
ANNÉE UNIVERSITAIRE 2025–2026

SESSION 1 D’AUTOMNE — DÉCEMBRE 2025

MENTION : Mathématiques et Applications

Code UE : 4TMA701U

Intitulé de l’épreuve : Examen de Calcul Formel

Date : 17 Décembre 2025 Heure : 14 : 00 Durée : 3h

Documents Autorisés : Documentation de Sage et TDs.

Collège
Sciences et
Technologies

Masters

Cet examen comporte 3 exercices indépendants. Ils comportent tous une partie d’implé-
mentation avec Sage. Par conséquent, vous rendrez à la fin de l’examen une copie papier
ainsi qu’un fichier Sage contenant vos programmes (lisible, commenté et nettoyé si pos-
sible...) au format EX-Nom-Prenom.ipynb (feuille Jupyter) ou bien EX-Nom-Prenom.sage
(fichier texte). Essayez d’être le plus lisible possible sur le choix du nom de vos fonctions,
et sur les séparations entre les exercices ! Le fichier est à uploader sur Moodle.

1 Taylor Shift

L’objectif de cet exercice est de déterminer un algorithme asymptoticallement optimal
pour calculer les coefficients d’un polynôme g(X) défini par

g(X)
def
= f(X + a)

lorsque l’on connâıt a ∈ Z et les coefficients de f ∈ Z[X], de degré n− 1.

1

Attention : Par défaut, et sauf mention contraire, on exprimera les complexités en
nombre d’opérations binaires. Faites donc bien attention aux tailles des entrées et
des sorties de vos algorithmes !

On notera M(N) la complexité de la multiplication de deux entiers de N bits.
Par exemple, si on utilise l’algorithme de Karatsuba, M(N) = O(N log2(3)), et on
peut descendre à O(N logN log logN) avec l’algorithme de Schönhage-Strassen men-
tionné en cours. On rappelle que les algorithmes en O(N logN) ne sont pas utilisés
en pratique pour la multiplication de grands entiers.

(Q1) Montrer que si A et B sont deux polynômes de degrés n, à coefficients entiers,
et dont les coefficients peuvent tous s’écrire sur ℓ bits, alors le produit A · B
peut se calculer en O(M(nℓ)) opérations binaires.

Indication : On pourra encoder A et B comme deux entiers judicieusement
choisis.

Dans un premier temps, on s’inspire de la méthode de Horner pour calculer le polynôme
g(x). Ainsi, on écrit g sous la forme

g(x) = f0 + (x+ a)

(
f1 + (x+ a)

(
· · ·+ (x+ a)fn−1

)
· · ·

)

Le calcul de g s’effectue alors en posant g(0) = fn−1 et à chaque étape

g(i) = (x+ a)g(i−1) + fn−i−1.

Le résultat étant alors g(n−1).

2

(Q2) Démontrer que l’algorithme spécifié ci-dessus est correct.

(Q3) Déterminer le nombre d’additions et de multiplications dans Z faites à chaque
étape de votre algorithme.

(Q4) (i) On suppose à partir de maintenant qu’il existe une borne B ∈ N telle que
tous les coefficients de f vérifient |fi| ≤ B. Démontrer que les coefficients
gi de g(x) vérifient alors

|gi| ≤ B · (|a|+ 1)n−1 .

(ii) En déduire la taille (en bits) de la sortie g.

(Q5) On suppose que B < 2ℓ pour un certain entier ℓ, et |a| < 2d pour un cer-
tain entier d. Montrer que cet algorithme réalise le calcul en O

(
n2M(nd+ ℓ)

)
opérations binaires.

(Q6) Justifier que si a = ±1, cette complexité peut se réduire à seulement
O(n2 (n+ ℓ)).

Dans la suite de cet exercice, on suppose que n = 2m est une puissance de 2, et on
suppose qu’on a précalculé tous les (x + a)2

i
pour 1 ≤ i < m. On pourra par exemple

supposer qu’il existe un tableau dont la case i contient la liste des coefficients de (x+ a)2
i
.

On se propose alors d’utiliser une approche de type ≪ Diviser Pour Régner ≫, de la forme
suivante :

Algorithme 1 : TaylorShift

Entrées : La liste des coefficients de f et un entier a
Sorties : La liste des coefficients du polynôme g(x) = f(x+ a)

1 n← deg f + 1.
2 si n ≤ 1 alors
3 retourner f

4 (f0, f1)← Decoupage(f)
5 g0 ← TaylorShift(f0, a)
6 g1 ← TaylorShift(f1, a)
7 g ← Recombinaison(g0, g1)

3

(Q7) Définir les algorithmes Decoupage et Recombinaison afin que cet algo-
rithme soit correct, et donner une preuve de correction.

Indication : On pourra chercher une relation judicieuse de la forme

f(x) = f0(x) + xℓf1(x).

et exprimer g à partir de ces éléments.

(Q8) Dérouler l’algorithme à la main (sur une copie) sur l’entrée

f(x) = x3 + 2x2 + 2x+ 4,

et l’entier a = 3.

On note T (n) la complexité binaire de cet algorithme, et on suppose que les coefficients
de f s’écrivent sur ℓ bits, et que a s’écrit sur d bits. Le but est de montrer que

T (n) = O

(
log(n)M

(
n(nd+ ℓ)

))
.

(Q9) Écrire la relation de récurrence vérifiée par T , en fonction de M(n).

(Q10) En déduire la complexité binaire de cet algorithme. Commenter sur son opti-
malité de cet algorithme. On pourra utiliser le fait que 2M(n/2) ≤ M(n), ce
qui est le cas pour tous les algorithmes vus dans ce cours.

Indication : Le Théorème Mâıtre vu en cours ne s’applique pas
immédiatement ici. Le plus simple est de refaire la preuve dans ce cas. On
pourra par exemple commencer par compter le nombre d’opérations dans Z en
travaillant au niveau des polynômes, avant de convertir le tout en opérations
binaires.

(Q11) Comment peut-on effectuer le précalcul de manière efficace, tout en conservant
cette complexité binaire finale ?

On se propose à présent d’implémenter cet algorithme.

4

(Q12) Implémenter en Sage un algorithme efficace effectuant le précalcul des (x+a)2
i
.

(Q13) Implémenter en Sage l’algorithme diviser pour régner ci-dessus.

(Q14) Application Numérique : On considère le polynôme

Φ101(x)
def
= x100 + x99 + · · ·+ x+ 1 =

100∑
i=0

xi.

Vérifiez à l’aide de votre algorithme que

x · Φ101(x+ 1) = (x+ 1)101 − 1.

5

2 Algorithme de Cantor-Zassenhaus

Soit F def
= Z/31Z et soit P ∈ F[X] le polynôme de degré 20 dont les coefficients, rangés

par degré croissant, sont :

(21, 30, 4, 29, 1, 15, 26, 4, 20, 2, 22, 11, 19, 0, 30, 3, 20, 0, 29, 29, 1)

Notre objectif va être de factoriser P .

(Q15) Calculer avec Sage les polynômes Di
def
= pgcd(P, x31

i − x) pour 1 ≤ i ≤ 5. Que
peut-on constater ?

(Q16) Démontrer que le quotient F[x]/(P) est un produit de 4 copies du corps fini
F315 .

(Q17) Rappeler pourquoi si a ∈ F×
315

, alors a
315−1

2 ∈ {−1, 1}.
(Q18) Dans Sage, choisir au hasard un polynôme A ∈ F[x], de degré inférieur à 20, et

premier avec P , puis calculerD = pgcd(A
315−1

2 −1, P). Quelle est la probabilité
que D ∈ {1, P} ?
Indication : Si vous avez l’impression que votre programme est très lent,
c’est surement parce que vous ne calculez pas D avec la bonne complexité !
Vous pouvez expliquer pourquoi sur votre copie.

(Q19) Continuer jusqu’à obtenir la factorisation de P .

3 Polynômes Multivariés

On cherche à résoudre dans C le système polynomial suivant :

(S)


x4 + x3 + x+ y3 = 0

x3 + x2 + xy + y4 = 0

x2y + xy + x+ y3 = 0

x2 + xy2 + x+ y2 = 0

Dans cet exercise, on supposera que tous les ordres monomiaux considérés vérifient
x > y.

(Q20) Quel est l’ordre monomial à choisir pour résoudre ce système ? Bien justifier
le choix.

6

On se place dans l’anneau Q[x, y], muni de l’ordre lexicographique, avec x > y, et on
note

f0
def
= x4 + x3 + x+ y3,

f1
def
= x3 + x2 + xy + y4,

f2
def
= x2y + xy + x+ y3,

f3
def
= x2 + xy2 + x+ y2

les polynômes définissant chaque équation. Soit I l’idéal ⟨f0, f1, f2, f3⟩ de Q[x, y].

(Q21) Montrer que (f0, f1, f2, f3) n’est pas une base de Gröbner de I.

(Q22) Calculer avec Sage la base de Gröbner réduite de I.

(Q23) Déterminer toutes les solutions dans C du système (S).

7

	Taylor Shift
	Algorithme de Cantor-Zassenhaus
	Polynômes Multivariés

