Anneau des Séries Formelles, et Applications en Calcul
Formel et Cryptographie

Version corrigée, du 31 Octobre 2025

Changelog

Dans la version initiale, il y avait une coquille dans les questions 19 et 20.

Introduction

L’objectif de ce DM est d’étudier du point de vue du calcul formel des objets appelés < séries
formelles > et généralisant la notion de polynoémes en autorisant un nombre infini de coefficients .
Aucune connaissance préalable sur les séries formelles n’est requise pour mener a bien ce travail.

Mise en bouche

Dans la suite, K sera un corps. Sauf mention préalable, vous pouvez prendre K = Q, R, C ou
encore un corps fini K = IF, si vous voulez vous fixer les idées.

1. Si cette notion vous parle, vous pouvez rapprocher la notion de série formelle & celle de série entiére en
analyse réelle et/ou complexe.

Définition. Soit KN ’ensemble des suites & valeurs dans K. On peut le munir d’une
structure d’anneau en définissant la somme de deux suites, terme a terme :

def .
(@) +(0) = () oucy=an+by,
et le produit est aussi appelé produit de convolution
f n
(a) x (b) & (¢) ouec,= Zakbn,k.
k=0
En général, lorsque l'on considére ces opérations, on note formellement les suites comme

les coefficients d’une somme infinie

(an) +— AX) €Y 0, X7,
i>0

et I’ensemble des suites est alors noté K[[X]] et est appelé < Anneau des séries formelles
a coeflicients dans K >.

Remarque 1. [l s’agit bien d’une notation. Bien qu’on puisse lui donner un sens, on ne
définira pas ici de notion de convergence. C’est pour ¢a que l’on parle de série < formelle >.

(Q1) Vérifiez que les opérations + et x sont bien définies et que K[[X]] est alors un
anneau commutatif. Quels sont les neutres pour + et x ?

(Q2) Vérifiez que 'anneau K[X] s’injecte naturellement dans K[[X]], c’est-a-dire qu’on
peut voir un polynéme comme une série formelle, et que le produit de deux po-
lynoémes, vus comme séries formelles, est encore un polynoéme et est bien le produit
auquel on s’attend (I'inclusion K[X] < K[[X]] est un morphisme d’anneaux injec-
tif).

(Q3) Montrez que le polynome 1 — X est inversible dans K[[X]], d’inverse .., X".

Ainsi, K[[X]] contient la fraction rationelle

1
X alors que 1 — X n’est pas inversible dans

K[X] (on ne demande pas de le montrer). Autrement dit, K[[X]] est strictement plus gros que
K[X]. Par contre, la question suivante nous montre que K[[X]] n’est pas lui-méme un corps; en
particulier il ne contient pas toutes les fractions rationelles.

(Q4) Soit A(X) ef Y n>0 @nX™ une série formelle inversible. Montrez que nécessairement
ap 75 0. B
(Q5) En déduire que X n’a pas d’inverse dans K[[X]].

(Q6) Réciproquement, montrez que ’ensemble des séries formelles inversibles est exacte-
ment ’ensemble des séries de coefficient constant non nul.

Séries Formelles Tronquées

Algébriquement, les séries formelles sont des objets infinis, qu’on ne peut donc pas manipuler
de maniere exacte. Algorithmiquement, on ne conserve qu'un nombre fini n de termes. Ainsi,
une série formelle F' sera représentée par un polynoéme P de degré au plus n — 1, et on notera
F =P+ 0O(X"™) (ou encore =P mod X"). Cette notation aura encore un sens si P est aussi
une série formelle, et signifie que F' et P coincident sur les n premiers coefficients.

Formellement, la troncature d’une série formelle F' a 'ordre n est son image par le morphisme
d’anneaux K[[X]] — K[[X]]/(X™), ce dernier anneau étant isomorphe & K[X]/(X™).

Dans toute la suite, on supposera que K est un corps effectif et qu’on en a une représentation
en machine. On représentera alors les séries formelles tronquées a ’ordre n comme des listes de
taille n & coefficients dans K (comme pour les polynémes dans les TD). Par exemple, la série
1+ X + O(X?3) sera représentée comme la liste [1, 1, 0].

(Q7) Expliquez pourquoi le produit de deux séries formelles tronquées & I'ordre n = 2°
peut se faire en O(nlog(n)) opérations dans K. Donnez explicitement 1’algorithme
pour le faire (il n’est pas demandé de le programmer).

Division selon les Puissances Croissantes

Un premier algorithme

On considere 'algorithme mystere suivant

Algorithme 1 : Algorithme Mystere

Entrées : Deux polynoémes a(z),b(z) € K[z] tel que b(0) # 0, et un entier n > 1.
Sorties : Un polynéme c¢(z)

Initialiser une liste ¢ de taille n par ¢ < [0,...,0].

-

2 Poser inv_b0 « b[0] 1.

3 pour £k =0 a n — 1 faire
4 s < alk];

5 pour i =1 a k faire

6 Ls(—s—b[i]‘c[kz—i];
7 clk] + inv_b0 - s;

8 retourner c

(Q8) Executez (& la main) algorithme pour les polynémes A(X) =14+ X et B(X) =
1+ X2, avecn = 3.

(Q9) Implémentez I’algorithme et le tester avec plusieurs exemples pertinents.

(Q10) Quelle est la complexité de cet algorithme ? On comptera le nombre d’opérations
dans K.

(Q11) Soient A, B € K[X], et soit n > 0 un entier. On suppose que b(0) # 0. Démontrez
qu’il existe alors un unique couple de polynémes (C, R) ou C est de degré au plus
n — 1 tel que

A(X) = B(X) - C(X) + X" - R(X) = B(X) - C(X) + O(X™).

Indication : On pourra par exemple (méthodes non exhaustives) raisonner sur le
polynome B vu comme série formelle, ou bien donner une preuve algorithmique
comme pour la division euclidienne classique.

(Q12) Montrez que I’Algorithme 1 calcule ce polynéme C, appelé quotient par les puis-
sances croissantes de A par B, a l'ordre n.

(Q13) Soit F = P+ O(X™) une série formelle inversible. Donnez un algorithme calculant
un polynéme G tel que G + O(X™) soit la troncature & lordre n de Uinverse de F.

(Q14) Quel est l'inverse a l'ordre 4 de la série

F(X)=1+2X -3X%+ X3+ 0(X*) € Q[[X]]?

m Méthode de Newton

La méthode de Newton est tres utilisée en analyse numérique pour calculer les zéros d’une
fonction f : R — R suffisamment réguliere. L’idée est de partir d’une solution approchée z(et
de remplacer 'équation f(t) = 0 par équation approchée f(zg) + (t — zo)f'(x0) = 0 (issue du
développement limité de f en xg), d’ot on déduit

G
* o)

Bien entendu, cette formule n’a pas toujours de sens, mais on espere que quand elle en a un, la
suite

t==x

J' (@)

obtenue en itérant ce processus converge vers un zéro de f. C’est le cas sous de nombreuses
hypotheses que nous n’allons pas préciser, et la convergence est méme quadratique : le nombre
de décimales exactes va doubler & chaque itération.

L’algebre permet de donner des sens rigoureux a la notion de limite, mais nous n’allons pas
préciser plus que ¢a. On peut par exemple dire qu'un polynéme de K[X] est tres petit lorsqu’il
est divisible par une grosse puissance de X. C’est d’ailleurs ce qu’on fait en tronquant des séries
formelles a l'ordre n : on ignore les < petits > termes. On va maintenant voir que l'intuition
analytique nous permet de définir un algorithme tres efficace pour inverser des séries formelles.

Tk41 = T —

(Q15) Justifiez qu’il suffit d’écrire un algorithme pour inverser des séries formelles de terme
constant égal a 1.

Soit F = P 4+ O(X™) € K[[X]] de terme constant 1. Afin d’inverser F, on se propose de
résoudre 1’équation

p(G) =0
ou ¢ : K[[X]]* — K[[X]] est donnée par
1
G)=—=—-F
v(G) =5
L’intuition analytique nous pousse alors a définir la suite
©(Gr)
Git1 =Gy — .
k+1 k o (Gr)

Encore faudrait-il définir ¢’... Mais poussons le vice plus loin : en considérant G comme une
variable formelle, et P comme une constante, vous conviendrez qu’une notion raisonnable pour

¢ (G) est

-1

@.
On définit alors la récurrence

1
o P
Gk+1 - Gk - kil - 2Gk - Gip
&
ou encore
Giy1 = Gr(2— P - Gy). (2)

Si Gog = 1, alors la suite Gy, est bien définie, et comme P € K[X], on a méme G}, € K[X] quel
que soit 'entier k.

(Q16) Soit G, € K[X] la suite de polynémes définie par la recurrence ci-dessus. Démontrez
que quel que soit I’entier k,

P-Gy=1+0(X?).

On en déduit I'algorithme suivant pour le calcul de 'inverse d’une série formelle

Algorithme 2 : Inversion par la méthode de Newton
Entrées : n = 2" ¢ N* et F' = P+ O(X") € K[[X]] de terme constant 1.
Sorties : G = Q + O(X™) € K[[X]] tel que FG =1+ O(X™)

1 si n=1 alors
2 L retourner 1

3 sinon

4 GO — 1,

5 Calculer récursivement G, ..., Gy comme dans I’équation (2);
6 retourner Gy,

(Q17) Soit M le cotit de la multiplication de deux polynémes de degré n. Celui-ci dépend
de lalgorithme choisi pour la multiplication (naif, Karatsuba, FFT ou autre). On
suppose que pour tout n, M(n) > 2M(n/2) (c’est le cas pour tous les algorithmes
que nous avons vus en cours). Démontrez alors que ’algorithme 2 calcule I'inverse
d’une série formelle en O(M (n)) opérations dans K.

\.

Application a la Division Rapide de Polynémes

On va maintenant voir que le probleme d’inverser des séries formelles tronquées a en réalité
une grosse application au calcul de la division euclidienne classique de polyndmes.

(Q18) Soient A, B € K[X] deux polynémes. On note n ef deg(A) et m def deg(B). On

) et
suppose que n > m. Rappelez un algorithme pour calculer (Q, R) € K[X]? tel que
A=BQ+ R, et deg(R)<m

en O(n (n —m)) opérations dans K.

On se propose de calculer @ a l'aide d’une inversion de série formelle. Pour ¢a, on écrit

(formellement)
A

R
==Q+5.

A priori, cette égalité a un sens dans le monde des fractions rationelles, mais pas forcément dans
celui des séries formelles (si B(0) = 0). Pour pallier ce probléme, on va considérer un changement
de variable. Si P € K[X] est de degré , on définit

PrX) ¥ xmp <)1()

appelé polynome réciproque de P.

(Q19) Montrez que pour tout polynéome P, son réciproque P* est encore un polynéme, de
méme degré si P(0) # 0. Montrez également que X8 P*(1/X) = P. En déduire
en particulier que si P(0) # 0, alors P — P* est une involution.

(Q20) Montrez que B* est inversible dans K[[X]] et que

*

§ — Q* +0 (XdegA—degB+1) ,

ou le O() dépend explicitement de R.

(Q21) Soit A, B € K[X] avec deg(A) = n et deg(B) = m < n. Soit M une fonction telle
que le produit de deux polynémes de degrés au plus n puisse se faire en O(M(n))
opérations. Donner un algorithme qui effectue la division euclidienne de A par B en
O(M (n)) opérations également.

(Q22) Donnez un exemple de cas ou cet algorithme est asymptotiquement meilleur que
I’algorithme classique de division euclidienne.

Linear Feedback Shift Registers (LFSR)

Les séries formelles ont de nombreuses applications au-dela du calcul de division eucli-
dienne que nous venons de présenter. Elles sont par exemple extrémement utiles pour faire
du dénombrement. Dans cette derniere partie, nous vous proposons une autre application, cette
fois-ci a la génération de bits aléatoires en cryptographie.

Premieres définitions

LFSR. Un générateur & décalage a rétroaction linéaire binaire? de longueur ¢ (plus couram-
ment appelé par son nom en anglais Linear Feedback Shift Registers) est une machine a états finis
formée d’une mémoire de £ cellules appelée registre, et produisant une suite récurrente linéaire
a coefficients dans Fy de la forme

St40 = C1S¢40—1 + -+ cps¢, pour t >0,

ou les coefficients cq,...,cs € Fy sont fixés.

Plus précisément, le registre est initialisé avec un état S = (so,...,s,_1) € F%, et & chaque
unité de temps t (réalisée par une horloge interne), chaque cellule du registre est décalée d’une
cellule vers la droite. Le contenu de la cellule la plus & droite sort du registre (et est le bit s;
produit par le LESR au temps t) et la cellule la plus & gauche regoit en entrée le bit produit par
la suite récurrente linéaire.

Remarque 2. [l est facile de voir (on ne demande pas de 'écrire) que toute suite récurrente
linéaire peut étre obtenue comme les bits de sortie d’un LFSR.

S3 S9 S1 S0

@

F1GURE 1 — LFSR implémentant la récurrence s;14 = S¢y1 + St

Par 'exemple, le LFSR de la figure 1 initialisé avec 1’état (so, s1, s2, $3) = (1,0, 1,1) produit
une suite dont les premiers termes sont (1,0,1,1,1,1,0,0,0,1,0,0,1,1,0).

Remarque 3. Attention au sens des LESR avec cette convention. Dans [’état initial, sg

2. On peut bien entendu généraliser ceci a des corps plus gros.

est bien a droite (puisque c’est le premier bit a sortir)!

L’intérét principal des LFSR est qu’ils ont un design si simple qu’ils ont des implémentations
matérielles (i.e., hardware) extrémement efficaces, et qu'’ils produisent des suites de bits ayant
de bonnes propriétés statistiques (que nous n’allons pas préciser plus que ¢a). Ca en fait de bons
candidats pour la génération de bits aléatoires utilisés pour la cryptographie.

Polynéme de rétroaction. Les coefficients d’'un LFSR sont en général représentés sous la
forme d’un coefficient a valeurs dans Fo, défini par

4
PE1+Y ext,
=1

(Q23) Implémentez en Sage une fonction prenant en entrées un état initial sous forme
d’une liste de taille £, un polynome de rétroaction et un entier IV, et produisant les
N premiers termes de la suite (faites attention au sens et & vos indices). Vérifiez
qu’avec le LFSR de la figure 1 vous obtenez bien la suite définie plus haut.

(Q24) Démontrez que toute suite produite par un LESR de longueur ¢ d’état initial non
nul est forcément périodique de période < 2¢ — 1.

On considere le LFSR représenté en figure 2.

&— -
®— =
&— -
&— -

[
A\

F1GURE 2 — Un LFSR de longueur 10

(Q25) Quel est le polynéme de rétroaction de ce LFSR ?

(Q26) Vérifiez cette méme suite est définie par un LFSR de longueur 3, dont le polynéme
de rétroaction est 1 4+ X3.

Ainsi, une suite peut-étre produite par des LFSR de longueurs différentes. Or, pour les ap-
plications cryptographiques, on cherche a générer des suites de période maximale, celle-ci étant
liée au degré du polynéme de rétroaction du LFSR. Cette non-unicité semble étre un frein a

la caractérisation de suite maximale. Nous allons utiliser les séries formelles pour lever cette
limitation.

LFSR et séries formelles

On considere une suite (s,,) € FY produite par un LFSR d’ordre ¢, et on la représente sous
la forme de sa série formelle associée

S(X) €Y siXT € Fa[[X]).
i>0

On note P un polynéme de rétroaction de ce LFSR (donc de degré).

(Q27) Démontrez qu’il existe un polynome @ € Fy[X] de degré deg @ < £ et tel que

s = 22

On cherchera une expression explicite des coefficients de Q(X).

(Q28) Montrez qu'il existe un unique polynéme P, de terme constant 1 tel que la série
formelle S(X) soit de la forme

et pged(FPo, Qo) = 1.

(Q29) Montrez que Py est de degré minimal parmi tous les polynéomes de rétroaction
produisant la suite.

(Q30) En déduire que si P est un polynéme de rétroaction pour une suite, et qu’il est
irréductible, alors c’est le polynome minimal.

Ce polynéme P, est appelé polynéme de rétroaction minimal de la suite (s,), et ne dépend
que de celle-ci.

(Q31) Donnez un algorithme qui, étant donnée une suite récurrente linéaire définie par
ses N premiers termes représentés sous la forme d’une liste de taille NV, produit le
polynome de rétroaction minimal.

(Q32) Donnez un exemple de suite récurrente linéaire dont le polynéme de rétroaction
minimal n’est pas irréductible.

On peut aussi manipuler les séries formelles directement comme un objet Sage via le construc-
teur PowerSeriesRing. Par exemple

sage: F2 = GF(2)
sage: PS.<T> = PowerSeriesRing(F2)
sage: A.<X> = F2[]

définit les anneaux F3[[T]] stocké dans PS, et F3[X] stocké dans A. Notez que j’ai utilisé deux
variables différentes pour bien les séparer dans Sage. Comme pour les polynomes, on peut définir
une série formelle associée a une suite par la commande suivante

sage: s = [1, 0, O, 1, O, O, 1, O, O, 1]
sage: S PS(s)

Attention, par défaut, Sage va considérer que les termes suivants sont tous nuls. Pour lui préciser
que vous avez tronqué la série, vous pouvez utiliser la notation O comme par exemple :

sage: S = PS(s) + 0(T"10)

(Q33) Retrouvez le polynome de rétroaction minimal en manipulant directement les séries
avec ce constructeur.

(Q34) (Bonus) Démontrez qu’une suite récurrente linéaire de polynéme de rétroaction
minimal Py de degré ¢ est maximalement périodique (i.e., de période 2¢ — 1), si et
seulement si Py est primitif (c’est-a-dire irréductible, et dont les racines engendrent
le groupe (Fye)™).

Remarque 4. Un algorithme di o Berlekamp et Massey permet d’obtenir ce polynéme de
rétroaction minimal efficacement. Il repose exactement sur ce lien avec les séries formelles.

10

	Introduction
	Mise en bouche
	Séries Formelles Tronquées

	Division selon les Puissances Croissantes
	Un premier algorithme
	Méthode de Newton
	Application à la Division Rapide de Polynômes

	Linear Feedback Shift Registers (LFSR)
	Premières définitions
	LFSR et séries formelles

