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Cet examen comporte 3 exercices indépendants. Ils comportent tous une partie d’implé-
mentation avec Sage. Par conséquent, vous rendrez a la fin de 'examen une copie papier
ainsi qu'un fichier Sage contenant vos programmes (lisible, commenté et nettoyé si pos-
sible...) au format EX-Nom-Prenom.ipynb (feuille Jupyter) ou bien EX-Nom-Prenom.sage
(fichier texte). Essayez d’étre le plus lisible possible sur le choix du nom de vos fonctions,
et sur les séparations entre les exercices! Le fichier est a uploader sur Moodle.

Taylor Shift

L’objectif de cet exercice est de déterminer un algorithme asymptoticallement optimal
pour calculer les coefficients d’un polynéme ¢(X) défini par

9(X) € (X +a)

lorsque 'on connait a € Z et les coefficients de f € Z[X], de degré n — 1.



Attention : Par défaut, et sauf mention contraire, on exprimera les complexités en
nombre d’opérations binaires. Faites donc bien attention aux tailles des entrées et
des sorties de vos algorithmes!

On notera M(N) la complexité de la multiplication de deux entiers de N bits.
Par exemple, si on utilise I'algorithme de Karatsuba, M(N) = O(N™&20)), et on
peut descendre a O(N log N log log N) avec ’algorithme de Schénhage-Strassen men-
tionné en cours. On rappelle que les algorithmes en O(N log N) ne sont pas utilisés
en pratique pour la multiplication de grands entiers.

(Q1) Montrer que si A et B sont deux polynomes de degrés n, a coefficients entiers,
et dont les coefficients peuvent tous s’écrire sur £ bits, alors le produit A - B
peut se calculer en O(M (nf)) opérations binaires.

Indication : On pourra encoder A et B comme deux entiers judicieusement
choisis.
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Dans un premier temps, on s’inspire de la méthode de Horner pour calculer le polynéme
g(z). Ainsi, on écrit g sous la forme

g(x)—f0+(x+a)<f1+(x+a)<...+(x+a)fn_1>...>

Le calcul de g s’effectue alors en posant ¢(©) = f,_; et & chaque étape
g9 = (@ +a)g"V + fr_i1.

Le résultat étant alors ¢g("—1).



(Q2) Démontrer que 'algorithme spécifié ci-dessus est correct.

(Q3) Déterminer le nombre d’additions et de multiplications dans Z faites a chaque
étape de votre algorithme.

(Q4) (i) On suppose a partir de maintenant qu’il existe une borne B € N telle que
tous les coefficients de f vérifient |f;| < B. Démontrer que les coefficients
g; de g(z) vérifient alors

lgil < B~ (la] + 1)" "

(ii) En déduire la taille (en bits) de la sortie g.

(Q5) On suppose que B < 2¢ pour un certain entier ¢, et |a] < 2¢ pour un cer-
tain entier d. Montrer que cet algorithme réalise le calcul en O (n2M (nd + 6))
opérations binaires.

(Q6) Justifier que si @ = =1, cette complexité peut se réduire a seulement
O(n? (n +1)).
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Dans la suite de cet exercice, on suppose que n = 2™ est une puissance de 2, et on
suppose qu’on a précalculé tous les (z + a)2l pour 1 < i < m. On pourra par exemple
supposer qu’il existe un tableau dont la case i contient la liste des coefficients de (x + a)?'.
On se propose alors d’utiliser une approche de type <« Diviser Pour Régner >, de la forme
suivante :

Algorithme 1 : TaylorShift
Entrées : La liste des coefficients de f et un entier a
Sorties : La liste des coefficients du polynéme g(z) = f(z + a)

=

n < deg f + 1.
sin <1 alors
L retourner f

(fo, f1) < Decoupage( f)
go < TaylorShift(fy,a)

g1 < TaylorShift(f,a)

g < Recombinaison(go, g1)
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(Q7) Définir les algorithmes Decoupage et Recombinaison afin que cet algo-
rithme soit correct, et donner une preuve de correction.

Indication : On pourra chercher une relation judicieuse de la forme

f(@) = fo(z) + 2 fi(x).

et exprimer g a partir de ces éléments.

(Q8) Dérouler I’algorithme & la main (sur une copie) sur l'entrée

f(z) = 23 + 222 + 2 + 4,

et l'entier a = 3.

On note T'(n) la complexité binaire de cet algorithme, et on suppose que les coefficients
de f s’écrivent sur £ bits, et que a s’écrit sur d bits. Le but est de montrer que

T(n)=0 <log(n)M<n(nd + €)>> .

(Q9) Ecrire la relation de récurrence vérifiée par T, en fonction de M (n).

(Q10) En déduire la complexité binaire de cet algorithme. Commenter sur son opti-
malité de cet algorithme. On pourra utiliser le fait que 2M(n/2) < M(n), ce
qui est le cas pour tous les algorithmes vus dans ce cours.

Indication : Le Théoreme Maitre wvu en cours ne s’applique pas
immédiatement ici. Le plus simple est de refaire la preuve dans ce cas. On
pourra par exemple commencer par compter le nombre d’opérations dans Z. en
travaillant au niveau des polynomes, avant de convertir le tout en opérations
binaires.

(Q11) Comment peut-on effectuer le précalcul de maniere efficace, tout en conservant
cette complexité binaire finale 7

On se propose a présent d’implémenter cet algorithme.



(Q12) Implémenter en Sage un algorithme efficace effectuant le précalcul des (:E+a)2i.
(Q13) Implémenter en Sage I'algorithme diviser pour régner ci-dessus.

(Q14) Application Numérique : On considére le polynéme

100
def ‘
101(x) ="+ 2P+ tz 1= ol
=0

Vérifiez a ’aide de votre algorithme que

z-Pro1(z+1)=(z+1)10% -1




Algorithme de Cantor-Zassenhaus

Soit F & Z/317Z et soit P € F[X] le polynéme de degré 20 dont les coefficients, rangés
par degré croissant, sont :

(21,30,4,29,1,15,26,4,20,2,22,11, 19,0, 30, 3, 20,0, 29, 29, 1)

Notre objectif va étre de factoriser P.

(Q15) Calculer avec Sage les polynomes D; . pged(P, 231 — x) pour 1 < i < 5. Que
peut-on constater ?

(Q16) Démontrer que le quotient Flz]|/(P) est un produit de 4 copies du corps fini
IF315.

3151

alorsa 2z € {-1,1}.

X
315

(Q18) Dans Sage, choisir au hasard un polynoéme A € F[z], de degré inférieur a 20, et
315

premier avec P, puis calculer D = pged(A i 1, P). Quelle est la probabilité
que D € {1,P}?

Indication : Si vous avez limpression que votre programme est tres lent,
c’est surement parce que vous ne calculez pas D avec la bonne complexité!
Vous pouvez expliquer pourquoi sur votre copie.

(Q17) Rappeler pourquoi si a € F

(Q19) Continuer jusqu’a obtenir la factorisation de P.

Polyndomes Multivariés

On cherche a résoudre dans C le systeme polynomial suivant :

x4+x3+x+y3:

B 4ry+yt=0
?y+ay+r+y>=0
P4y +r+y?=0

(S)

Dans cet exercise, on supposera que tous les ordres monomiaux considérés vérifient
x> y.

(Q20) Quel est I'ordre monomial & choisir pour résoudre ce systéme ? Bien justifier
le choix.




On se place dans 'anneau Q|z,y|, muni de l'ordre lexicographique, avec = > y, et on
note

fo d:ef$4+a:3+a:+y3,
Y3 422 oy 4yt
2y tay o+,
fs € a? + oy oty
les polynomes définissant chaque équation. Soit I Iidéal (fo, f1, fo, f3) de Qlz, y].

(Q21) Montrer que (fo, f1, f2, f3) n’est pas une base de Grébner de I.
(Q22) Calculer avec Sage la base de Grobner réduite de I.
(Q23) Déterminer toutes les solutions dans C du systéme (S).
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