
Anneau des Séries Formelles, et Applications en Calcul

Formel et Cryptographie

Version corrigée, du 31 Octobre 2025

Changelog

Dans la version initiale, il y avait une coquille dans les questions 19 et 20.

1 Introduction

L’objectif de ce DM est d’étudier du point de vue du calcul formel des objets appelés ≪ séries
formelles ≫ et généralisant la notion de polynômes en autorisant un nombre infini de coefficients 1.
Aucune connaissance préalable sur les séries formelles n’est requise pour mener à bien ce travail.

1.1 Mise en bouche

Dans la suite, K sera un corps. Sauf mention préalable, vous pouvez prendre K = Q,R,C ou
encore un corps fini K = Fq si vous voulez vous fixer les idées.

1. Si cette notion vous parle, vous pouvez rapprocher la notion de série formelle à celle de série entière en
analyse réelle et/ou complexe.

1



Définition. Soit KN l’ensemble des suites à valeurs dans K. On peut le munir d’une
structure d’anneau en définissant la somme de deux suites, terme à terme :

(a) + (b)
def
= (c) où cn = an + bn,

et le produit est aussi appelé produit de convolution

(a)× (b)
def
= (c) où cn =

n∑
k=0

akbn−k.

En général, lorsque l’on considère ces opérations, on note formellement les suites comme
les coefficients d’une somme infinie

(an)←→ A(X)
def
=

∑
i≥0

aiX
i,

et l’ensemble des suites est alors noté K[[X]] et est appelé ≪ Anneau des séries formelles
à coefficients dans K ≫.

Remarque 1. Il s’agit bien d’une notation. Bien qu’on puisse lui donner un sens, on ne
définira pas ici de notion de convergence. C’est pour ça que l’on parle de série ≪ formelle ≫.

(Q1) Vérifiez que les opérations + et × sont bien définies et que K[[X]] est alors un
anneau commutatif. Quels sont les neutres pour + et × ?

(Q2) Vérifiez que l’anneau K[X] s’injecte naturellement dans K[[X]], c’est-à-dire qu’on
peut voir un polynôme comme une série formelle, et que le produit de deux po-
lynômes, vus comme séries formelles, est encore un polynôme et est bien le produit
auquel on s’attend (l’inclusion K[X] ↪→ K[[X]] est un morphisme d’anneaux injec-
tif).

(Q3) Montrez que le polynôme 1−X est inversible dans K[[X]], d’inverse
∑

i≥0 X
i.

Ainsi, K[[X]] contient la fraction rationelle
1

1−X
, alors que 1−X n’est pas inversible dans

K[X] (on ne demande pas de le montrer). Autrement dit, K[[X]] est strictement plus gros que
K[X]. Par contre, la question suivante nous montre que K[[X]] n’est pas lui-même un corps ; en
particulier il ne contient pas toutes les fractions rationelles.

(Q4) Soit A(X)
def
=

∑
n≥0 anX

n une série formelle inversible. Montrez que nécessairement
a0 ̸= 0.

(Q5) En déduire que X n’a pas d’inverse dans K[[X]].

(Q6) Réciproquement, montrez que l’ensemble des séries formelles inversibles est exacte-
ment l’ensemble des séries de coefficient constant non nul.

2



1.2 Séries Formelles Tronquées

Algébriquement, les séries formelles sont des objets infinis, qu’on ne peut donc pas manipuler
de manière exacte. Algorithmiquement, on ne conserve qu’un nombre fini n de termes. Ainsi,
une série formelle F sera représentée par un polynôme P de degré au plus n − 1, et on notera
F = P +O(Xn) (ou encore F = P mod Xn). Cette notation aura encore un sens si P est aussi
une série formelle, et signifie que F et P cöıncident sur les n premiers coefficients.

Formellement, la troncature d’une série formelle F à l’ordre n est son image par le morphisme
d’anneaux K[[X]]→ K[[X]]/(Xn), ce dernier anneau étant isomorphe à K[X]/(Xn).

Dans toute la suite, on supposera que K est un corps effectif et qu’on en a une représentation
en machine. On représentera alors les séries formelles tronquées à l’ordre n comme des listes de
taille n à coefficients dans K (comme pour les polynômes dans les TD). Par exemple, la série
1 +X +O(X3) sera représentée comme la liste [1, 1, 0].

(Q7) Expliquez pourquoi le produit de deux séries formelles tronquées à l’ordre n = 2ℓ

peut se faire en O(n log(n)) opérations dans K. Donnez explicitement l’algorithme
pour le faire (il n’est pas demandé de le programmer).

2 Division selon les Puissances Croissantes

2.1 Un premier algorithme

On considère l’algorithme mystère suivant

Algorithme 1 : Algorithme Mystère

Entrées : Deux polynômes a(x), b(x) ∈ K[x] tel que b(0) ̸= 0, et un entier n ≥ 1.
Sorties : Un polynôme c(x)

1 Initialiser une liste c de taille n par c← [0,...,0].
2 Poser inv b0← b[0]−1.

3 pour k = 0 à n− 1 faire
4 s← a[k];
5 pour i = 1 à k faire
6 s← s− b[i] · c[k − i];

7 c[k]← inv b0 · s;
8 retourner c

3



(Q8) Executez (à la main) l’algorithme pour les polynômes A(X) = 1 + X et B(X) =
1 +X2, avec n = 3.

(Q9) Implémentez l’algorithme et le tester avec plusieurs exemples pertinents.

(Q10) Quelle est la complexité de cet algorithme ? On comptera le nombre d’opérations
dans K.

(Q11) Soient A,B ∈ K[X], et soit n ≥ 0 un entier. On suppose que b(0) ̸= 0. Démontrez
qu’il existe alors un unique couple de polynômes (C,R) où C est de degré au plus
n− 1 tel que

A(X) = B(X) · C(X) +Xn ·R(X) = B(X) · C(X) +O(Xn).

Indication : On pourra par exemple (méthodes non exhaustives) raisonner sur le
polynôme B vu comme série formelle, ou bien donner une preuve algorithmique
comme pour la division euclidienne classique.

(Q12) Montrez que l’Algorithme 1 calcule ce polynôme C, appelé quotient par les puis-
sances croissantes de A par B, à l’ordre n.

(Q13) Soit F = P +O(Xn) une série formelle inversible. Donnez un algorithme calculant
un polynôme G tel que G+O(Xn) soit la troncature à l’ordre n de l’inverse de F .

(Q14) Quel est l’inverse à l’ordre 4 de la série

F (X) = 1 + 2X − 3X2 +X3 +O(X4) ∈ Q[[X]]?

2.2 Méthode de Newton

La méthode de Newton est très utilisée en analyse numérique pour calculer les zéros d’une
fonction f : R → R suffisamment régulière. L’idée est de partir d’une solution approchée x0 et
de remplacer l’équation f(t) = 0 par l’équation approchée f(x0) + (t − x0)f

′(x0) = 0 (issue du
développement limité de f en x0), d’où on déduit

t = x0 −
f(x0)

f ′(x0)
.

Bien entendu, cette formule n’a pas toujours de sens, mais on espère que quand elle en a un, la
suite

xk+1 = xk −
f(xk)

f ′(xk)
(1)

obtenue en itérant ce processus converge vers un zéro de f . C’est le cas sous de nombreuses
hypothèses que nous n’allons pas préciser, et la convergence est même quadratique : le nombre
de décimales exactes va doubler à chaque itération.

L’algèbre permet de donner des sens rigoureux à la notion de limite, mais nous n’allons pas
préciser plus que ça. On peut par exemple dire qu’un polynôme de K[X] est très petit lorsqu’il
est divisible par une grosse puissance de X. C’est d’ailleurs ce qu’on fait en tronquant des séries
formelles à l’ordre n : on ignore les ≪ petits ≫ termes. On va maintenant voir que l’intuition
analytique nous permet de définir un algorithme très efficace pour inverser des séries formelles.

4



(Q15) Justifiez qu’il suffit d’écrire un algorithme pour inverser des séries formelles de terme
constant égal à 1.

Soit F = P + O(Xn) ∈ K[[X]] de terme constant 1. Afin d’inverser F , on se propose de
résoudre l’équation

φ(G) = 0

où φ : K[[X]]× → K[[X]] est donnée par

φ(G) =
1

G
− F.

L’intuition analytique nous pousse alors à définir la suite

Gk+1 = Gk −
φ(Gk)

φ′(Gk)
.

Encore faudrait-il définir φ′... Mais poussons le vice plus loin : en considérant G comme une
variable formelle, et P comme une constante, vous conviendrez qu’une notion raisonnable pour
φ′(G) est

−1
G2

.

On définit alors la récurrence

Gk+1 = Gk −

1

Gk
− P

− 1

G2
k

= 2Gk −G2
kP

ou encore
Gk+1 = Gk(2− P ·Gk). (2)

Si G0 = 1, alors la suite Gk est bien définie, et comme P ∈ K[X], on a même Gk ∈ K[X] quel
que soit l’entier k.

(Q16) Soit Gk ∈ K[X] la suite de polynômes définie par la recurrence ci-dessus. Démontrez
que quel que soit l’entier k,

P ·Gk = 1 +O(X2k).

On en déduit l’algorithme suivant pour le calcul de l’inverse d’une série formelle

Algorithme 2 : Inversion par la méthode de Newton

Entrées : n = 2k ∈ N⋆ et F = P +O(Xn) ∈ K[[X]] de terme constant 1.
Sorties : G = Q+O(Xn) ∈ K[[X]] tel que FG = 1 +O(Xn)

1 si n = 1 alors
2 retourner 1

3 sinon
4 G0 ← 1;
5 Calculer récursivement G1, . . . , Gk comme dans l’équation (2);
6 retourner Gk

5



(Q17) Soit M le coût de la multiplication de deux polynômes de degré n. Celui-ci dépend
de l’algorithme choisi pour la multiplication (näıf, Karatsuba, FFT ou autre). On
suppose que pour tout n, M(n) ≥ 2M(n/2) (c’est le cas pour tous les algorithmes
que nous avons vus en cours). Démontrez alors que l’algorithme 2 calcule l’inverse
d’une série formelle en O(M(n)) opérations dans K.

2.3 Application à la Division Rapide de Polynômes

On va maintenant voir que le problème d’inverser des séries formelles tronquées a en réalité
une grosse application au calcul de la division euclidienne classique de polynômes.

(Q18) Soient A,B ∈ K[X] deux polynômes. On note n
def
= deg(A) et m

def
= deg(B). On

suppose que n > m. Rappelez un algorithme pour calculer (Q,R) ∈ K[X]2 tel que

A = BQ+R, et deg(R) < m

en O(n (n−m)) opérations dans K.

On se propose de calculer Q à l’aide d’une inversion de série formelle. Pour ça, on écrit
(formellement)

A

B
= Q+

R

B
.

À priori, cette égalité a un sens dans le monde des fractions rationelles, mais pas forcément dans
celui des séries formelles (si B(0) = 0). Pour pallier ce problème, on va considérer un changement
de variable. Si P ∈ K[X] est de degré π, on définit

P ⋆(X)
def
= XπP

(
1

X

)
appelé polynôme réciproque de P .

(Q19) Montrez que pour tout polynôme P , son réciproque P ⋆ est encore un polynôme, de
même degré si P (0) ̸= 0. Montrez également que XdegPP ⋆(1/X) = P . En déduire
en particulier que si P (0) ̸= 0, alors P 7→ P ⋆ est une involution.

(Q20) Montrez que B⋆ est inversible dans K[[X]] et que

A⋆

B⋆
= Q⋆ +O

(
XdegA−degB+1

)
,

où le O
(
·
)
dépend explicitement de R.

(Q21) Soit A,B ∈ K[X] avec deg(A) = n et deg(B) = m ≤ n. Soit M une fonction telle
que le produit de deux polynômes de degrés au plus n puisse se faire en O(M(n))
opérations. Donner un algorithme qui effectue la division euclidienne de A par B en
O(M(n)) opérations également.

(Q22) Donnez un exemple de cas où cet algorithme est asymptotiquement meilleur que
l’algorithme classique de division euclidienne.

6



3 Linear Feedback Shift Registers (LFSR)

Les séries formelles ont de nombreuses applications au-delà du calcul de division eucli-
dienne que nous venons de présenter. Elles sont par exemple extrêmement utiles pour faire
du dénombrement. Dans cette dernière partie, nous vous proposons une autre application, cette
fois-ci à la génération de bits aléatoires en cryptographie.

3.1 Premières définitions

LFSR. Un générateur à décalage à rétroaction linéaire binaire 2 de longueur ℓ (plus couram-
ment appelé par son nom en anglais Linear Feedback Shift Registers) est une machine à états finis
formée d’une mémoire de ℓ cellules appelée registre, et produisant une suite récurrente linéaire
à coefficients dans F2 de la forme

st+ℓ = c1st+ℓ−1 + · · ·+ cℓst, pour t ≥ 0,

où les coefficients c1, . . . , cℓ ∈ F2 sont fixés.
Plus précisément, le registre est initialisé avec un état S = (s0, . . . , sℓ−1) ∈ Fℓ

2, et à chaque
unité de temps t (réalisée par une horloge interne), chaque cellule du registre est décalée d’une
cellule vers la droite. Le contenu de la cellule la plus à droite sort du registre (et est le bit st
produit par le LFSR au temps t) et la cellule la plus à gauche reçoit en entrée le bit produit par
la suite récurrente linéaire.

Remarque 2. Il est facile de voir (on ne demande pas de l’écrire) que toute suite récurrente
linéaire peut être obtenue comme les bits de sortie d’un LFSR.

+

s3 s2 s1 s0

Figure 1 – LFSR implémentant la récurrence st+4 = st+1 + st

Par l’exemple, le LFSR de la figure 1 initialisé avec l’état (s0, s1, s2, s3) = (1, 0, 1, 1) produit
une suite dont les premiers termes sont (1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0).

Remarque 3. Attention au sens des LFSR avec cette convention. Dans l’état initial, s0

2. On peut bien entendu généraliser ceci à des corps plus gros.

7



est bien à droite (puisque c’est le premier bit à sortir) !

L’intérêt principal des LFSR est qu’ils ont un design si simple qu’ils ont des implémentations
matérielles (i.e., hardware) extrêmement efficaces, et qu’ils produisent des suites de bits ayant
de bonnes propriétés statistiques (que nous n’allons pas préciser plus que ça). Ça en fait de bons
candidats pour la génération de bits aléatoires utilisés pour la cryptographie.

Polynôme de rétroaction. Les coefficients d’un LFSR sont en général représentés sous la
forme d’un coefficient à valeurs dans F2, défini par

P
def
= 1 +

ℓ∑
i=1

ciX
i.

(Q23) Implémentez en Sage une fonction prenant en entrées un état initial sous forme
d’une liste de taille ℓ, un polynôme de rétroaction et un entier N , et produisant les
N premiers termes de la suite (faites attention au sens et à vos indices). Vérifiez
qu’avec le LFSR de la figure 1 vous obtenez bien la suite définie plus haut.

(Q24) Démontrez que toute suite produite par un LFSR de longueur ℓ d’état initial non
nul est forcément périodique de période ≤ 2ℓ − 1.

On considère le LFSR représenté en figure 2.

+++++

1 0 0 1 0 0 1 0 0 1

Figure 2 – Un LFSR de longueur 10

(Q25) Quel est le polynôme de rétroaction de ce LFSR?

(Q26) Vérifiez cette même suite est définie par un LFSR de longueur 3, dont le polynôme
de rétroaction est 1 +X3.

Ainsi, une suite peut-être produite par des LFSR de longueurs différentes. Or, pour les ap-
plications cryptographiques, on cherche à générer des suites de période maximale, celle-ci étant
liée au degré du polynôme de rétroaction du LFSR. Cette non-unicité semble être un frein à
la caractérisation de suite maximale. Nous allons utiliser les séries formelles pour lever cette
limitation.

3.2 LFSR et séries formelles

On considère une suite (sn) ∈ FN
2 produite par un LFSR d’ordre ℓ, et on la représente sous

la forme de sa série formelle associée

S(X)
def
=

∑
i≥0

siX
i ∈ F2[[X]].

8



On note P un polynôme de rétroaction de ce LFSR (donc de degré ℓ).

(Q27) Démontrez qu’il existe un polynôme Q ∈ F2[X] de degré degQ < ℓ et tel que

S(X) =
Q(X)

P (X)
.

On cherchera une expression explicite des coefficients de Q(X).

(Q28) Montrez qu’il existe un unique polynôme P0 de terme constant 1 tel que la série
formelle S(X) soit de la forme

S(X) =
Q0(X)

P0(X)
, et pgcd(P0, Q0) = 1.

(Q29) Montrez que P0 est de degré minimal parmi tous les polynômes de rétroaction
produisant la suite.

(Q30) En déduire que si P est un polynôme de rétroaction pour une suite, et qu’il est
irréductible, alors c’est le polynôme minimal.

Ce polynôme P0 est appelé polynôme de rétroaction minimal de la suite (sn), et ne dépend
que de celle-ci.

(Q31) Donnez un algorithme qui, étant donnée une suite récurrente linéaire définie par
ses N premiers termes représentés sous la forme d’une liste de taille N , produit le
polynôme de rétroaction minimal.

(Q32) Donnez un exemple de suite récurrente linéaire dont le polynôme de rétroaction
minimal n’est pas irréductible.

On peut aussi manipuler les séries formelles directement comme un objet Sage via le construc-
teur PowerSeriesRing. Par exemple

sage: F2 = GF(2)

sage: PS.<T> = PowerSeriesRing(F2)

sage: A.<X> = F2[]

définit les anneaux F2[[T ]] stocké dans PS, et F2[X] stocké dans A. Notez que j’ai utilisé deux
variables différentes pour bien les séparer dans Sage. Comme pour les polynômes, on peut définir
une série formelle associée à une suite par la commande suivante

sage: s = [1, 0, 0, 1, 0, 0, 1, 0, 0, 1]

sage: S = PS(s)

Attention, par défaut, Sage va considérer que les termes suivants sont tous nuls. Pour lui préciser
que vous avez tronqué la série, vous pouvez utiliser la notation O comme par exemple :

sage: S = PS(s) + O(T^10)

9



(Q33) Retrouvez le polynôme de rétroaction minimal en manipulant directement les séries
avec ce constructeur.

(Q34) (Bonus) Démontrez qu’une suite récurrente linéaire de polynôme de rétroaction
minimal P0 de degré ℓ est maximalement périodique (i.e., de période 2ℓ − 1), si et
seulement si P0 est primitif (c’est-à-dire irréductible, et dont les racines engendrent
le groupe (F2ℓ)

×
).

Remarque 4. Un algorithme dû à Berlekamp et Massey permet d’obtenir ce polynôme de
rétroaction minimal efficacement. Il repose exactement sur ce lien avec les séries formelles.

10


	Introduction
	Mise en bouche
	Séries Formelles Tronquées

	Division selon les Puissances Croissantes
	Un premier algorithme
	Méthode de Newton
	Application à la Division Rapide de Polynômes

	Linear Feedback Shift Registers (LFSR)
	Premières définitions
	LFSR et séries formelles


