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Chapitre 1

Introduction

1.1. Objectifs

Dans ce cours, nous commencons par étudier comment coder différents
objets mathématiques sur machine : les entiers, polynémes et éléments d’un
quotient. Nous étudions ensuite des algorithmes pour effectuer les opérations
élémentaires sur ces objets. En particulier, nous étudions des algorithmes de
complexité sous-quadratique pour la multiplication.

Ensuite, nous étudions quelques algorithmes liés a la factorisation sur les
anneaux Z, k[X], ou k est un corps. Pour cela, nous travaillerons beaucoup
dans des quotients Z/nZ et k[X|/Pk[X].

Enfin, nous voyons comment travailler dans k[X7, ..., X,]. En particulier,
nous nous intéressons aux idéaux et verrons certains systémes privilégiés de
générateurs de ces idéaux : les bases de Grobner.

1.2. Algorithmes

Définition 1.2.1. 1. Un algorithme est une suite d’instructions bien dé-
terminées exécutées sur des entrées. Le ou les résultats sont appelées
sorties.

2. Les entrées sont des données binaires : des suites finies de 0 et de 1
appelés bits.
3. La taille s d’une entrée est le nombre de bits qui la représentent.

4. Les opérations se ramenent a des opérations dites élémentaires sur les
bits : affectations, comparaisons, additions, soustractions, multiplica-
tions.

5. Le temps de calcul d’un algorithme est le nombre T'(s) de ces opérations
élémentaires exprimé en fonction de la taille s des entrées.
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Par exemple, soit n un entier naturel. On introduit les notations suivantes
pour I’écriture binaire de n, lorsque n > 1 :

s—1
n= Znﬂi, avec n; € {0,1} et ng_y = 1.
i=0

On note aussi
{n}g = MNg—1...7N

Alors la taille s(n) de n est le nombre de chiffres dans son écriture binaire,
soit s(n) = s. On pose s(0) = 1. On a la formule :

s(n) = [logyn] + 1
En effet,

s—1
2l <n<)y 2 =21
=0
ce qui veut dire que 2571 < n(2% donc que s = [logyn] + 1.

Notation. Sauf mention contraire, on écrira log = log,.

1.3. Ordres de grandeurs O et O tilde

On s’intéresse a l'ordre de grandeur de T'(s). Soient deux fonctions f et
g de R, dans R,.

Définition 1.3.1. On note f(s) = O(g(s)) s’il existe M)0 tel que

f(s) < Mg(s) pour tout s.

— Si T'(s) = O(s), on dit que le temps de calcul est linéaire.

— Si T(s) = O(s?), on dit que le temps de calcul est quadratique.

— Si T'(s) = O(s*), (ou1 k > 1) on dit que le temps de calcul est polyno-
mial.

— Dans le cas ot T(s) = O(exp(cs*)), ot ¢)0 et k)0, on dit que le temps
de calcul est sous-exponentiel si k(1 et on dit qu’il est exponentiel si
k>1.

Définition 1.3.2. On note f(s) = O(g(s)) s'il existe k)0 tel que f(s) =
O (g(s)(log g(s))").

Par exemple, si f(s) = O(s*(log s)?(log(log 5))°) ot a, b, )0, f(s) = O(s?).



Chapitre 2

Premaers algorithmes sur les entiers

2.1. Addition

Soient a et b deux entiers strictement positifs. Soit s un entier tel que
s> s(a) et s > s(b). Alors a et b s’écrivent

—_

s— s—1
a= a;2! et b= Z b, 2!
i=0

)

Il
=)

On note
{CL}Q = Qg—1...0Qp et {b}g = bs—l Ce bo

ou les a; et b; appartiennent a {0, 1}.

Algorithme 2.1.1. [ADD : ADDITION D’ENTIERS]|
Entrées : a, b comme ci-dessus.
Sortie :c=a+0b
1. (Initialisation de la retenue) r < 0
2. Pourit deOas—1:
3. (c,r) < reste et quotient de a; + b; + 1 par 2
4. Cs T

5. Sortir ¢ = Z ;2!

=0

A l'étape 2. on rentre dans une boucle de longueur s, dont chaque exécu-
tion est un nombre borné d’opérations élémentaires. Cet algorithme est donc
linéaire : T'(s) = O(s).

On ne peut pas faire mieux qu’un temps linéaire car il faut au moins le
temps de lecture des données.
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Exercice 2.1.2. Ecrire un algorithme qui effectue la soustraction a —b dont
le temps de calcul est en O(s(a)) (a étant supposé supérieur a b).

On pourra considérer la soustraction sur un bit avec retenue comme une
opération élémentaire pré-programmeée ((c;,r) < (1,1) si (a;,b;+7) = (0,1),
(ciyr) < (a;,1) sib;=r =1 et (¢;,r) < (a; — b; — r,0) dans les autres cas).

2.2. Multiplication

On écrit
s—1
ab = Z a;2%h
i=0

ot s = s(a). Dans cette somme, si a; = 0 alors @;2'b = 0 et si a; = 1,
a;2'b = 2'b : cette opération est un décalage dans ’écriture binaire.
Si Iécriture binaire de b est {b}y = by_1b; o ... Dy, celle de 2°b est

{211)}2 == bt_lbt_g e b(] 0 e O

X0

Algorithme 2.2.1. [MULT : MULTIPLICATION D’ENTIERS]

Entrées : a, b

Sortie : ¢ = ab

1. (initialisation) ' < b, ¢ < 0, s < s(a)

2. Pouri de0as—1:

3. Sia;=1,c<c+1l

/4 b« 20

5. Sortir c

A chaque étape 4, la somme ¢ + b revient a la somme (écrite en bi-
naire) (Cip¢—1...¢) + (by_1...bg), ou t = s(b) (on remplace directement les
bits concernés dans la liste représentant ¢ et on ne touche pas a la partie
(Ci—1...¢p)). C’est en O(t). Comme il y a s(a) passages dans la boucle, on
obtient le résultat suivant.

Proposition 2.2.2. La multiplication de a par b peut se faire en O(s(a)s(b)).

Remarque. C’est donc un algorithme quadratique. On verra qu’on peut
faire mieux, notamment avec la transformée de Fourier rapide, on aura un
algorithme quasi linéaire.
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2.3. Division euclidienne
On suppose ici que b # 0. On cherche q et r tels que
a=qgb+r et 0<r{

ur comparer a n compar écritur inair ur 'ordre lexico-
Pour comparer a et b, on compare les écritures binaires pour 'ordre lexico
graphique, ce qui se fait en temps linéaire. On écrira ¢ sous la forme

k
q= Z 32’
i=0

ou ¢; € {0,1} pour tout i € [[0, k]] et ou g = 1, c’est-a-dire k = s(q) — 1.
Exercice 2.3.1. Si a > b, montrer que k € {s(a) — s(b), s(a) — s(b) — 1}.

Algorithme 2.3.2. [D1v : DIVISION EUCLIDIENNE]
Entrées - a, b
Sorties : le quotient et le reste q et r
1. (initialisation) @’ < a, s < s(a), t + s(b)
2. (initialisation) Pouri de 0 a s —t : q; < 0
3. tant que ' > b :

/ b« 257th
5] sibl <d :
6. Qs—t < 1
7. a +—ad -V
8 stnon :
9. Qs—t—1 < 1
0. V< V)2
11. a +—a -V
12. s+ s(d)
s(a)—s(b)
13. sortir q = Z g2, r=d
i=0
Démonstration. Exercice. O

Exercice 2.3.3. Ezécuter l'algorithme pour (a,b) = (23,4), puis (23,7).
Proposition 2.3.4. Le temps de calcul de ’algorithme est en
O(s(b)(s(a) — s(b) +1))

Ce temps de calcul est donc quadratique : si s(a)(s et s(b)(s, il est en O(s?).
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Démonstration. Le nombre de passages dans la boucle “tant que” (3) est
inférieur a s(q), qui est égal a s(a) — s(b) + 1 ou a s(a) — s(b). A chaque
passage, on calcule a’ — ¥/, ce qui peut se faire en modifiant les s(d’) ou
s(t') + 1 premiers bits de a’. Chaque exécution de la boucle est donc en

O(s(b)). O



Chapitre 3

Représentation

Nous avons vu comment représenter les entiers avec les bits. Passons
maintenant en revue la représentation de quelques objets supplémentaires.

3.1. Nombres entiers relatifs

On ajoute un bit de plus a la représentation de la valeur absolue pour
spécifier le signe. Ainsi, si k € Z, la taille de k est

s(k) =1+ s(|k|) = [log|k|] +2 ~ log k|

3.2. Nombres rationnels

. . . a
Tout élément de s’écrit de maniére unique sous la forme ¢ = — ou
b

a,b € Z, b)0 et pged(a,b) = 1. On représente alors ¢ par le couple (a,b) et
s(q) = s(a) + s(b)
3.3. Polynoémes a coefficients entiers

Soit P € Z[X]. On écrit

d
P=> aX
=0

ou les a; appartiennent a Z et ot ag # 0 si P # 0. On représente ce polynéme
par (ag,...,aq) et donc

s(P)=7_ sa)

=0

11
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3.4. L’anneau quotient Z/NZ

Cet anneau est en bijection avec son systéme de représentants Ry =
{0,1,..., N — 1}. Tout élément x de Z/NZ peut étre représenté de fagon
unique par un élément de r € Ry et

s(z) = s(r){(s(N) ~ log N
3.5. Principe général

Soit A un anneau. On suppose que l'on sache représenter chaque élément
a de A. On note toujours s(a) la taille d’un tel élément. On en déduit la taille
des éléments de A[X]

s <Z al-Xi> = Zs(ai)

ceux de A*

etc.
Soit I un idéal de A. La taille d’un élément x de A/I dépend de I’élément
choisi pour représenter x.

Notation. Soit a € A, on note [a]; la classe de a modulo I.

Si l'on choisit de représenter x par a € A (ou bien sir x = [a];), s(z) =
s(a).

Exemple. Soit A = F,[X]/(P), ou p est un nombre premier, o P € F,[X]
et ou d = deg P, tout élément de A peut se représenter par un polynome de
degré inférieur ou égal & d — 1. Soit () un tel élément.

d-1 ‘
Q= Z X"
i=0
et

s(Q) =) s(q) <d([log(p—1)] +1) ~dlogp

=0

Rappelons au passage que A est un corps si et seulement si P est irréductible
dans [F,[X]. On note alors R = F .
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3.6. Complexité binaire, complexité algébrique

3.6.1 Définitions

La complexité binaire d'un algorithme est son temps de calcul. C’est
donc le nombre d’opérations élémentaires sur les bits exprimé en fonction de
la taille des entrées.

Si l'on écrit un algorithme sur des polynémes, par exemple I’addition, on
n’a pas besoin de spécifier 'anneau de base A. On compte alors le nombre
d’opérations sur les éléments de A. De fagon plus générale, on écrit souvent
des algorithmes dont les entrées sont des éléments d’un anneau A. La com-
plexité algébrique est alors le nombre d’opérations a effectuer sur ces entrées :
affectation, addition, multiplication, division, comparaison.

3.6.2 Exemple 1 : addition dans A*

Soit A un anneau. La complexité algébrique de 1'addition dans A* est
égale a k.

Si A =T,, la complexité binaire de I’addition dans A* est en O(klogp).

Si A = 7Z, cette complexité binaire dépend de la taille des entiers en jeu.
Pour additionner a = (a;) et b = (b;) dans Z*, la complexité binaire est

Zmax(s(ai),s(bi)).

3.6.3 Exemple 2 : Multiplication dans A[X]

Soient P et ) deux polyndmes de A[X] de degrés respectifs m et n. On
peut adapter 1’algorithme pour la multiplication de P par Q. L’algo-
rithme obtenu & une complexité algébrique en O((m + 1)(n + 1)) : cette
complexité est quadratique puisque si m,n{d, elle est en O(d?).

Exercice 3.6.1. Ecrire cet algorithme et évaluer sa complexité algébrique.

Par exemple, si m,n(d et si A = Z/NZ (ou N)1), la complexité binaire
de I'algorithme est en O(d?log® N).
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Chapitre /4

Diviser pour régner

Dans ce chapitre, on étudie plusieurs algorithmes basés sur une stratégie
commune, qui consiste a diviser récursivement un calcul en plusieurs calculs
sur des objets plus petits. En particulier, on obtient ’algorithme rapide de la
transformée de Fourier discréte (appelé FFT pour Fast Fourier Transform),
qui conduit & un algorithme quasi linéaire pour la multiplication des poly-
nomes, ainsi que pour celle des nombres entiers.

4.1. Exponentiation rapide

Soit (M, -) un monoide (un ensemble M muni d’une loi interne - associa-
tive admettant un élément neutre dans M) et n un élément de N~ {0}. On
veut calculer la puissance n-éme z" d’un élément x de M.

Si I'on utilise la premiére méthode qui vient a lesprit : 22 = z -z,
x-x% ..., 2" =x-2"!, on obtient le résultat en n — 1 multiplications.

Si n = 2% o1 k)0, on voit bien que 'on peut faire autrement :

3:

ot = (@) = (. (2?)?..)°

Ce calcul se fait en & = logn multiplications.
On peut généraliser cette stratégie lorsque n n’est pas une puissance de 2,
en s’appuyant sur son écriture binaire. Voyons par exemple comment calculer

ZL’13:$8'1‘4'$

On peut écrire
a'? = ((2*- x)2)2 x

On obtient ' en exécutant les opérations suivantes :

15
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r — 2> — (2¥-2)? — ((:U2-x)2)2-x

Ce calcul demande 5 multiplications au lieu de 12. On observe que chaque
étape est soit 1’élévation au carré, soit I’élévation au carré suivie de la multi-
plication par x, en fonction de la valeur des chiffres binaires de 13 (pour que
ce soit plus frappant, on rajoute ci-dessous une étape initiale inutile) :

1 - oz — 22z - (2% 2)? - ((2 x)2)2 x
LIx LIx [l LIx
1 1 0 1

L’algorithme correspondant s’appelle 'algorithme d’exponentiation ra-
pide, ou bien 'algorithme square and multiply.

Algorithme 4.1.1. [EXPONENTIATION RAPIDE|

Entrées : x etn=0 oun = ZniQi (n; € {0,1} pour tout i et n, =1)
Sortie : x" =

1. Sin=0 : sortir 1

2. (initialisation) y < x

3. Pouri del ar :

4. sing_; =0y« y?

5. sim,_i=1:y<y*-x

0. sortiry

Démonstration. Par récurrence sur r. Le cas r = 0 correspond a n = 0
ou n = 1, et 'algorithme sort bien respectivement 1 ou x. Pour I’hérédité,
on écrit n = ng + 2n'; si {n}s = ny.p1n,. ... ng, alors {n'}y = npn, .. o0
I’écriture binaire de n’ est celle de n, tronquée de son dernier bit ng. Noter que
I’algorithme parcourt les bits de n de gauche a droite, i.e. des poids forts aux
poids faibles. Par hypothése de récurrence, a l'issue des r premiéres étapes
de la boucle, on a y = 2. La derniére instruction calcule bien y? = 22" si
no =0, ou y? -z = 2>+ si ny = 1, c’est-a-dire z". O

Proposition 4.1.2. L’algorithme d’exponentiation rapide calcule x™ en au
plus 2s(n) — 2 multiplications dans M.

Démonstration. La boucle “pour” au pas 3 est de longueur r = s(n) — 1, et
chaque étape nécessite au plus 2 multiplications. O
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Exemple. Soit N un entier naturel non nul. Soient z € Z/NZ et n € N.
La complexité binaire du calcul de ™ est en O((logn)M(N)) ou M(N) est
la complexité binaire de la multiplication modulo N. Avec les algorithmes
classiques de multiplication et de division décrits plus haut, la complexité
binaire est donc en O((logn)(log N)?). On verra avec FFT que cela peut
aussi se faire avec une complexité binaire de 5(10gnlog N).

Remarque. L’algorithme d’exponentiation rapide est trés performant dans
I’exemple ci-dessus, et plus généralement quand la taille des éléments du
monoide considéré est bornée*. Il est beaucoup moins intéressant lorsque ce
n’est pas le cas. Par exemple, si I’on calcule 5" dans Z, cet algorithme conduit
a des multiplications entre entiers de plus en plus grands, alors qu’en itérant
des multiplications par 5, il y a davantage de multiplications, mais chacune
de ces multiplications est moins cotiteuse.

4.2. Algorithme de Karatsuba

Soient P et () deux polynémes de degré inférieur a n. On peut calculer
P + @ avec une complexité algébrique en O(n). On sait aussi que 'on peut
calculer PQ avec une complexité algébrique en O(n?).

On décrit ici un algorithme de complexité algébrique inférieur pour effec-
tuer le produit de deux polynomes.

La premiére étape consiste & couper les polyndémes en deux. On suppose
que deg P(n, deg Q(n et que n est une puissance de 2 : n = 2. On écrit

P(X) = Py(X) + X"2P,(X)
Q(X) = Qo(X) + X"?Q1(X)
ou le degré des polyndmes Py, Pi, Qo, (1 est strictement inférieur a n/2. Ce
sont les divisions euclidiennes de P et Q par X™?, qui s’obtiennent simple-

ment en coupant en deux les listes qui représentent chacun des deux poly-
nomes. Plus précisément, soit

(4.1)

n—1
P(X) =) aX'
=0
Le polynéme P est représenté par la liste

[CLO, e 7an—1]

Les polyndémes Py et P; sont respectivement représentés par les listes

[&0, ce ,an/g_l] et [an/Q, Ce ,an,l]



18 CHAPITRE 4. DIVISER POUR REGNER

Alors
PQ(X) = PyQo(X) + X" (PQ1 + P1Qo)(X) + X" P1Q1(X) (4.2)

ce qui donne 4 multiplications entre polynémes de degré inférieur a n/2. On
peut arranger cette égalité autrement.

PQ(X) =RQo(X)
+ X" ((Py+ P)(Qo + Q1) — PoQo — Pi@Q1) (X) (4.3)
+ X"P1Q1(X)

Le calcul de P(Q en utilisant cette égalité ne demande que 3 multiplications :
PyQo, PiQ1 et (Py+ P1)(Qo + Q1). Cela méne a 'algorithme suivant.

Algorithme 4.2.1. [KARATSUBA]
Entrées : n (puissance de 2), P,Q € A[X] tels que deg P(n, deg Q(n
Sortie : PQ)

Sin =1, sortir PQ)

Py, P1, Qo, Q1 < les polynomes définis en

Ry < Karatsuba(n/2, Py, Qo)

Ry < Karatsuba(n/2, P, (1)

S <+ Karatsuba(n/2, Py + P, Qo + Q1)

R+ 55— Ry — Ry

Sortir Ry + X™2R; + X" Ry

NS s Lo~

Remarque. Cet algorithme se rappelle lui-méme. On dit qu’il est récursif.

Démonstration. Sin = 1, Karatsuba rend le bon résultat. Supposons que si
deg P,deg Q(n/2, alors Karatsuba(n/2, P, Q) se termine et rend PQ). Soient
P, Q tels que deg P,deg Q(n. Soient Py, P, Qo, Q1 les polynomes définis en
(4.1). L’hypothese de récurrence montre que les pas 2, 3 et 4 de I'algorithme
donnent Ro = PQQ07 R2 = PlQl et S = (P() + P1>(Q0 + Ql) L’égahté "
montre que le résultat rendu est bien le produit PQ). n

Dans cet algorithme, on commence par diviser en parties les objets consi-
dérés, puis on applique 'algorithme & ces objets plus petits obtenus. Il reste
ensuite quelques calculs pour déduire le résultat souhaité.

Un tel algorithme est dit de type “diviser pour régner” ou en anglais
“divide and conquer”. Pour en évaluer la complexité, on utilise le lemme
suivant.

Lemme 4.2.2. [Lemme maitre, ou théoréme maitre| Soit T' une fonction de
R, dans Ry qui vérifie les propriétés suivantes.
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1. Il existe des réels a)0 et b)1 tels que T'(x) = aT <E> + O(x).

2. Pour tout x <1, T'(z) < 1.

Alors
@) (xlogb(a)) st a)b
T(x) =< O (xlogx) sia="b
O (z) sia(b

Remarque. Si on utilise un algorithme de type “diviser pour régner” a un
objet de taille n, ce lemme s’applique si 'algorithme s’appelle lui-méme a fois
sur des objets de taille n/b, et si la complexité des calculs supplémentaires
pour exploiter les résultats est linéaire.

1
Démonstration. Soit k = |logyz| + 1 = L%J + 1. Donc k est l'entier tel
n
que
vl < a(bF (4.4)

D’aprés la condition [I| du lemme, il existe un réel M)0 tel que
x
T(z) <al (E) + Mx
donc en appliquant la méme inégalité a T’ (%),
T(x) <a (aT <£> + M£> + Mz

b2 b
< a®T (%) + Mx (1—1—%)

Par récurrence,
< k xr a a\ k-1
T(z) < a T(b—k> + Mg 1+Z+"'+(Z>

k—1
Eak+M:U(1+%+~--+(%> )

x
La seconde inégalité provient de la conditiondu lemme puisque — (1 d’aprés

bk
(@),
Sia = b, cela donne
T(x) < a* + Mazk
or a¥ = % = b*~1b < xb d’aprés la premiére inégalité de . De plus, k est
en O(logx). On obtient bien que T'(z) = O(xlogx).
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Sia#b,

() -
T(z) < a* + bea—
.
Si a(b, a*(b* = O(x) donc T'(x) = O(x).

Si a)b, comme x (b,

a
-—1
b
M k
<|l+3 ; a
b
Or gF — eklna — klnbRg _ pkloga _ O(xlogb(a)» ]

Corollaire 4.2.3. Soient P et QQ de degré inférieur strictement a n. L’algo-
rithme de Karatsuba calcule PQ) avec une complexité algébrique en O(n'°820)) =

O(n1'59).

Démonstration. Soit C(n) cette complexité. C'(n) = 3C(n/2)+0(n). D’aprés
le lemme, C(n) = O(n'°£2(3). O

Exercice 4.2.4. Ecrire lalgorithme de type “diviser pour régner” pour calcu-
ler un produit de polynémes qui utilise I’égalite (au liew de ’égalité )
et évaluer sa complexité (on remarquera que cette complexité est quadratique
donc pas meilleure que celle de la multiplication classique).

4.3. Algorithmes de tri

On veut trier une liste [ = [aq, ..., a, 1] de n éléments de N, c’est-a-dire
construire la liste de ses éléments rangés dans 1'ordre croissant. Soit 7'(n) le
nombre de comparaisons nécessaires.

4.3.1 Algorithme naif

On parcourt toute la liste pour repérer le plus petit élément, que I’on met
en téte, puis on recommence avec la liste de taille n — 1 qui reste une fois cet
élément enlevé. Alors T'(n) =n — 1+ T(n — 1) donc

n(n—1) n?

T(n):(n—l)—l—(n—2)+---+1:T~?

C’est donc un algorithme de complexité algébrique quadratique.
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4.3.2 Tri fusion (ou merge sort)

On suppose pour simplifier que n est une puissance de 2. On partage la
liste en deux listes [y et I; de taille n/2. On rappelle 'algorithme pour trier
lo et 11 de fagon récursive. On obtient deux nouvelles listes [y et [ triées puis
on interclasse de la facon suivante.

On initialise k, 4,7 a 0. L’entier ¢ va pointer les éléments de [y, j ceux de
[ et k ceux de la liste triée .

Si lpli] < l4]y], alors on pose l[k] = ly[i] et on incrémente i et k de 1 (sauf
sii=mn/2—1, auquel cas [y a été parcourue et il suffit de compléter [ par les
¢léments qui restent dans [1). Sinon, on pose ([k] = l1]j] et on incrémente k
et 7de 1 (saufsi j =n/2—1).

Exercice 4.3.1. Appliquer cet algorithme “Tri fusion” a la liste
1 =11,4,7,9,2,3,5,6]
Exercice 4.3.2. Ecrire Ualgorithme “Tri fusion’”.

Le nombre de comparaisons 7'(n) vérifie 'égalité T'(n) = 27 (n/2) +O(n).
D’apres le lemme on obtient donc que T'(n) = O(nlogn).

4.3.3 Application : recherche par dichotomie

Si une liste est triée, on y retrouve plus facilement ce que ’on cherche.

Si la liste [ est triée par ordre croissant et si 'on y cherche un élément x,
on compare z avec [[|n/2]]. Si x = [[|[n/2]], on constate que z est dans la
liste & 'emplacement n/2. Si z(l[|n/2]], on cherche dans [{[0],...,{[[n/2] —1]
et si x)l[|n/2]], on cherche dans [[[|n/2]| +1],...,l[n —1]].

Soit T'(n) le nombre de comparaisons nécessaires pour une liste de taille
inférieure ou égale a n. Alors T'(n) < 24 T'(|n/2]). Comme s(|n/2]) =
s(n) — 1, quand l'algorithme s’est appelé lui-méme s(n) — 1 fois, la liste est
de taille 1. Finalement, T'(n) < 2s(n) — 1. La complexité de Ialgorithme est
au plus équivalente a 2logn.

4.4. Transformée de Fourier rapide (FFT)

Ce paragraphe porte sur la transformée de Fourier discréte et sur 'al-
gorithme de transformée de Fourier rapide, appelé FFT (fast Fourier trans-
form). Cet algorithme a été mis au point par James Cooley et John Tukey
en 1965.

Soit K un corps de caractéristique différente de 2. Soit n une puissance
de 2. On note n = 2°. On note K|[X],_; Panneau des polynémes de degré
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inférieur ou égal & n — 1. On suppose que K contient une racine primitive
n-éme de 1, au sens de la définition suivante.

Définition 4.4.1. On dit qu’un élément w de K est une racine primitive
n-éme de 1 si w™ =1 et si w* # 1 pour tout k € [[0,n — 1]]. Cela signifie que
w est d’ordre n dans (K*,-) (le groupe multiplicatif de K ).

Comme n est une puissance de 2, un élément w de K est une racine
primitive n-éme de 1 si et seulement si w” = 1 et w™? # 1, ce qui est
équivalent a w™? = —1.

n

Exemples.

1. Si K = C, w = e*™/™ est une racine primitive n-éme de 1. L’ensemble
des racines primitives n-émes de 1 est {e?*7/" . pgcd(k,n) = 1}.

2. Si K = TF,, ot ¢ = p* et ou n divise ¢ — 1, alors il existe une racine
primitive n-éme de 1 dans F,. En effet, le groupe (FF},-) est cyclique
d’ordre ¢ — 1. Soit g un générateur de Fy. L’¢lément w = gD/ est
d’ordre n.

Dans la suite du paragraphe, on va identifier K[X], ; avec K™ : tout
n—1

polynoéme P = Z a; X" pourra étre identifié au n-uplet (ao,...,a,_1), que
i=0
'on notera aussi (a;)ef0,n—1]-

Définition 4.4.2. Soit w une racine rimitive n-éme de 1. La transformée de
Fourier discréte associée a w est lapplication

F, : K" — K"
a=(ag,...,an_1)— (P(1),P(w),...,P(w" ™))

n—1

ou P est le polynome défini par a : P = ZaiXi. On notera F,(a) =

i=0
Fy(P) = (P(wl))le[[o,nfl}]'

Ce calcul est I’évaluation de P en n éléments de K. Cela peut donc se
faire en O(n?) opérations dans K.

On peut aussi le justifier en remarquant que comme F}, est une application
linéaire, le calcul de F,,(a) se raméne a la multiplication d’une matrice de
M,(K) par un vecteur de M, (K). Cela demande bien O(n?) opérations
dans K.

La FFT calcule F,, avec une meilleure complexité. C’est un algorithme
de type “diviser pour régner”.
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n—1
Soit P =) a;X". On définit
=0
n/2—1
Po =ag + CZQX + -+ an_gX”/Q_l = Z G,Qka
k=0

(4.5)

n/2—1
P1 =ai + (13X + -+ Cln_an/271 = Z (ng_HXk
k=0

En d’autres termes, Py et P; sont respectivement définis par les n/2-uplets
(ag,as,...,an_9) et (ay,as,...,a,_1). Alors

P(X) = Py(X? + X P (X?)
Pour tout [ € [[0,n — 1]],

P(') = Py(w?) + o' P (w) (4.6)
Or, w? est une racine primitive n/2-¢éme de 1 et

F2(Py) = (Py(w™)) et Fe(P) = (P(w™)

le[jo,n/2—1]) lefjo,n/2—1]]

Supposons que I'on ait calculé ces transformées de Fourier F_2(Fp) et F2(P;).
Alors pour tout [ € [[0,n/2 — 1]], 'égalité (4.6) permet de calculer P(w'). De

plus, comme w™? = —1,
P(&*™?) = Py(w?) — W P ()

En résumé, pour [ € [[0,n/2 — 1]], on peut calculer les valeurs de P(w') et
P(w"™/2) par les formules

{ P(w") = Py(w?) + W' P (w?)
P<wl+n/2) _ P0<w2l) . wlpl(w%)

On en déduit I'algorithme FFT.

Algorithme 4.4.3. [FFT]

Entrées : n (puissance de 2), w (racine primitive n-éme de 1), P €
K[X]n—l

Sortie : F,(P) = (P(1), P(w),...,P(w"™1))

1. Sin =1, sortir (P)

2. (Py, Py) < polynomes définis en (donc P(X) = Py(X?)+X P (X?))
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3. Lo < FFT(n/2,w? P)

4. Ly < FFT(n/2,w?, P))

5. Pourl de 0 an/2-1:

6. Rl < Lg [l] + wlLl[l]

7. Rl+n/2 — Lo[l] — wlLl[l]

8. Sortir R = (R, ..., Ry_1)
Proposition 4.4.4. La complezité algébrique de FFT est en O(nlogn) (pour
le calcul de la transformée de Fourier discréte d’un n-uplet).

Démonstration. Soit C'(n) la complexité algébrique de la FEFT en taille n.
Alors C(n) = 2C(n/2) + O(n) donc le lemme [4.2.2 permet de conclure. [

Exercice 4.4.5. Dans C, i est une racine primitive 4-éme de 1. Soit P(X) =
X3 +2X?%+3X + 4 € C[X]. Exécuter “a la main” FFT(4,1, P).

Lemme 4.4.6. Soit k € Z.
nz_lwkj: 0sik#0 modn
: nsik=0 modn
7=0
Proposition 4.4.7. F, est un isomorphisme d’espaces vectoriels et son in-

verse est [, = —F, 1
n

Exercice 4.4.8. Démontrer le lemme[{.4.6 et la proposition [{.4.7

Remarque. L’application F}, effectue I'évaluation simultanée de P en 1, w, w?,
cwnL
1
Soit b = (by,...,b,_1) € K™. F;' = —F,_-1 détermine 1'unique polynome
n
P de K[X],_1 tel que

P(l):bo,P(w):bl’ ,P(wnfl):bnil

On dit que P est le polynome d’interpolation de Lagrange des couples (1, by), . . .,
(U)n_l, bn—l)-

4.5. Application au produit de deux polyndémes

Soient P et () deux polynomes de K[X] tels que deg P+ deg QQ(n. Le pro-
duit PQ est uniquement déterminé par ses valeurs en 1, w,...,w" ! L'idée
est de calculer (P(1), P(w),..., P(w™™)) et (Q(1),Q(w),...,Q(w™ 1)) par la
FFT, on en déduit (PQ(1), PQ(w), ..., PQ(w" ') par multiplication terme
a terme et enfin, on applique la FFT & ce résultat pour obtenir le polynéme
PQ par interpolation.
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Algorithme 4.5.1. [PRODUIT PAR FFT|

Entrées : n (puissance de 2), w (racine primitive n-éme de 1), P,Q €
K[X] tels que deg P + deg Q(n.

Sortie : PQ

1. Rp < FFT(n,w, P)

2. Ry < FFT(n,w, Q)

3. PourldeOan—1-:

4. R[] < Rp[l|Rg[l]

1
5. Sortir —=FFT(n,w™', R)
n

Proposition 4.5.2. Cet algorithme calcule PQ en au plus O(nlogn) opé-
rations dans K.

Si car(K) = 2, et si n est une puissance de 2, alors X" —1 = (X —1)" et
la seule racine n-éme de 1 est 1. Dans ce cas, on peut couper les polynémes
en 3 et appliquer la méme stratégie.

On peut encore généraliser cet algorithme a un anneau A (a la place de

K).

Théoréme 4.5.3. [CANTOR-KALTOFEN| Soit A un anneau et soit n € N.
On peut multiplier deux polynomes dont la somme des degrés est strictement
inférieur a n en O(nlognloglogn) opérations dans A.

On va se contenter ici de décrire 'idée de la preuve.

Soit A un anneau. On suppose que 2 est inversible dans A.
La définition suivante généralise la notion de racine primitive n-éme de 1
au cas d’'un anneau.

Définition 4.5.4. Soit w € A. On dit que w est une racine primitive n-éme
de 1 si les conditions suivantes sont vérifiées.

1. w" =1

n/t

2. Pour tout diviseur premiert de n, w™* — 1 n’est pas un diviseur de 0

Ici, n est une puissance de 2 donc la condition 2| de la définition signifie
que w™? — 1 n’est pas un diviseur de 0.

Les résultats que 'on a obtenus sur un corps K qui contient une racine
primitive n-éme de 1 se généralisent au cas d’'un anneau qui contient une
racine primitive de l'unité. En effet, le lemme 4.4.6| reste valable dans ce
contexte.
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Lemme 4.5.5. Soit w une racine primitive n-éme de 1 dans A. Soit k € 7.

nz_lwkj: 0sik#0 modn
’ nsk=0 modn
7=0
Démonstration. Exercice. OJ

Supposons maintenant que A ne contient pas de racine primitive n-éme
de 1. L’idée est de plonger A dans un anneau plus grand qui contient des
racines n-eémes de 1.

Pour cela, on peut considérer A’ = A[Y]/(Y"™/?+1). Soit y la classe de Y
dans ce quotient. Comme y™? = —1, y est une racine primitive n-éme de 1.
Mais les éléments de A’ sont eux-méme des polynomes en y de degré inférieur
a n/2 et on va travailler dans A’[X] : on a considérablement complexifié le
probléme. Cependant, il est possible d’améliorer cette idée de la maniére
suivante.

Soient P et () dans A[X] tels que deg(PQ)(n. On pose
m =22 et ! = 2lk/?]

Ainsi, m < /n, m' < 2y/n et mm’ = n. On écrit

m'—1 m/—1
P=>) PX™ et Q=) Q:X™
1=0 =0

ou P; et Q; appartiennent & A[X],,_1. On définit les polynémes de A[X][Y]
sulvants.

m’—1 m/—1
P:%mﬂmyzg@w

Alors degy (P*Q*)(2m’ < 4m. Les coefficients de P*Q* sont des polyndomes
de A[X] de degré strictement inférieur a 2m donc pour connaitre P*Q*, il
suffit de le connaitre modulo X?™ + 1, c’est-a-dire de connaitre son image
dans A'[Y], on A’ = A[X]/(X?™ + 1).

Dans A’, on note w la classe de X dans A[X]/(X?™+1). C’est une racine
primitive 4m-éme de 1. Ainsi, FFT permet de calculer P*Q*. On en déduit
PQ = P*Q* (X, X™).

Le calcul de P*Q* dans A'[Y] demande O(mlogm) = O(y/nlogn) opé-
rations dans A’; les multiplications dans A’ se faisant par un appel récursif
de l'algorithme.

Théoréme 4.5.6. [SCHONHAGE-STRASSEN, 1971] Il existe un algorithme
de multiplication des entiers de complexité binaire O(slog sloglogs) (ot s
magore la taille des entiers).
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Pour ce théoréme, 1'idée est de poser a = A(2) et b = B(2) ou A =
s—1 s—1

ZaiXi et B = ZbiXi, on calcule C' = AB dans Z[X] et on évalue C

i=0 1=0
en 2. Ceci étant, il reste des problémes : les retenues et surtout la taille des

coefficients du polynome C. Nous n’aborderons pas ces problémes ici.
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Chapitre 5

Algorithme d’FEuclide et applications

5.1. Les algorithmes d’Euclide et d’Euclide étendu

Soit (a,b) un élément de N? ~ {(0,0)}. L’algorithme d’Euclide calcule
pged(a, b). Il repose sur le fait que pour tout k € Z,

pged(a,b) = pged(a, b+ ka)

En effet, si d divise a et b, alors d divise a et b + ka et réciproquement, si d
divise a et b+ ka, alors d divise a et (b+ ka) — ka = b.

Notation. Si b # 0, on note respectivement rem(a, b) et quo(a, b) le reste et
le quotient de la division euclidienne de a par b.

Algorithme 5.1.1. [ALGORITHME D’EUCLIDE]|
Entrées : a, b dans N tels que (a,b) # (0,0)
Sortie : pged(a, b)

1. x < a, y < b (initialisation)
2. Tant que y # 0 :

3. 1< rem(z,y)

4. (2,y) < (y,7)

5. Sortir x

Preuve. Montrons d’abord que cet algorithme termine (c’est nécessaire a
cause du "tant que"). En effet, on observe que les valeurs prises par la variable
y sont positives ou nulles et décroissent strictement (car en 4. on affecte a
y la valeur r = rem(x, y)(y). Donc au bout d’un certain nombre ¢ détapes,
y = 0 et on sort du "tant que".

De plus, en posant la division euclidienne x = yq + r, on a par la re-
marque précédente pged(z,y) = pged(y, z — yq) = pged(y,r), donc le pged

29
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des valeurs prises par les variables (z,y) au cours de I’algorithme est inva-
riant. A Dinitialisation c’est pged(a,b) et a la sortie c’est pged(z,0) = z.
Donc algorithme sort bien pged(a, b).

Pour évaluer la complexité de cet algorithme, nous commencons par éva-
1++5

5 le

luer le nombre ¢ d’exécutions de la boucle “Tant que”. Soit ¢ =

nombre d’or.

1
Lemme 5.1.2. Si a)b, alors t < e
In®

Démonstration. Le nombre d’or ® est une racine du polynéme X2 — X — 1.
Autrement dit,
P> =9+ 1

On pose rg = a, ry = b et pour tout ¢ > 2, r; et ¢;_, sont respectivement les
reste et quotient de la division euclidienne de r;_o par r;_;. Ainsi, pour tout
1> 2,

Ti—g = Ti—1Gi—1 T 75

Comme a)b, la suite (r;) est strictement décroissante. Montrons par récur-
rence que 1y_; > ! pour tout z > 0.

Pour i =0 : r; = pged(a,b) > 1= Pouri=1:7,_; > 2)d = L.

On suppose maintenant que pour tout j <<, r,_; > dJ,

Ttim1 = Tt—iQt—i T Tt—it1

2T+ iyt
puisque ¢—; > 1. On en déduit que
P > @+ = (P4 1) = P
puisque ¢ + 1 = 2. -

Exercice 5.1.3. Soit la suite de Fibonacci (F,,) définie comme suit. Fy = 0,
Fy=1et Fy1 = F,+ F,—1. Montrer que a > Fi,o.

1—

Exercice 5.1.4. Soit &' = . Montrer que pour tout n > 0,

P — (I)’n
V5

En déduire que la suite (F,) est exponentielle.

F, =
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Théoréme 5.1.5. La complexité binaire de l’algorithme d’Fuclide ci-dessus
est en O(s(a)s(b)). C’est un algorithme quadratique.

Démonstration. Soit T; le temps de calcul de la division euclidienne de r;_;
par r;. T; = O(s(r;)s(q;)) = O(s(r;)(s(ri—1) — s(r;) +1)). Le temps de calcul
total est égal a T' = 22:1 T;. 11 existe donc M € R tel que

T < MZ s(ri)(s(rim1) — s(ry) + 1)

t

< Ms(b) Z(S(T‘z‘—ﬁ —s(ry) +1)
< Ms(b)(s(ro) — s(ry) + 1)
< Ms(b)(s(a) +1)
Comme t < ;z—g = O(s(a)), on obtient bien que T' = O(s(a)s(b)). u

Venons en a 'algorithme d’Euclide étendu. Cet algorithme calcule aussi
d = pged(a, b), mais aussi une relation de Bézout, c’est-a-dire des entiers u
et v tels que au + bv = d.

Pour tout 1,

() =( =) ()
()@ )0 L)

Uy (%

Il existe donc une matrice < ) de déterminant (—1)° telle que

Ui+l Vi1

( . ) ( - . ) (a)
Tit1 Ui+1 Vit b
(d) < ; . ) (a)
0 U1 Uiyl b

On obtient bien la relation de Bézout d = u;a + v;b.

En particulier

Algorithme 5.1.6. Entrées : a, b € N tels que (a,b) # (0,0)
Sorties : d = pged(a,b) et u,v € Z tels que au + bv = d.

L 0) (Initialisation)

1. x<—a,y<—b,U<—<O 1
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2. Tant que y # 0 :

3. (r,q) < reste et quotient de la division euclidienne de x pary
4. (z,y) « (y,7)
5. U<+ (O : ) U
I —q
6. Sortir (z,UJ0,0],U]0,1])

Théoréme 5.1.7. La complexité binaire de cet algorithme est en O(s(a)s(b)).
C’est un algorithme quadratique.

Démonstration. Voir les TD. OJ

Si K est un corps, K[X] est un anneau euclidien. Les algorithmes précé-
dents fonctionnent aussi pour des éléments de K[X].
Théoréme 5.1.8. Soient A, B € K[X], ou K est un corps.

1. L’algorithme d’Euclide calcule D = pged(A, B) en O((deg A+1)(deg B+
1)) opérations sur K.

2. L’algorithme d’Euclide étendu calcule D, ainsi que deux polynomes U
et V de K[X] tels que AU + BV = D en O((deg A + 1)(deg B + 1))

opérations dans K.

Remarque. On sait qu’il existe un algorithme de complexité binaire quasi-
linéaire pour la multiplication des entiers. On peut en déduire un algorithme
de complexité binaire quasi-linéaire pour la division euclidienne et pour les
algorithmes d’Euclide.

De méme, de tels algorithmes de complexité algébrique quasi-linéaires
existent pour les polynémes.

5.2. Inversion modulaire

Théoréme 5.2.1. (Z/nZ)" = {[a], : a € Z et pged(a,n) = 1}. Si
pged(a,n) = 1, Uinverse de |al, est [u], ot au+ nv = 1.

Pour les polyndémes, on a bien siir le méme résultat.
Théoréme 5.2.2. Soient K un corps et P un polynoéme non nul de K[X].
(K[X]/(P))"={[R]p : Re K[X], pged(R,P)=1}.

Si pged(R, P) = 1, linverse de [R]p est [Ulp ou UR+ VP = 1.
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5.3. Théoréme des restes chinois

Soient a et b deux entiers non nuls tels que pged(a,b) = 1. L’application

7 — 7/aZ X 7]bZ
z = ([z]a, [z]s)
est un homomorphisme d’anneaux de noyau abZ. Il définit donc un homo-

morphisme injectif

b : Z/abl — Z]aZ X 7JVZ
[#]as = ([2]a; [2]0)
qui est un isomorphisme pour des raisons de cardinaux. Si 'on connait des

entiers u et v tels que au + bv = 1, On peut calculer I'inverse de .

©~([2]a, [ylh) = [zbv + yaula,

En effet,
1 moda 0 mod a
bv = et au=
0 modb 1 mod b
donc
b+ r mod a
xbv + yau =
4 y mod b
Plus généralement, soient aq,...,a, des entiers non nuls deux & deux

premiers entre eux. Soit A = H a;. On définit encore un isomorphisme d’an-

i=1

neaux
S ZJ/AZ - Z)aZ X - X L]a,Z
[I]A = ([‘T]au SO [I]an)
On cherche maintenant & écrire I’application inverse de ®. Pour by, ...,b, €

Z, il s’agit de trouver x € Z tel que
r =0 moda; pourtout i€ [[1,n]]
Pour tout ¢ € [[1,n]], on pose A; = H a;. Alors A; et a; sont premiers entre

J#i
eux. Soient pour tout ¢ des entiers u; et v; tels que A;u; + a;v; = 1. L’entier

i=1

convient.
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Proposition 5.3.1. On peut calculer [x]4 avec une complezité binaire en

O(s(A)?).
Démonstration. Exercice. ]
Cela se transpose immédiatement au cas des polynémes. Soient Py, ..., P,
n

des polynomes de K[X] deux a deux premiers entre eux. Soit A = H P;. On
i=1
définit I'isomorphisme de K-algébres
¢ . K[X]/AK[X] — K[X]/PK[X] x --- x K[X]/P,K[X]
[Bla = ([Blp, .., [R]p,)

Soit pour tout i € [[1,n]] A; = HH et soient U;, V; € K[X] tels que A;U; +
JF
P,V; = 1. Soient @y, ...,Q, € K[X]. Alors si

1=1

alors pour tout 7, P = Q; mod P,.

Proposition 5.3.2. On peut calculer [P avec une complexité algébrique en
O((deg A +1)?).

5.4. Interpolation de Lagrange

Soit K un corps et soient ay,...,a, n éléments deux & deux distincts de
K. Soient by, ...,b, n éléments de K. On cherche P € K[X] tel que

P(a;) = b; pour tout i € [[1,n]] (5.1)

La division euclidienne de P par X —a; donne P(X) = (X —a;)Q(X)+ P(a;)
donc P = P(a;) mod X — a;. On en déduit que (5.1]) est équivalent a

P =0, mod X — a; pour tout i € [[1,n]] (5.2)

Les X — a; sont deux & deux premiers entre eux : on reconnait le probléme

des restes chinois. L’ensemble des solutions est une classe de K[X]/(A) ou

A= H(X — a;). En particulier, ce systéme de congruence a une unique
i=1
solution de degré strictement inférieur a n.
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Pour tout %, on note A; = H(X —aj;). Alors la division euclidienne de A;

JFi
par X — a; a pour reste A;(a;) = H(ai — a;). On obtient donc une relation
JFi
de Bézout de la forme
Ai(X)
X —a)Vi(X) =1
o+ X = e

On reconnait les polynémes d’interpolation de Lagrange

Ai(X) X —aj
Li = ! - J
Al(al) ]1;[1 a; — aj

et la solution de degré strictement inférieur & n donnée par :

i=1

5.5. Interpolation d’Hermite

Soient aq,...,a, n éléments de K deux a deux distincts, mq, ..., m, des
éléements de N et b; j pour (i,7) € Z ={(i,j) e N* : 1<i<n,0<j<m}
des éléments de K. On suppose enfin que pour tout i, m;{car(K).

On cherche a résoudre

PY(a;) = b;; pour tout (i,5) €T (5.3)

Soit d = deg P En appliquant la formule de Taylor pour les polynémes a P,
on obtient

d k
PO =3 B P

X —a;)? X—
= Pai) + (X — a;) P'(a) + %p@)(ai) 4oyl d,a) PD(a,)
= P(a;) + (X —a;)P'(a;) +-- -+ %P(ml)(ai) o (x—a
= %P(k) (az) mOd (X _ ai)mi+1

Soit pour tout @
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Le développement de Taylor & un ordre donné m; est unique puisque 1, (X —
a;), (X —a;)?, ..., (X—a;)™ est une base de K[X],,,. Donc le systéeme d’équa-
tions (5.3)) est équivalent au systéme de congruences

P=DB; mod (X —a;)™" pourtout i€ [[1,n]]
C’est donc encore un probléme de restes chinois. Il existe un unique polynéme

n n
P de degré strictement inférieur a Z(mZ +1)=n+ Zmi qui vérifie ces
i=1 i=1
congruences. Pour tout i, on note A; = H(X — aj)mj“ Soient U; et V; des
J#i
polynomes tels que U; A; + V(X — a;)™ ! = 1, alors cette solution vérifie la
congruence

=1

L’ensemble des solutions de (5.3)) est P+ K[X]A ou A = H(X — a;)™
i=1

5.6. Un exemple d’interpolation d’Hermite

On cherche a trouver un polynéme P de Q[z]| de degré inférieur ou égal
a b tel que P(1) =0, P'(1) = =3, P"(1) = 2, P"(1) = 42, P(2) = 11 et
P'(2) = 45.

Ces contraintes sont équivalentes au systéme suivant

xr— 1)
Loy

P"(1) + @P’”(l) mod (z — 1)*

c’est-a-dire :
-1 2 -1 3
P(:C)E—S(a:—l)+2(x 5 ) —1—42(96 5 ) mod (z — 1)*
P(r) =11+ 45(z —2) mod (z — 2)°

Bien stir, (z — 1)* et (z — 2)? sont premiers entre eux. Nous sommes dons
ramenés a un probléme de restes chinois.
Sur sage, si I'on exécute les commandes

Qx.\langle x \rangle =PolynomialRing(QQ)
crt ([-3*(x-1)+(x-1) "2+7*(x-1)~3,11+46%(x-2)]1, [(x-1) "4, (x-2)"2])

on obtient le résultat P(z) = 2° — 323 + x + 1.



Chapitre 6

Primalité et factorisation dans 7Z

Soit n un entier naturel non nul. On se pose les questions suivantes :

1. n est-il composé (c’est-a-dire, n est-il produit de deux facteurs de N
distincts de 1 et n) ?

2. n est-il premier ?

3. Quelle est la factorisation de n?

Ces questions semblent a peu prés les mémes, surtout les [1| et [2l En réalité,
elles sont distinctes et de difficultés distinctes.

Bien siir, on peut répondre a ces questions en effectuant la division eucli-
dienne de n par tous les nombres premiers inférieurs a /n pris dans l'ordre
croissant, mais le temps de calcul est alors exponentiel. On cherche des algo-
rithmes plus efficaces.

En pratique, on pose d’abord la question [I} et on attend une réponse
parmi les deux suivantes.

— Reéponse A : oui, n est composé.

— Réponse B : n n’est probablement pas composé.

De plus, dans le cas B on veut pouvoir controler la probabilité p selon laquelle
n est premier (par exemple imposer p)0.999). En effet, dans les applications
pratiques, une incertiture aussi faible peut étre parfaitement acceptable.

Si la réponse est la réponse B, on peut ensuite vouloir démontrer que
n est effectivement premier, et donc on se pose la question [2, qui est plus
difficile que la question [} Si la réponse est la réponse A, on peut chercher a
factoriser n. C’est la question , qui est la plus difficile des trois.

37
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6.1. Rappels sur Z/nZ

Soit G' un groupe fini de cardinal N et d’élément neutre 1. Le cardinal
de tout sous groupe de G divise N (théoréme de Lagrange). En particulier,
lordre de tout élément g de G divise N. Ainsi, pour tout g € G,

gV =1

Théoréme 6.1.1. L’ensemble (Z/nZ)* des éléments inversibles de Z/nZ
pour la multiplication est égal a {[k], : pged(k,n) = 1}. C’est aussi l'en-
semble des générateurs du groupe (Z/nZ,+).

Définition 6.1.2. La fonction indicatrice d’Euler ¢ est l'application de N~
{0} dans N~ {0} définie par

p(n) = [(Z/nZ)"]
Le théoreme suivant est une conséquence du théoréme de Lagrange.

Théoréme 6.1.3. [EULER| Pour tout entier a premier a n,
a?™ =1 modn

Le calcul de ¢ se fait de la maniére suivante.
On remarque que ¢(1) = 1 et pour tout nombre premier p et tout entier
naturel non nul «,

p(p®) =p* —p*!
Si pged(a, b) = 1, le théoréme des restes chinois permet de constater que
(Z)abZ)* ~ (Z]aZ)* x (Z)bZ)*
donc p(ab) = ¢(a)p(b) : ¢ est une fonction multiplicative.

T
On en déduit que sin = H p;* est la décomposition de n en produit de
i=1
facteurs premiers,

p(n) = H w(pl)

Le théoréme suivant permet de décrire la structure de ((Z/nZ)*, x) (grace
au théoréme des restes chinois).
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Théoréme 6.1.4. Soient p un nombre premier impair et « € N~ {0}. Le
groupe ((Z)p*Z)*, x) est cyclique d’ordre o(p*) = p* — p*~ L. Il est donc
isomorphe a (Z/p(p*)Z, +).

Sia>2,(Z)2°7, x) ~ (Z)27 x 7.]2°"*Z,+).

6.2. Tests de non primalité

6.2.1 Test de Fermat

Pour démontrer qu’'un entier n n’est pas premier, on utilise le théoréme
de Fermat suivant (c’est un cas particulier du théoréme d’Euler).

Théoréme 6.2.1. [FERMAT| Sin est premier et si pged(a,n) = 1, alors
a”'=1 modn

Corollaire 6.2.2. Soit a un élément de [[1,n — 1]]. St a"!' # 1 mod n,
alors n est composé.

Démonstration. Si a est premier & n, c’est le théoréme de Fermat. Sinon,
pged(a,n) est un diviseur non trivial de n (n ne divise pas a puisque 1 <
a(n). O

On en déduit le test de non primalité de Fermat.

Algorithme 6.2.3. [FERMAT)|
Entrée : n
Sortie : “n est composée” ou “il se peut que n soit premier”
1. Choisir a au hasard dans [[1,n — 1]]
2. d < pged(a,n)
3. Sid+# 1 : sortir “n est composé et d est un facteur non trivial”
4. b« rem(a""t n)
5. 81 b#1 : sortir “n est composé”
6. Sib=1 : sortir “il se peut que n soit premier”

Remarques.

— Le calcul de pged(a,n) peut étre omis : si n est grand, il y a trés peu
de chances que ce pged soit distinct de 1.

— Ce test fait intervenir un parameétre choisi au hasard : c¢’est un algo-
rithme probabiliste.
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Le calcul de rem(a™ !, n) est un calcul dans Z/nZ en ce sens qu’il ne
faut absolument pas calculer a”~! dans Z puis réduire, mais réduire modulo
n aprés chaque produit effectué. En utilisant 1’exponentiation rapide, cela
demande O(log n) multiplications dans Z/nZ. La complexité binaire est donc
en O((logn)?) avec la multiplication classique, et O((logn)?) avec FFT.

Malheureusement, si n est composé, cet algorithme ne le détecte pas né-
cessairement. Voyons avec quelle probabilité ce test échoue.

Soient donc n un entier composé et p, la probabilité d’échec du test de
Fermat, (c’est-a-dire la probabilité de tirer un entier a tel que a" ' = 1
mod n). Soit M,, I'ensemble des menteurs (ou faux témoins) de Fermat pour
n.

M, ={x € (Z/nZ)* : 2" ' =1}

| M|

Alors p,, = T M,, est le noyau de 'homomorphisme de groupes x +— 2" 1.

C’est donc un sous-groupe de (Z/nZ)*, par conséquent, |M,| divise p(n).
Ainsi, si M, # (Z/nZ)*, M, < 2% ¢t donc

2

M| _ |M

n—17 ¢(n) :

N —

Pn =

Dans ce cas, si I’'on renouvelle 10 fois le test, la probabilité de ne pas détecter
que n est composé est inférieure a 1/2'% ~ 0, 00098.

Le test est donc trés satisfaisant dans le cas ou M,, # (Z/nZ)*. Mais il
existe des entiers n tels que M,, = (Z/nZ)*. On les appelle les nombres de
Carmichaél. () X

. - w(n n

Si n est un nombre de Carmichaél, p, = 1= o1 [Ln (1 - 5)
Exemple. Le plus petit nombre de Carmichaél est n = 561 =3-11-17. En
effet, n —1=560=2%-5-7et

(Z/5612)* ~ (Z/3Z)* x (ZJ11Z)* x (Z/1TZ)"

Or les ordres des groupes du produit de droite sont respectivement 2, 10 et
16, qui divisent tous 560. Donc pour tout x € (Z/5617Z)*, x°%° = 1.
Nous admettons le résultat suivant.

Théoréme 6.2.4. [ALFORD, GRANDVILLE, POMERANCE, 1994| L ’ensemble
des nombres de Carmichaél est infina.
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6.2.2 Test de Rabin-Miller

On peut affiner le test de Fermat pour étre en mesure de détecter aussi
les nombres de Carmichaél en utilisant un lemme bien connu.

Lemme 6.2.5. Soient A un anneau intégre et x € A.
=1 <= x€{£1}
Le test de Rabin-Miller repose sur le théoréme du méme nom.

Théoréme 6.2.6. [RABIN-MILLER| Soit n un nombre premier impair. On
posen—1 = 2°m oum est un entier impair. Pour tout entier a premier a n,

— soita™ =1 mod n
— soit il existe i € [[0,e — 1]] tel que a®*™ = —1 mod n.

Démonstration. On suppose que a™ # 1 mod n. On va montrer qu’ il existe
i € [[0,e —1]] tel que a*™ = —1 mod n.

Comme n est impair, I’entier e dans I'égalité n — 1 = 2°m vérifie e > 1. Si
n est premier, Z/nZ est un corps. Pour tout a € (Z/nZ)*, a*™ = a™ ! = 1.
L’ensemble I = {i € [[0,¢€]] : a*™ = 1} est non vide et 0 & I. Soit 79 = min [.

Alors ip > 1.
<a2i01m)2 = aQiOm =1

D’aprés le lemme m, on en déduit que a*°” ™ € {£1}. Comme i est
minimal dans I, a®° ™ = —1. O

Algorithme 6.2.7. RABIN-MILLER
Entrées : n : entier impair, e,m @ n—1=2°m, a € [[1,n — 1]].
Sortie : “n est composé” ou “il est possible que n soit premier”
1. d + pged(a, n)
2. Sid# 1 : sortir “n est composé et d est un facteur”
3. b <+ rem(a™,n) _
4. 8ib=1 mod n ou s’il existe i € [[0,e — 1]] tel que b* = —1 mod n :
5. Sortir “Il se peut que n soit premier”
6. Sortir “n est composé”

La complexité de ce test est la méme que celle du test de Fermat. On
I'applique & des entiers a pris au hasard dans [[1,n — 1]].

Supposons que n soit composé, et étudions la probabilité p,, de tirer un
menteur, c’est-a-dire un entier a qui ne permet pas de détecter que n est
composé. On note M 'ensemble des menteurs de Rabin-Miller.

M) ={z € (Z/nZ)* : soit 2™ =1
soit il existe i € [[0, e — 1]] tel que 2™ = —1}
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Théoréme 6.2.8. On suppose que n est un nombre composé impair. Alors

n—1

card(M)) < 1

La probabilité p,, est donc inférieure a 1/4.

Sil'on fait 10 essais successifs sur un entier impair composé, la probabilité
de ne pas détecter qu’il est composé est inférieure 4 471~ 9,5- 1077,

Définition 6.2.9. Soit n un entier impair. Si le test de Rabin-Miller appliqué
a n avec l’entier a wndique que n pourrait étre premier, on dit que n est
pseudo-premier fort de base a.

Exemple. Soit n = F, = 22" 4+ 1. On appelle cet entier le 7-éme nombre de
Fermat.
F—1=2"

Dans le théoréme de Rabin-Miller, e = 2" et m = 1. 7 € [[0,e—1]] et 22" = —1
mod F., donc F, est pseudo-premier fort de base 2.

Les entiers Fy, Fy, Fy, Fy et Fy sont premiers. Pour r € [[5,32]], F,. est
composeé.

Dans la preuve du théoréme [6.2.8], on utilisera le lemme suivant.

Lemme 6.2.10. Soient G un groupe cyclique d’ordre n et x € G. Sotent k
un entier et d = pged(n, k).

=1 29=1

Ainsi, {t € G : ¥ =1} ={x € G : 2¢ =1} : c’est l'unique sous-groupe
d’ordre d de G.

Démonstration. Exercice (utiliser une relation de Bézout un + vk =d). O

Lemme 6.2.11. o Soient P l’ensemble des diviseurs premiers de n et
n= H PP
peEP

la décomposition de n en produit de facteurs premiers.
e Soit r le cardinal de P.

e Pour tout p € P, on note p — 1 = 2°°m,, ot m,, est impair.
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e Soit E =min{e, : p € P}.

Awvec ces notations,

ok 1
dM) = (1 dip—1
card(M)) ( + 2T_1)I,1€_7[>pgc (p—1,m)

Démonstration. Soit p € P. Le groupe(Z/p**7Z)* est cyclique d’ordre p®» 1 (p—
1). Alors pour tout ¢ € N,

card {x € (Z/p™ L) : 2™ = 1} = pged(p®»~Hp — 1),2'm)
= omin(ier) pocd(p — 1, m)

(puisque p est premier a 2'm). Comme (Z/p®)* est cyclique,

{y e (Z/p™) y* =1} ={1,-1}
Ainsi,
card {x e (Z/pL)* : ¥ = —1} = card {:c € (Z/p°Z)* : 2 = 1}
— card {x € (Z)pZ)* : ¥ = 1}
0 sii>e,
|27 pged(p —1,m) siile,
puisque si i > e,, min(i,e,) = min(i + 1,¢e,) = e, et si i(e,, 2mn+le)
2min(i,ep) — 2i+1 _ 2'& — 22
Comme E = min{e, : p € P}, on en déduit que dés que i > FE, il existe
p € P tel que card {x € (Z/p*Z)* = 2™ = —1} = 0.

On utilise ensuite I'isomorphisme des restes chinois.

z/nz) = [[(@/p™)

peEP

Pour tout entier a,
a"=1 modn < (¢™ =1 mod p* Vp € P)
et pour tout ¢ € [[0,e — 1]]

™ =-1 modn < (aQim =—1 mod p* Vp € P)
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Ainsi,

card{z € (Z/nZ)" : 2™ =1} = Hcard {z € (Z/p™Z)" : 2™ =1}

peP
= [ [ peed(p —1,m)
peP
et pour tout 7 € [[0,e — 1]],
0 sie>FE
card {x € (Z/nZ)* : #*™ = —1} = H 2'pged(p — 1,m) sii(E
peP

Comme r = card P, on en déduit que

card(M)) (1 + Z 2”) H pged(p — 1,m)

pEP
2rE
:<1+2 )Hpgcd —1,m)
pEP

O

Démonstration du théoréme [6.2.8 Y
On utilise le résultat du lemme précédent et on veut majorer () = "1.

n E—

Distinguons les cas r = 1 et r)1.
Cas1:r=1. Alorsn=p*, p—1=2°m, et £ = e, Comme m est impair,
pged(p —1,m) <27%(p — 1).

Q_Tppgcd(m,p—l) N kN p—1
- p —1 T =1 (p-D(pel4- 1)
1 1
< <z
“p+17 4

Cas 2 : r)1. La encore, comme m est impair,

-1 p-1

pged(m,p — 1) <2 5o 5E (6.1)

De plus,

H(p—l)SH(paP—l)S (Hp"‘?) —1=n-1 (6.2)

pEP pEP
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1 2rf
< 1
Q—WE(+2u4)

Le terme de droite décroit quand E croit (pour le voir, il suffit de 1’écrire

On en déduit que

1 1 1
5 F (1 pET 1) + T 1). Sa valeur maximale est donc atteinte pour £ =

2
1. On obtient p, < 7 donc

1 1
ngsir23 et Qgﬁsir:2

Le théoréme est donc démontré, sauf dans le cas ot r = 2. Dans cette
situation, on peut en exercice affiner ce résultat en suivant les indications
suivantes.

— ¢s'il existe p € P tel que p — 1 ne divise pas n — 1, on peut améliorer les
inégalités dans (6.1)).

— si n a au moins un facteur carré (c’est-a-dire s’il existe p € P tel que
a, > 2), on peut améliorer la premiére inégalité dans (6.2)).

— Reste le cas ot pour tout p € P, p— 1 divise n — 1 et si n n’a pas de
facteur carré, (avec la condition r = 2). On peut montrer (en exercice)
qu’un tel entier n n’existe pas!

O
6.3. Tests de primalité

Dans ce paragraphe, n est un nombre impair que ’on croit premier : on
suppose que plusieurs tests de Rabin-Miller nous ont donné cette conviction.
On veut démontrer qu’il est effectivement premier.

6.3.1 Tests basés sur le groupe (Z/nZ)*

L’entier n est un nombre premier si et seulement si |(Z/nZ)*| = n — 1.
Dans ce cas, le groupe ((Z/nZ)*, x) est cyclique d’ordre n — 1.

Pour montrer que n est premier, il suffit de trouver un élément d’ordre
n —1 dans (Z/nZ)*.

Lemme 6.3.1. Soit G un groupe et soit x € G. Alors x est d’ordre d si et
seulement si les propriétés suivantes sont vérifiées.
1. 24 =1

2. Pour tout diviseur premier | de d, x%' # 1.
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Démonstration. L’implication directe est claire. Réciproquement, supposons
que z vérifie les conditions 1 et 2. Comme z? = 1, z est d’ordre fini d’ tel
que d’ divise d. Notons d'k = d et raisonnons par l'absurde : si k # 1, il est
divisible par un nombre premier [, et alors

LY
ce qui est contraire a la condition 2. O

Pour démontrer que n est premier, on peut utiliser I’algorithme ci-dessous,
qui nécessite la connaissance de ’ensemble des diviseurs premiers de n — 1.
Dans la suite de ce paragraphe, la décomposition de n — 1 en produit de

facteurs premiers est
-
wo1=IIn
i=1

Algorithme 6.3.2. [TEST DE LUCAS-LEHMER]

Entrées : n (nombre entier vraisemblablement premier), p1,...,p, : divi-
seurs premiers de n — 1.

Sortie : “n est premier” ou “Echec” ou “n est composé”

1. a « entier choisi au hasard dans [[1,n — 1]]

2. Sia™ 1 #£1 mod n : sortir “n est composé”

3. Pouri del ar :

4. sia" VP =1 mod n : sortir “Echec”

5. Sortir “n est premier” et a est un certificat.

Remarques.

1. En cas de succés, I'algorithme rend aussi I'entier a. C’est un générateur
de (Z/nZ)*. On le garde comme “certificat de primalité”.

2. Cet algorithme présente un inconvénient majeur : il nécessite la connais-
sance de tous les diviseurs premiers de n — 1. Comme la factorisation
est un probléme réputé plus difficile, ce test ne semble pas praticable.
Il arrive cependant souvent que les diviseurs premiers de I'entier n — 1
soient petits (on dit alors que n — 1 est friable).

Voyons la complexité de 1’algorithme.
Pour cela, il faut majorer le nombre r de diviseurs premiers de n — 1.

n—lzﬁpgi > 2
i=1

donc
r <log(n —1)
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Les calculs de puissances dans l’algorithme se font en O(logn) multiplica-
tions dans (Z/nZ)*. Si M(n) est la complexité binaire de chacune de ces
multiplications, on voit que la complexité binaire de l’algorithme est en
O((logn)*M(n)).

Evaluons maintenant la probabilité de succés. Le cardinal de ’ensemble
des générateurs de ((Z/nZ)*, x) ~ (Z/(n — 1)Z,+) est égal & ¢(n — 1). Soit
P la probabilité pour que la classe [a], soit un générateur.

—1 : 1 1\’
P= M — H 1—=)>(=
n—1 Py i 2
En fait, on peut minorer P de facon beaucoup plus fine et montrer que
I'espérance du nombre de tirages nécessaires est en O(lnlnn). Clest déja

bien, mais on peut améliorer cela en cherchant pour chaque 7 un élément
7 Vg
d’ordre p;".

Proposition 6.3.3. Soit n un entier impair strictement supérieur a 1. Alors
n est premier si et seulement si pour tout i € [[1,r]], il existe a; € Z qui vérifie
les propriétés suivantes.

1. a'=1 modn
2. al(-n_l)/pi #Z1 modn

T

Démonstration. Soit a = Hai. Les conditions 1 et 2 montrent que [al, est

=1
d’ordre n — 1 dans (Z/nZ)*. En effet, la condition 2 assure que p;* divise
l'ordre de a;. Le lemme qui suit permet ensuite de conclure. O

Lemme 6.3.4. Soit G un groupe abélien. Soient x ety deux éléments de G.
L’ordre du produit xy est le ppcm des ordres de x et y.

Démonstration. Exercice. O]

Algorithme 6.3.5. [TEST DE POCKLINGTON-LEHMER|
Entrées : n un entier impair et la décomposition de n — 1
Sortie : “n est premier” ou “n est composé
1. Pouri del ar :

2. [+ 1

3 Tant que B =1 :

4. Choisir a € [[1,n — 1]] au hasard

5. B + rem(a1/Pi p)

6. SipBP#1 modn :sortir “n est composé”
7. a; = rem(a(”_l)/ﬁz,n)
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r

8. Sortir “n est premier”, a = rem (l | a;, n) est un certificat de prima-
i=1

lite.

Remarque. Les calculs des a; du pas 7 et du produit a permettent de
donner un certificat. Ces calculs ne sont pas nécessaires si ’on ne souhaite
pas conserver ce certificat.

Calculons la probabilité de succes. L'ensemble H = {z € (Z/nZ)*
(= 1/Pi = 1} est le sous-groupe de (Z/nZ)* d’ordre n-

. Quand on tire «

7

H 1
au pas 4, la probabilité d’échec est donc ’—’1 = — . Soit X le nombre de
n— D
tirages nécessaires. L’espérance de X est
+oo
E(X)=Y kP(X =k)
k=1

Grace a ce test, on peut donc montrer que n est premier avec une com-
plexité binaire en O((logn)*M(n)) en moyenne, a condition de connaitre la
décomposition de n — 1 en produit de facteurs premiers.

Il existe des raffinements de ce test pour lesquels on n’a besoin que d’une
factorisation partielle de n — 1.

Proposition 6.3.6. On suppose que n — 1 = FU ot pged(F,U) =1 et ou
F)\/n. Alors n est premier si et seulement si pour tout diviseur premier p
de F', il existe a, tel que

a”'=1modn et pgcd(al()"_l)/p —1,n)=1

e
p

Démonstration. Soit ¢ un diviseur premier de n, on va montrer que g)/n.
Ceci montrera bien que n est premier. Soit p premier divisant F', alors a, est
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premier avec n car a]’j_l = 1 mod n, donc a, est premier avec g. On a donc

ag*1 = 1 mod ¢. Par ailleurs, ch*1 = 1mod g et aén_l)/p # 1 mod ¢ dong, si
k désigne 'ordre de a, modulo ¢, et si p*» est la plus grande puissance de p
qui divise n — 1, on a p*» divise k et k divise ¢ — 1 donc p*» divise ¢ — 1. Ceci
étant vrai pour tout premier p divisant F', on obtient que F' divise ¢ — 1 donc

que ¢ — 1 > F et donc q)+/n. O

Proposition 6.3.7. On suppose que n — 1 = FU ou pged(F,U) = 1 et
U)1. On suppose aussi que tous les diviseurs premiers de U sont strictement
supérieurs a B, ot BF > y/n. Alors n est premier si et seulement si les
conditions suivantes sont vérifiées.

1. Pour tout diviseur premier p de F', il existe a, tel que

a'=1 modn et pgcd(aé"_l)/p —1,n)=1

»
2. Il existe a tel que

n—1 _

a”'=1 modn et pged(a® —1,n)=1

Ce dernier résultat peut étre utilisé si 'utilisation de la table de tous les
nombres premiers inférieurs a B permet une factorisation suffisante de n — 1.

6.3.2 Autres tests

Citons brievement d’autres tests de primalité.

— Il existe des tests basés sur le corps FF,,2 qui reposent sur la factorisation
de n+ 1 :sin—1n’est pas friable, peut-étre que n + 1 'est.

— Les tests les plus efficaces actuellement utilisent les courbes elliptiques.
Toute courbe elliptique F sur I, est munie d’une loi de groupe. L’idée
est d’utiliser une courbe elliptique dont 1’ordre est friable.

— Lalgorithme AKS (Agrawal, Kayal et Saxena) est un algorithme dé-
terministe de complexité polynomiale.

6.4. Crible d’Eratosthéne

Soit B une borne donnée. On souhaite établir la liste des nombres pre-
miers inférieurs ou égaux a B. On connait un équivalent en l'infini de la
taille d'une telle liste grace au théoréme des nombres premiers, démontré en
1896 par Jacques Hadamard et Charles-Jean de La Vallée Poussin de fagon
indépendante.
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Théoréme 6.4.1. [NOMBRES PREMIERS]

x
Card{p premiers : p <z} ~ e
nzr

Le crible d’Eratosthéne fonctionne de la maniére suivante. On établit la
liste des entiers entre 2 et B. On élimine tous les multiples de 2 distinct de
2. Puis on élimine les multiples de 3. On itére le procédé jusqu’a v/ B.

On s’arréte & VB : en effet, si n < B n’est pas premier, notons p son plus
petit facteur premier. Alors n = pq ot ¢ > p donc p? < pg =n < B.

Algorithme 6.4.2. [ERATOSTHENE]
Entrée : B
Sortie : la liste des nombres premiers inférieurs ou égauxr a B.
1. T < [1 pour i entre 1 et B|

. Pourn de?2 a |VB] :

SiTn]=1:

RS

B
4. Pour k de 2 a {EJ :

5. Tlkn] =0
. Sortir[n : n€[[2,B]] et T[n] =1]

D

Le cott est exponentiel. En effet,

1 1
B _—Y = —
>, -~ ~BmnvVB=_ BB
nS\/E
L’algorithme demande donc O(B In B) multiplications dans N.

6.5. Factorisation

On ne connait pas d’algorithme de factorisation dans N qui soit polyno-
mial. Cela assure une certaine solidité au systéme RSA.
Les meilleurs algorithmes connus sont sous-exponentiels. Citons en trois.

— Algorithme de Dixon : O (ezﬁ(ln”)w(lnln")m)
— Crible quadratique : O (e(HO(I))(ln”)l/Q(lnln”)1/2>

— Crible algébrique : O (66(1“”)1/3(1““")2/3) ou ¢)1
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Le crible algébrique est actuellement le plus efficace. Les cribles algébrique
et quadratique utilisent la méme idée de base que I'algorithme de Dixon. C’est
cet algorithme de Dixon qui est décrit ici.

A Torigine, I'idée vient de factorisations effectuées par Fermat qui utili-
saient le fait que si n = 22 — ¢?, alors n = (v + y)(z — y). Cela permet de
factoriser des entiers dont les facteurs premiers sont proches de y/n.

Exemple. Soit n = 2027651281. Alors |/n] = 45029. On part de x =
45030, on regarde si 22 — n est un carré. Si tel n’est pas le cas, on change x
en z + 1 et on recommence. Pour = 45041, on trouve que 2> —n = 10202,
donc

n = 45041% — 1020° = 46 061 x 44 029

On peut modifier cette idée en remarquant que si

?=y* modn et %4y modn
alors pged(z — y,n) est un facteur non trivial de n.

Suivant cette idée, on obtient ’algorithme suivant.

On tire z € [[y/n,n — 1]] au hasard, puis on calcule r = rem(z? n). S’il
existe s € N tel que r = s?, on calcule pged(x — s,n). Malheureusement,
card{s? € N : 0(s*(n} =|v/n—1] : il y a peu de chances que r soit un
carré.

La stratégie utilisée dans ’algorithme de Dixon consiste & collecter des
relations données par des factorisations d’entiers x? suivant une table de

nombres premiers donnée jusqu’a pouvoir en déduire une relation

2> =9*> modn

Exemple. Factorisons n = 2183. On tire au hasard un entier, on le met au
carré, on réduit modulo n et on factorise le résultat obtenu si c’est facile.
Premier nombre tiré : 453. On vérifie que

4532 =7 mod n

Second nombre : 1024.
1024 =3 mod n

Troisiéme nombre : 209.
2092 =21=3x%x7 modn
On n’a obtenu aucun carré, mais on remarque que

(453 x 1024 x 209)* = (3 x 7)* mod n
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c’est-a-dire, en réduisant modulo n
687> =212 mod n

Suivant 'idée de départ, on calcul pged(687 — 21,n) = 37. C’est un facteur
de 2 183.
2183 = 37 x 59

Pour mener a bien cette factorisation, nous avons utilisé la table des
nombres premiers {3, 7}. L’algorithme de Dixon utilise une table B = {p; (pa(.
de tous les nombres premiers inférieurs a une certaine borne B.

Algorithme 6.5.1. [DIXON]|

Entrées : n, B, B = {p1(p2(...(px} : ensemble des nombres premiers
inférieurs a B.

Sortie : un facteur non trivial de n ou “Echec”

1. Tirer au hasard x € [[\/n,n —1]]. Si r = rem(z? n) se factorise sur B,
on garde la relation
2 _ €11 €k,1

Ti=p; ...p, modn

2. Itérer le pas 1 jusqu’a obtenir k + 1 relations

2 __ €11 €k,1
TI=Dy Py mod n
2 __ _€e1.k+1 €k k+1
Tip1 =Dy Dy mod n

3. Résoudre le systéme a k équations et k + 1 inconnues ¢; € {0,1}

€1€11 + 4 €k+1€1,k+1 = 0 mod 2

€1€k,1 + -+ Ek+1Ckk+1 = 0 mod 2

Soit (g1, ...,€ky1) une solution non nulle
k+1

1
4. Pouridel ak : fi+ 525]'62'7]‘
j=1

5. g < pged <:1c§1 L = it .pf:’“, n)
6. St g & {1,n}, sortir g

7. Sinon sortir “Echec”

<pk}
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Remarques

— Au pas [ le systéme a résoudre est un systéme linéaire sans second
membre & k£ équations et k + 1 inconnues sur Fs. L’ensemble des solu-
tions est un espace vectoriel sur 5 de dimension supérieure ou égale a
1. Iy a donc des solutions non nulles. On résout ce systéme en utilisant
I’algorithme du pivot de Gauss.

— Au pasf] les f; sont bien des entiers puisque d’apreés le pas[3], les sommes
considérées sont des nombres pairs. On obtient une égalité de la forme
souhaitée :

2
(23 .. .x?ﬁf)z = (p{l . pi’“) mod n

Nous ne faisons pas ici 'analyse de la complexité de cet algorithme (voir
|G-G]). Signalons toutefois que pour la borne B, un choix optimal est

B ~ 6\/lnnlnlnn
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Chapitre 7

Factorisation dans F,X]

Soient ¢ une puissance d’'un nombre premier et I, le corps de cardinal gq.
Dans ce chapitre, on cherche a savoir comment reconnaitre les polynémes
de F,[X] qui sont irréductibles, et & factoriser ceux qui ne le sont pas.

7.1. Corps finis

Commencgons par quelques rappels sur les corps finis.

Les premiers corps finis que 'on rencontre sont les corps Z/pZ, ou p
désigne un nombre premier. On note ce corps F,,.

Soit K un corps commutatif. On note 1x I’élément neutre de la multipli-
cation de K. Pour tout entier naturel non nul k, on note

Exlg =1+ -+ 1g
—_————
kx

pour tout entier k£(0, k x 1 est I'opposé de |k| x 1 et 0 x 1 = 0 (I’élément
neutre de l'addition de K'=). Soit I’application

f:Z—-K
k—kx1

f est un homomorphisme d’anneaux. Il induit donc une injection
Z)ker f — K

Or K est un corps, donc Z/ker f est intégre. Cela signifie que ker f est un
idéal premier de Z.

— Soit ker f = {0}. On dit alors que K est de caractéristique nulle.

95
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— Soit il existe un nombre premier p tel que ker f = pZ. On dit alors que
K est de caractéristique p.

On note car(K) la caractéristique de K.
Si car(K) = 0, f est une injection donc K est infini.
Si K est un corps fini, il existe donc un nombre premier p et une injection

F,— K

qui munit K d’une structure de IF,-espace vectoriel de dimension finie. Si ’on
note d cette dimension, card(K) = p?. Le cardinal d'un corps fini est donc
toujours une puissance d’un nombre premier.

Réciproquement, soit ¢ = p® une puissance d’un nombre premier. Soit L
un corps de décomposition sur [, du polynome

Q=X"-X

On considére
K={zxel : 2—2=0}

Il est facile de voir que K est un sous-corps de L (cela vient du fait que
I'application Frob, : x +— 2P est un morphisme de corps, tout comme l’ap-
plication Frob, = Frobg ;x> x%). Comme @' = —1, @ n’a que des racines
simples donc card(K) = deg @ = ¢g. On remarque aussi que K = L puisque
K contient toutes les racines de Q).

On sait que le corps de décomposition de ) sur [F,, est unique & isomor-
phisme prés. Donc il existe un et un seul corps de cardinal g a isomorphisme
pres. On le note Fy.

Pour construire Fy, il suffit de trouver un polynoéme irréductible P de
degré d dans F,[X]. Alors F,[X]/(P) est un corps de cardinal p? = ¢, donc
isomorphe a .

Pour montrer que 1’on peut toujours trouver un tel polyndéme, on peut
utiliser le résultat suivant.

Théoréme 7.1.1. Sv K est un corps commutatif, tout sous groupe fini de
(K™, x) est cyclique.

Soit x un générateur de (F;, x). Alors F, = F[z]. Soit m € F,[X] le
polynéome minimal de z sur [F,.

Fy =7, [X]/(m)

[F, peut donc toujours s’écrire sous cette forme.
Pour terminer, rappelons aussi les relations d’inclusion entre les corps
finis.
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Soient &, ! € N\ {0}. On consideére les corps Fr et F inclus dans un corps

K. Autrement dit, K est un corps qui contient un corps de décomposition
de (X" — X)(X? — X) sur F, et

Fpr={reK: quzx} , Fp={zeK: qu:x}
Proposition 7.1.2. F» C F, si et seulement si k divise [.

Démonstration. SiFux C Fp, alors F, est un F e-espace vectoriel. Soit d sa
dimension. ¢! = ¢*¢ donc | = kd.
Réciproquement, supposons que | = kd. Soit x € [, 2t = x, donc
24 =2 = (L (@), ) =

-

d exponentiations

ce qui prouve que = € F . (]
Terminons ce paragraphe par un théoréme qui nous sera utile.

Théoréme 7.1.3. Pour tout polynome irréductible P de F,[X|, les racines
de P dans un corps de décomposition donné de P sur I, sont deux a deux
distinctes. On dit que F, est un corps parfait.

Démonstration. Soient n = deg P et a une racine de P dans 5. Alors IFy[a] ~
F,n donc a? = a. Comme P est le polynome minimal de a, il divise Q =
27" — 2. Ce polynéme @ n’a que des racines simples (car sa dérivée vaut —1),
donc P n’a que des racines simples. ]

7.2. Irréductibilité dans F,[X]

Soient p un nombre premier et ¢ = p* une puissance de p. Pour tout entier
n € N~ {0}, on note

Irr(q,n) = {P € F,[X] : P est unitaire et irréductible de degré n}

Lemme 7.2.1. Pour tout n € N\ {0},

Xq"—X:H H P

dln P€lrr(q,d)

Démonstration. Notons G = X7 — X et D =[], [1pcrrr(ga P- Soit K un
corps de décomposition de GD. Les deux polynémes G et D sont unitaires
et leurs racines dans K sont deux a deux distinctes. Il suffit donc de montrer
que G et D ont les mémes racines.
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Soit a une racine de G. Alors a?" = a, donc a € Fyn. Soit P le polynome
minimal de a et soit d = deg P. Alors P € Irr(q, d). De plus

Foa~TF,[X]/(P)~F,a] C Fyn

q

donc Fya C Fgn. D’apreés la proposition [7.1.2, on en déduit que d divise n.
Réciproquement, si D(a) = 0, il existe un entier d divisant n et P €
Irr(q, d) tel que P(a) = 0.

Fla]| ~ F[X]/(P) ~F

Or F,e C Fgn puisque d divise n (toujours par la proposition [7.1.2)), donc
a € Fyn et par conséquent a? = a. O

Corollaire 7.2.2. Soit Q € F,[X] de degré n. Alors Q) est irréductible si et
seulement si les deux conditions suitvantes sont réalisées.

1. Q divise X" — X
2. Q) est premier a X1

n/l .o .
— X pour tout diviseur premier | de n.

Démonstration. On suppose ) irréductible. D’apreés le lemme [7.2.1] () est
I'un des facteurs de X" — X. Par contre, si [ est un diviseur premier de

n, n ne divise pas n/l donc @ ne divise pas X" X, toujours d’apres le
lemme [7.2.7]

Réciproquement, supposons que @ vérifie les conditions [I] et 2] Soient P
un facteur irréductible de Q et d = deg P. Comme P divise X?" — X et ne
divise X' — X pour aucun diviseur premier [ ne n, c’est que d divise n et
ne divise n/l pour aucun diviseur premier  ne n (encore par le lemme [7.2.1).
On en déduit que n = d, donc il existe a € I}, tel que QQ = aP. O

Algorithme 7.2.3. [[RREDUCTIBILITE|
Entrée : Q € F,[X] de degré n, P : ensemble des diviseurs premiers de n.
Sortie : “Q) est irréductible” ou “Q) est réductible”

1. h+rem(X7, Q)

2. Si h # X, sortir "Q) est réductible”

3. Pour toutl € P :

4. h+ rem(Xq"/l, Q)

5 d + pged(h — X, Q)

6 St d # 1, sortir “Q) est réductible et d est un facteur”
7. Sortir “Q est irréductible”
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Voyons la complexité de cet algorithme (si 'on utilise la multiplication
classique). Le calcul de rem(X?",Q) demande O(logq") = O(nlogq) mul-
tiplications dans F,[X]/(Q) (& cette étape, on calcule X" dans F,[X]/(Q)
par 'exponentiation rapide). La complexité algébrique est donc en O(n? log q)
multiplications dans F. Le calcul de rem(X a/! Q) se fait en O(n®log q), puis
le pged du pas[flen O(n?). Cela reste donc en O(n? log ¢). Comme n a O(log n)
facteurs premiers, la complexité algébrique sur F, est en O(n®lognlogq).
Remarque. On peut aller jusque O(n? + nlogq) (voir [G=G).

Intéressons nous maintenant au probléme suivant.
Probléme. Comment construire un polynoéme irréductible de F,[X] de degré
donné n ? Cela peut servir, par exemple pour construire Fyn.

Solution. Tirer au hasard un polyndéme unitaire de degré n, puis tester s’il
est irréductible. Recommencer jusqu’a obtenir un polynoéme irréductible.

La question qui suit immédiatement, c¢’est le nombre de tirages nécessaires
en moyenne avant d’obtenir un polynoéme irréductible. Le lemme fournit
une indication pour cela. En effet, en prenant les degrés dans 1’égalité de ce

lemme [7.2.1] on obtient
" = Z d - card(Irr(q, d)) (7.1)

dn

on en déduit I'inégalité suivante (en ne prenant que le terme correspondant
a d = n dans la somme de (7.1]))

card(Irr(¢q,n)) < %

Comme il y a ¢" polynémes unitaires de degré n dans F,[z], la probabilité
pn, d’obtenir un polynéme irréductible est telle que

S|

Pn <

On peut montrer que
1
Pn ~ —
n

Ainsi, si X est le nombre de tirages nécessaires, F(X) ~ n.

7.3. Algorithme de Cantor-Zassenhaus

On suppose ¢ impair. Nous indiquons plus loin comment on peut traiter
le cas ol ¢ est une puissance de 2.
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L’algorithme qui suit s’applique a des polyndmes trés particuliers, a savoir
les polynomes () de F,[X] sans facteur carré dont les facteurs irréduc-
tibles sont tous de méme degré d. Autrement dit, il s’appliquera aux
polynomes () vérifiant la condition

— les polynoémes P; sont irréductibles
Q=P ...P. ou deux a deux premiers entre eux (7.2)
— Vie|[l,r]], degP,=d

ou d est un entier naturel non nul donné en parameétre.

Algorithme 7.3.1. [CANTOR-ZASSENHAUS|
Entrée : d € N~ {0}, un polynome Q vérifiant

Sortie : un facteur non trivial de Q ou “Echec” ou Q est irréductible

1. n+deg@Q

2. st n=d, sortir “QQ est irréductible”

3. A < un polynéme choisi au hasard dans F,[X],—1 \ {0}
4. D <+ pged(A, Q)

5. 8t D # 1, sortir D

6. B + rem(Ada_l,Q)

7. D < pged(B —1,Q)

8. Si D=1 ouQ, sortir “Echec”

9

. Sinon, sortir D

Théoréme 7.3.2. Si Q est réductible, ’algorithme de Cantor-Zassenhaus
rend un facteur non trivial avec une probabilité supérieure ou égale a 1/2.

Ainsi, si X est le nombre de tirages nécessaires pour trouver un facteur,
E(X) < 2.

Démonstration. On utilise 'isomorphisme des restes chinois

[ B[ X]/(Q) = F[X]/(P1) x - - - X g [X]/(Pr)
Al = (MAlp ..., [Ar)

Si au pas , pged(A, Q) # 1, ce qui a trés peu de chance d’arriver, I’algorithme
donne un facteur non trivial. Sinon, A est premier a (), donc

[Alq € (F[X]/(Q))°
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L’isomorphisme d’anneaux f induit un isomorphisme de groupes

(F[X]/(Q))" = (Fo[X]/(Pr))" x - x (Fy[X]/(F:))*

Comme pour tout ¢, le polynéme P, est irréductible de degré d, F,[X]/(P;) ~
[F,a donc
(Fo[X]/(F))" ~ Fla

a_
Pour tout z € F,, 291 = 1 donc 2"z = +1. Soit

g Fa—{-11}

q?-1
r = T 2
De plus, card(ker g) = L;l (et bien sir, ker g = g~1(1)). Ainsi,
¢’ -1
card(™ (1)) = card(g™ (~1)) = T

Autrement dit, si on choisit # au hasard, on a autant de chance d’obtenir

g9(z) =1 que g(z) = —1.
Considérons maintenant

b (FX/Q) = {£1) x o x {£1)

Ay o ( AL Al ) — ((Blp....[Bln)

D’aprés ce qui précéde, pour tout 7, les événements
(Bl =1) et ([Blp=-1)
sont équiprobables. Or
pged(B-1,Q)= [] P

[B]p,=1
Donc pged(B — 1, Q) est un facteur non trivial de @, sauf dans les deux cas
suivants.
— si [B]p, = 1 pour tout i, auquel cas pged(B — 1,Q) = Q
— i [B]p, = —1 pour tout i, auquel cas pged(B —1,Q) =1
Finalement, si A est premier & (), la probabilité d’échec est
2 1

T card({x1}r) 271

1
Si @ est réductible, » > 2 donc P < 3 O
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Exercice 7.3.3.

1. Appliquer 'algorithme a X? —1 € F5[X], ou le hasard aura désigné
A=X.

2. Recommencer avec A = X + 2.

Proposition 7.3.4. la complexité algébrique de [’algorithme est en
O(n%dlogq) si l'on utilise la multiplication classique. On peut aller jusque

O(ndlogq) en utilisant la FFT.
Démonstration. Exercice. O

7.4. Un algorithme de factorisation compléte

On reprend les notations du paragraphe précédent et ¢ reste impair.

7.4.1 Produits d’irréductibles de méme degré

Tout d’abord, restons dans le cas ot () vérifie la condition pour un
entier naturel non nul d donné (c’est-a-dire : ) est sans facteur carré et est
produit de polynémes irréductibles de degré d). On suppose aussi () unitaire.

Appelons CZ l'algorithme [7.3.1} Pour factoriser ¢) complétement, on ap-
plique 'algorithme DegresEgaux suivant.

Cet algorithme prendra comme entrées d € N~ {0} et le polynéme @) véri-
fiant et il donnera en sortie la liste [Py, ..., P,] des facteurs irréductibles
unitaires de Q).

Si deg @ = d, alors Ialgorithme s’arréte et rend [ = [Q)].

Sinon, il calcule CZ(d, Q) jusqu’a obtenir un facteur non trivial D de
() puis il s’appelle lui-méme pour calculer les deux factorisations données
par DegresEgaux(d, D) et DegresEgaux(d, )/ D) pour ensuite concaténer les
résultats.

7.4.2 Cas général
Soit maintenant ) quelconque dans F [ X] ~\ {0}. Alors @ peut s’écrire

Q=] P
i=1

ou les P; sont irréductibles unitaires deux & deux premiers entre eux et ou
A€ Iy Il s’agit de calculer les P; et les «;.
On commence par calculer

Dy = pged(X? - X, Q)
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D’aprés le lemme

D1:HP

PeTi(Q)
ou
7(Q) ={P € I(q,1) : PQ}

D, est le produit des polynomes irréductibles unitaires de degré 1 qui di-
visent ) (D; est unitaire car on calcule le pged unitaire). Alors, la fonction
DegresEgaux(1, D;) donne

Li(Q)=A{Pi1,...,Pin}
On pose
Q1< Q

et on effectue une double boucle

1. Pour j € [[1,m]] :

2. a;; <0

3 Tant que P, ; divise Q) :

4. Q1+ Q1/P 1,5

5 a5+ 1

A la sortie, les facteurs irréductibles unitaires de degré 1 de @ sont les

P, ; avec multiplicité o ; et Q1 n’a pas de facteurs irréductibles de degré 1.
On calcule ensuite

Dy + pgcd(Xq2 - X,@Q1)

D’aprés le lemme et comme les degrés des facteurs irréductibles de @y
sont supérieurs ou égaux a 2,

D= [] P

PeT2(Q)
ol
L,(Q) ={P € 1(q,2) : P|Q}

D5 est le produit des polynomes irréductibles unitaires de degré 2 qui divisent

Q.

On continue ainsi jusqu’a obtenir un polynéme @) de degré 0.

Proposition 7.4.1. Cet algorithme permet de factoriser Q en O(n>log(q))
en moyenne avec la multiplication classique. Avec la FFT, on peut aller
Jusque O(n*logq).
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7.5. Algorithme de Berlekamp

On suppose toujours que ¢ est impair.

L’algorithme de Berlekamp s’applique aux polynémes @ € F,[X] sans
facteurs carrés. Ses facteurs irréductibles peuvent étre de degrés quelconques.

Dans le cas général, il peut étre utilisé comme une alternative a l'algo-
rithme de Cantor-Zassenhaus dans la stratégie expliquée ci-dessus. Si deg ) =
n, cela donne un algorithme de factorisation compléte de ) de complexité
algébrique O(n® + M(n)logq) en moyenne (ou M(n) désigne la complexité
de la multiplication de polynomes de degrés (n). On peut donc aller jusqu’a

O(n® +nlogq).
Il est aussi possible de calculer la partie sans facteur carrée de () au sens

.
suivant. Soit ) = )\HPZ-O"' la décomposition de () en produit de facteurs

i=1
irréductibles unitaires. On appelle partie sans facteur carrée de () le polynéme
T
AP
i=1

Nous supposons donc ici que @) est déja sous cette forme.

oI
=1

ol les P; sont irréductibles unitaires deux & deux distincts. On utilise & nou-
veau l'isomorphisme des restes chinois

[ FolX]/(Q) = Fo[X]/(F1) x -+ - x Fo[X]/(F))
[A]Q = ( [A]Fﬁ I [A]P'r )

Pour tout 4, on note d; = deg P;. Alors Fy[X]/(F;) ~ F,. Par composition,
on obtient donc un isomorphisme d’algébres

g FX)/(Q) = Fyn x - x Py

Or
Fy=Fgx - xFy CFpay X+ XFa,

On note
A =g ' (F)

C’est un sous-espace vectoriel de dimension r du F-espace vectoriel F,[X]/(Q).
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On sait reconnaitre les éléments de A. En effet, soit 2 € Fa, x -+ X Fya,.

Alors z € [y si et seulement si 27 = x. Comme g est un isomorphisme
d’algebres, pour tout a € F,[X]/(Q),

a€eA=g'(F) < a’=a
Autrement dit , A = ker(F — Id) ou

Fo F[X]/(Q) — Fy[X]/(Q)

a +— af (7.3)

On peut donc calculer une base de A : on écrit la matrice M de F' dans
la base ([1]g, [X]q,- .-, [X"]g) de F,[X]/(Q) ou n est le degré de @, puis
on calcule ker(M — I,) par la méthode du pivot de Gauss.

On choisit alors a € A\ {0} au hasard. Cet ¢lément est la classe modulo
() d’'un polynoéme A de degré (n. Si pged(A, Q) # 1, alors D est un facteur

non trivial de Q. Si pged(A, Q) = 1, on note C' = rem(Aq%l, Q). Pour tout i,
a1

[A]gl =1, donc [C]p, = [A]p € {£1}, les événements
([Clp,=1) et ([Clp,=-1)

étant équiprobables.

pged(C—1,Q) = [] P
[C]pi=1
est un facteur non trivial de @), sauf dans les cas suivants :
— i [C]p, = 1 pour tout 4, auquel cas pged(C — 1,Q) = Q
— i [C]p, = —1, auquel cas pged(C — 1,Q) =1

Finalement, si A est premier & (), la probabilité d’échec est

2 1

~card({£1}r) 27!

1
Si @ est réductible, » > 2 donc P < 3

Pour automatiser tout cela, il vaut mieux calculer d’abord une base de

A

Algorithme 7.5.1. NOYAU

Entrée : QQ € F, sans facteurs carrés. de degré n
Sortie : Base du noyau de F — Id (F étant définie en (7.9))
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~

. Pour j € [[0,n—1]] :

2. Calculer mg j, ..., my_1; tels que

qu = mo’j —+ ijX + -4 mn_Lan_l IﬂOd Q

Co

.M+~ (mm-) S Mn(Fq)
4. B« base de ker(M — I,,) (calculée par le pivot de Gauss)
5. sortir B

Une fois le noyau calculé, on peut appliquer I'algorithme de Berlekamp
suivant jusqu’a obtenir un facteur non trivial de Q.

Algorithme 7.5.2. |[BERLEKAMP]
Entrées : Q, une base B = (bo, ...,b,_1) de ker(F — Id) calculée par Noyau
Sortie : “Echec” ou un facteur non trivial de Q) ou “Q) est irréductible”

1. sir =1 : sortir “Q est irréductible”

2. v = (v;) « un élément au hasard dans F; \ {0}

3. A« S wuB; (ou B; € Fy[X],_1 et [Bilg = bi pour tout i)

4. D <+ pged(4, Q)

5. st D # 1, sortir D

6. C «+ rem(Aq;;, Q) (a calculer par exponentiation rapide dans F,[X]/(Q))
7. D+ pged(C —1,Q)

8. si D=1 oudegD =n : sortir “Echec”

9

. sinon : sortir D

7.6. Factorisation dans Z[X]

Ce paragraphe décrit les idées qui permettent d’utiliser les résultats tré-
cédent pour factoriser un polynéme de Z[X]. Soit ) € Z[X]| un polynome

non nul. On note .
0= nx
i=0

Soit cont(Q)) = pged(ag,...,a,) le contenu de Q. 1l existe @ € Z[X] de
contenu 1 tel que @ = cont(Q)Q;.

On considére un polynéme () de contenu 1. L’idée est d’exploiter la fac-
torisation de () mod p, ou p est un nombre premier bien choisi.

Si .
Q=]]F"
=1
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ou les P; sont des polynomes irréductibles deux a deux distincts, alors

pecd(Q, Q) Q 7 HP

On peut donc supposer que () = H P;. On note [Q], la classe de ) modulo
i=1
[Q]p = [Pl]p S [Pr]p
— R1 e RS

D-

ou les R; sont des polynomes irréductibles de F,[X].
— On sait factoriser dans [F,[X]. On sait donc calculer les R;.

— Pour p assez grand, [()], est sans facteurs carrés, donc les R; sont deux
a deux distincts.

— Pour tout ¢, [P], est le produit des certains R;, mais on ne sait pas
lesquels.

— Les bornes de Mignotte donne une majoration des coefficients des P;
en fonction de ceux de (). Cela permet de trouver une borne B telle
que si p)B, pour tout produit des Rj, il existe un unique relévement
dans Z[X] satisfaisant aux bornes de Mignotte.

On peut tester toutes les combinaisons possibles, mais la complexité est
exponentielle.

Au lieu d’utiliser une factorisation modulo p ou p est assez grand, on peut
factoriser modulo p* ou p* est assez grand.

Pour la phase de relévement, on peut faire mieux en utilisant ’algorithme
LLL (de A.-K. Lenstra, H.-W. Lenstra, L. Lovasz, 1982) de recherche de pe-
tits vecteurs dans un réseau. Cela donne un algorithme de complexité poly-
nomiale.
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Chapitre 8

Polynémes multivariés

8.1. Position du probléme

Soit K un corps. On considére 'anneau R = K[X;, ..., X,].
On rappelle la définition d’un idéal.

Définition 8.1.1. Soit (A, +, X) un anneau commutatif unitaire. Un idéal I
de A est un sous-groupe de (A, +) tel que pour tout a € I et f € A, l’élément
af appartient a I.

Proposition 8.1.2. Soient f1,..., fs des éléments de R = K[X,...,X,].
L’idéal noté (fi,..., fs) engendré par fi, ..., fs est par définition :

(fr,o s fse) = {Z%’f@‘ c (q1,--,q5) € Rs}.
=1

C’est le plus petit idéal de R contenant f,..., fs.

Remarque. En fait, tout idéal de R est de cette forme, c’est-a-dire est
engendré par un nombre fini de polynomes. C’est le théoréme de la base de
Hilbert, démontré en fin de paragraphe 3.

Comment travailler avec un tel idéal 1?7 Plus précisément, on peut se
poser les questions suivantes.

— Soit f un élément de R. Comment savoir si f appartient ou non a I ?
— Soit J un autre idéal de R. Comment savoir si J est inclus dans I 7

— Comment trouver un systéme de représentants de R/I 7

69
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— Soit

V() ={z=(21,...,2,) € (K)" f(z) =0Vf eI}
={z=(21,...,2,) € (K)" fi(x) =0Vi e [[1,s]]}.

Comment savoir si V(1) est vide 7 Comment savoir s’il est fini 7 Et dans
ce cas, comment calculer ses éléments ?

Voyons ce qu’on sait faire dans le cas ot n = 1. Dans ce cas, tout idéal
I est principal. Donc [ s’écrit [ = gR ot g € R (c’est le pged des f;). Pour
savoir si f appartient a I, on effectue la division euclidienne f = gg+r. Alors
f € I si et seulement si r = 0.

R/I est représenté par l'ensemble des polynomes de degré (d, ou d =
deg g. C’est un K-espace vectoriel de base ([1],, [X],, ..., [X%],).

Enfin, V(I) est I'ensemble des racines de ¢ dans K. La réponse est plus
ou moins difficile suivant le corps de base K. Nous avons vu au chapitre
précédent des algorithmes pour cela dans le cas ot K est fini.

Pour répondre a ces question dans le cas ot n > 2, nous allons définir une
division multivariée dans R. Cela nous ménera a définir certains systémes de
générateurs de I pour lesquels cette division possédera la propriété d unicité
du reste. Ces systémes sont appelés bases de Grébner.

8.2. Division multivariée avec reste
Un monoéme est un élément de R de la forme
X=X"... Xpmona=(ag,...,a,) € N"

Nous parlerons aussi de termes. Un terme est un élément de la forme AX® ot o €
N"et A € K*.

Pour définir la division, nous aurons besoin d’une relation d’ordre total
sur les mondmes (donc sur N"), qui vérifieront certaines propriétés supplé-
mentaires. Rappelons d’abord ce qu’est une relation d’ordre.

Définition 8.2.1. Soit A un ensemble. Une relation < de A est une relation
d’ordre si les conditions suivantes sont réalisées.

1. Pour tout x dans A, v = x (X est réflexive).

2. Stz =Sy ety 2z, alorsx =y (X est anti-symétrique).

3. Six<yety=z alorsz =z (X est transitive).

De plus, cette relation est dite d’ordre total si pour tout (z,y) € A2, soit
Ty soity X x.
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Les ordres que nous utiliseront sont appelés ordres monomiaux. Ils sont
définis de la maniére suivante.

Définition 8.2.2. Un ordre monomial < sur N" est une relation d’ordre
total sur N qui vérifie les deux propriétés suivantes.

1. Sta =, alors a+~v =2 5+ 7.
2. Tout ensemble non vide de N" admet un plus petit élément.

On note alors a < B si a« =X B et si a # (. Par abus de langage, on parlera
d’ordre monomial indifféremment pour < ou pour <. Enfin, on dit que X< <

XP (resp. X* < XP) sia =< B (resp. a < 8).
Exemples.

1. L’ordre lexicographique. On le note <;.,. On dit que o <, 0 si a # B
et si le premier coefficient non nul de o — 3 est strictement négatif.
Ainsi, (1,1,2,3) < (1,3,2,1) et done X3 Xo X2X3? <o X1 X5 X2X.

2. L’ordre lexicographique gradué. On le note <gegicq-

o < geglex B 51 I'une des deux conditions suivantes est vérifiées.
— 2 ai(X B
—ou (3 a; =3 f et o <er f)

Ainsi, (1, 1,2, 3) <deglex (1, 3,2, 1), et (2, 0,0, 0) <deglex (1, 1,1, 1) (alors
que (1,1,1,1) < (2,0,0,0)).

3. L’ordre lexicographique gradué inverse. On le note <gegrevies-
QO < gegreviez B sl o # B et si I'une des deux conditions suivantes est
vérifiées.
— soit Yo (3 B
— soit > a; = > f; et le premier terme non nul de o — f en partant
de la droite est )0.

Comme pour 'ordre lexicographique gradué,
(17 17 27 3) '<degrevle:v (17 37 27 1) et (27 07 07 O) '<degrevle:v (17 17 17 1)

Par contre, (2,1, 3,4) <degrevies (1,2,4,3) alors que si 'on prend I'ordre
lexicographique gradué, (2,1,3,4) > gegres (1,2,4,3).
Définition 8.2.3. Soit < un ordre monomial fizé. Soit f € R\ {0}. Cet
élément s’écrit
f= Z CaX®
aeN"?

ot {a : cq # 0} est fini. On utilisera le vocabulaire suivant.
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— Terme de f : tout c, X< tel que ¢, # 0.
— T(f) est l’ensemble des termes de f :

T(f) ={caX® 1 co #0}
— Multidegré : mdeg(f) = max{a € N* : ¢, # 0}.
— Coefficient dominant : lc(f) = Cmdeg(s)”

— Monome dominant : Im(f) = X™MA4e9),
— Terme dominant : lt(f) f)deeg(f) = le(f)Im(f).

On note [t(0) = Im(0) = Ic(0) = 0 et mdeg(0) = —oo.

= “mdeg(

Venons en maintenant & la division multivariée. On veut diviser f par
fi,-.., [s. Au debut, le reste r est égal a 0. On pose aussi p = f. Si lt(p) est
divisible par I'un des 1t(f;), on effectue la division. Sinon, on remplace p par
p — lt(p) et r par r 4+ 1lt(p). On continue ainsi jusqu’a arriver a p = 0.

Mais voyons plutot un exemple.

Exemple. Dans K|x,y|, divisons f = z%y + xy®> + y* par f; = vy — 1 et
fo = y? — 1, en utilisant I'ordre lexicographique =< tel que x = y. Partons de
p f,r 0, qu < 0et g« 0. Alors f =p+qifi + g2 f2 + 1, égalité qui
restera vraie tout au long de la division. On voit que (2,1) = (1,2) = (0, 2),
donc lt(p) = z%y. Ce terme est divisible par 1t(f;) = zy. On fait donc la
division.

pep—afi = +r+y

< qgtr=zx

Aprés ces opérations, It(p) = zy? est encore divisible par 1t(f;).

pp—yfhi=r+y +y
Qg ty=x+y

Maintenant, 1t(p) = x n’est plus divisible ni par 1t(f1) ni par lt(f2). On fait

alors
r<r+r==x

pep—r=y"+y
Apres cela, 1t(p) = y? est divisible par 1t(f2) = >

p—p—fo=w+y+1
@—q@pt+l=1
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A présent, 1t(p) = 2 n’est plus divisible ni par 1t(f,) ni par It(f,).

r<—r+r==x
p<—p—axz=y+1

Maintenant encore, 1t(p) = y n’est divisible ni par 1t(f;) ni par 1t(fs).

r<—r+y=r+vy
ps—p—y=1

Et enfin
r<—r+l=z+y+1

p—p—1=0
On obtient finalement
f=ah+aq@f+r
=@@+y)fHi+fote+y+1
On peut présenter ces calculs dans un tableau.

y+ayt+y? oy -1y —1]

vy’ +x +y° T
r+y*+y Y
r+y+1 1

Remarquons que nous aurions pu faire ces opérations dans en ordre dif-
férent, comme par exemple celui décrit dans le tableau suivant.

y+ayt+y? oy -1y -1

Ty’ +x +y? T
21 + 1> x
20 +1 1

On obtient alors
f=zfi+(x+1)fo+2x+ 1.

Il n’y a donc pas unicité dans 1’écriture

f=afi+q@f+r

Le plus ennuyeux, c’est qu’il n’y a pas unicité du reste r. Ainsi, si la question
est 'appartenance ou non de f & un idéal I, et si cette division donne r = 0,
on peut répondre « oui, f appartient & I ». Par contre, si le reste est non nul,
on ne peux rien dire & priori.
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Il existe cependant des systémes de générateurs pour lesquels il y a unicité
du reste dans cette division multivariée. C’est l'objet de la section suivante.

Avant d’aborder cette prochaine section, on termine celle ci en écrivant
I’algorithme de la division multivariée.

Algorithme 8.2.4. [DIVISION MULTIVARIEE AVEC RESTE]

Entrées : f, fi,..., fs € K[X1,...X,] et un ordre monomial <

Sorties : q1,...,qs,7 € K[X1,...X,] tels que f = > qifi + 1 et tels
qu’aucun terme de r n'est divisible par aucun lt( f;)

1. 7r4+0

2. ¢+ 0Vie][l,n]]

3 pf

4. Tant que p # 0 faire

5. Silt(p) est divisible par U'un des lt(f;) :
6 m 4— ll;(;:))
7 p<p—mf;
8. i< ¢ +m
9 Sinon
10. r <1+ lt(p)
11. p < p— lt(p)

12. Sortir qq,...,qs, T

La preuve de la proposition suivante est laissée en exercice. Mis & part le
point [3} elle permet de montrer 1'algorithme. Le point [3] montre que dans la
S

somme Z ¢ fi, 11 n’y a pas d’annulation de termes de multidegré strictement
i=1

supérieur & mdeg(f). Nous verrons par la suite I'importance de ce fait.

Proposition 8.2.5. La suite des mdeg(p) est strictement décroissante. De

plus, apres chaque exécution de la boucle « Tant que » de cet algorithme, les

égalités suivantes sont vérifiées.

1. f :p+Zf:1szz+7"
2. Pour tout i, aucun terme de r n'est divisible par lt(f;)
3. Si.q; # 0, alors mdeg(q; f;) = mdeg(f) pour1 <i<s

Notation. Si r est le reste obtenu par la division de f par un ensemble
F ={fi,..., fs} de polynémes, on note (méme si r n’est pas uniquement
défini en général)

fiw“
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8.3. Bases de Grobner

Si P est une partie de R, on note

(t(P)) = (t(f) : f€P)

c’est-a-dire I'idéal engendré par les lt(f), ou f parcourt P.

Soit I un idéal de R. Il est clair que si

I:<f17---7fs>

alors
(It6(f1) -, 16(fs)) € (1E(D)).

Mais en général, ces deux idéaux ne sont pas forcément égaux : il arrive
fréquemment que

(6(f1) .- 160fs)) # (1E(1)).

Exemple. Dans R = Q|z, y], nous utilisons I'ordre lexicographique gradué
<deglez tel QUE T = gegrer Y. Solent fi = a3 — 2zy et fo = 2%y — 2y? + x. Alors
It(f1) = 23 et 1t(f2) = 22y.

<lt<f1)> lt(f2)> = <ZL‘3, 372?/)-

Or, —yfi +xfy =2 € I, donc 2 € (It(I)), mais 22 & (1t(f1),1t(f2)).

Dans cet exemple, on constate qu'un terme 22 n’appartient pas & un idéal
engendré par des monomes (23, z%y) parce que si tel était le cas, 2? serait
divisible par 23 ou z?y.

C’est un cas particulier du lemme élémentaire suivant dont la preuve est
laissée en exercice. Nous utiliserons fréquemment ce résultat.

Lemme 8.3.1. Soient a, o, ..., a4 des éléments de N™. le mondome X< ap-
partient a (X, ..., X*) si et seulement s’il existe i € [[1,s]] tel que X
divise X“.

Soient fi,..., fs des éléments de R. Soit t un terme de R. Alors t €
(It(f1),...,lt(fs)) si et seulement s’il existe i € [[1,s]] tel que lt(f;) divise t.

Définition 8.3.2. Soit G une partie finie de I. On dit que G est une base
de Grobner de I si (It(I)) = (It(G)).
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Remarque. Si pour toute partie P de R, on note

(Im(P)) = (m(f) - feP)

Une partie finie G de I est une base de Grobner de [ si et seulement si
(Im(1)) = (Im(G)).
Remarque. Il n’est pas imposé dans la définition que G engendre I.

Ce n’est pas nécessaire : les choses se passent ici joliment, comme l'indique
le résultat suivant.

Théoréme 8.3.3. Si G est une base de Grobner de I, alors I = (G).

Preuve du théoréme [8.3.3] Par 'absurde, on suppose qu’il existe un
élément f dans I \ (G), et on choisit cet élément de telle sorte que mdeg( f)
soit minimal. Comme 1t(f) € (1t(G@)), et en vertu du lemme [8.3.1 on en
déduit qu’il existe g € G tel que 1t(g) divise 1t(f). Soit alors

1t(f)
fi=1[f——=9
It(g)
Alors fi € I et mdeg(f;) < mdeg(f). Par minimalité de mdeg(f), on conclut
que f1 € (G), donc que f € (G), ce qui est contraire a I'hypothése. [
Venons en au résultat que nous souhaitions, c¢’est-a-dire I'unicité du reste
dans la division multivariée.

Proposition 8.3.4. Soit G = {f1,..., fs} une base de Grobner. S’il existe
Qs Gsy @y - qoym, 7 € R tels que

LY afi+r=Yqfi+r

2. Vie|[l,s]] ,\Vt e T(r)UT(r"), lt(f;) Jt

(c’est-a-dire que pour tout i, aucun des termes de r ni de r' n’est divisible

par lt(f;)). Alors r =r'.

Preuve. Si Y qifi+r=>q fi+7 alorsr —7' € [ = (G). Sir—r' #0, on
considére lt(r—r’). Cet élément appartient & (1t(1)) = (1t(G)). Le lemme[8.3.]]
permet de déduire qu'il existe i tel que 1t(f;) divise lt(r — '), et donc que
1t(f;) divise I'un des termes de r ou de 1/, ce qui contredit I'hypothése. OJ

On déduit facilement le résultat suivant.
Corollaire 8.3.5. St G est une base de Grobner de I, alors pour tout élément

f de R, f €1 siet seulement si le reste de la division multivariée de f par
G est nul.
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Ainsi, si 'on connait une base de Grobner de I, il est plus facile de tra-
vailler sur cet idéal. Reste a savoir si tout idéal I posséde une base de Grébner,
et aussi comment calculer une telle base. Pour répondre a ces questions, nous
utiliserons une nouvelle relation d’ordre sur N™.

Définition 8.3.6. Soient o« = (v, ..., ) et = (51,...,Bn) deuz éléments
de N". On écrit :
a< B siVi, a; < B

a<fBsia<fetas#p.

La relation < est une relation d’ordre. Ce n’est pas un ordre total sin > 1
Par exemple, dans N2, les couples (1,0) et (0,1) ne sont pas comparables. 11
ne s’agit donc pas d’un ordre monomial.

Définition 8.3.7. Soit A une partie de N". Soit o € A On dit que « est
minimal dans A si

(feAetf<a)=p=a

Lemme 8.3.8. De toute suite de N" on peut extraire une sous-suite crois-
sante.

Démonstration. Montrons ce lemme par récurrence sur n.

Cas ot n =1 : soit (ug)gen une suite de N. Soit mg = min{uy : k € N}.
Cet élément existe puisque toute partie de N a un plus petit élément. Il existe
au moins un entier k tel que ux = my. Soit ¢(0) un tel entier. On suppose
avoir défini

P(0) < (1) < <p(i—1)

tels que
Up(0) < Up(1) < -0 < Ugp(i-1)

Soient m; = min{u,, : k€ N, k> @i — 1)} et o(i) > p(i — 1) tel que
Ups) = m;. On construit ainsi par récurrence une fonction ¢ strictement
croissante de N dans N telle que la suite (uyx)) est croissante.

On suppose maintenant le résultat vrai pour A = N1 Soit (uy) une
suite de N = A x N. on note uy = (ax,v) ot ar € A et vp € N. D’aprés
I’hypotheése de récurrence, il existe une fonction strictement croissante ¢ de
N dans N telle que (a,@)) est croissante. On considére la suite (vyy). 11
existe une fonction strictement croissante ¢ de N dans N telle que (vi(p(r)))
est croissante. Alors la suite (up(y(k))) est croissante. O

Lemme 8.3.9. |[DICKSON| Pour toute partie A de N™ l'ensemble des élé-
ments minimaux de A est fini.
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Démonstration. Soit B I'ensemble des éléments minimaux de A. Si B est
infini, il existe une suite (uy) d’éléments de B deux & deux distincts. On peut
donc en extraire une sous-suite croissante. C’est absurde puisque les éléments
de B sont minimaux. O

Exemple. Soit A = {a € N? : a;+ay > 2}, alors B = {(2,0),(1,1),(0,2)}
est bien fini.

Théoréme 8.3.10. Tout idéal de R possede une base de Gribner.
Démonstration. Pour toute partie P de N™, on note
XP ={X* : acP}.
Soit I un idéal de R. Soit A = {a € N* : X* € Ilm(I)} Alors
(t(1)) = (Im(1)) = (X4)

Soit B Pensemble des éléments minimaux de A, Montrons que (X*) =
(XB). Comme B C A, (XB) C (X4). Soit a € A. 1l existe 8 € B tel que
B < «a (si tel n’était pas le cas, on pourrait construire une suite strictement
décroissante d’éléments de N™ inférieurs & «, ce qui est absurde puisque
I'ensemble des éléments de N™ inférieurs & « est fini). Alors X = X# X8 ¢

(XB).
Pour toute partie finie G de I telle que Im(G) = X2, G est une base de
Grobner de [. O

Ce résultat a pour conséquence immeédiate le célébre théoréme de la base
de Hilbert.

Corollaire 8.3.11. [THEOREME DE LA BASE DE HILBERT| Tout idéal de
R est de type fini. Autrement dit, R est Noethérien.

8.4. Algorithme de Buchberger

Maintenant, étant donné un idéal I de R, nous voudrions pouvoir calculer
une base de Grobner de I. L’algorithme de Buchberger résout ce probléme.
Cet algorithme est basé sur le calcul de S-polynémes que nous définissons
ici.

Définition 8.4.1. Soient f et g deux éléments de R. On note a = (o, ..., ap) =
mdeg(f) et B = (B1,...,0n) = mdeg(g). Soit

v = (max(ay, 5i))ie[[1,nﬂ S
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(en d’autres termes, 7y est tel que X7 = ppem(Im(f),Im(g))). On appelle
S-polynome associé a f et g le polynome

X7 X7
S(f.9) = mf - @9-

Exemple. Dans Q[z,y], on utilise 'ordre monomial <., tel que y <oy .
Soient f = 222y —3zy et g = x® +y°. Alors It(f) = 22%y et 1t(g) = 23. Ainsi,
a=(2,1), 5=1(3,0)) et v =(3,1). Enfin :

3 3

zdy 3y
S(f,g9) = 2Igy(%ﬁy —3zy) = — (" +4°)
3
= =50y =",

Dans la différence définissant S(f,g), les termes dominants s’annulent.
C’est ce qu’indique la proposition suivante.

Proposition 8.4.2. Avec les notations de la définition|8.4.1

mdegS(f,g) < -

Le lemme ci-dessous exprime le fait que si dans une somme on constate
I’élimination des termes de plus haut degré, cela “provient” de S-polyndémes.

Lemme 8.4.3. Soient ¢1,...,9s € R, a1,...,a, € N* ¢1,...,¢cs € K7,
f:ZCiXaigi €ER
i=1

et d € N™ tel que c;+mdeg(g;) = 0 pour tout i € [[1, s]] et tel que mdeg(f) < ¢
(c’est-a-dire que les termes dominants s’éliminent). Pour i < j, on définit
vij € N tel que
X = ppem(tm(gs), Im(g;))

(c’est le v de la définition correspondant & S(g;, 9;)). Alors les proprié-
tés suivantes sont vérifiées.

1. X" divise X° pour tout (i,7) tel que 1 <i < j < s.

2. mdeg(X° S (gi, g;)) < § pour tout (i,7) tel que 1 <i < j < s.

3. Il existe des éléments c;; dans K tels que

f= 2 cwX98(g;9)-

1<i(j<s
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Démonstration. Le 1| vient du fait que Im(g;) divise X? pour tout i et que
X = ppem(lm(g:), Im(g,)).

Le [2 provient de la proposition [8.4.2]

Pour le 3, on procéde par récurrence comme suit. En multipliant chaque
¢; par le(g;) et en divisant chaque g; par ce méme coefficient lc(g;), on se
rameéne au cas ol le(g;) = 1 pour tout 1.

Si s = 1, il ne peut y avoir simplification dans la somme donc le lemme
est vide. Il n’y a rien & démontrer.

Si s > 1, on définit

g=f—caX’2S(g1, g0)

Alors
mdeg(g) < max (mdeg(f), mdeg(X‘;_mS(gl,gg))) <0

puis on calcule

g=f—caX"2S5(g1, g0)

, g1 92
— o XM X2 iXal - X§ .
X g1+ G 92‘1‘;0 g9i — G (lt(gl) lt(gg)>

_ chalg1 + CQXa292 + Z CiXaigi o Clngﬁ—mdeg(gﬂ + CngXé—mdeg(gg)
>3

= (c1 +¢2) X2 gy + Z ;X" g;
=3

en regroupant les termes, et en tenant compte du fait que pour tout 1,
a; + mdeg(g;) = ¢

Le polynéme g est soit nul (si s = 2), soit de la méme forme que f, mais avec
s—1 ou s — 2 termes. On peut donc appliquer I’hypothése de récurrence. [J

Théoréme 8.4.4. Soit G = {g1,...,9s+ C R. Alors G est une base de
Grébner de I si et seulement si les deux conditions suivantes sont vérifiées.
1. I={g1,...,9s).

2. Pour tout (i,7) € [[1,s]]* tel que 1 < i < j < s, le reste de la division
de S(gi,9;) par G est égale a 0.

Démonstration. Le sens direct est clair. Réciproquement, supposons les condi-
tions (1)) et vérifiees. Montrons que (It(1)) = (It(G)), c’est-a-dire que
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(It(1)) C (It(G)), autre inclusion étant évidente. Soit donc f € I. Comme
G engendre I, ce polyndéme f s’écrit

f= ZQQQ (8.1)

geG

ou ¢, € R pour tout g € G. On veut montrer que 1t(f) € (It(G)). On note
a = mdeg(f). Si mdeg(¢,g) = a pour tout g € G, alors il n’y a pas de
simplification des termes de plus haut degré des g,g dans I'expression de f
donnée par D'égalité (8.1)). Ainsi

W= D ltlgy)

g : mdeg(qgg):a

= > It(gq)1t(g) € (I6(G))

g . mdeg(qgg)za

Cela régle la question dans ce cas la. Mais il se peut qu’il y ait des simplifi-
cations des termes de plus haut degré. Alors

a < max mdeg(lt(g,9)).
geG

Soit # minimal tel qu’il existe une écriture f = Z qq9 de f telle que
geG

B = I;leaGX mdeg(1t(gy9))

On suppose par I'absurde que § > «. Posons

= Z 1t(gg)g-

g : mdeg(qy9)=5

Alors le lemme montre 'existence de \,, € K et oy, € N* (pour
g,h € G) tels que
f* = Z )\g,thg’hS(ga h)
g,h
de telle sorte que pour tout (g, h) € G?, mdeg(X*+S(g,h)) < 3. Si 'on fait
la division de f* par G (en considérant les S-polynomes les uns aprés les
autres), on obtient un reste nul, donc

=Y qg

geG



82 CHAPITRE 8. POLYNOMES MULTIVARIES

ou d’apres le point de la proposition m

mdeg(q;g) < mdeg(f*) <

pour tout g. Finalement, f = (f — f*) + f* ou f — f* et f* s’écrivent tous
deux sous la forme d’une somme ) gec Pgg ol les p, sont des éléments de R
tels que 1t(pyg) < B pour tout g € G. ]

L’algorithme de Buchberger prend en entrée une famille F' = (f1,..., fs
d’éléments de R et rend en sortie une base de Grobner de l'idéal I =
(f1,..., fs). L’idée est de calculer le reste r de chaque S(f;, f;) divisé par
F, et d’ajouter ce reste a la famille s’il est non nul.

Algorithme 8.4.5. [ALGORITHME DE BUCHBERGER|
Entrées : f1,...,fs € K[X31,...X,] et un ordre monomial <
Sortie : Une base de Grobner G pour < de I = (f1,..., fs)

1. G+ {f1,-- -, fs}

2.8+ G

3. Tant que S # 0 :

4 S« 0

5. Ag1,..., 9t} < G (on numérote les éléments de G de 1 at)
o Pouridel at—1:

: Pourjdei+1at:

8 r < reste de la division de S(gi, g;) par G

9

Sir#0:
10. S+ Su{r}
11. G+ GUS
12. Sortir G

Démonstration. L’algorithme se termine dés que S = (). Alors le théoréme(3.4.4
montre que I’ensemble G obtenu est une base de Grébner.

Montrons que ’algorithme se termine. Soient G, ..., Gy, ... la suite des
ensembles G successifs de l'algorithme. Alors G; C G4, pour tout ¢ donc
(It(G,)) C (1t(Gi41)) pour tout i. Comme 'anneau R est noethérien, il existe
i tel que (1t(G;)) = (It(Gis1)). Montrons qu’alors G; = G4 : cela prouvera
qu’a cette étape, S = ) et donc que l'algorithme se termine. Pour plus de
commodité, posons G = G; et G' = G;1. Alors G’ = GUS. On pose aussi

G={g :ie{l, .. t}}.
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Pour tout (4, j) tel que ¢ < j, soit 7; ; le reste de la division de S(g;, g;) par
G.

Supposons par 'absurde qu'il existe 4, j tel que r;; # 0. Alors r;; € G'.
Comme (It(G)) = (It(G"), c’est que lt(r; ;) € (1t(G)). Donc il existe g € G tel
que lt(g) divise 1t(r; ;). C’est absurde car r; ; est un reste de la division par

G.

Donc pour tout (4, ), r;; = 0, ce qui montre que S = 0. ]

Remarque. Il est possible d’améliorer cet algorithme en évitant le cal-
cul inutile de certains S-polynémes. Par exemple, on peut montrer que si

pged(lt(g;),1t(g:)) = 1, alors S(g;, 9;) 29 0. 11 n'est done pas nécessaire de
calculer ce S-polynome.

Remarques sur la complexité (voir [G-G] et [F-G-L-M]).
C’est un probléme difficile.

Soit X = z{"...2%" un mondéme de R. On appelle degré de X* I'entier

n
g a;. Le degré d’un polynome est le maximum des degrés de ses monomes.

i=1
Soit I = (f1,..., fs). On note d = max{deg f;, i € [[1, s]]} le degré maximum
de tous les f;.

1. Les degrés des éléments de la base de Grobner réduite de I sont infé-

rieurs ou égaux a
d2
2( =—+d

2. Il existe des idéaux I pour lesquels toute base de Grobner contient au
moins 227 éléments et des éléments de degré au moins 22 pour une
constante strictement positive c.

277,71

3. Soit K’ un corps algébriquement clos contenant K. Si I’ensemble des
solutions S dans K™ du systéme fi(z) = 0 pour tout i € [[1,s]] est
fini, alors Card(S) < d". Pour l'ordre lexicographique gradué inverse,
on peut dans ce cas calculer une base de Grébner avec une complexité
algébrique polynomiale en d”’.

4. Généralement, le calcul d’une base de Grobner est plus rapide si 'ordre

choisi est 1'ordre lexicographique gradué inverse.

5. Sil'on connait une base de Grobner pour un ordre donné, il existe des
algorithmes efficaces pour en déduire une base de Grobner pour un
autre ordre.
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8.5. Bases de Grobner réduites

Lemme 8.5.1. Soit G une base de Grobner de I. Soit g € G tel que
lt(g) € (it(G ~{g}))

ce qui veul dire qu’il existe ¢ € (G~ {g}) tel que lt(g') divise lt(g). Alors
(G ~{g}) est une base de Grobner de I

Démonstration. Silt(g) € (It (G~ {g})), alors (It(G)) = (1t (G ~ {g})). On
en déduit que (1t(1)) = (It (G \ {g})) puisque (1t(1)) = (It (G)). O

Définition 8.5.2. Une base de Grébner G est dite minimale si pour tout
g € G, les deux propriétés suivantes sont réalisées.

1. le(g) =
2. l(g) & (LG~ {g}))-

Définition 8.5.3. Un élément g d’une base de Gribner G est réduit pour G
si aucun terme de g n'appartient a (It((G ~ {g})).

Définition 8.5.4. Une base de Grobner minimale G est réduite si tous ses
éléments sont réduits pour G.

Théoréme 8.5.5. Tout idéal de R admet une unique base de Grébner réduite.

Démonstration. La preuve de I'existence est laissée en exercice.
Montrons 'unicité. Soient donc G et G’ deux bases de Grébner réduites

d’un idéal I. Donc
(16(1)) = {W6(G)) = {W(G")).

Montrons d’abord que It(G) = 1t(G’). Soit g € G. Montrons que 1t(g) €
1t(G"). Comme lt(g) € (It(G)) = (1t(G")), il existe ¢’ € G’ tel que 1t(g’) divise
1t(g). De méme, il existe ¢” € G tel que lt(¢") divise 1t(¢’). Ainsi, 1t(g")
divise 1t(g). Si ¢"” # g, alors 1t(g) est divisible par un élément de 1t(G ~ {g}).
C’est absurde puisque G est une base de Grobner réduite. On en déduit
donc que g = ¢”. Comme lt(g) divise 1t(¢) et 1t(g’) divise 1t(g), et comme
le(g) =le(g') = 1 c’est done que 1t(g) = 1t(g'), d’ont Vinclusion It(G) C 1t(G"),
puis 'égalité 1t(G) = It(G").

On peut maintenant montrer que G = G’. Soit g € G. Comme lt(G) =
It(G"), il existe ¢’ € G’ tel que 1t(g) = 1t(¢’). Alors, les termes dominants de
g et de ¢’ s’annulent dans g — ¢’. Comme G et G’ sont des bases réduites, et
comme It(G) = 1t(G’), aucun des termes de g ni de ¢’ n’est divisible par un
éléement de (It(G) \ {g}), donc aucun des termes de g — ¢’ n’est divisible par
un élément de (It(G)), ce qui veut dire que le reste de la division de g — ¢’
par G est égal & g — ¢’. Or, comme g — ¢’ € I, ce reste est égal & 0. On en
déduit que g = ¢'. Ainsi, G C G’, et par symétrie G = G'. H
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8.6. Applications

8.6.1 Mondémes standards

On consideére toujours R = K[X1,...,X,] (qu’on note aussi K[X]), muni
d’un ordre monomial <. Soit I un idéal de R et B une base de Grébner de
I pour <.

Définition 8.6.1. Soit o € N". Le mondme X* est un mondme standard de
R relativement a G si pour tout g € G, le terme lt(g) ne divise pas X®.

Théoréme 8.6.2. L’ensemble des mondémes standards relativement a G est
une base du K-espace vectoriel K[X]/I.

Démonstration. Tout polynome f de R s’écrit

f:chg—l—r (8.2)

geG

ou aucun des termes de r n’est divisible par un élément de (It(G)), c’est
a dire que les monomes apparaissant dans r sont des mondémes standards.
L’ensemble des monomes standards est donc une famille génératrice du K-
espace vectoriel K[X]/I. L’unicité de r dans montre que la famille est
libre. [

Exemple. Soit R = Q|z,y], muni de l'ordre lexicographique gradué < tel
que x = y. Soient f; = 23 — 2xy, fo = 2%y —2y° +w et [ = (f1, fo). Alors
la base de Grobner réduite de I est égale a G = (22, zy,y* — x/2). Alors,
I’ensemble des monomes standards pour G est égal a

M ={1,z,y}.

On peut visualiser ces monomes sur un graphique.

L’axe des abscisses représentent les puissances de x, les ordonnées les
puissances de y. Comme z? € 1t(G), les points (a,b) tels que a > 2 sont &
exclure (on enléve un quart de plan).

Le Q-espace vectoriel Q[z,y|/I est donc de dimension 3. Qlz,y]/I =
{ag + a1x + azy : (ag,as,az) € Q3} Pour additionner deux éléments de Q[z, y]/I,
il suffit d’ajouter leurs composantes. Pour la multiplication, on établit la table
de multiplication des monémes standards.

3| =] X

1S
LI ||
o|lo8 (IR
| oI |
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Ainsi, les bases de Grobner permettent de calculer dans de tels quotients.
La multiplication par un élément du quotient est une application linéaire. En
dimension finie, il peut étre utile de calculer la matrice de la multiplication
par chacun des éléments d'une base dans cette base.

Dans I’exemple ci-dessus, la multiplication par 1 a pour matrice I'identité,
les multiplications par [z]; et par [y]; ont respectivement pour matrice dans

la base ([1], [z]1, [y]1)

M, =

O = O
o O O
o O O
@
-+
I
—_ o O
o O O
—_
O~ O
[\

8.6.2 Résolution de systémes algébriques

Il arrive fréquemment qu’un probléme se raméne a la résolution d’un
systéme d’équations polynomiales. Soit a résoudre

fi(zy,...,x,) =0
; (8.3)
fs(xy,...,2,) =0

Soient I = (f1,..., fs et G = (g1,...,9¢) une base de Grobner de I. Alors

le systéme est équivalent au systéme

g1(x1,...,2,) =0
: (8.4)
gi(x1,...,2,) =0

Souvent, ce nouveau systéme est plus facile a résoudre, car certaines variables
peuvent avoir été éliminées dans certaines équations.
Reprenons l'exemple ou f; = x® — 2xy, fo = 2%y — 2y* + x dans Q[z, y].

Alors

fil,y) =0 =0 0

X = Tr =

ey = Ty =0 <
f2($,y):() 2

Dans cet exemple, I’'ordre monomial choisi est I’ordre lexicographique gradué.
Ce n’est pas forcément le meilleur choix en général.

L’ordre lexicographique se préte particulierement bien a I’élimination des
variables. Pour tout idéal I de R, on note

L=INK[Xy1,... X
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C’est un idéal de K[X;,1,...,X,], appelé [-éme idéal d’élimination de I.

Théoréme 8.6.3. Soit < l’ordre lexicographique tel que Xy > --- = X,,. Soit
G une base de Gribner de I. Alors

G =GNEK[Xp,... X0

est une base de Grobner de 1.

Démonstration. 11 s’agit de montrer que (It(;)) = (1t(G,)). L’inclusion (1t(G;)) C
(It(I;)) est claire.

Montrons que (1t([;)) C (It(Gy)). Soit f € I,. Alors f € I et donc
comme (It(1)) = (It(G)), il existe g € G tel que lt(g) divise 1t(f). Comme
fel,lt(f) e K[Xi1,...,X,] et donc 1t(g9) € K[X;41,...,X,]. Comme il
s’agit de l'ordre lexicographique, tout monoéme inférieur a lt(g) appartient &
K[X41,...,X,]. Donc tous les termes de g appartiennent a K[X;,1,..., X,]
ce qui veut dire que g € K[X},1,...,X,], donc g € G|. ]

Exemple. Soit a résoudre dans R le systéme suivant.

f1($,y,2)20 f1($7y,2):$2+y+2—1
folz,y,2) =0 ou folz,y,2) = +y* +2—1
fg(l‘,y,Z):O fg(ZE,y,Z):l'+y+Z2—1

Soit I idéal (fy, fa, f3) de Q[z,y, z]. On munit Q[z,y, 2] de 'ordre lexico-
graphique < tel que = > y > z. Alors la base de Grobner réduite de I est

G = (91792793794)7 ol

g=r+y+2"—1
o=y —y—2"+z
g3 =2y +2%/2 - 1/2)
g1 =22z =132 +22 1)
On remarque que g4 ne dépend que de z et que g et g3 ne dépendent que de

y et z. Il est alors facile de résoudre le systéme et on trouve comme ensemble
des solutions

S ={(1,0,0),(0,1,0), (0,0,1),(—1 + V2, ~1 + V2, -1 + V2),
(—1-v2,-1-v2,-1-V2)}.
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