatsuba(n/2, P0 + P1, Q0 +Q1)
6. R1 ← S −R0 −R2

7. Sortir R0 +Xn/2R1 +XnR2

Remarque. Cet algorithme se rappelle lui-même. On dit qu’il est récursif.

Démonstration. Si n = 1, Karatsuba rend le bon résultat. Supposons que si
degP, degQ⟨n/2, alors Karatsuba(n/2, P,Q) se termine et rend PQ. Soient
P,Q tels que degP, degQ⟨n. Soient P0, P1, Q0, Q1 les polynômes définis en
(4.1). L’hypothèse de récurrence montre que les pas 2, 3 et 4 de l’algorithme
donnent R0 = P0Q0, R2 = P1Q1 et S = (P0 + P1)(Q0 + Q1). L’égalité (4.3)
montre que le résultat rendu est bien le produit PQ.

Dans cet algorithme, on commence par diviser en parties les objets consi-
dérés, puis on applique l’algorithme à ces objets plus petits obtenus. Il reste
ensuite quelques calculs pour déduire le résultat souhaité.

Un tel algorithme est dit de type “diviser pour régner” ou en anglais
“divide and conquer”. Pour en évaluer la complexité, on utilise le lemme
suivant.

Lemme 4.2.2. [Lemme maître, ou théorème maître] Soit T une fonction de
R+ dans R+ qui vérifie les propriétés suivantes.
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1. Il existe des réels a⟩0 et b⟩1 tels que T (x) = aT
(x
b

)
+O(x).

2. Pour tout x ≤ 1, T (x) ≤ 1.
Alors

T (x) =


O
(
xlogb(a)

)
si a⟩b

O (x log x) si a = b

O (x) si a⟨b

Remarque. Si on utilise un algorithme de type “diviser pour régner” à un
objet de taille n, ce lemme s’applique si l’algorithme s’appelle lui-même a fois
sur des objets de taille n/b, et si la complexité des calculs supplémentaires
pour exploiter les résultats est linéaire.

Démonstration. Soit k = ⌊logb x⌋ + 1 =

⌊
lnx

ln b

⌋
+ 1. Donc k est l’entier tel

que
bk−1 ≤ x⟨bk (4.4)

D’après la condition 1 du lemme, il existe un réel M⟩0 tel que

T (x) ≤ aT
(x
b

)
+Mx

donc en appliquant la même inégalité à T
(x
b

)
,

T (x) ≤ a
(
aT
( x
b2

)
+M

x

b

)
+Mx

≤ a2T
( x
b2

)
+Mx

(
1 +

a

b

)
Par récurrence,

T (x) ≤ akT
( x
bk

)
+Mx

(
1 +

a

b
+ · · ·+

(a
b

)k−1
)

≤ ak +Mx

(
1 +

a

b
+ · · ·+

(a
b

)k−1
)

La seconde inégalité provient de la condition 2 du lemme puisque
x

bk
⟨1 d’après

(4.4).
Si a = b, cela donne

T (x) ≤ ak +Mxk

or ak = bk = bk−1b ≤ xb d’après la première inégalité de 4.4. De plus, k est
en O(log x). On obtient bien que T (x) = O(x log x).
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Si a ̸= b,

T (x) ≤ ak +Mx

(a
b

)k
− 1

a

b
− 1

Si a⟨b, ak⟨bk = O(x) donc T (x) = O(x).
Si a⟩b, comme x⟨bk,

T (x) ≤ ak +Mbk

(a
b

)k
a

b
− 1

≤

1 +
M
a

b
− 1

 ak

Or ak = ek ln a = ek ln b
ln a
ln b = bk logb a = O(xlogb(a)).

Corollaire 4.2.3. Soient P et Q de degré inférieur strictement à n. L’algo-
rithme de Karatsuba calcule PQ avec une complexité algébrique en O(nlog2(3)) =
O(n1.59).

Démonstration. Soit C(n) cette complexité. C(n) = 3C(n/2)+O(n). D’après
le lemme, C(n) = O(nlog2(3)).

Exercice 4.2.4. Écrire l’algorithme de type “diviser pour régner” pour calcu-
ler un produit de polynômes qui utilise l’égalite (4.2) (au lieu de l’égalité (4.3))
et évaluer sa complexité (on remarquera que cette complexité est quadratique
donc pas meilleure que celle de la multiplication classique).

4.3. Algorithmes de tri

On veut trier une liste l = [a0, . . . , an−1] de n éléments de N, c’est-à-dire
construire la liste de ses éléments rangés dans l’ordre croissant. Soit T (n) le
nombre de comparaisons nécessaires.

4.3.1 Algorithme naïf

On parcourt toute la liste pour repérer le plus petit élément, que l’on met
en tête, puis on recommence avec la liste de taille n− 1 qui reste une fois cet
élément enlevé. Alors T (n) = n− 1 + T (n− 1) donc

T (n) = (n− 1) + (n− 2) + · · ·+ 1 =
n(n− 1)

2
∼ n2

2

C’est donc un algorithme de complexité algébrique quadratique.



4.4. TRANSFORMÉE DE FOURIER RAPIDE (FFT) 21

4.3.2 Tri fusion (ou merge sort)

On suppose pour simplifier que n est une puissance de 2. On partage la
liste en deux listes l0 et l1 de taille n/2. On rappelle l’algorithme pour trier
l0 et l1 de façon récursive. On obtient deux nouvelles listes l0 et l1 triées puis
on interclasse de la façon suivante.

On initialise k, i, j à 0. L’entier i va pointer les éléments de l0, j ceux de
l1 et k ceux de la liste triée l.

Si l0[i] ≤ l1[j], alors on pose l[k] = l0[i] et on incrémente i et k de 1 (sauf
si i = n/2− 1, auquel cas l0 a été parcourue et il suffit de compléter l par les
éléments qui restent dans l1). Sinon, on pose l[k] = l1[j] et on incrémente k
et j de 1 (sauf si j = n/2− 1).

Exercice 4.3.1. Appliquer cet algorithme “Tri fusion” à la liste

l = [1, 4, 7, 9, 2, 3, 5, 6]

Exercice 4.3.2. Écrire l’algorithme “Tri fusion”.

Le nombre de comparaisons T (n) vérifie l’égalité T (n) = 2T (n/2)+O(n).
D’après le lemme 4.2.2, on obtient donc que T (n) = O(n log n).

4.3.3 Application : recherche par dichotomie

Si une liste est triée, on y retrouve plus facilement ce que l’on cherche.
Si la liste l est triée par ordre croissant et si l’on y cherche un élément x,

on compare x avec l[⌊n/2⌋]. Si x = l[⌊n/2⌋], on constate que x est dans la
liste à l’emplacement n/2. Si x⟨l[⌊n/2⌋], on cherche dans [l[0], . . . , l[⌊n/2⌋−1]
et si x⟩l[⌊n/2⌋], on cherche dans [l[⌊n/2⌋+ 1], . . . , l[n− 1]].

Soit T (n) le nombre de comparaisons nécessaires pour une liste de taille
inférieure ou égale à n. Alors T (n) ≤ 2 + T (⌊n/2⌋). Comme s (⌊n/2⌋) =
s(n) − 1, quand l’algorithme s’est appelé lui-même s(n) − 1 fois, la liste est
de taille 1. Finalement, T (n) ≤ 2s(n)− 1. La complexité de l’algorithme est
au plus équivalente à 2 log n.

4.4. Transformée de Fourier rapide (FFT)

Ce paragraphe porte sur la transformée de Fourier discrète et sur l’al-
gorithme de transformée de Fourier rapide, appelé FFT (fast Fourier trans-
form). Cet algorithme a été mis au point par James Cooley et John Tukey
en 1965.

Soit K un corps de caractéristique différente de 2. Soit n une puissance
de 2. On note n = 2s. On note K[X]n−1 l’anneau des polynômes de degré
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inférieur ou égal à n − 1. On suppose que K contient une racine primitive
n-ème de 1, au sens de la définition suivante.

Définition 4.4.1. On dit qu’un élément ω de K est une racine primitive
n-ème de 1 si ωn = 1 et si ωk ̸= 1 pour tout k ∈ [[0, n− 1]]. Cela signifie que
ω est d’ordre n dans (K∗, ·) (le groupe multiplicatif de K).

Comme n est une puissance de 2, un élément ω de K est une racine
primitive n-ème de 1 si et seulement si ωn = 1 et ωn/2 ̸= 1, ce qui est
équivalent à ωn/2 = −1.
Exemples.

1. Si K = C, ω = e2iπ/n est une racine primitive n-ème de 1. L’ensemble
des racines primitives n-èmes de 1 est {e2ikπ/n : pgcd(k, n) = 1}.

2. Si K = Fq, où q = pk et où n divise q − 1, alors il existe une racine
primitive n-ème de 1 dans Fq. En effet, le groupe (F∗

q, ·) est cyclique
d’ordre q − 1. Soit g un générateur de F∗

q. L’élément ω = g(q−1)/n est
d’ordre n.

Dans la suite du paragraphe, on va identifier K[X]n−1 avec Kn : tout

polynôme P =
n−1∑
i=0

aiX
i pourra être identifié au n-uplet (a0, . . . , an−1), que

l’on notera aussi (al)l∈[[0,n−1]].

Définition 4.4.2. Soit ω une racine rimitive n-ème de 1. La transformée de
Fourier discrète associée à ω est l’application

Fw : Kn −→ Kn

a = (a0, . . . , an−1) 7−→ (P (1), P (ω), . . . , P (ωn−1))

où P est le polynôme défini par a : P =
n−1∑
i=0

aiX
i. On notera Fw(a) =

Fw(P ) =
(
P (ωl)

)
l∈[[0,n−1]]

.

Ce calcul est l’évaluation de P en n éléments de K. Cela peut donc se
faire en O(n2) opérations dans K.

On peut aussi le justifier en remarquant que comme Fw est une application
linéaire, le calcul de Fw(a) se ramène à la multiplication d’une matrice de
Mn(K) par un vecteur de Mn,1(K). Cela demande bien O(n2) opérations
dans K.

La FFT calcule Fw avec une meilleure complexité. C’est un algorithme
de type “diviser pour régner”.
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Soit P =
n−1∑
i=0

aiX
i. On définit

P0 = a0 + a2X + · · ·+ an−2X
n/2−1 =

n/2−1∑
k=0

a2kX
k

P1 = a1 + a3X + · · ·+ an−1X
n/2−1 =

n/2−1∑
k=0

a2k+1X
k

(4.5)

En d’autres termes, P0 et P1 sont respectivement définis par les n/2-uplets
(a0, a2, . . . , an−2) et (a1, a3, . . . , an−1). Alors

P (X) = P0(X
2) +XP1(X

2)

Pour tout l ∈ [[0, n− 1]],

P (ωl) = P0(ω
2l) + ωlP1(ω

2l) (4.6)

Or, ω2 est une racine primitive n/2-ème de 1 et

Fω2(P0) =
(
P0(ω

2l)
)
l∈[[0,n/2−1]]

et Fω2(P1) =
(
P1(ω

2l)
)
l∈[[0,n/2−1]]

Supposons que l’on ait calculé ces transformées de Fourier Fω2(P0) et Fω2(P1).
Alors pour tout l ∈ [[0, n/2− 1]], l’égalité (4.6) permet de calculer P (ωl). De
plus, comme ωn/2 = −1,

P (ωl+n/2) = P0(ω
2l)− ωlP1(ω

2l)

En résumé, pour l ∈ [[0, n/2 − 1]], on peut calculer les valeurs de P (ωl) et
P (ωl+n/2) par les formules{

P (ωl) = P0(ω
2l) + ωlP1(ω

2l)

P (ωl+n/2) = P0(ω
2l)− ωlP1(ω

2l)

On en déduit l’algorithme FFT.

Algorithme 4.4.3. [FFT]
Entrées : n (puissance de 2), ω (racine primitive n-ème de 1), P ∈

K[X]n−1

Sortie : Fω(P ) = (P (1), P (ω), . . . , P (ωn−1))
1. Si n = 1, sortir (P )
2. (P0, P1)← polynômes définis en (4.5) (donc P (X) = P0(X

2)+XP1(X
2))
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3. L0 ← FFT(n/2, ω2, P0)
4. L1 ← FFT(n/2, ω2, P1)
5. Pour l de 0 à n/2-1 :
6. Rl ← L0[l] + ωlL1[l]
7. Rl+n/2 ← L0[l]− ωlL1[l]
8. Sortir R = (R0, . . . , Rn−1)

Proposition 4.4.4. La complexité algébrique de FFT est en O(n log n) (pour
le calcul de la transformée de Fourier discrète d’un n-uplet).

Démonstration. Soit C(n) la complexité algébrique de la FFT en taille n.
Alors C(n) = 2C(n/2) +O(n) donc le lemme 4.2.2 permet de conclure.

Exercice 4.4.5. Dans C, i est une racine primitive 4-ème de 1. Soit P (X) =
X3 + 2X2 + 3X + 4 ∈ C[X]. Exécuter “à la main” FFT(4, i, P ).

Lemme 4.4.6. Soit k ∈ Z.
n−1∑
j=0

ωkj =

{
0 si k ̸≡ 0 mod n

n si k ≡ 0 mod n

Proposition 4.4.7. Fω est un isomorphisme d’espaces vectoriels et son in-

verse est F−1
ω =

1

n
Fω−1

Exercice 4.4.8. Démontrer le lemme 4.4.6 et la proposition 4.4.7.

Remarque. L’application Fω effectue l’évaluation simultanée de P en 1, ω, ω2,
. . . , ωn−1.

Soit b = (b0, . . . , bn−1) ∈ Kn. F−1
ω =

1

n
Fω−1 détermine l’unique polynôme

P de K[X]n−1 tel que

P (1) = b0 , P (ω) = b1 , . . . , P (ωn−1) = bn−1

On dit que P est le polynôme d’interpolation de Lagrange des couples (1, b0), . . . ,
(ωn−1, bn−1).

4.5. Application au produit de deux polynômes

Soient P et Q deux polynômes de K[X] tels que degP +degQ⟨n. Le pro-
duit PQ est uniquement déterminé par ses valeurs en 1, ω, . . . , ωn−1. L’idée
est de calculer (P (1), P (ω), . . . , P (ωn−1)) et (Q(1), Q(ω), . . . , Q(ωn−1)) par la
FFT, on en déduit (PQ(1), PQ(ω), . . . , PQ(ωn−1)) par multiplication terme
à terme et enfin, on applique la FFT à ce résultat pour obtenir le polynôme
PQ par interpolation.
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Algorithme 4.5.1. [Produit par FFT]
Entrées : n (puissance de 2), ω (racine primitive n-ème de 1), P,Q ∈

K[X] tels que degP + degQ⟨n.
Sortie : PQ
1. RP ← FFT(n, ω, P )
2. RQ ← FFT(n, ω,Q)
3. Pour l de 0 à n− 1 :
4. R[l]← RP [l]RQ[l]

5. Sortir
1

n
FFT(n, ω−1, R)

Proposition 4.5.2. Cet algorithme calcule PQ en au plus O(n log n) opé-
rations dans K.

Si car(K) = 2, et si n est une puissance de 2, alors Xn− 1 = (X − 1)n et
la seule racine n-ème de 1 est 1. Dans ce cas, on peut couper les polynômes
en 3 et appliquer la même stratégie.

On peut encore généraliser cet algorithme à un anneau A (à la place de
K).

Théorème 4.5.3. [Cantor-Kaltofen] Soit A un anneau et soit n ∈ N.
On peut multiplier deux polynômes dont la somme des degrés est strictement
inférieur à n en O(n log n log log n) opérations dans A.

On va se contenter ici de décrire l’idée de la preuve.

Soit A un anneau. On suppose que 2 est inversible dans A.
La définition suivante généralise la notion de racine primitive n-ème de 1

au cas d’un anneau.

Définition 4.5.4. Soit ω ∈ A. On dit que ω est une racine primitive n-ème
de 1 si les conditions suivantes sont vérifiées.

1. ωn = 1

2. Pour tout diviseur premier t de n, ωn/t − 1 n’est pas un diviseur de 0

Ici, n est une puissance de 2 donc la condition 2 de la définition signifie
que ωn/2 − 1 n’est pas un diviseur de 0.

Les résultats que l’on a obtenus sur un corps K qui contient une racine
primitive n-ème de 1 se généralisent au cas d’un anneau qui contient une
racine primitive de l’unité. En effet, le lemme 4.4.6 reste valable dans ce
contexte.
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Lemme 4.5.5. Soit ω une racine primitive n-ème de 1 dans A. Soit k ∈ Z.
n−1∑
j=0

ωkj =

{
0 si k ̸≡ 0 mod n

n si k ≡ 0 mod n

Démonstration. Exercice.

Supposons maintenant que A ne contient pas de racine primitive n-ème
de 1. L’idée est de plonger A dans un anneau plus grand qui contient des
racines n-èmes de 1.

Pour cela, on peut considérer A′ = A[Y ]/(Y n/2+1). Soit y la classe de Y
dans ce quotient. Comme yn/2 = −1, y est une racine primitive n-ème de 1.
Mais les éléments de A′ sont eux-même des polynômes en y de degré inférieur
à n/2 et on va travailler dans A′[X] : on a considérablement complexifié le
problème. Cependant, il est possible d’améliorer cette idée de la manière
suivante.

Soient P et Q dans A[X] tels que deg(PQ)⟨n. On pose

m = 2⌊k/2⌋ et m′ = 2⌈k/2⌉

Ainsi, m ≤
√
n, m′ ≤ 2

√
n et mm′ = n. On écrit

P =
m′−1∑
i=0

PiX
mi et Q =

m′−1∑
i=0

QiX
mi

où Pi et Qi appartiennent à A[X]m−1. On définit les polynômes de A[X][Y ]
suivants.

P ∗ =
m′−1∑
i=0

PiY
i et Q∗ =

m′−1∑
i=0

QiY
i

Alors degY (P
∗Q∗)⟨2m′ ≤ 4m. Les coefficients de P ∗Q∗ sont des polynômes

de A[X] de degré strictement inférieur à 2m donc pour connaître P ∗Q∗, il
suffit de le connaître modulo X2m + 1, c’est-à-dire de connaître son image
dans A′[Y ], où A′ = A[X]/(X2m + 1).

Dans A′, on note ω la classe de X dans A[X]/(X2m+1). C’est une racine
primitive 4m-ème de 1. Ainsi, FFT permet de calculer P ∗Q∗. On en déduit
PQ = P ∗Q∗(X,Xm).

Le calcul de P ∗Q∗ dans A′[Y ] demande O(m logm) = O(
√
n log n) opé-

rations dans A′, les multiplications dans A′ se faisant par un appel récursif
de l’algorithme.

Théorème 4.5.6. [Schönhage-Strassen, 1971] Il existe un algorithme
de multiplication des entiers de complexité binaire O(s log s log log s) (où s
majore la taille des entiers).
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Pour ce théorème, l’idée est de poser a = A(2) et b = B(2) où A =
s−1∑
i=0

aiX
i et B =

s−1∑
i=0

biX
i, on calcule C = AB dans Z[X] et on évalue C

en 2. Ceci étant, il reste des problèmes : les retenues et surtout la taille des
coefficients du polynôme C. Nous n’aborderons pas ces problèmes ici.
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Chapitre 5

Algorithme d’Euclide et applications

5.1. Les algorithmes d’Euclide et d’Euclide étendu

Soit (a, b) un élément de N2 ∖ {(0, 0)}. L’algorithme d’Euclide calcule
pgcd(a, b). Il repose sur le fait que pour tout k ∈ Z,

pgcd(a, b) = pgcd(a, b+ ka)

En effet, si d divise a et b, alors d divise a et b + ka et réciproquement, si d
divise a et b+ ka, alors d divise a et (b+ ka)− ka = b.

Notation. Si b ̸= 0, on note respectivement rem(a, b) et quo(a, b) le reste et
le quotient de la division euclidienne de a par b.

Algorithme 5.1.1. [Algorithme d’Euclide]
Entrées : a, b dans N tels que (a, b) ̸= (0, 0)
Sortie : pgcd(a, b)
1. x← a, y ← b (initialisation)
2. Tant que y ̸= 0 :
3. r ← rem(x, y)
4. (x, y)← (y, r)
5. Sortir x

Preuve. Montrons d’abord que cet algorithme termine (c’est nécessaire à
cause du "tant que"). En effet, on observe que les valeurs prises par la variable
y sont positives ou nulles et décroissent strictement (car en 4. on affecte à
y la valeur r = rem(x, y)⟨y). Donc au bout d’un certain nombre t détapes,
y = 0 et on sort du "tant que".

De plus, en posant la division euclidienne x = yq + r, on a par la re-
marque précédente pgcd(x, y) = pgcd(y, x − yq) = pgcd(y, r), donc le pgcd
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des valeurs prises par les variables (x, y) au cours de l’algorithme est inva-
riant. A l’initialisation c’est pgcd(a, b) et à la sortie c’est pgcd(x, 0) = x.
Donc l’algorithme sort bien pgcd(a, b).

Pour évaluer la complexité de cet algorithme, nous commençons par éva-

luer le nombre t d’exécutions de la boucle “Tant que”. Soit ϕ =
1 +
√
5

2
le

nombre d’or.

Lemme 5.1.2. Si a⟩b, alors t ≤ ln a

lnΦ
.

Démonstration. Le nombre d’or Φ est une racine du polynôme X2 −X − 1.
Autrement dit,

Φ2 = Φ+ 1

On pose r0 = a, r1 = b et pour tout i ≥ 2, ri et qi−1 sont respectivement les
reste et quotient de la division euclidienne de ri−2 par ri−1. Ainsi, pour tout
i ≥ 2,

ri−2 = ri−1qi−1 + ri

Comme a⟩b, la suite (ri) est strictement décroissante. Montrons par récur-
rence que rt−i ≥ Φi pour tout i ≥ 0.

Pour i = 0 : rt = pgcd(a, b) ≥ 1 = Φ0. Pour i = 1 : rt−1 ≥ 2⟩Φ = Φ1.
On suppose maintenant que pour tout j ≤ i, rt−j ≥ Φj.

rt−i−1 = rt−iqt−i + rt−i+1

≥ rt−i + rt−i+1

puisque qt−i ≥ 1. On en déduit que

rt−i−1 ≥ Φi + Φi−1 = Φi−1(Φ + 1) = Φi+1

puisque Φ + 1 = Φ2.

Exercice 5.1.3. Soit la suite de Fibonacci (Fn) définie comme suit. F0 = 0,
F1 = 1 et Fn+1 = Fn + Fn−1. Montrer que a ≥ Ft+2.

Exercice 5.1.4. Soit Φ′ =
1−
√
5

2
. Montrer que pour tout n ≥ 0,

Fn =
Φn − Φ

′n

√
5

En déduire que la suite (Fn) est exponentielle.
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Théorème 5.1.5. La complexité binaire de l’algorithme d’Euclide ci-dessus
est en O(s(a)s(b)). C’est un algorithme quadratique.

Démonstration. Soit Ti le temps de calcul de la division euclidienne de ri−1

par ri. Ti = O(s(ri)s(qi)) = O(s(ri)(s(ri−1)− s(ri) + 1)). Le temps de calcul
total est égal à T =

∑t
i=1 Ti. Il existe donc M ∈ R∗

+ tel que

T ≤M
t∑
i=1

s(ri)(s(ri−1)− s(ri) + 1)

≤Ms(b)
t∑
i=1

(s(ri−1)− s(ri) + 1)

≤Ms(b)(s(r0)− s(rt) + t)

≤Ms(b)(s(a) + t)

Comme t ≤ ln a

lnΦ
= O(s(a)), on obtient bien que T = O(s(a)s(b)).

Venons en à l’algorithme d’Euclide étendu. Cet algorithme calcule aussi
d = pgcd(a, b), mais aussi une relation de Bézout, c’est-à-dire des entiers u
et v tels que au+ bv = d.

Pour tout i,(
ri
ri+1

)
=

(
0 1
1 −qi

)(
ri−1

ri

)
=

(
0 1
1 −qi

)(
0 1
1 −qi−1

)
. . .

(
0 1
1 −q1

)(
r0
r1

)

Il existe donc une matrice
(
ui vi
ui+1 vi+1

)
de déterminant (−1)i telle que

(
ri
ri+1

)
=

(
ui vi
ui+1 vi+1

)(
a
b

)
En particulier (

d
0

)
=

(
ut vt
ut+1 vt+1

)(
a
b

)
On obtient bien la relation de Bézout d = uta+ vtb.

Algorithme 5.1.6. Entrées : a, b ∈ N tels que (a, b) ̸= (0, 0)
Sorties : d = pgcd(a, b) et u, v ∈ Z tels que au+ bv = d.

1. x← a, y ← b, U ←
(
1 0
0 1

)
(Initialisation)
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2. Tant que y ̸= 0 :

3. (r, q)← reste et quotient de la division euclidienne de x par y

4. (x, y)← (y, r)

5. U ←
(
0 1
1 −q

)
U

6. Sortir (x, U [0, 0], U [0, 1])

Théorème 5.1.7. La complexité binaire de cet algorithme est en O(s(a)s(b)).
C’est un algorithme quadratique.

Démonstration. Voir les TD.

Si K est un corps, K[X] est un anneau euclidien. Les algorithmes précé-
dents fonctionnent aussi pour des éléments de K[X].

Théorème 5.1.8. Soient A, B ∈ K[X], où K est un corps.

1. L’algorithme d’Euclide calcule D = pgcd(A,B) en O((degA+1)(degB+
1)) opérations sur K.

2. L’algorithme d’Euclide étendu calcule D, ainsi que deux polynômes U
et V de K[X] tels que AU + BV = D en O((degA + 1)(degB + 1))
opérations dans K.

Remarque. On sait qu’il existe un algorithme de complexité binaire quasi-
linéaire pour la multiplication des entiers. On peut en déduire un algorithme
de complexité binaire quasi-linéaire pour la division euclidienne et pour les
algorithmes d’Euclide.

De même, de tels algorithmes de complexité algébrique quasi-linéaires
existent pour les polynômes.

5.2. Inversion modulaire

Théorème 5.2.1. (Z/nZ)∗ = {[a]n : a ∈ Z et pgcd(a, n) = 1}. Si
pgcd(a, n) = 1, l’inverse de [a]n est [u]n où au+ nv = 1.

Pour les polynômes, on a bien sûr le même résultat.

Théorème 5.2.2. Soient K un corps et P un polynôme non nul de K[X].

(K[X]/(P ))∗ = {[R]P : R ∈ K[X] , pgcd(R,P ) = 1}.

Si pgcd(R,P ) = 1, l’inverse de [R]P est [U ]P où UR + V P = 1.
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5.3. Théorème des restes chinois

Soient a et b deux entiers non nuls tels que pgcd(a, b) = 1. L’application

Z→ Z/aZ× Z/bZ
x 7→ ([x]a, [x]b)

est un homomorphisme d’anneaux de noyau abZ. Il définit donc un homo-
morphisme injectif

Φ : Z/abZ→ Z/aZ× Z/bZ
[x]ab 7→ ([x]a, [x]b)

qui est un isomorphisme pour des raisons de cardinaux. Si l’on connaît des
entiers u et v tels que au+ bv = 1, On peut calculer l’inverse de Φ.

Φ−1([x]a, [y]b) = [xbv + yau]ab

En effet,

bv ≡

{
1 mod a

0 mod b
et au ≡

{
0 mod a

1 mod b

donc

xbv + yau ≡

{
x mod a

y mod b

Plus généralement, soient a1, . . . , an des entiers non nuls deux à deux

premiers entre eux. Soit A =
n∏
i=1

ai. On définit encore un isomorphisme d’an-

neaux
Φ : Z/AZ→ Z/a1Z× · · · × Z/anZ

[x]A 7→ ([x]a1 , . . . , [x]an)

On cherche maintenant à écrire l’application inverse de Φ. Pour b1, . . . , bn ∈
Z, il s’agit de trouver x ∈ Z tel que

x ≡ bi mod ai pour tout i ∈ [[1, n]]

Pour tout i ∈ [[1, n]], on pose Ai =
∏
j ̸=i

aj. Alors Ai et ai sont premiers entre

eux. Soient pour tout i des entiers ui et vi tels que Aiui + aivi = 1. L’entier

x =
n∑
i=1

biAiui

convient.
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Proposition 5.3.1. On peut calculer [x]A avec une complexité binaire en
O(s(A)2).

Démonstration. Exercice.

Cela se transpose immédiatement au cas des polynômes. Soient P1, . . . , Pn

des polynômes de K[X] deux à deux premiers entre eux. Soit A =
n∏
i=1

Pi. On

définit l’isomorphisme de K-algèbres

Φ : K[X]/AK[X]→ K[X]/P1K[X]× · · · ×K[X]/PnK[X]

[R]A 7→ ([R]P1 , . . . , [R]Pn)

Soit pour tout i ∈ [[1, n]] Ai =
∏
j ̸=i

Pi et soient Ui, Vi ∈ K[X] tels que AiUi +

PiVi = 1. Soient Q1, . . . , Qn ∈ K[X]. Alors si

P =
n∑
i=1

QiAiUi,

alors pour tout i, P ≡ Qi mod Pi.

Proposition 5.3.2. On peut calculer [P ]A avec une complexité algébrique en
O((degA+ 1)2).

5.4. Interpolation de Lagrange

Soit K un corps et soient a1, . . . , an n éléments deux à deux distincts de
K. Soient b1, . . . , bn n éléments de K. On cherche P ∈ K[X] tel que

P (ai) = bi pour tout i ∈ [[1, n]] (5.1)

La division euclidienne de P par X−ai donne P (X) = (X−ai)Q(X)+P (ai)
donc P ≡ P (ai) mod X − ai. On en déduit que (5.1) est équivalent à

P ≡ bi mod X − ai pour tout i ∈ [[1, n]] (5.2)

Les X − ai sont deux à deux premiers entre eux : on reconnaît le problème
des restes chinois. L’ensemble des solutions est une classe de K[X]/(A) où

A =
n∏
i=1

(X − ai). En particulier, ce système de congruence a une unique

solution de degré strictement inférieur à n.



5.5. INTERPOLATION D’HERMITE 35

Pour tout i, on note Ai =
∏
j ̸=i

(X−aj). Alors la division euclidienne de Ai

par X − ai a pour reste Ai(ai) =
∏
j ̸=i

(ai − aj). On obtient donc une relation

de Bézout de la forme

Ai(X)

Ai(ai)
+ (X − ai)Vi(X) = 1.

On reconnaît les polynômes d’interpolation de Lagrange

Li =
Ai(X)

Ai(ai)
=
∏
j ̸=i

X − aj
ai − aj

et la solution de degré strictement inférieur à n donnée par :

P =
n∑
i=1

biLi

5.5. Interpolation d’Hermite

Soient a1, . . . , an n éléments de K deux à deux distincts, m1, . . . ,mn des
éléments de N et bi,j pour (i, j) ∈ I = {(i, j) ∈ N2 : 1 ≤ i ≤ n , 0 ≤ j ≤ mi}
des éléments de K. On suppose enfin que pour tout i, mi⟨car(K).

On cherche à résoudre

P (j)(ai) = bi,j pour tout (i, j) ∈ I (5.3)

Soit d = degP En appliquant la formule de Taylor pour les polynômes à P ,
on obtient

P (X) =
d∑

k=0

(X − ai)k

k!
P (k)(ai)

= P (ai) + (X − ai)P ′(ai) +
(X − ai)2

2!
P (2)(ai) + · · ·+

(X − ai)d

d!
P (d)(ai)

≡ P (ai) + (X − ai)P ′(ai) + · · ·+
(X − ai)mi

mi!
P (mi)(ai) mod (X − ai)mi+1

≡
mi∑
k=0

(X − ai)k

k!
P (k)(ai) mod (X − ai)mi+1

Soit pour tout i

Bi =

mi∑
k=0

(X − ai)k

k!
bi,k
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Le développement de Taylor à un ordre donné mi est unique puisque 1, (X−
ai), (X−ai)2, . . . , (X−ai)mi est une base de K[X]mi

. Donc le système d’équa-
tions (5.3) est équivalent au système de congruences

P ≡ Bi mod (X − ai)mi+1 pour tout i ∈ [[1, n]]

C’est donc encore un problème de restes chinois. Il existe un unique polynôme

P de degré strictement inférieur à
n∑
i=1

(mi + 1) = n +
n∑
i=1

mi qui vérifie ces

congruences. Pour tout i, on note Ai =
∏
j ̸=i

(X − aj)mj+1 Soient Ui et Vi des

polynômes tels que UiAi + Vi(X − ai)mi+1 = 1, alors cette solution vérifie la
congruence

P ≡
n∑
i=1

BiUiAi

L’ensemble des solutions de (5.3) est P +K[X]A où A =
n∏
i=1

(X − ai)mi+1.

5.6. Un exemple d’interpolation d’Hermite

On cherche à trouver un polynôme P de Q[x] de degré inférieur ou égal
à 5 tel que P (1) = 0, P ′(1) = −3, P ′′(1) = 2, P ′′′(1) = 42, P (2) = 11 et
P ′(2) = 45.

Ces contraintes sont équivalentes au système suivantP (x) ≡ P (1) + (x− 1)P ′(1) +
(x− 1)2

2
P ′′(1) +

(x− 1)3

6
P ′′′(1) mod (x− 1)4

P (x) ≡ P (2) + (x− 2)P ′(2) mod (x− 2)2

c’est-à-dire :P (x) ≡ −3(x− 1) + 2
(x− 1)2

2
+ 42

(x− 1)3

6
mod (x− 1)4

P (x) ≡ 11 + 45(x− 2) mod (x− 2)2

Bien sûr, (x − 1)4 et (x − 2)2 sont premiers entre eux. Nous sommes dons
ramenés à un problème de restes chinois.

Sur sage, si l’on exécute les commandes

Qx.\langle x \rangle =PolynomialRing(QQ)
crt([-3*(x-1)+(x-1)^2+7*(x-1)^3,11+45*(x-2)],[(x-1)^4,(x-2)^2])

on obtient le résultat P (x) = x5 − 3x3 + x+ 1.



Chapitre 6

Primalité et factorisation dans Z

Soit n un entier naturel non nul. On se pose les questions suivantes :

1. n est-il composé (c’est-à-dire, n est-il produit de deux facteurs de N
distincts de 1 et n) ?

2. n est-il premier ?

3. Quelle est la factorisation de n ?

Ces questions semblent à peu près les mêmes, surtout les 1 et 2. En réalité,
elles sont distinctes et de difficultés distinctes.

Bien sûr, on peut répondre à ces questions en effectuant la division eucli-
dienne de n par tous les nombres premiers inférieurs à

√
n pris dans l’ordre

croissant, mais le temps de calcul est alors exponentiel. On cherche des algo-
rithmes plus efficaces.

En pratique, on pose d’abord la question 1, et on attend une réponse
parmi les deux suivantes.

— Réponse A : oui, n est composé.

— Réponse B : n n’est probablement pas composé.

De plus, dans le cas B on veut pouvoir controler la probabilité p selon laquelle
n est premier (par exemple imposer p⟩0.999). En effet, dans les applications
pratiques, une incertiture aussi faible peut être parfaitement acceptable.

Si la réponse est la réponse B, on peut ensuite vouloir démontrer que
n est effectivement premier, et donc on se pose la question 2, qui est plus
difficile que la question 1. Si la réponse est la réponse A, on peut chercher à
factoriser n. C’est la question 3), qui est la plus difficile des trois.

37
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6.1. Rappels sur Z/nZ

Soit G un groupe fini de cardinal N et d’élément neutre 1. Le cardinal
de tout sous groupe de G divise N (théorème de Lagrange). En particulier,
l’ordre de tout élément g de G divise N . Ainsi, pour tout g ∈ G,

gN = 1

Théorème 6.1.1. L’ensemble (Z/nZ)∗ des éléments inversibles de Z/nZ
pour la multiplication est égal à {[k]n : pgcd(k, n) = 1}. C’est aussi l’en-
semble des générateurs du groupe (Z/nZ,+).

Définition 6.1.2. La fonction indicatrice d’Euler φ est l’application de N∖
{0} dans N∖ {0} définie par

φ(n) = |(Z/nZ)∗|

Le théorème suivant est une conséquence du théorème de Lagrange.

Théorème 6.1.3. [Euler] Pour tout entier a premier à n,

aφ(n) ≡ 1 mod n

Le calcul de φ se fait de la manière suivante.
On remarque que φ(1) = 1 et pour tout nombre premier p et tout entier

naturel non nul α,
φ(pα) = pα − pα−1

Si pgcd(a, b) = 1, le théorème des restes chinois permet de constater que

(Z/abZ)∗ ≃ (Z/aZ)∗ × (Z/bZ)∗

donc φ(ab) = φ(a)φ(b) : φ est une fonction multiplicative.

On en déduit que si n =
r∏
i=1

pvii est la décomposition de n en produit de

facteurs premiers,

φ(n) =
r∏
i=1

φ(pvii )

φ(n) =
r∏
i=1

pvii − p
vi−1
i

φ(n) = n
r∏
i=1

(
1− 1

p i

)
Le théorème suivant permet de décrire la structure de ((Z/nZ)∗,×) (grâce

au théorème des restes chinois).
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Théorème 6.1.4. Soient p un nombre premier impair et α ∈ N ∖ {0}. Le
groupe ((Z/pαZ)∗,×) est cyclique d’ordre φ(pα) = pα − pα−1. Il est donc
isomorphe à (Z/φ(pα)Z,+).

Si α ≥ 2, (Z/2αZ,×) ≃ (Z/2Z× Z/2α−2Z,+).

6.2. Tests de non primalité

6.2.1 Test de Fermat

Pour démontrer qu’un entier n n’est pas premier, on utilise le théorème
de Fermat suivant (c’est un cas particulier du théorème d’Euler).

Théorème 6.2.1. [Fermat] Si n est premier et si pgcd(a, n) = 1, alors

an−1 ≡ 1 mod n

Corollaire 6.2.2. Soit a un élément de [[1, n − 1]]. Si an−1 ̸≡ 1 mod n,
alors n est composé.

Démonstration. Si a est premier à n, c’est le théorème de Fermat. Sinon,
pgcd(a, n) est un diviseur non trivial de n (n ne divise pas a puisque 1 ≤
a⟨n).

On en déduit le test de non primalité de Fermat.

Algorithme 6.2.3. [Fermat]
Entrée : n
Sortie : “n est composée” ou “il se peut que n soit premier”
1. Choisir a au hasard dans [[1, n− 1]]

2. d← pgcd(a, n)

3. Si d ̸= 1 : sortir “n est composé et d est un facteur non trivial”
4. b← rem(an−1, n)

5. Si b ̸= 1 : sortir “n est composé”
6. Si b = 1 : sortir “il se peut que n soit premier”

Remarques.

— Le calcul de pgcd(a, n) peut être omis : si n est grand, il y a très peu
de chances que ce pgcd soit distinct de 1.

— Ce test fait intervenir un paramètre choisi au hasard : c’est un algo-
rithme probabiliste.
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Le calcul de rem(an−1, n) est un calcul dans Z/nZ en ce sens qu’il ne
faut absolument pas calculer an−1 dans Z puis réduire, mais réduire modulo
n après chaque produit effectué. En utilisant l’exponentiation rapide, cela
demande O(log n) multiplications dans Z/nZ. La complexité binaire est donc
en O((log n)3) avec la multiplication classique, et Õ((log n)2) avec FFT.

Malheureusement, si n est composé, cet algorithme ne le détecte pas né-
cessairement. Voyons avec quelle probabilité ce test échoue.

Soient donc n un entier composé et pn la probabilité d’échec du test de
Fermat, (c’est-à-dire la probabilité de tirer un entier a tel que an−1 ≡ 1
mod n). Soit Mn l’ensemble des menteurs (ou faux témoins) de Fermat pour
n.

Mn = {x ∈ (Z/nZ)∗ : xn−1 = 1}

Alors pn =
|Mn|
n− 1

.Mn est le noyau de l’homomorphisme de groupes x 7→ xn−1.

C’est donc un sous-groupe de (Z/nZ)∗, par conséquent, |Mn| divise φ(n).
Ainsi, si Mn ̸= (Z/nZ)∗, Mn ≤ φ(n)

2
et donc

pn =
|Mn|
n− 1

≤ |Mn|
φ(n)

≤ 1

2

Dans ce cas, si l’on renouvelle 10 fois le test, la probabilité de ne pas détecter
que n est composé est inférieure à 1/210 ∼ 0, 00098.

Le test est donc très satisfaisant dans le cas où Mn ̸= (Z/nZ)∗. Mais il
existe des entiers n tels que Mn = (Z/nZ)∗. On les appelle les nombres de
Carmichaël.

Si n est un nombre de Carmichaël, pn =
φ(n)

n− 1
=

n

n− 1

∏
p|n

(
1− 1

p

)
.

Exemple. Le plus petit nombre de Carmichaël est n = 561 = 3 · 11 · 17. En
effet, n− 1 = 560 = 24 · 5 · 7 et

(Z/561Z)∗ ≃ (Z/3Z)∗ × (Z/11Z)∗ × (Z/17Z)∗

Or les ordres des groupes du produit de droite sont respectivement 2, 10 et
16, qui divisent tous 560. Donc pour tout x ∈ (Z/561Z)∗, x560 = 1.

Nous admettons le résultat suivant.

Théorème 6.2.4. [Alford, Grandville, Pomerance, 1994] L’ensemble
des nombres de Carmichaël est infini.
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6.2.2 Test de Rabin-Miller

On peut affiner le test de Fermat pour être en mesure de détecter aussi
les nombres de Carmichaël en utilisant un lemme bien connu.

Lemme 6.2.5. Soient A un anneau intègre et x ∈ A.

x2 = 1 ⇐⇒ x ∈ {±1}

Le test de Rabin-Miller repose sur le théorème du même nom.

Théorème 6.2.6. [Rabin-Miller] Soit n un nombre premier impair. On
pose n−1 = 2em où m est un entier impair. Pour tout entier a premier à n,

— soit am ≡ 1 mod n

— soit il existe i ∈ [[0, e− 1]] tel que a2im ≡ −1 mod n.

Démonstration. On suppose que am ̸≡ 1 mod n. On va montrer qu’ il existe
i ∈ [[0, e− 1]] tel que a2im ≡ −1 mod n.

Comme n est impair, l’entier e dans l’égalité n−1 = 2em vérifie e ≥ 1. Si
n est premier, Z/nZ est un corps. Pour tout a ∈ (Z/nZ)∗, a2em = an−1 = 1.
L’ensemble I = {i ∈ [[0, e]] : a2

im = 1} est non vide et 0 ̸∈ I. Soit i0 = min I.
Alors i0 ≥ 1. (

a2
i0−1m

)2
= a2

i0m = 1

D’après le lemme 6.2.5, on en déduit que a2
i0−1m ∈ {±1}. Comme i0 est

minimal dans I, a2i0−1m = −1.

Algorithme 6.2.7. Rabin-Miller
Entrées : n : entier impair, e,m : n− 1 = 2em, a ∈ [[1, n− 1]].
Sortie : “n est composé” ou “il est possible que n soit premier”
1. d← pgcd(a, n)
2. Si d ̸= 1 : sortir “n est composé et d est un facteur”
3. b← rem(am, n)
4. Si b ≡ 1 mod n ou s’il existe i ∈ [[0, e− 1]] tel que b2i ≡ −1 mod n :
5. Sortir “Il se peut que n soit premier”
6. Sortir “n est composé”

La complexité de ce test est la même que celle du test de Fermat. On
l’applique à des entiers a pris au hasard dans [[1, n− 1]].

Supposons que n soit composé, et étudions la probabilité pn de tirer un
menteur, c’est-à-dire un entier a qui ne permet pas de détecter que n est
composé. On note M ′

n l’ensemble des menteurs de Rabin-Miller.

M ′
n = {x ∈ (Z/nZ)∗ : soit xm = 1

soit il existe i ∈ [[0, e− 1]] tel que x2
im = −1}
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Théorème 6.2.8. On suppose que n est un nombre composé impair. Alors

card(M ′
n) ≤

n− 1

4

La probabilité pn est donc inférieure à 1/4.

Si l’on fait 10 essais successifs sur un entier impair composé, la probabilité
de ne pas détecter qu’il est composé est inférieure à 4−10 ∼ 9, 5 · 10−7.

Définition 6.2.9. Soit n un entier impair. Si le test de Rabin-Miller appliqué
à n avec l’entier a indique que n pourrait être premier, on dit que n est
pseudo-premier fort de base a.

Exemple. Soit n = Fr = 22
r
+ 1. On appelle cet entier le r-ème nombre de

Fermat.
Fr − 1 = 22

r

Dans le théorème de Rabin-Miller, e = 2r et m = 1. r ∈ [[0, e−1]] et 22r ≡ −1
mod Fr, donc Fr est pseudo-premier fort de base 2.

Les entiers F0, F1, F2, F3 et F4 sont premiers. Pour r ∈ [[5, 32]], Fr est
composé.

Dans la preuve du théorème 6.2.8, on utilisera le lemme suivant.

Lemme 6.2.10. Soient G un groupe cyclique d’ordre n et x ∈ G. Soient k
un entier et d = pgcd(n, k).

xk = 1 ⇐⇒ xd = 1

Ainsi, {x ∈ G : xk = 1} = {x ∈ G : xd = 1} : c’est l’unique sous-groupe
d’ordre d de G.

Démonstration. Exercice (utiliser une relation de Bézout un+ vk = d).

Lemme 6.2.11. • Soient P l’ensemble des diviseurs premiers de n et

n =
∏
p∈P

pαp

la décomposition de n en produit de facteurs premiers.

• Soit r le cardinal de P.

• Pour tout p ∈ P, on note p− 1 = 2epmp où mp est impair.



6.2. TESTS DE NON PRIMALITÉ 43

• Soit E = min{ep : p ∈ P}.

Avec ces notations,

card(M ′
n) =

(
1 +

2rE − 1

2r − 1

)∏
p∈P

pgcd(p− 1,m)

Démonstration. Soit p ∈ P . Le groupe(Z/pαpZ)∗ est cyclique d’ordre pαp−1(p−
1). Alors pour tout i ∈ N,

card
{
x ∈ (Z/pαpZ)∗ : x2

im = 1
}
= pgcd(pαp−1(p− 1), 2im)

= 2min(i,ep) pgcd(p− 1,m)

(puisque p est premier à 2im). Comme (Z/pαp)∗ est cyclique,

{y ∈ (Z/pαp)∗ y2 = 1} = {1,−1}

Ainsi,

card
{
x ∈ (Z/pαpZ)∗ : x2

im = −1
}
=card

{
x ∈ (Z/pαpZ)∗ : x2

i+1m = 1
}

− card
{
x ∈ (Z/pαpZ)∗ : x2

im = 1
}

=

{
0 si i ≥ ep

2i pgcd(p− 1,m) si i⟨ep

puisque si i ≥ ep, min(i, ep) = min(i + 1, ep) = ep et si i⟨ep, 2min(i+1,ep) −
2min(i,ep) = 2i+1 − 2i = 2i.

Comme E = min{ep : p ∈ P}, on en déduit que dès que i ≥ E, il existe
p ∈ P tel que card

{
x ∈ (Z/pαpZ)∗ : x2

im = −1
}
= 0.

On utilise ensuite l’isomorphisme des restes chinois.

(Z/nZ)∗ ≃
∏
p∈P

(Z/pαp)∗

Pour tout entier a,

am ≡ 1 mod n ⇐⇒ (am ≡ 1 mod pαp ∀p ∈ P)

et pour tout i ∈ [[0, e− 1]]

a2
im ≡ −1 mod n ⇐⇒ (a2

im ≡ −1 mod pαp ∀p ∈ P)
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Ainsi,

card {x ∈ (Z/nZ)∗ : xm = 1} =
∏
p∈P

card {x ∈ (Z/pαpZ)∗ : xm = 1}

=
∏
p∈P

pgcd(p− 1,m)

et pour tout i ∈ [[0, e− 1]],

card
{
x ∈ (Z/nZ)∗ : x2

im = −1
}
=


0 si i ≥ E∏
p∈P

2i pgcd(p− 1,m) si i⟨E

Comme r = cardP , on en déduit que

card(M ′
n) =

(
1 +

E−1∑
i=0

2ri

)∏
p∈P

pgcd(p− 1,m)

=

(
1 +

2rE − 1

2r − 1

)∏
p∈P

pgcd(p− 1,m)

Démonstration du théorème 6.2.8.
On utilise le résultat du lemme précédent et on veut majorer Q =

M ′
n

n− 1
.

Distinguons les cas r = 1 et r⟩1.
Cas 1 : r = 1. Alors n = pαp , p− 1 = 2epmp et E = ep. Comme m est impair,
pgcd(p− 1,m) ≤ 2−ep(p− 1).

Q =
2ep pgcd(m, p− 1)

pαp − 1
≤ p− 1

pαp − 1
=

p− 1

(p− 1)(pαp−1 + · · ·+ 1)

≤ 1

p+ 1
≤ 1

4

Cas 2 : r⟩1. Là encore, comme m est impair,

pgcd(m, p− 1) ≤ p− 1

2ep
≤ p− 1

2E
(6.1)

De plus,

∏
p∈P

(p− 1) ≤
∏
p∈P

(pαp − 1) ≤

(∏
p∈P

pαp

)
− 1 = n− 1 (6.2)
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On en déduit que

Q ≤ 1

2rE

(
1 +

2rE − 1

2r − 1

)
Le terme de droite décroît quand E croît (pour le voir, il suffit de l’écrire
1

2rE

(
1− 1

2r − 1

)
+

1

2r − 1
). Sa valeur maximale est donc atteinte pour E =

1. On obtient pr ≤
2

2r
donc

Q ≤ 1

4
si r ≥ 3 et Q ≤ 1

2
si r = 2

Le théorème est donc démontré, sauf dans le cas où r = 2. Dans cette
situation, on peut en exercice affiner ce résultat en suivant les indications
suivantes.

— s’il existe p ∈ P tel que p− 1 ne divise pas n− 1, on peut améliorer les
inégalités dans (6.1).

— si n a au moins un facteur carré (c’est-à-dire s’il existe p ∈ P tel que
αp ≥ 2), on peut améliorer la première inégalité dans (6.2).

— Reste le cas où pour tout p ∈ P , p − 1 divise n − 1 et si n n’a pas de
facteur carré, (avec la condition r = 2). On peut montrer (en exercice)
qu’un tel entier n n’existe pas !

□

6.3. Tests de primalité

Dans ce paragraphe, n est un nombre impair que l’on croit premier : on
suppose que plusieurs tests de Rabin-Miller nous ont donné cette conviction.
On veut démontrer qu’il est effectivement premier.

6.3.1 Tests basés sur le groupe (Z/nZ)∗

L’entier n est un nombre premier si et seulement si |(Z/nZ)∗| = n − 1.
Dans ce cas, le groupe ((Z/nZ)∗,×) est cyclique d’ordre n− 1.

Pour montrer que n est premier, il suffit de trouver un élément d’ordre
n− 1 dans (Z/nZ)∗.

Lemme 6.3.1. Soit G un groupe et soit x ∈ G. Alors x est d’ordre d si et
seulement si les propriétés suivantes sont vérifiées.

1. xd = 1

2. Pour tout diviseur premier l de d, xd/l ̸= 1.
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Démonstration. L’implication directe est claire. Réciproquement, supposons
que x vérifie les conditions 1 et 2. Comme xd = 1, x est d’ordre fini d′ tel
que d′ divise d. Notons d′k = d et raisonnons par l’absurde : si k ̸= 1, il est
divisible par un nombre premier l, et alors

xd/l = xd
′k/l = 1

ce qui est contraire à la condition 2.

Pour démontrer que n est premier, on peut utiliser l’algorithme ci-dessous,
qui nécessite la connaissance de l’ensemble des diviseurs premiers de n − 1.
Dans la suite de ce paragraphe, la décomposition de n − 1 en produit de
facteurs premiers est

n− 1 =
r∏
i=1

pvii

Algorithme 6.3.2. [Test de Lucas-Lehmer]
Entrées : n (nombre entier vraisemblablement premier), p1, . . . , pr : divi-

seurs premiers de n− 1.
Sortie : “n est premier” ou “Échec” ou “n est composé”
1. a← entier choisi au hasard dans [[1, n− 1]]
2. Si an−1 ̸≡ 1 mod n : sortir “n est composé”
3. Pour i de 1 à r :
4. si a(n−1)/pi ≡ 1 mod n : sortir “Échec”
5. Sortir “n est premier” et a est un certificat.

Remarques.
1. En cas de succès, l’algorithme rend aussi l’entier a. C’est un générateur

de (Z/nZ)∗. On le garde comme “certificat de primalité”.
2. Cet algorithme présente un inconvénient majeur : il nécessite la connais-

sance de tous les diviseurs premiers de n − 1. Comme la factorisation
est un problème réputé plus difficile, ce test ne semble pas praticable.
Il arrive cependant souvent que les diviseurs premiers de l’entier n− 1
soient petits (on dit alors que n− 1 est friable).

Voyons la complexité de l’algorithme.
Pour cela, il faut majorer le nombre r de diviseurs premiers de n− 1.

n− 1 =
r∏
i=1

pvii ≥ 2r

donc
r ≤ log(n− 1)
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Les calculs de puissances dans l’algorithme se font en O(log n) multiplica-
tions dans (Z/nZ)∗. Si M(n) est la complexité binaire de chacune de ces
multiplications, on voit que la complexité binaire de l’algorithme est en
O((log n)2M(n)).

Évaluons maintenant la probabilité de succès. Le cardinal de l’ensemble
des générateurs de ((Z/nZ)∗,×) ≃ (Z/(n− 1)Z,+) est égal à φ(n− 1). Soit
P la probabilité pour que la classe [a]n soit un générateur.

P =
φ(n− 1)

n− 1
=

r∏
i=1

(
1− 1

pi

)
≥
(
1

2

)r
En fait, on peut minorer P de façon beaucoup plus fine et montrer que
l’espérance du nombre de tirages nécessaires est en O(ln lnn). C’est déjà
bien, mais on peut améliorer cela en cherchant pour chaque i un élément
d’ordre pvii .

Proposition 6.3.3. Soit n un entier impair strictement supérieur à 1. Alors
n est premier si et seulement si pour tout i ∈ [[1, r]], il existe ai ∈ Z qui vérifie
les propriétés suivantes.

1. an−1
i ≡ 1 mod n

2. a(n−1)/pi
i ̸≡ 1 mod n

Démonstration. Soit a =
r∏
i=1

ai. Les conditions 1 et 2 montrent que [a]n est

d’ordre n − 1 dans (Z/nZ)∗. En effet, la condition 2 assure que pvii divise
l’ordre de ai. Le lemme 6.3.4 qui suit permet ensuite de conclure.

Lemme 6.3.4. Soit G un groupe abélien. Soient x et y deux éléments de G.
L’ordre du produit xy est le ppcm des ordres de x et y.

Démonstration. Exercice.

Algorithme 6.3.5. [Test de Pocklington-Lehmer]
Entrées : n un entier impair et la décomposition de n− 1
Sortie : “n est premier” ou “n est composé
1. Pour i de 1 à r :
2. β ← 1
3. Tant que β = 1 :
4. Choisir α ∈ [[1, n− 1]] au hasard
5. β ← rem(α(n−1)/pi , n)
6. Si βpi ̸≡ 1 mod n : sortir “n est composé”
7. ai = rem(α(n−1)/p

vi
i , n)
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8. Sortir “n est premier”, a = rem

(
r∏
i=1

ai, n

)
est un certificat de prima-

lité.

Remarque. Les calculs des ai du pas 7 et du produit a permettent de
donner un certificat. Ces calculs ne sont pas nécessaires si l’on ne souhaite
pas conserver ce certificat.

Calculons la probabilité de succès. L’ensemble H = {x ∈ (Z/nZ)∗ :

x(n−1)/pi = 1} est le sous-groupe de (Z/nZ)∗ d’ordre
n− 1

pi
. Quand on tire α

au pas 4, la probabilité d’échec est donc
|H|
n− 1

=
1

p i
. Soit X le nombre de

tirages nécessaires. L’espérance de X est

E(X) =
+∞∑
k=1

kP (X = k)

=
+∞∑
k=1

k

(
1− 1

pi

)(
1

pi

)k−1

=

(
1− 1

pi

)
1(

1− 1

pi

)2

=
1

1− 1

pi
≤ 2

Grâce à ce test, on peut donc montrer que n est premier avec une com-
plexité binaire en O((log n)2M(n)) en moyenne, à condition de connaître la
décomposition de n− 1 en produit de facteurs premiers.

Il existe des raffinements de ce test pour lesquels on n’a besoin que d’une
factorisation partielle de n− 1.

Proposition 6.3.6. On suppose que n − 1 = FU où pgcd(F,U) = 1 et où
F ⟩
√
n. Alors n est premier si et seulement si pour tout diviseur premier p

de F , il existe ap tel que

an−1
p ≡ 1 mod n et pgcd(a(n−1)/p

p − 1, n) = 1

Démonstration. Soit q un diviseur premier de n, on va montrer que q⟩
√
n.

Ceci montrera bien que n est premier. Soit p premier divisant F , alors ap est
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premier avec n car an−1
p ≡ 1 mod n, donc ap est premier avec q. On a donc

aq−1
p ≡ 1 mod q. Par ailleurs, an−1

p ≡ 1 mod q et a(n−1)/p
p ̸= 1 mod q donc, si

k désigne l’ordre de ap modulo q, et si pvp est la plus grande puissance de p
qui divise n− 1, on a pvp divise k et k divise q− 1 donc pvp divise q− 1. Ceci
étant vrai pour tout premier p divisant F , on obtient que F divise q−1 donc
que q − 1 ≥ F et donc q⟩

√
n.

Proposition 6.3.7. On suppose que n − 1 = FU où pgcd(F,U) = 1 et
U⟩1. On suppose aussi que tous les diviseurs premiers de U sont strictement
supérieurs à B, où BF ≥

√
n. Alors n est premier si et seulement si les

conditions suivantes sont vérifiées.

1. Pour tout diviseur premier p de F , il existe ap tel que

an−1
p ≡ 1 mod n et pgcd(a(n−1)/p

p − 1, n) = 1

2. Il existe a tel que

an−1 ≡ 1 mod n et pgcd(aF − 1, n) = 1

Ce dernier résultat peut être utilisé si l’utilisation de la table de tous les
nombres premiers inférieurs à B permet une factorisation suffisante de n−1.

6.3.2 Autres tests

Citons brièvement d’autres tests de primalité.

— Il existe des tests basés sur le corps Fn2 qui reposent sur la factorisation
de n+ 1 : si n− 1 n’est pas friable, peut-être que n+ 1 l’est.

— Les tests les plus efficaces actuellement utilisent les courbes elliptiques.
Toute courbe elliptique E sur Fn est munie d’une loi de groupe. L’idée
est d’utiliser une courbe elliptique dont l’ordre est friable.

— L’algorithme AKS (Agrawal, Kayal et Saxena) est un algorithme dé-
terministe de complexité polynomiale.

6.4. Crible d’Eratosthène

Soit B une borne donnée. On souhaite établir la liste des nombres pre-
miers inférieurs ou égaux à B. On connaît un équivalent en l’infini de la
taille d’une telle liste grâce au théorème des nombres premiers, démontré en
1896 par Jacques Hadamard et Charles-Jean de La Vallée Poussin de façon
indépendante.
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Théorème 6.4.1. [Nombres premiers]

Card{p premiers : p ≤ x} ∼ x

lnx

Le crible d’Eratosthène fonctionne de la manière suivante. On établit la
liste des entiers entre 2 et B. On élimine tous les multiples de 2 distinct de
2. Puis on élimine les multiples de 3. On itère le procédé jusqu’à

√
B.

On s’arrête à
√
B : en effet, si n ≤ B n’est pas premier, notons p son plus

petit facteur premier. Alors n = pq où q ≥ p donc p2 ≤ pq = n ≤ B.

Algorithme 6.4.2. [Eratosthène]
Entrée : B
Sortie : la liste des nombres premiers inférieurs ou égaux à B.

1. T ← [1 pour i entre 1 et B]

2. Pour n de 2 à ⌊
√
B⌋ :

3. Si T [n] = 1 :

4. Pour k de 2 à
⌊
B

n

⌋
:

5. T [kn] = 0

6. Sortir [n : n ∈ [[2, B]] et T [n] = 1]

Le coût est exponentiel. En effet,

B
∑
n≤

√
B

1

n
∼ B ln

√
B =

1

2
B lnB

L’algorithme demande donc O(B lnB) multiplications dans N.

6.5. Factorisation

On ne connaît pas d’algorithme de factorisation dans N qui soit polyno-
mial. Cela assure une certaine solidité au système RSA.

Les meilleurs algorithmes connus sont sous-exponentiels. Citons en trois.

— Algorithme de Dixon : O
(
e2

√
2(lnn)1/2(ln lnn)1/2

)
— Crible quadratique : O

(
e(1+o(1))(lnn)

1/2(ln lnn)1/2
)

— Crible algébrique : O
(
ec(lnn)

1/3(ln lnn)2/3
)

où c⟩1
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Le crible algébrique est actuellement le plus efficace. Les cribles algébrique
et quadratique utilisent la même idée de base que l’algorithme de Dixon. C’est
cet algorithme de Dixon qui est décrit ici.

À l’origine, l’idée vient de factorisations effectuées par Fermat qui utili-
saient le fait que si n = x2 − y2, alors n = (x + y)(x − y). Cela permet de
factoriser des entiers dont les facteurs premiers sont proches de

√
n.

Exemple. Soit n = 2027 651 281. Alors ⌊
√
n⌋ = 45 029. On part de x =

45 030, on regarde si x2 − n est un carré. Si tel n’est pas le cas, on change x
en x+ 1 et on recommence. Pour x = 45 041, on trouve que x2 − n = 10202,
donc

n = 45 0412 − 1 0202 = 46 061× 44 029

On peut modifier cette idée en remarquant que si

x2 ≡ y2 mod n et x ̸≡ ±y mod n

alors pgcd(x− y, n) est un facteur non trivial de n.
Suivant cette idée, on obtient l’algorithme suivant.
On tire x ∈ [[

√
n, n − 1]] au hasard, puis on calcule r = rem(x2, n). S’il

existe s ∈ N tel que r = s2, on calcule pgcd(x − s, n). Malheureusement,
card{s2 ∈ N : 0⟨s2⟨n} =⌋

√
n− 1⌊ : il y a peu de chances que r soit un

carré.
La stratégie utilisée dans l’algorithme de Dixon consiste à collecter des

relations données par des factorisations d’entiers x2i suivant une table de
nombres premiers donnée jusqu’à pouvoir en déduire une relation

x2 ≡ y2 mod n

Exemple. Factorisons n = 2183. On tire au hasard un entier, on le met au
carré, on réduit modulo n et on factorise le résultat obtenu si c’est facile.
Premier nombre tiré : 453. On vérifie que

4532 ≡ 7 mod n

Second nombre : 1024.
10242 ≡ 3 mod n

Troisième nombre : 209.

2092 ≡ 21 = 3× 7 mod n

On n’a obtenu aucun carré, mais on remarque que

(453× 1024× 209)2 ≡ (3× 7)2 mod n
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c’est-à-dire, en réduisant modulo n

6872 ≡ 212 mod n

Suivant l’idée de départ, on calcul pgcd(687 − 21, n) = 37. C’est un facteur
de 2 183.

2 183 = 37× 59

Pour mener à bien cette factorisation, nous avons utilisé la table des
nombres premiers {3, 7}. L’algorithme de Dixon utilise une table B = {p1⟨p2⟨. . . ⟨pk}
de tous les nombres premiers inférieurs à une certaine borne B.

Algorithme 6.5.1. [Dixon]
Entrées : n, B, B = {p1⟨p2⟨. . . ⟨pk} : ensemble des nombres premiers

inférieurs à B.
Sortie : un facteur non trivial de n ou “Échec”

1. Tirer au hasard x ∈ [[
√
n, n− 1]]. Si r = rem(x2, n) se factorise sur B,

on garde la relation

x21 ≡ p
e1,1
1 . . . p

ek,1
k mod n

2. Itérer le pas 1 jusqu’à obtenir k + 1 relations
x21 ≡ p

e1,1
1 . . . p

ek,1
k mod n

...
x2k+1 ≡ p

e1,k+1

1 . . . p
ek,k+1

k mod n

3. Résoudre le système à k équations et k + 1 inconnues εi ∈ {0, 1}
ε1e1,1 + · · ·+ εk+1e1,k+1 ≡ 0 mod 2

...
ε1ek,1 + · · ·+ εk+1ek,k+1 ≡ 0 mod 2

Soit (ε1, . . . , εk+1) une solution non nulle

4. Pour i de 1 à k : fi ←
1

2

k+1∑
j=1

εjei,j

5. g ← pgcd
(
xε11 . . . x

εk+1

k+1 − p
f1
1 . . . pfkk , n

)
6. Si g ̸∈ {1, n}, sortir g
7. Sinon sortir “Échec”
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Remarques

— Au pas 3, le système à résoudre est un système linéaire sans second
membre à k équations et k + 1 inconnues sur F2. L’ensemble des solu-
tions est un espace vectoriel sur F2 de dimension supérieure ou égale à
1. Il y a donc des solutions non nulles. On résout ce système en utilisant
l’algorithme du pivot de Gauss.

— Au pas 4, les fi sont bien des entiers puisque d’après le pas 3, les sommes
considérées sont des nombres pairs. On obtient une égalité de la forme
souhaitée : (

xε11 . . . x
εk+1

k+1

)2 ≡ (pf11 . . . pfkk

)2
mod n

Nous ne faisons pas ici l’analyse de la complexité de cet algorithme (voir
[G-G]). Signalons toutefois que pour la borne B, un choix optimal est

B ∼ e
√
lnn ln lnn
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Chapitre 7

Factorisation dans Fq[X ]

Soient q une puissance d’un nombre premier et Fq le corps de cardinal q.
Dans ce chapitre, on cherche à savoir comment reconnaître les polynômes

de Fq[X] qui sont irréductibles, et à factoriser ceux qui ne le sont pas.

7.1. Corps finis

Commençons par quelques rappels sur les corps finis.
Les premiers corps finis que l’on rencontre sont les corps Z/pZ, où p

désigne un nombre premier. On note ce corps Fp.
Soit K un corps commutatif. On note 1K l’élément neutre de la multipli-

cation de K. Pour tout entier naturel non nul k, on note

k × 1K = 1K + · · ·+ 1K︸ ︷︷ ︸
k×

pour tout entier k⟨0, k × 1 est l’opposé de |k| × 1 et 0 × 1 = 0K (l’élément
neutre de l’addition de K=). Soit l’application

f : Z→ K

k 7→ k × 1

f est un homomorphisme d’anneaux. Il induit donc une injection

Z/ ker f ↪→ K

Or K est un corps, donc Z/ ker f est intègre. Cela signifie que ker f est un
idéal premier de Z.

— Soit ker f = {0}. On dit alors que K est de caractéristique nulle.
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— Soit il existe un nombre premier p tel que ker f = pZ. On dit alors que
K est de caractéristique p.

On note car(K) la caractéristique de K.
Si car(K) = 0, f est une injection donc K est infini.
Si K est un corps fini, il existe donc un nombre premier p et une injection

Fp ↪→ K

qui munit K d’une structure de Fp-espace vectoriel de dimension finie. Si l’on
note d cette dimension, card(K) = pd. Le cardinal d’un corps fini est donc
toujours une puissance d’un nombre premier.

Réciproquement, soit q = pd une puissance d’un nombre premier. Soit L
un corps de décomposition sur Fp du polynôme

Q = Xq −X

On considère
K = {x ∈ L : xq − x = 0}

Il est facile de voir que K est un sous-corps de L (cela vient du fait que
l’application Frobp : x 7→ xp est un morphisme de corps, tout comme l’ap-
plication Frobq = Frobdp : x 7→ xq). Comme Q′ = −1, Q n’a que des racines
simples donc card(K) = degQ = q. On remarque aussi que K = L puisque
K contient toutes les racines de Q.

On sait que le corps de décomposition de Q sur Fp est unique à isomor-
phisme près. Donc il existe un et un seul corps de cardinal q à isomorphisme
près. On le note Fq.

Pour construire Fq, il suffit de trouver un polynôme irréductible P de
degré d dans Fp[X]. Alors Fp[X]/(P ) est un corps de cardinal pd = q, donc
isomorphe à Fq.

Pour montrer que l’on peut toujours trouver un tel polynôme, on peut
utiliser le résultat suivant.

Théorème 7.1.1. Si K est un corps commutatif, tout sous groupe fini de
(K∗,×) est cyclique.

Soit x un générateur de (F∗
q,×). Alors Fq = Fp[x]. Soit m ∈ Fp[X] le

polynôme minimal de x sur Fp.

Fq ≃ Fp[X]/(m)

Fq peut donc toujours s’écrire sous cette forme.
Pour terminer, rappelons aussi les relations d’inclusion entre les corps

finis.
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Soient k, l ∈ N∖{0}. On considère les corps Fqk et Fql inclus dans un corps
K. Autrement dit, K est un corps qui contient un corps de décomposition
de (Xqk −X)(Xql −X) sur Fq et

Fqk = {x ∈ K : xq
k

= x} , Fql = {x ∈ K : xq
l

= x}

Proposition 7.1.2. Fqk ⊂ Fql si et seulement si k divise l.

Démonstration. Si Fqk ⊂ Fql , alors Fql est un Fqk-espace vectoriel. Soit d sa
dimension. ql = qkd donc l = kd.

Réciproquement, supposons que l = kd. Soit x ∈ Fqk , xq
k
= x, donc

xq
l

= xq
kd

= (. . . ((xq
k

)q
k

) . . . )q
k︸ ︷︷ ︸

d exponentiations

= x

ce qui prouve que x ∈ Fql .

Terminons ce paragraphe par un théorème qui nous sera utile.

Théorème 7.1.3. Pour tout polynôme irréductible P de Fq[X], les racines
de P dans un corps de décomposition donné de P sur Fq sont deux à deux
distinctes. On dit que Fq est un corps parfait.

Démonstration. Soient n = degP et a une racine de P dans Fcp. Alors Fq[a] ≃
Fqn donc aqn = a. Comme P est le polynôme minimal de a, il divise Q =
xq

n−x. Ce polynôme Q n’a que des racines simples (car sa dérivée vaut −1),
donc P n’a que des racines simples.

7.2. Irréductibilité dans Fq[X]

Soient p un nombre premier et q = pk une puissance de p. Pour tout entier
n ∈ N∖ {0}, on note

Irr(q, n) = {P ∈ Fq[X] : P est unitaire et irréductible de degré n}

Lemme 7.2.1. Pour tout n ∈ N∖ {0},

Xqn −X =
∏
d|n

∏
P∈Irr(q,d)

P

Démonstration. Notons G = Xqn −X et D =
∏

d|n
∏

P∈Irr(q,d) P . Soit K un
corps de décomposition de GD. Les deux polynômes G et D sont unitaires
et leurs racines dans K sont deux à deux distinctes. Il suffit donc de montrer
que G et D ont les mêmes racines.
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Soit a une racine de G. Alors aqn = a, donc a ∈ Fqn . Soit P le polynôme
minimal de a et soit d = degP . Alors P ∈ Irr(q, d). De plus

Fqd ≃ Fq[X]/(P ) ≃ Fq[a] ⊂ Fqn

donc Fqd ⊂ Fqn . D’après la proposition 7.1.2, on en déduit que d divise n.
Réciproquement, si D(a) = 0, il existe un entier d divisant n et P ∈

Irr(q, d) tel que P (a) = 0.

F[a] ≃ F[X]/(P ) ≃ Fqd

Or Fqd ⊂ Fqn puisque d divise n (toujours par la proposition 7.1.2), donc
a ∈ Fqn et par conséquent aqn = a.

Corollaire 7.2.2. Soit Q ∈ Fq[X] de degré n. Alors Q est irréductible si et
seulement si les deux conditions suivantes sont réalisées.

1. Q divise Xqn −X
2. Q est premier à Xqn/l −X pour tout diviseur premier l de n.

Démonstration. On suppose Q irréductible. D’après le lemme 7.2.1, Q est
l’un des facteurs de Xqn − X. Par contre, si l est un diviseur premier de
n, n ne divise pas n/l donc Q ne divise pas Xqn/l − X, toujours d’après le
lemme 7.2.1.

Réciproquement, supposons que Q vérifie les conditions 1 et 2. Soient P
un facteur irréductible de Q et d = degP . Comme P divise Xqn −X et ne
divise Xqn/l −X pour aucun diviseur premier l ne n, c’est que d divise n et
ne divise n/l pour aucun diviseur premier l ne n (encore par le lemme 7.2.1).
On en déduit que n = d, donc il existe α ∈ F∗

q tel que Q = αP .

Algorithme 7.2.3. [Irréductibilité]
Entrée : Q ∈ Fq[X] de degré n, P : ensemble des diviseurs premiers de n.
Sortie : “Q est irréductible” ou “Q est réductible”

1. h← rem(Xqn , Q)

2. Si h ̸= X, sortir "Q est réductible"

3. Pour tout l ∈ P :

4. h← rem(Xqn/l
, Q)

5. d← pgcd(h−X,Q)
6. Si d ̸= 1, sortir “Q est réductible et d est un facteur”

7. Sortir “Q est irréductible”
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Voyons la complexité de cet algorithme (si l’on utilise la multiplication
classique). Le calcul de rem(Xqn , Q) demande O(log qn) = O(n log q) mul-
tiplications dans Fq[X]/(Q) (à cette étape, on calcule Xqn dans Fq[X]/(Q)
par l’exponentiation rapide). La complexité algébrique est donc en O(n3 log q)

multiplications dans Fq. Le calcul de rem(Xqn/l
, Q) se fait en O(n3 log q), puis

le pgcd du pas 5 enO(n2). Cela reste donc enO(n3 log q). Comme n aO(log n)
facteurs premiers, la complexité algébrique sur Fq est en O(n3 log n log q).
Remarque. On peut aller jusque Õ(n2 + n log q) (voir [G-G]).

Intéressons nous maintenant au problème suivant.
Problème. Comment construire un polynôme irréductible de Fq[X] de degré
donné n ? Cela peut servir, par exemple pour construire Fqn .

Solution. Tirer au hasard un polynôme unitaire de degré n, puis tester s’il
est irréductible. Recommencer jusqu’à obtenir un polynôme irréductible.

La question qui suit immédiatement, c’est le nombre de tirages nécessaires
en moyenne avant d’obtenir un polynôme irréductible. Le lemme 7.2.1 fournit
une indication pour cela. En effet, en prenant les degrés dans l’égalité de ce
lemme 7.2.1, on obtient

qn =
∑
d|n

d · card(Irr(q, d)) (7.1)

on en déduit l’inégalité suivante (en ne prenant que le terme correspondant
à d = n dans la somme de (7.1))

card(Irr(q, n)) ≤ qn

n

Comme il y a qn polynômes unitaires de degré n dans Fq[x], la probabilité
pn d’obtenir un polynôme irréductible est telle que

pn ≤
1

n

On peut montrer que

pn ∼
1

n

Ainsi, si X est le nombre de tirages nécessaires, E(X) ∼ n.

7.3. Algorithme de Cantor-Zassenhaus

On suppose q impair. Nous indiquons plus loin comment on peut traiter
le cas où q est une puissance de 2.
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L’algorithme qui suit s’applique à des polynômes très particuliers, à savoir
les polynômes Q de Fq[X] sans facteur carré dont les facteurs irréduc-
tibles sont tous de même degré d. Autrement dit, il s’appliquera aux
polynômes Q vérifiant la condition

Q = P1 . . . Pr où


− les polynômes Pi sont irréductibles

deux à deux premiers entre eux
− ∀i ∈ [[1, r]] , degPi = d

(7.2)

où d est un entier naturel non nul donné en paramètre.

Algorithme 7.3.1. [Cantor-Zassenhaus]
Entrée : d ∈ N∖ {0}, un polynôme Q vérifiant (7.2)
Sortie : un facteur non trivial de Q ou “Échec” ou Q est irréductible

1. n← degQ

2. si n = d, sortir “Q est irréductible”

3. A← un polynôme choisi au hasard dans Fq[X]n−1 \ {0}
4. D ← pgcd(A,Q)

5. Si D ̸= 1, sortir D

6. B ← rem(A
qd−1

2 , Q)

7. D ← pgcd(B − 1, Q)

8. Si D = 1 ou Q, sortir “Échec”

9. Sinon, sortir D

Théorème 7.3.2. Si Q est réductible, l’algorithme de Cantor-Zassenhaus
rend un facteur non trivial avec une probabilité supérieure ou égale à 1/2.
Ainsi, si X est le nombre de tirages nécessaires pour trouver un facteur,
E(X) ≤ 2.

Démonstration. On utilise l’isomorphisme des restes chinois

f : Fq[X]/(Q) ≃ Fq[X]/(P1)× · · · × Fq[X]/(Pr)

[A]Q 7→ ( [A]P1 , . . . , [A]Pr )

Si au pas 5, pgcd(A,Q) ̸= 1, ce qui a très peu de chance d’arriver, l’algorithme
donne un facteur non trivial. Sinon, A est premier à Q, donc

[A]Q ∈ (Fq[X]/(Q))∗
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L’isomorphisme d’anneaux f induit un isomorphisme de groupes

(Fq[X]/(Q))∗ ≃ (Fq[X]/(P1))
∗ × · · · × (Fq[X]/(Pr))

∗

Comme pour tout i, le polynôme Pi est irréductible de degré d, Fq[X]/(Pi) ≃
Fqd donc

(Fq[X]/(Pi))
∗ ≃ F∗

qd

Pour tout x ∈ F∗
qd

, xqd−1 = 1 donc x
qd−1

2 = ±1. Soit

g : F∗
qd → {−1, 1}

x 7→ x
qd−1

2

De plus, card(ker g) = qd−1
2

(et bien sûr, ker g = g−1(1)). Ainsi,

card(g−1(1)) = card(g−1(−1)) = qd − 1

2

Autrement dit, si on choisit x au hasard, on a autant de chance d’obtenir
g(x) = 1 que g(x) = −1.

Considérons maintenant

h : (Fq[X]/(Q))∗ → {±1} × · · · × {±1}

[A]Q 7→
(

[A]
qd−1

2
P1

, . . . , [A]
qd−1

2
Pr

)
= ([B]P1 , . . . , [B]Pr)

D’après ce qui précède, pour tout i, les événements

([B]Pi
= 1) et ([B]Pi

= −1)

sont équiprobables. Or

pgcd(B − 1, Q) =
∏

[B]Pi
=1

Pi

Donc pgcd(B − 1, Q) est un facteur non trivial de Q, sauf dans les deux cas
suivants.

— si [B]Pi
= 1 pour tout i, auquel cas pgcd(B − 1, Q) = Q

— si [B]Pi
= −1 pour tout i, auquel cas pgcd(B − 1, Q) = 1

Finalement, si A est premier à Q, la probabilité d’échec est

P =
2

card({±1}r)
=

1

2r−1

Si Q est réductible, r ≥ 2 donc P ≤ 1

2
.
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Exercice 7.3.3.
1. Appliquer l’algorithme 7.3.1 à X2 − 1 ∈ F5[X], où le hasard aura désigné
A = X.
2. Recommencer avec A = X + 2.

Proposition 7.3.4. la complexité algébrique de l’algorithme 7.3.1 est en
O(n2d log q) si l’on utilise la multiplication classique. On peut aller jusque
Õ(nd log q) en utilisant la FFT.

Démonstration. Exercice.

7.4. Un algorithme de factorisation complète

On reprend les notations du paragraphe précédent et q reste impair.

7.4.1 Produits d’irréductibles de même degré

Tout d’abord, restons dans le cas où Q vérifie la condition (7.2) pour un
entier naturel non nul d donné (c’est-à-dire : Q est sans facteur carré et est
produit de polynômes irréductibles de degré d). On suppose aussi Q unitaire.

Appelons CZ l’algorithme 7.3.1. Pour factoriser Q complètement, on ap-
plique l’algorithme DegresEgaux suivant.

Cet algorithme prendra comme entrées d ∈ N∖{0} et le polynôme Q véri-
fiant (7.2) et il donnera en sortie la liste [P1, . . . , Pr] des facteurs irréductibles
unitaires de Q.

Si degQ = d, alors l’algorithme s’arrête et rend l = [Q].
Sinon, il calcule CZ(d,Q) jusqu’à obtenir un facteur non trivial D de

Q puis il s’appelle lui-même pour calculer les deux factorisations données
par DegresEgaux(d,D) et DegresEgaux(d,Q/D) pour ensuite concaténer les
résultats.

7.4.2 Cas général

Soit maintenant Q quelconque dans Fq[X]∖ {0}. Alors Q peut s’écrire

Q = λ
r∏
i=1

Pαi
i

où les Pi sont irréductibles unitaires deux à deux premiers entre eux et où
λ ∈ F∗

q. Il s’agit de calculer les Pi et les αi.
On commence par calculer

D1 = pgcd(Xq −X,Q)
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D’après le lemme 7.2.1
D1 =

∏
P∈I1(Q)

P

où
I1(Q) = {P ∈ I(q, 1) : P |Q}

D1 est le produit des polynômes irréductibles unitaires de degré 1 qui di-
visent Q (D1 est unitaire car on calcule le pgcd unitaire). Alors, la fonction
DegresEgaux(1, D1) donne

I1(Q) = {P1,1, . . . , P1,r1}

On pose
Q1 ← Q

et on effectue une double boucle

1. Pour j ∈ [[1, r1]] :
2. αi,j ← 0

3. Tant que P1,j divise Q1 :
4. Q1 ← Q1/P1,j

5. αi,j ← αi,j + 1

À la sortie, les facteurs irréductibles unitaires de degré 1 de Q sont les
P1,j avec multiplicité α1,j et Q1 n’a pas de facteurs irréductibles de degré 1.

On calcule ensuite

D2 ← pgcd(Xq2 −X,Q1)

D’après le lemme 7.2.1 et comme les degrés des facteurs irréductibles de Q1

sont supérieurs ou égaux à 2,

D2 =
∏

P∈I2(Q)

P

où
I2(Q) = {P ∈ I(q, 2) : P |Q}

D2 est le produit des polynômes irréductibles unitaires de degré 2 qui divisent
Q.

On continue ainsi jusqu’à obtenir un polynôme Qs de degré 0.

Proposition 7.4.1. Cet algorithme permet de factoriser Q en O(n3 log(q))
en moyenne avec la multiplication classique. Avec la FFT, on peut aller
jusque Õ(n2 log q).
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7.5. Algorithme de Berlekamp

On suppose toujours que q est impair.
L’algorithme de Berlekamp s’applique aux polynômes Q ∈ Fq[X] sans

facteurs carrés. Ses facteurs irréductibles peuvent être de degrés quelconques.
Dans le cas général, il peut être utilisé comme une alternative à l’algo-

rithme de Cantor-Zassenhaus dans la stratégie expliquée ci-dessus. Si degQ =
n, cela donne un algorithme de factorisation complète de Q de complexité
algébrique O(n3 +M(n) log q) en moyenne (où M(n) désigne la complexité
de la multiplication de polynômes de degrés ⟨n). On peut donc aller jusqu’à
Õ(n3 + n log q).

Il est aussi possible de calculer la partie sans facteur carrée de Q au sens

suivant. Soit Q = λ
r∏
i=1

Pαi
i la décomposition de Q en produit de facteurs

irréductibles unitaires. On appelle partie sans facteur carrée deQ le polynôme

λ
r∏
i=1

Pi.

Nous supposons donc ici que Q est déjà sous cette forme.

Q = λ
r∏
i=1

Pi

où les Pi sont irréductibles unitaires deux à deux distincts. On utilise à nou-
veau l’isomorphisme des restes chinois

f : Fq[X]/(Q) ≃ Fq[X]/(P1)× · · · × Fq[X]/(Pr)

[A]Q 7→ ( [A]P1 , . . . , [A]Pr )

Pour tout i, on note di = degPi. Alors Fq[X]/(Pi) ≃ Fqdi . Par composition,
on obtient donc un isomorphisme d’algèbres

g : Fq[X]/(Q) ≃ Fqd1 × · · · × Fqdr

Or
Frq = Fq × · · · × Fq ⊂ Fqd1 × · · · × Fqdr

On note
A = g−1(Frq)

C’est un sous-espace vectoriel de dimension r du Fq-espace vectoriel Fq[X]/(Q).
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On sait reconnaître les éléments de A. En effet, soit x ∈ Fqd1 ×· · ·×Fqdr .
Alors x ∈ Frq si et seulement si xq = x. Comme g est un isomorphisme
d’algèbres, pour tout a ∈ Fq[X]/(Q),

a ∈ A = g−1(Frq) ⇐⇒ aq = a

Autrement dit , A = ker(F − Id) où

F : Fq[X]/(Q)→ Fq[X]/(Q)

a 7→ aq
(7.3)

On peut donc calculer une base de A : on écrit la matrice M de F dans
la base ([1]Q, [X]Q, . . . , [X

n−1]Q) de Fq[X]/(Q) où n est le degré de Q, puis
on calcule ker(M − In) par la méthode du pivot de Gauss.

On choisit alors a ∈ A \ {0} au hasard. Cet élément est la classe modulo
Q d’un polynôme A de degré ⟨n. Si pgcd(A,Q) ̸= 1, alors D est un facteur
non trivial de Q. Si pgcd(A,Q) = 1, on note C = rem(A

q−1
2 , Q). Pour tout i,

[A]q−1
Pi

= 1, donc [C]Pi
= [A]

q−1
2

Pi
∈ {±1}, les événements

([C]Pi
= 1) et ([C]Pi

= −1)

étant équiprobables.

pgcd(C − 1, Q) =
∏

[C]Pi
=1

Pi

est un facteur non trivial de Q, sauf dans les cas suivants :
— si [C]Pi

= 1 pour tout i, auquel cas pgcd(C − 1, Q) = Q

— si [C]Pi
= −1, auquel cas pgcd(C − 1, Q) = 1

Finalement, si A est premier à Q, la probabilité d’échec est

P =
2

card({±1}r)
=

1

2r−1

Si Q est réductible, r ≥ 2 donc P ≤ 1

2
.

Pour automatiser tout cela, il vaut mieux calculer d’abord une base de
A.

Algorithme 7.5.1. Noyau
Entrée : Q ∈ Fq sans facteurs carrés. de degré n
Sortie : Base du noyau de F − Id (F étant définie en (7.3))
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1. Pour j ∈ [[0, n− 1]] :
2. Calculer m0,j, . . . ,mn−1,j tels que

Xjq ≡ m0,j +m1,jX + · · ·+mn−1,jX
n−1 mod Q

3. M ← (mi,j) ∈Mn(Fq)
4. B ← base de ker(M − In) (calculée par le pivot de Gauss)
5. sortir B

Une fois le noyau calculé, on peut appliquer l’algorithme de Berlekamp
suivant jusqu’à obtenir un facteur non trivial de Q.

Algorithme 7.5.2. [Berlekamp]
Entrées : Q, une base B = (b0, . . . , br−1) de ker(F −Id) calculée par Noyau
Sortie : “Échec” ou un facteur non trivial de Q ou “Q est irréductible"

1. si r = 1 : sortir “Q est irréductible”
2. v = (vi)← un élément au hasard dans Frq \ {0}
3. A←

∑r−1
i=0 viBi (où Bi ∈ Fq[X]n−1 et [Bi]Q = bi pour tout i)

4. D ← pgcd(A,Q)

5. si D ̸= 1, sortir D
6. C ← rem(A

q−1
2 , Q) (à calculer par exponentiation rapide dans Fq[X]/(Q))

7. D ← pgcd(C − 1, Q)

8. si D = 1 ou degD = n : sortir “Échec”
9. sinon : sortir D

7.6. Factorisation dans Z[X]

Ce paragraphe décrit les idées qui permettent d’utiliser les résultats tré-
cédent pour factoriser un polynôme de Z[X]. Soit Q ∈ Z[X] un polynôme
non nul. On note

Q =
n∑
i=0

aiX
i

Soit cont(Q) = pgcd(a0, . . . , an) le contenu de Q. Il existe Q1 ∈ Z[X] de
contenu 1 tel que Q = cont(Q)Q1.

On considère un polynôme Q de contenu 1. L’idée est d’exploiter la fac-
torisation de Q mod p, ou p est un nombre premier bien choisi.

Si

Q =
r∏
i=1

P ei
i
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où les Pi sont des polynômes irréductibles deux à deux distincts, alors

Q

pgcd(Q,Q′)
=

r∏
i=1

Pi

On peut donc supposer que Q =
r∏
i=1

Pi. On note [Q]p la classe de Q modulo

p.
[Q]p = [P1]p . . . [Pr]p

= R1 . . . Rs

où les Ri sont des polynômes irréductibles de Fp[X].
— On sait factoriser dans Fp[X]. On sait donc calculer les Ri.
— Pour p assez grand, [Q]p est sans facteurs carrés, donc les Ri sont deux

à deux distincts.
— Pour tout i, [Pi]p est le produit des certains Rj, mais on ne sait pas

lesquels.
— Les bornes de Mignotte donne une majoration des coefficients des Pi

en fonction de ceux de Q. Cela permet de trouver une borne B telle
que si p⟩B, pour tout produit des Rj, il existe un unique relèvement
dans Z[X] satisfaisant aux bornes de Mignotte.

On peut tester toutes les combinaisons possibles, mais la complexité est
exponentielle.

Au lieu d’utiliser une factorisation modulo p où p est assez grand, on peut
factoriser modulo pk où pk est assez grand.

Pour la phase de relèvement, on peut faire mieux en utilisant l’algorithme
LLL (de A.-K. Lenstra, H.-W. Lenstra, L. Lovász, 1982) de recherche de pe-
tits vecteurs dans un réseau. Cela donne un algorithme de complexité poly-
nomiale.
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Chapitre 8

Polynômes multivariés

8.1. Position du problème

Soit K un corps. On considère l’anneau R = K[X1, . . . , Xn].

On rappelle la définition d’un idéal.

Définition 8.1.1. Soit (A,+,×) un anneau commutatif unitaire. Un idéal I
de A est un sous-groupe de (A,+) tel que pour tout a ∈ I et f ∈ A, l’élément
af appartient à I.

Proposition 8.1.2. Soient f1, . . . , fs des éléments de R = K[X1, . . . , Xn].
L’idéal noté ⟨f1, . . . , fs⟩ engendré par f1, . . . , fs est par définition :

⟨f1, . . . , fs⟩ =

{
s∑
i=1

qifi : (q1, . . . , qs) ∈ Rs

}
.

C’est le plus petit idéal de R contenant f1, . . . , fs.

Remarque. En fait, tout idéal de R est de cette forme, c’est-à-dire est
engendré par un nombre fini de polynômes. C’est le théorème de la base de
Hilbert, démontré en fin de paragraphe 3.

Comment travailler avec un tel idéal I ? Plus précisément, on peut se
poser les questions suivantes.

— Soit f un élément de R. Comment savoir si f appartient ou non à I ?

— Soit J un autre idéal de R. Comment savoir si J est inclus dans I ?

— Comment trouver un système de représentants de R/I ?

69
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— Soit

V (I) = {x = (x1, . . . , xn) ∈ (Kc)n f(x) = 0 ∀f ∈ I}
= {x = (x1, . . . , xn) ∈ (Kc)n fi(x) = 0 ∀i ∈ [[1, s]]} .

Comment savoir si V (I) est vide ? Comment savoir s’il est fini ? Et dans
ce cas, comment calculer ses éléments ?

Voyons ce qu’on sait faire dans le cas où n = 1. Dans ce cas, tout idéal
I est principal. Donc I s’écrit I = gR où g ∈ R (c’est le pgcd des fi). Pour
savoir si f appartient à I, on effectue la division euclidienne f = gq+r. Alors
f ∈ I si et seulement si r = 0.

R/I est représenté par l’ensemble des polynômes de degré ⟨d, où d =
deg g. C’est un K-espace vectoriel de base ([1]g, [X]g, . . . , [X

d−1]g).
Enfin, V (I) est l’ensemble des racines de g dans K. La réponse est plus

ou moins difficile suivant le corps de base K. Nous avons vu au chapitre
précédent des algorithmes pour cela dans le cas où K est fini.

Pour répondre à ces question dans le cas où n ≥ 2, nous allons définir une
division multivariée dans R. Cela nous mènera à définir certains systèmes de
générateurs de I pour lesquels cette division possèdera la propriété d’unicité
du reste. Ces systèmes sont appelés bases de Gröbner.

8.2. Division multivariée avec reste

Un monôme est un élément de R de la forme

Xα = Xα1
1 . . . Xαn

n où α = (α1, . . . , αn) ∈ Nn

Nous parlerons aussi de termes. Un terme est un élément de la forme λXα où α ∈
Nn et λ ∈ K∗.

Pour définir la division, nous aurons besoin d’une relation d’ordre total
sur les monômes (donc sur Nn), qui vérifieront certaines propriétés supplé-
mentaires. Rappelons d’abord ce qu’est une relation d’ordre.

Définition 8.2.1. Soit A un ensemble. Une relation ⪯ de A est une relation
d’ordre si les conditions suivantes sont réalisées.

1. Pour tout x dans A, x ⪯ x (⪯ est réflexive).

2. Si x ⪯ y et y ⪯ x, alors x = y (⪯ est anti-symétrique).

3. Si x ⪯ y et y ⪯ z, alors x ⪯ z (⪯ est transitive).

De plus, cette relation est dite d’ordre total si pour tout (x, y) ∈ A2, soit
x ⪯ y soit y ⪯ x.
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Les ordres que nous utiliseront sont appelés ordres monomiaux. Ils sont
définis de la manière suivante.

Définition 8.2.2. Un ordre monomial ⪯ sur Nn est une relation d’ordre
total sur Nn qui vérifie les deux propriétés suivantes.

1. Si α ⪯ β, alors α + γ ⪯ β + γ.
2. Tout ensemble non vide de Nn admet un plus petit élément.

On note alors α ≺ β si α ⪯ β et si α ̸= β. Par abus de langage, on parlera
d’ordre monomial indifféremment pour ≺ ou pour ⪯. Enfin, on dit que Xα ⪯
Xβ (resp. Xα ≺ Xβ) si α ⪯ β (resp. α ≺ β).

Exemples.
1. L’ordre lexicographique. On le note ≺lex. On dit que α ≺lex β si α ̸= β

et si le premier coefficient non nul de α − β est strictement négatif.
Ainsi, (1, 1, 2, 3) ≺lex (1, 3, 2, 1) et donc X1X2X

2
3X

3
4 ≺lex X1X

3
2X

2
3X4.

2. L’ordre lexicographique gradué. On le note ≺deglex.
α ≺deglex β si l’une des deux conditions suivantes est vérifiées.

—
∑
αi⟨
∑
βi

— ou (
∑
αi =

∑
βi et α ≺lex β)

Ainsi, (1, 1, 2, 3) ≺deglex (1, 3, 2, 1), et (2, 0, 0, 0) ≺deglex (1, 1, 1, 1) (alors
que (1, 1, 1, 1) ≺lex (2, 0, 0, 0)).

3. L’ordre lexicographique gradué inverse. On le note ≺degrevlex.
α ≺degrevlex β si α ̸= β et si l’une des deux conditions suivantes est
vérifiées.

— soit
∑
αi⟨
∑
βi

— soit
∑
αi =

∑
βi et le premier terme non nul de α−β en partant

de la droite est ⟩0.
Comme pour l’ordre lexicographique gradué,

(1, 1, 2, 3) ≺degrevlex (1, 3, 2, 1) et (2, 0, 0, 0) ≺degrevlex (1, 1, 1, 1)

Par contre, (2, 1, 3, 4) ≺degrevlex (1, 2, 4, 3) alors que si l’on prend l’ordre
lexicographique gradué, (2, 1, 3, 4) ≻deglex (1, 2, 4, 3).

Définition 8.2.3. Soit ≺ un ordre monomial fixé. Soit f ∈ R \ {0}. Cet
élément s’écrit

f =
∑
α∈Nn

cαX
α

où {α : cα ̸= 0} est fini. On utilisera le vocabulaire suivant.
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— Terme de f : tout cαXα tel que cα ̸= 0.
— T (f) est l’ensemble des termes de f :

T (f) = {cαXα : cα ̸= 0}

— Multidegré : mdeg(f) = max{α ∈ Nn : cα ̸= 0}.
— Coefficient dominant : lc(f) = cmdeg(f).

— Monôme dominant : lm(f) = Xmdeg(f).

— Terme dominant : lt(f) = cmdeg(f)X
mdeg(f) = lc(f)lm(f).

On note lt(0) = lm(0) = lc(0) = 0 et mdeg(0) = −∞.

Venons en maintenant à la division multivariée. On veut diviser f par
f1, . . . , fs. Au debut, le reste r est égal à 0. On pose aussi p = f . Si lt(p) est
divisible par l’un des lt(fi), on effectue la division. Sinon, on remplace p par
p− lt(p) et r par r + lt(p). On continue ainsi jusqu’à arriver à p = 0.

Mais voyons plutôt un exemple.

Exemple. Dans K[x, y], divisons f = x2y + xy2 + y2 par f1 = xy − 1 et
f2 = y2 − 1, en utilisant l’ordre lexicographique ⪯ tel que x ⪰ y. Partons de
p ← f , r ← 0, q1 ← 0 et q1 ← 0. Alors f = p + q1f1 + q2f2 + r, égalité qui
restera vraie tout au long de la division. On voit que (2, 1) ⪰ (1, 2) ⪰ (0, 2),
donc lt(p) = x2y. Ce terme est divisible par lt(f1) = xy. On fait donc la
division.

p← p− xf1 = xy2 + x+ y2

q1 ← q1 + x = x

Après ces opérations, lt(p) = xy2 est encore divisible par lt(f1).

p← p− yf1 = x+ y2 + y

q1 ← q1 + y = x+ y

Maintenant, lt(p) = x n’est plus divisible ni par lt(f1) ni par lt(f2). On fait
alors

r ← r + x = x

p← p− x = y2 + y

Après cela, lt(p) = y2 est divisible par lt(f2) = y2.

p← p− f2 = x+ y + 1

q2 ← q2 + 1 = 1
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À présent, lt(p) = x n’est plus divisible ni par lt(f1) ni par lt(f2).

r ← r + x = x

p← p− x = y + 1

Maintenant encore, lt(p) = y n’est divisible ni par lt(f1) ni par lt(f2).

r ← r + y = x+ y

p← p− y = 1

Et enfin
r ← r + 1 = x+ y + 1

p← p− 1 = 0

On obtient finalement

f = q1f1 + q2f2 + r

= (x+ y)f1 + f2 + x+ y + 1

On peut présenter ces calculs dans un tableau.

x2y + xy2 + y2 xy − 1 y2 − 1
xy2 + x+ y2 x
x+ y2 + y y
x+ y + 1 1

Remarquons que nous aurions pu faire ces opérations dans en ordre dif-
férent, comme par exemple celui décrit dans le tableau suivant.

x2y + xy2 + y2 xy − 1 y2 − 1
xy2 + x+ y2 x
2x+ y2 x
2x+ 1 1

On obtient alors

f = xf1 + (x+ 1)f2 + 2x+ 1.

Il n’y a donc pas unicité dans l’écriture

f = q1f1 + q2f2 + r.

Le plus ennuyeux, c’est qu’il n’y a pas unicité du reste r. Ainsi, si la question
est l’appartenance ou non de f à un idéal I, et si cette division donne r = 0,
on peut répondre « oui, f appartient à I ». Par contre, si le reste est non nul,
on ne peux rien dire à priori.
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Il existe cependant des systèmes de générateurs pour lesquels il y a unicité
du reste dans cette division multivariée. C’est l’objet de la section suivante.

Avant d’aborder cette prochaine section, on termine celle ci en écrivant
l’algorithme de la division multivariée.

Algorithme 8.2.4. [Division multivariée avec reste]
Entrées : f, f1, . . . , fs ∈ K[X1, . . . Xn] et un ordre monomial ⪯
Sorties : q1, . . . , qs, r ∈ K[X1, . . . Xn] tels que f =

∑
qifi + r et tels

qu’aucun terme de r n’est divisible par aucun lt(fi)
1. r ← 0

2. qi ← 0 ∀i ∈ [[1, n]]

3. p← f

4. Tant que p ̸= 0 faire
5. Si lt(p) est divisible par l’un des lt(fi) :

6. m← lt(p)
lt(fi)

7. p← p−mfi
8. qi ← qi +m

9. Sinon :
10. r ← r + lt(p)
11. p← p− lt(p)
12. Sortir q1, . . . , qs, r

La preuve de la proposition suivante est laissée en exercice. Mis à part le
point 3, elle permet de montrer l’algorithme. Le point 3 montre que dans la

somme
s∑
i=1

qifi, il n’y a pas d’annulation de termes de multidegré strictement

supérieur à mdeg(f). Nous verrons par la suite l’importance de ce fait.

Proposition 8.2.5. La suite des mdeg(p) est strictement décroissante. De
plus, après chaque exécution de la boucle « Tant que » de cet algorithme, les
égalités suivantes sont vérifiées.

1. f = p+
∑s

i=1 qifi + r

2. Pour tout i, aucun terme de r n’est divisible par lt(fi)
3. Si qi ̸= 0, alors mdeg(qifi) ⪯ mdeg(f) pour 1 ≤ i ≤ s

Notation. Si r est le reste obtenu par la division de f par un ensemble
F = {f1, . . . , fs} de polynômes, on note (même si r n’est pas uniquement
défini en général)

f
F−→ r
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8.3. Bases de Gröbner

Si P est une partie de R, on note

⟨lt(P)⟩ = ⟨lt(f) : f ∈ P⟩

c’est-à-dire l’idéal engendré par les lt(f), où f parcourt P .

Soit I un idéal de R. Il est clair que si

I = ⟨f1, . . . , fs⟩

alors
⟨lt(f1) . . . , lt(fs)⟩ ⊂ ⟨lt(I)⟩.

Mais en général, ces deux idéaux ne sont pas forcément égaux : il arrive
fréquemment que

⟨lt(f1) . . . , lt(fs)⟩ ≠ ⟨lt(I)⟩.

Exemple. Dans R = Q[x, y], nous utilisons l’ordre lexicographique gradué
≺deglex tel que x ≻deglex y. Soient f1 = x3 − 2xy et f2 = x2y − 2y2 + x. Alors
lt(f1) = x3 et lt(f2) = x2y.

⟨lt(f1), lt(f2)⟩ = ⟨x3, x2y⟩.

Or, −yf1 + xf2 = x2 ∈ I, donc x2 ∈ ⟨lt(I)⟩, mais x2 ̸∈ ⟨lt(f1), lt(f2)⟩.

Dans cet exemple, on constate qu’un terme x2 n’appartient pas à un idéal
engendré par des monômes ⟨x3, x2y⟩ parce que si tel était le cas, x2 serait
divisible par x3 ou x2y.

C’est un cas particulier du lemme élémentaire suivant dont la preuve est
laissée en exercice. Nous utiliserons fréquemment ce résultat.

Lemme 8.3.1. Soient α, α1, . . . , αs des éléments de Nn. le monôme Xα ap-
partient à ⟨Xα1 , . . . , Xαs⟩ si et seulement s’il existe i ∈ [[1, s]] tel que Xαi

divise Xα.
Soient f1, . . . , fs des éléments de R. Soit t un terme de R. Alors t ∈

⟨lt(f1), . . . , lt(fs)⟩ si et seulement s’il existe i ∈ [[1, s]] tel que lt(fi) divise t.

Définition 8.3.2. Soit G une partie finie de I. On dit que G est une base
de Gröbner de I si ⟨lt(I)⟩ = ⟨lt(G)⟩.



76 CHAPITRE 8. POLYNÔMES MULTIVARIÉS

Remarque. Si pour toute partie P de R, on note

⟨lm(P)⟩ = ⟨lm(f) : f ∈ P⟩

Une partie finie G de I est une base de Gröbner de I si et seulement si
⟨lm(I)⟩ = ⟨lm(G)⟩.
Remarque. Il n’est pas imposé dans la définition 8.3.2 que G engendre I.
Ce n’est pas nécessaire : les choses se passent ici joliment, comme l’indique
le résultat suivant.

Théorème 8.3.3. Si G est une base de Gröbner de I, alors I = ⟨G⟩.

Preuve du théorème 8.3.3. Par l’absurde, on suppose qu’il existe un
élément f dans I ∖ ⟨G⟩, et on choisit cet élément de telle sorte que mdeg(f)
soit minimal. Comme lt(f) ∈ ⟨lt(G)⟩, et en vertu du lemme 8.3.1, on en
déduit qu’il existe g ∈ G tel que lt(g) divise lt(f). Soit alors

f1 = f − lt(f)
lt(g)

g.

Alors f1 ∈ I et mdeg(f1) ≺ mdeg(f). Par minimalité de mdeg(f), on conclut
que f1 ∈ ⟨G⟩, donc que f ∈ ⟨G⟩, ce qui est contraire à l’hypothèse. □

Venons en au résultat que nous souhaitions, c’est-à-dire l’unicité du reste
dans la division multivariée.

Proposition 8.3.4. Soit G = {f1, . . . , fs} une base de Gröbner. S’il existe
q1, . . . , qs, q

′
1 . . . , q

′
s, r, r

′ ∈ R tels que
1.
∑
qifi + r =

∑
q
′
ifi + r′

2. ∀i ∈ [[1, s]] ,∀t ∈ T (r) ∪ T (r′) , lt(fi) ̸ |t
(c’est-à-dire que pour tout i, aucun des termes de r ni de r′ n’est divisible
par lt(fi)). Alors r = r′.

Preuve. Si
∑
qifi+ r =

∑
q
′
ifi+ r′, alors r− r′ ∈ I = ⟨G⟩. Si r− r′ ̸= 0, on

considère lt(r−r′). Cet élément appartient à ⟨lt(I)⟩ = ⟨lt(G)⟩. Le lemme 8.3.1
permet de déduire qu’il existe i tel que lt(fi) divise lt(r − r′), et donc que
lt(fi) divise l’un des termes de r ou de r′, ce qui contredit l’hypothèse. □

On déduit facilement le résultat suivant.

Corollaire 8.3.5. Si G est une base de Gröbner de I, alors pour tout élément
f de R, f ∈ I si et seulement si le reste de la division multivariée de f par
G est nul.
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Ainsi, si l’on connaît une base de Gröbner de I, il est plus facile de tra-
vailler sur cet idéal. Reste à savoir si tout idéal I possède une base de Gröbner,
et aussi comment calculer une telle base. Pour répondre à ces questions, nous
utiliserons une nouvelle relation d’ordre sur Nn.

Définition 8.3.6. Soient α = (α1, . . . , αn) et β = (β1, . . . , βn) deux éléments
de Nn. On écrit :

α ≤ β si ∀i, αi ≤ βi.

α < β si α ≤ β et α ̸= β.

La relation ≤ est une relation d’ordre. Ce n’est pas un ordre total si n > 1
Par exemple, dans N2, les couples (1, 0) et (0, 1) ne sont pas comparables. Il
ne s’agit donc pas d’un ordre monomial.

Définition 8.3.7. Soit A une partie de Nn. Soit α ∈ A On dit que α est
minimal dans A si

(β ∈ A et β ≤ α)⇒ β = α

Lemme 8.3.8. De toute suite de Nn on peut extraire une sous-suite crois-
sante.

Démonstration. Montrons ce lemme par récurrence sur n.
Cas où n = 1 : soit (uk)k∈N une suite de N. Soit m0 = min{uk : k ∈ N}.

Cet élément existe puisque toute partie de N a un plus petit élément. Il existe
au moins un entier k tel que uk = m0. Soit φ(0) un tel entier. On suppose
avoir défini

φ(0) < φ(1) < · · · < φ(i− 1)

tels que
uφ(0) ≤ uφ(1) ≤ · · · ≤ uφ(i−1)

Soient mi = min{uk : k ∈ N , k > φ(i − 1)} et φ(i) > φ(i − 1) tel que
uφ(i) = mi. On construit ainsi par récurrence une fonction φ strictement
croissante de N dans N telle que la suite (uφ(k)) est croissante.

On suppose maintenant le résultat vrai pour A = Nn−1. Soit (uk) une
suite de Nn = A × N. on note uk = (ak, vk) où ak ∈ A et vk ∈ N. D’après
l’hypothèse de récurrence, il existe une fonction strictement croissante φ de
N dans N telle que (aφ(k)) est croissante. On considère la suite (vφ(k)). Il
existe une fonction strictement croissante ψ de N dans N telle que (vφ(ψ(k)))
est croissante. Alors la suite (uφ(ψ(k))) est croissante.

Lemme 8.3.9. [Dickson] Pour toute partie A de Nn l’ensemble des élé-
ments minimaux de A est fini.
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Démonstration. Soit B l’ensemble des éléments minimaux de A. Si B est
infini, il existe une suite (uk) d’éléments de B deux à deux distincts. On peut
donc en extraire une sous-suite croissante. C’est absurde puisque les éléments
de B sont minimaux.

Exemple. Soit A = {α ∈ N2 : α1+α2 ≥ 2}, alors B = {(2, 0), (1, 1), (0, 2)}
est bien fini.

Théorème 8.3.10. Tout idéal de R possède une base de Gröbner.

Démonstration. Pour toute partie P de Nn, on note

XP = {Xα : α ∈ P}.

Soit I un idéal de R. Soit A = {α ∈ Nn : Xα ∈ lm(I)} Alors

⟨lt(I)⟩ = ⟨lm(I)⟩ = ⟨XA⟩

Soit B l’ensemble des éléments minimaux de A, Montrons que ⟨XA⟩ =
⟨XB⟩. Comme B ⊂ A, ⟨XB⟩ ⊂ ⟨XA⟩. Soit α ∈ A. Il existe β ∈ B tel que
β ≤ α (si tel n’était pas le cas, on pourrait construire une suite strictement
décroissante d’éléments de Nn inférieurs à α, ce qui est absurde puisque
l’ensemble des éléments de Nn inférieurs à α est fini). Alors Xα = XβXα−β ∈
⟨XB⟩.

Pour toute partie finie G de I telle que lm(G) = XB, G est une base de
Gröbner de I.

Ce résultat a pour conséquence immédiate le célèbre théorème de la base
de Hilbert.

Corollaire 8.3.11. [Théorème de la base de Hilbert] Tout idéal de
R est de type fini. Autrement dit, R est Noethérien.

8.4. Algorithme de Buchberger

Maintenant, étant donné un idéal I de R, nous voudrions pouvoir calculer
une base de Gröbner de I. L’algorithme de Buchberger résout ce problème.
Cet algorithme est basé sur le calcul de S-polynômes que nous définissons
ici.

Définition 8.4.1. Soient f et g deux éléments de R. On note α = (α1, . . . , αn) =
mdeg(f) et β = (β1, . . . , βn) = mdeg(g). Soit

γ = (max(αi, βi))i∈[[1,n]] ∈ Nn
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(en d’autres termes, γ est tel que Xγ = ppcm(lm(f), lm(g))). On appelle
S-polynôme associé à f et g le polynôme

S(f, g) =
Xγ

lt(f)
f − Xγ

lt(g)
g.

Exemple. Dans Q[x, y], on utilise l’ordre monomial ≺lex tel que y ≺lex x.
Soient f = 2x2y−3xy et g = x3+y5. Alors lt(f) = 2x2y et lt(g) = x3. Ainsi,
α = (2, 1), β = (3, 0)) et γ = (3, 1). Enfin :

S(f, g) =
x3y

2x2y
(2x2y − 3xy)− x3y

x3
(x3 + y5)

= −3

2
x2y − y6.

Dans la différence définissant S(f, g), les termes dominants s’annulent.
C’est ce qu’indique la proposition suivante.

Proposition 8.4.2. Avec les notations de la définition 8.4.1,

mdegS(f, g) ≺ γ.

Le lemme ci-dessous exprime le fait que si dans une somme on constate
l’élimination des termes de plus haut degré, cela “provient” de S-polynômes.

Lemme 8.4.3. Soient g1, . . . , gs ∈ R, α1, . . . , αs ∈ Nn, c1, . . . , cs ∈ K∗,

f =
s∑
i=1

ciX
αigi ∈ R

et δ ∈ Nn tel que αi+mdeg(gi) = δ pour tout i ∈ [[1, s]] et tel que mdeg(f) ≺ δ
(c’est-à-dire que les termes dominants s’éliminent). Pour i < j, on définit
γij ∈ Nn tel que

Xγij = ppcm(lm(gi), lm(gj))

(c’est le γ de la définition 8.4.1 correspondant à S(gi, gj)). Alors les proprié-
tés suivantes sont vérifiées.

1. Xγij divise Xδ pour tout (i, j) tel que 1 ≤ i < j ≤ s.
2. mdeg(Xδ−γijS(gi, gj)) ≺ δ pour tout (i, j) tel que 1 ≤ i < j ≤ s.
3. Il existe des éléments cij dans K tels que

f =
∑

1≤i⟨j≤s

cijX
δ−γijS(gi, gj).
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Démonstration. Le 1 vient du fait que lm(gi) divise Xδ pour tout i et que
Xγij = ppcm(lm(gi), lm(gj)).

Le 2 provient de la proposition 8.4.2.
Pour le 3, on procède par récurrence comme suit. En multipliant chaque

ci par lc(gi) et en divisant chaque gi par ce même coefficient lc(gi), on se
ramène au cas où lc(gi) = 1 pour tout i.

Si s = 1, il ne peut y avoir simplification dans la somme donc le lemme
est vide. Il n’y a rien à démontrer.

Si s > 1, on définit

g = f − c1Xδ−γ12S(g1, g2)

Alors
mdeg(g) ⪯ max

(
mdeg(f),mdeg(Xδ−γ12S(g1, g2))

)
≺ δ

puis on calcule

g = f − c1Xδ−γ1,2S(g1, g2)

= c1X
α1g1 + c2X

α2g2 +
∑
i≥3

ciX
αigi − c1Xδ

(
g1

lt(g1)
− g2

lt(g2)

)
= c1X

α1g1 + c2X
α2g2 +

∑
i≥3

ciX
αigi − c1g1Xδ−mdeg(g1) + c1g2X

δ−mdeg(g2)

= (c1 + c2)X
α2g2 +

s∑
i=3

ciX
αigi

en regroupant les termes, et en tenant compte du fait que pour tout i,

αi + mdeg(gi) = δ

Le polynôme g est soit nul (si s = 2), soit de la même forme que f , mais avec
s−1 ou s−2 termes. On peut donc appliquer l’hypothèse de récurrence.

Théorème 8.4.4. Soit G = {g1, . . . , gs} ⊂ R. Alors G est une base de
Gröbner de I si et seulement si les deux conditions suivantes sont vérifiées.

1. I = ⟨g1, . . . , gs⟩.
2. Pour tout (i, j) ∈ [[1, s]]2 tel que 1 ≤ i < j ≤ s, le reste de la division

de S(gi, gj) par G est égale à 0.

Démonstration. Le sens direct est clair. Réciproquement, supposons les condi-
tions (1) et (2) vérifiées. Montrons que ⟨lt(I)⟩ = ⟨lt(G)⟩, c’est-à-dire que
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⟨lt(I)⟩ ⊂ ⟨lt(G)⟩, l’autre inclusion étant évidente. Soit donc f ∈ I. Comme
G engendre I, ce polynôme f s’écrit

f =
∑
g∈G

qgg (8.1)

où qg ∈ R pour tout g ∈ G. On veut montrer que lt(f) ∈ ⟨lt(G)⟩. On note
α = mdeg(f). Si mdeg(qgg) ⪯ α pour tout g ∈ G, alors il n’y a pas de
simplification des termes de plus haut degré des qgg dans l’expression de f
donnée par l’égalité (8.1). Ainsi :

lt(f) =
∑

g : mdeg(qgg)=α
lt(qgg)

=
∑

g : mdeg(qgg)=α
lt(qg)lt(g) ∈ ⟨lt(G)⟩

Cela règle la question dans ce cas là. Mais il se peut qu’il y ait des simplifi-
cations des termes de plus haut degré. Alors

α ≺ max
g∈G

mdeg(lt(qgg)).

Soit β minimal tel qu’il existe une écriture f =
∑
g∈G

qgg de f telle que

β = max
g∈G

mdeg(lt(qgg))

On suppose par l’absurde que β ≻ α. Posons

f ∗ =
∑

g : mdeg(qgg)=β
lt(qg)g.

Alors le lemme 8.4.3 montre l’existence de λh,g ∈ K et αh,g ∈ Nn (pour
g, h ∈ G) tels que

f ∗ =
∑
g,h

λg,hX
αg,hS(g, h)

de telle sorte que pour tout (g, h) ∈ G2, mdeg(Xαg,hS(g, h)) ≺ β. Si l’on fait
la division de f ∗ par G (en considérant les S-polynômes les uns après les
autres), on obtient un reste nul, donc

f ∗ =
∑
g∈G

q∗gg
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où d’après le point (3) de la proposition 8.2.5

mdeg(q∗gg) ⪯ mdeg(f ∗) ≺ β

pour tout g. Finalement, f = (f − f ∗) + f ∗ où f − f ∗ et f ∗ s’écrivent tous
deux sous la forme d’une somme

∑
g∈G pgg où les pg sont des éléments de R

tels que lt(pgg) ≺ β pour tout g ∈ G.

L’algorithme de Buchberger prend en entrée une famille F = (f1, . . . , fs)
d’éléments de R et rend en sortie une base de Gröbner de l’idéal I =
⟨f1, . . . , fs⟩. L’idée est de calculer le reste r de chaque S(fi, fj) divisé par
F , et d’ajouter ce reste à la famille s’il est non nul.

Algorithme 8.4.5. [Algorithme de Buchberger]
Entrées : f1, . . . , fs ∈ K[X1, . . . Xn] et un ordre monomial ≺
Sortie : Une base de Gröbner G pour ≺ de I = ⟨f1, . . . , fs⟩
1. G← {f1, . . . , fs}
2. S ← G

3. Tant que S ≠ ∅ :
4. S ← ∅
5. {g1, . . . , gt} ← G (on numérote les éléments de G de 1 à t)
6. Pour i de 1 à t− 1 :
7. Pour j de i+ 1 à t :
8. r ← reste de la division de S(gi, gj) par G
9. Si r ̸= 0 :

10. S ← S ∪ {r}
11. G← G ∪ S
12. Sortir G

Démonstration. L’algorithme se termine dès que S = ∅. Alors le théorème 8.4.4
montre que l’ensemble G obtenu est une base de Gröbner.

Montrons que l’algorithme se termine. Soient G1, . . . , Gk, . . . la suite des
ensembles G successifs de l’algorithme. Alors Gi ⊂ Gi+1 pour tout i donc
⟨lt(Gi)⟩ ⊂ ⟨lt(Gi+1)⟩ pour tout i. Comme l’anneau R est noethérien, il existe
i tel que ⟨lt(Gi)⟩ = ⟨lt(Gi+1)⟩. Montrons qu’alors Gi = Gi+1 : cela prouvera
qu’à cette étape, S = ∅ et donc que l’algorithme se termine. Pour plus de
commodité, posons G = Gi et G′ = Gi+1. Alors G′ = G ∪ S. On pose aussi

G = {gi : i ∈ {1, . . . , t}} .
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Pour tout (i, j) tel que i < j, soit ri,j le reste de la division de S(gi, gj) par
G.

Supposons par l’absurde qu’il existe i, j tel que ri,j ̸= 0. Alors ri,j ∈ G′.
Comme ⟨lt(G)⟩ = ⟨lt(G′⟩, c’est que lt(ri,j) ∈ ⟨lt(G)⟩. Donc il existe g ∈ G tel
que lt(g) divise lt(ri,j). C’est absurde car ri,j est un reste de la division par
G.

Donc pour tout (i, j), ri,j = 0, ce qui montre que S = ∅.

Remarque. Il est possible d’améliorer cet algorithme en évitant le cal-
cul inutile de certains S-polynômes. Par exemple, on peut montrer que si
pgcd(lt(gi), lt(gi)) = 1, alors S(gi, gj)

gi,gj−→ 0. Il n’est donc pas nécessaire de
calculer ce S-polynôme.

Remarques sur la complexité (voir [G-G] et [F-G-L-M]).
C’est un problème difficile.
Soit Xα = xα1

1 . . . xαn
n un monôme de R. On appelle degré de Xα l’entier

n∑
i=1

αi. Le degré d’un polynôme est le maximum des degrés de ses monômes.

Soit I = ⟨f1, . . . , fs⟩. On note d = max{deg fi, i ∈ [[1, s]]} le degré maximum
de tous les fi.

1. Les degrés des éléments de la base de Gröbner réduite de I sont infé-
rieurs ou égaux à

2

(
d2

2
+ d

)2n−1

2. Il existe des idéaux I pour lesquels toute base de Gröbner contient au
moins 22

cn éléments et des éléments de degré au moins 22
cn pour une

constante strictement positive c.

3. Soit K ′ un corps algébriquement clos contenant K. Si l’ensemble des
solutions S dans K ′n du système fi(x) = 0 pour tout i ∈ [[1, s]] est
fini, alors Card(S) ≤ dn. Pour l’ordre lexicographique gradué inverse,
on peut dans ce cas calculer une base de Gröbner avec une complexité
algébrique polynomiale en dn2 .

4. Généralement, le calcul d’une base de Gröbner est plus rapide si l’ordre
choisi est l’ordre lexicographique gradué inverse.

5. Si l’on connaît une base de Gröbner pour un ordre donné, il existe des
algorithmes efficaces pour en déduire une base de Gröbner pour un
autre ordre.
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8.5. Bases de Gröbner réduites

Lemme 8.5.1. Soit G une base de Gröbner de I. Soit g ∈ G tel que

lt(g) ∈ ⟨lt (G∖ {g})⟩

ce qui veut dire qu’il existe g′ ∈ (G∖ {g}) tel que lt(g′) divise lt(g). Alors
(G∖ {g}) est une base de Gröbner de I

Démonstration. Si lt(g) ∈ ⟨lt (G∖ {g})⟩, alors ⟨lt(G)⟩ = ⟨lt (G∖ {g})⟩. On
en déduit que ⟨lt(I)⟩ = ⟨lt (G∖ {g})⟩ puisque ⟨lt(I)⟩ = ⟨lt (G)⟩.
Définition 8.5.2. Une base de Gröbner G est dite minimale si pour tout
g ∈ G, les deux propriétés suivantes sont réalisées.

1. lc(g) = 1.
2. lt(g) ̸∈ ⟨lt (G∖ {g})⟩.

Définition 8.5.3. Un élément g d’une base de Gröbner G est réduit pour G
si aucun terme de g n’appartient à ⟨lt(G∖ {g})⟩.
Définition 8.5.4. Une base de Gröbner minimale G est réduite si tous ses
éléments sont réduits pour G.

Théorème 8.5.5. Tout idéal de R admet une unique base de Gröbner réduite.

Démonstration. La preuve de l’existence est laissée en exercice.
Montrons l’unicité. Soient donc G et G′ deux bases de Gröbner réduites

d’un idéal I. Donc
⟨lt(I)⟩ = ⟨lt(G)⟩ = ⟨lt(G′)⟩.

Montrons d’abord que lt(G) = lt(G′). Soit g ∈ G. Montrons que lt(g) ∈
lt(G′). Comme lt(g) ∈ ⟨lt(G)⟩ = ⟨lt(G′)⟩, il existe g′ ∈ G′ tel que lt(g′) divise
lt(g). De même, il existe g′′ ∈ G tel que lt(g′′) divise lt(g′). Ainsi, lt(g′′)
divise lt(g). Si g′′ ̸= g, alors lt(g) est divisible par un élément de lt(G∖ {g}).
C’est absurde puisque G est une base de Gröbner réduite. On en déduit
donc que g = g′′. Comme lt(g) divise lt(g′) et lt(g′) divise lt(g), et comme
lc(g) = lc(g′) = 1 c’est donc que lt(g) = lt(g′), d’où l’inclusion lt(G) ⊂ lt(G′),
puis l’égalité lt(G) = lt(G′).

On peut maintenant montrer que G = G′. Soit g ∈ G. Comme lt(G) =
lt(G′), il existe g′ ∈ G′ tel que lt(g) = lt(g′). Alors, les termes dominants de
g et de g′ s’annulent dans g − g′. Comme G et G′ sont des bases réduites, et
comme lt(G) = lt(G′), aucun des termes de g ni de g′ n’est divisible par un
élément de ⟨lt(G)∖ {g}⟩, donc aucun des termes de g− g′ n’est divisible par
un élément de ⟨lt(G)⟩, ce qui veut dire que le reste de la division de g − g′
par G est égal à g − g′. Or, comme g − g′ ∈ I, ce reste est égal à 0. On en
déduit que g = g′. Ainsi, G ⊂ G′, et par symétrie G = G′.
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8.6. Applications

8.6.1 Monômes standards

On considère toujours R = K[X1, . . . , Xn] (qu’on note aussi K[X]), muni
d’un ordre monomial ≺. Soit I un idéal de R et B une base de Gröbner de
I pour ≺.

Définition 8.6.1. Soit α ∈ Nn. Le monôme Xα est un monôme standard de
R relativement à G si pour tout g ∈ G, le terme lt(g) ne divise pas Xα.

Théorème 8.6.2. L’ensemble des monômes standards relativement à G est
une base du K-espace vectoriel K[X]/I.

Démonstration. Tout polynôme f de R s’écrit

f =
∑
g∈G

cgg + r (8.2)

où aucun des termes de r n’est divisible par un élément de ⟨lt(G)⟩, c’est
à dire que les monômes apparaissant dans r sont des monômes standards.
L’ensemble des monômes standards est donc une famille génératrice du K-
espace vectoriel K[X]/I. L’unicité de r dans (8.2) montre que la famille est
libre.

Exemple. Soit R = Q[x, y], muni de l’ordre lexicographique gradué ≺ tel
que x ≻ y. Soient f1 = x3 − 2xy, f2 = x2y − 2y2 + x et I = ⟨f1, f2⟩. Alors
la base de Gröbner réduite de I est égale à G = (x2, xy, y2 − x/2). Alors,
l’ensemble des monômes standards pour G est égal à

M = {1, x, y}.

On peut visualiser ces monômes sur un graphique.
L’axe des abscisses représentent les puissances de x, les ordonnées les

puissances de y. Comme x2 ∈ lt(G), les points (a, b) tels que a ≥ 2 sont à
exclure (on enlève un quart de plan).

Le Q-espace vectoriel Q[x, y]/I est donc de dimension 3. Q[x, y]/I =
{a0 + a1x+ a2y : (a0, a1, a2) ∈ Q3} Pour additionner deux éléments de Q[x, y]/I,
il suffit d’ajouter leurs composantes. Pour la multiplication, on établit la table
de multiplication des monômes standards.

× 1 x y
1 1 x y
x x 0 0
y y 0 x/2
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Ainsi, les bases de Gröbner permettent de calculer dans de tels quotients.
La multiplication par un élément du quotient est une application linéaire. En
dimension finie, il peut être utile de calculer la matrice de la multiplication
par chacun des éléments d’une base dans cette base.

Dans l’exemple ci-dessus, la multiplication par 1 a pour matrice l’identité,
les multiplications par [x]I et par [y]I ont respectivement pour matrice dans
la base ([1]I , [x]I , [y]I)

Mx =

0 0 0
1 0 0
0 0 0

 et My =

0 0 0
0 0 1/2
1 0 0


8.6.2 Résolution de systèmes algébriques

Il arrive fréquemment qu’un problème se ramène à la résolution d’un
système d’équations polynomiales. Soit à résoudre

f1(x1, . . . , xn) = 0

...
fs(x1, . . . , xn) = 0

(8.3)

Soient I = ⟨f1, . . . , fs et G = (g1, . . . , gt) une base de Gröbner de I. Alors
le système (8.3) est équivalent au système

g1(x1, . . . , xn) = 0

...
gt(x1, . . . , xn) = 0

(8.4)

Souvent, ce nouveau système est plus facile à résoudre, car certaines variables
peuvent avoir été éliminées dans certaines équations.

Reprenons l’exemple où f1 = x3 − 2xy, f2 = x2y − 2y2 + x dans Q[x, y].
Alors {

f1(x, y) = 0

f2(x, y) = 0
⇐⇒


x2 = 0

xy = 0

y2 − x/2 = 0

⇐⇒

{
x = 0

y = 0

Dans cet exemple, l’ordre monomial choisi est l’ordre lexicographique gradué.
Ce n’est pas forcément le meilleur choix en général.

L’ordre lexicographique se prête particulièrement bien à l’élimination des
variables. Pour tout idéal I de R, on note

Il = I ∩K[Xl+1, . . . , Xn].
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C’est un idéal de K[Xl+1, . . . , Xn], appelé l-ème idéal d’élimination de I.

Théorème 8.6.3. Soit ≺ l’ordre lexicographique tel que X1 ≻ · · · ≻ Xn. Soit
G une base de Gröbner de I. Alors

Gl = G ∩K[Xl+1, . . . , Xn]

est une base de Gröbner de Il.

Démonstration. Il s’agit de montrer que ⟨lt(Il)⟩ = ⟨lt(Gl)⟩. L’inclusion ⟨lt(Gl)⟩ ⊂
⟨lt(Il)⟩ est claire.

Montrons que ⟨lt(Il)⟩ ⊂ ⟨lt(Gl)⟩. Soit f ∈ Il. Alors f ∈ I et donc
comme ⟨lt(I)⟩ = ⟨lt(G)⟩, il existe g ∈ G tel que lt(g) divise lt(f). Comme
f ∈ Il, lt(f) ∈ K[Xl+1, . . . , Xn] et donc lt(g) ∈ K[Xl+1, . . . , Xn]. Comme il
s’agit de l’ordre lexicographique, tout monôme inférieur à lt(g) appartient à
K[Xl+1, . . . , Xn]. Donc tous les termes de g appartiennent à K[Xl+1, . . . , Xn]
ce qui veut dire que g ∈ K[Xl+1, . . . , Xn], donc g ∈ Gl.

Exemple. Soit à résoudre dans R le système suivant.
f1(x, y, z) = 0

f2(x, y, z) = 0

f3(x, y, z) = 0

où
f1(x, y, z) = x2 + y + z − 1

f2(x, y, z) = x+ y2 + z − 1

f3(x, y, z) = x+ y + z2 − 1

Soit I l’idéal ⟨f1, f2, f3⟩ de Q[x, y, z]. On munit Q[x, y, z] de l’ordre lexico-
graphique ≺ tel que x ≻ y ≻ z. Alors la base de Gröbner réduite de I est
G = (g1, g2, g3, g4), où

g1 = x+ y + z2 − 1

g2 = y2 − y − z2 + z

g3 = z2(y + z2/2− 1/2)

g4 = z2(z − 1)2(z2 + 2z − 1)

On remarque que g4 ne dépend que de z et que g2 et g3 ne dépendent que de
y et z. Il est alors facile de résoudre le système et on trouve comme ensemble
des solutions

S =
{
(1, 0, 0), (0, 1, 0), (0, 0, 1),(−1 +

√
2,−1 +

√
2,−1 +

√
2),

(−1−
√
2,−1−

√
2,−1−

√
2)
}
.
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