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Travail sur machine

Ce travail porte sur l’algorithme de Cantor-Zassenhaus pour factoriser des polynômes à
coefficients dans un corps fini.

Exercice 1 – [Calculs sur les corps finis]
1) Fp : soit p un nombre premier. On rappelle que pour définir Fp sur sage, on peut écrire
k=GF(p) (où p est bien sûr préalablement défini).

2) Si p est un nombre premier, comparez les types de Fp = GF(p) et Z/pZ = Zmod(p) en
Sage. Dans la suite, il faudra bien faire attention de toujours utiliser la première.

3) Fq : soit q = pk une puissance de p.
a) Pour définir Fq, on peut utiliser un polynôme irréductible P de degré k de Fp[x] de

la manière suivante.
k.<a>=GF(q, modulus=P)

Alors, Fq est défini par Fp[x]/(P ) et a est la classe de x dans ce quotient.

b) On peut aussi laisser sage choisir le polynôme P en tapant k.<a>=GF(q). Alors a est
la classe de x dans un certain quotient Fp[x]/(P ). Pour connaître P , il suffit d’utiliser la
commande k.modulus().

c) On peut même taper simplement k=GF(q). Pour retrouver le P et le a, on utilise alors
les commandes k.modulus() et k.gen().

4) Anneau de polynômes. Si k est un corps codé k, on définit l’anneau k[x] par
kx.<x>=PolynomialRing(k).

Pour tirer au hasard un polynôme de degré entre 0 et n :
kx.random_element((0,n))

5) Exponentiation rapide. Soient f et g deux polynômes de k[x] et n un entier. Pour
calculer fn mod g rapidement, on dispose de la commande pow(f,n,g).

6) Anneaux quotients. On peut s’en passer pour la suite de ce travail. La commande
suivante permet de définir l’anneau quotient A = k[x]/(f).

A.<z>=kx.quotient(f)
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Alors z est la classe de x dans le quotient k[x]/(f).

Exercice 2 – [Racines dans Fq d’un polynôme f de Fq[x]]
En Sage, il est possible de tester l’irréductibilité d’un polynôme P ∈ Fq[X] via la com-

mande
P.is_irreducible().

Pour factoriser, vous pourrez (pour l’instant) utiliser la commande
P.factor().

Remarque : L’algorithme utilisé par Sage pour tester l’irréductibilité dépend de l’im-
plémentation du corps sous-jacent, et en réalité peut parfois utiliser des algorithmes de
factorisation, mais laissons ça de côté et utilisons-le pour le moment comme une boîte
noire.

1) En choisissant des polynômes P non irréductibles, vérifiez que gcd(Xq − X, P ) est bien
un produit de polynômes de degré 1.

2) En déduire une méthode générale pour calculer les racines d’un polynôme univarié à
coefficients dans Fq.

3) Voyez-vous comment généraliser à la résolution d’un système d’équations polynomiales
(univariées) ?

Exercice 3 – [Algorithme de Cantor-Zassenhaus]
On rappelle l’algorithme de Cantor-Zassenhaus en caractéristique impaire.

Algorithme 1. Factorisation dans Fq[x].
Entrées: q = pk, où p est un nombre premier impair, Q ∈ Fq[x] de degré n, produit de

polynômes irréductibles deux à deux distincts de degré d.
Sorties: Un diviseur non trivial de Q, ou bien “échec”.

1: Tirer au hasard A ∈ Fq[x] de degré inférieur à n.
2: Calculer D = pgcd(A, Q). Si D ̸= 1, sortir D.
3: Calculer B = A(qd−1)/2 − 1 mod Q
4: Calculer D = pgcd(B, Q). Si D ̸= 1 et D ̸= Q, sortir D. Sinon, sortir “échec”.

1) En appliquant cet algorithme, factoriser (à la main) le polynôme x4 + x3 + x − 1 de
F3[x], en prenant d = 2 et A = x − 1.
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2) Programmer l’algorithme de Cantor-Zassenhaus et le tester sur l’exemple ci-dessus. Vous
pouvez aussi modifier l’algorithme pour qu’il continue tant que vous obtenez une erreur à
la dernière étape.

3) Tester également votre fonction sur x8 + 8x6 + 9x4 + 6x2 + 4 ∈ F11[x]. Ici, le degré des
polynômes irréductibles est égal à 2.

4) Le n-ème polynôme cyclotomique Φn est un polynôme important à coefficiants entiers. Il
est donné en Sage par cyclotomic_polynomial(n). Tester votre fonction sur le polynôme
cyclotomique Φ16 vu comme un polynôme de F3[x] avec d = 4, puis de F9[x] avec d = 2.

5) On peut montrer que dans Fq[x], le polynôme Φn est produit de polynômes irréductibles
de degré d, où d est l’ordre de q dans (Z/nZ)∗. Pour calculer cet ordre, on peut faire les
opérations suivantes.

A=Integers(n)
Aq=A(q)
Aq.multiplicative_order()

Ici, A est l’anneau Z/nZ et Aq est la classe de q dans cet anneau. Sachant cela, tester
l’algorithme de Cantor-Zassenhaus sur Φ25 ∈ F9[x].

Exercice 4 – [Calcul de tous les facteurs]
Écrire une fonction DegresEgaux qui, étant donné un polynôme Q sans facteur carré dont
tous les facteurs irréductibles sont de degré d, rend ces facteurs irréductibles. Cette fonction
utilisera l’algorithme de Cantor-Zassenhaus de la question précédente pour trouver un
facteur D et s’appellera elle-même récursivement sur D et Q/D.

Exercice 5 – [Factorisation complète]
Les polynômes sont dans Fq[x].
1) Soit P = x11 + 3x10 + 2x9 + 3x8 + x7 + x5 + 3x4 + 2x2 + 4x ∈ F5[x].

a) Calculer le produit D1 des éléments de Irr(5, 1) qui divisent P (en calculant pgcd(x5 −
x, P )).

b) En utilisant DegresEgaux, calculer la factorisation de D1.
c) Pour tout irréductible P1,i divisant D1, calculer la plus grande puissance α1,i de P1,i

qui divise P , et remplacer P par P/P
α1,i

1,i .
d) calculer le produit D2 des éléments de Irr(5, 2) qui divisent le nouveau P (en calculant

pgcd(x52 − x, P )).
e) En utilisant DegresEgaux, calculer la factorisation de D2.
f) Pour tout irréductible P2,i divisant D2, calculer la plus grande puissance α2,i de P2,i

qui divise P , et remplacer P par P/P
α2,i

2,i .
g) En déduire la factorisation complète de P .
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2) Écrire une fonction qui, étant donné un polynôme quelconque, donne sa décomposition
complète, en utilisant la stratégie de la question précédente.

Exercice 6 – [Cantor-Zassenhaus en caractéristique 2]
Tel que nous l’avons décrit jusqu’à présent, l’algorithme de Cantor-Zassenhaus ne fonc-

tionne qu’en caractéristique impaire. Le but de cet exercice est de l’adapter à la caracté-
ristique 2.
1) Soit m ⩾ 1. On définit le polynôme

Tm = X2m−1 + X2m−2 + · · · + X4 + X2 + X ∈ F2[X].
a) Montrer que Tm(Tm + 1) = X2m + X.

b) En déduire que si α ∈ F2m , alors Tm(α) ∈ F2.

c) Montrer que l’application α 7→ Tm(α) de F2m dans F2 est une application linéaire de
F2-espaces vectoriels. On l’appelle trace de F2m sur F2.

d) En déduire que les ensembles {α ∈ F2m : Tm(α) = 0} et {α ∈ F2m : Tm(α) = 1}
ont même cardinal, soit 2m−1.

On fixe maintenant q = 2k et on considère Q ∈ Fq[x] de degré n. On suppose que Q est
produit de r polynômes irréductibles sur Fq qu’on note P1, . . . , Pr, deux à deux distincts
et tous de même degré d. On note R = Fq[x]/(Q), et Ri = Fq[x]/(Pi). Soit φi l’application
canonique de R dans Ri définie par φi(P mod Q) = P mod Pi.

2) Soit A ∈ R. Montrer que pour tout i, φi(Tkd(A)) ∈ F2 (dans F2[X]/(Pi)) et que si
A est choisi au hasard dans R avec probabilité uniforme, Tkd(A) appartient à F2 (dans
F2[X]/(P )) avec probabilité 21−r.

3) En déduire un algorithme pour factoriser Q et montrer que sa probabilité d’échec est
inférieure à 1/2.


