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Abstract. — Let K be a finite extension of Q, and let G = Gal(Q,/K). Fontaine has
constructed a useful classification of p-adic representations of G in terms of cyclotomic
(¢, T')-modules. Lately, interest has risen around a generalization of the theory of (p,T')-
modules, replacing the cyclotomic extension with an arbitrary infinitely ramified p-adic Lie
extension. Computations from Berger suggest that locally analytic vectors should provide
such a generalization for any arbitrary infinitely ramified p-adic Lie extension, and this has
been conjectured by Kedlaya.

In this paper, we focus on the case of Z,-extensions, using recent work of Berger-
Rozensztajn and Porat on an integral version of locally analytic vectors and explain what
is the structure of the locally analytic vectors in the higher rings of periods AT in this
setting. We then use this result to construct, in the anticyclotomic setting and assuming
that Kedlaya’s conjecture holds, an element in the field of fractions of the Robba ring which
“should not exist” according to a conjecture of Berger. As a consequence, we prove that this
conjecture of Berger on substitution maps on the Robba ring is incompatible with Kedlaya’s
conjecture.

Should Berger’s conjecture hold, this would provide an example of an extension for which
there is no overconvergent lift of its field of norms and for which there exist nontrivial higher
locally analytic vectors.
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Introduction

Let p be a prime, p # 2, and let K be a finite extension of Q,. One of the main ideas
to study p-adic representations and Z,-representations of Gx = Gal(Qp /K) is to use an
intermediate extension K C K, C Qp such that K /K is nice enough but still deeply
ramified (in the sense of [CG96]), so that Q,/K is almost étale and “contains almost
all the ramification of the extension Qp /K7 If K/K is an infinitely ramified p-adic Lie
extension then those assumptions are satisfied. Classically, one lets K, be the cyclotomic
extension K (py~) of K.

One striking result following this idea has been the construction of cyclotomic (¢, T')-
modules. Fontaine has constructed in [Fon90] an equivalence of categories V — D(V)
between the category of all p-adic representations of Gy and the category of étale (p, T')-
modules. Different theories of cyclotomic (¢, I')-modules can be defined: one can define
them over a 2-dimensional local ring Bg, over a subring Bk of B consisting of so-called
overconvergent elements, or over the Robba ring. In every case, a (p,I')-module is a
finite free module over the corresponding ring, equipped with semilinear actions of ¢ and
I' = Gal(Kcya/K) commuting one to another (the ring itself being equipped with such
actions).

Thanks to a theorem of Cherbonnier and Colmez [CC98| and a theorem of Kedlaya
[Ked05], these different theories are equivalent. Moreover, the theories over both BJ}(
and Bg come with their integral counterparts, so that free Z,-representations of G are
equivalent to étale (¢, I')-modules over some integral subring of either BE( or Bg.

Lately, there has been an increasing interest in generalizing both (¢, I')-modules theory
[Ber14, Car13, KR09] and more generally in understanding how to replace the cyclo-
tomic extension by an arbitrary infinitely ramified p-adic Lie extension in p-adic Hodge
theory [BC16, Poy22b|.

One could try to define (¢, I')-modules attached to an almost totally ramified p-adic
Lie extension by copying the constructions in the cyclotomic case. This strategy relies
on finding a “lift of the field of norms” and happens to work in the Lubin-Tate setting
[KRO09]. Under some strong assumptions (which are not always met even in the cyclo-
tomic case), namely that the lift is of “finite height”, Berger showed in [Ber14| that
there were some restrictions on the kind of extensions one could consider in this case
(and proving for example that there was no finite height lift of the field of norms in the
anticyclotomic setting). The author proved that, under the same strong assumptions,
the only extensions for which one could lift the field of norms were actually only the
Lubin-Tate ones [Poy22a]. A more natural and less constraining assumption would be
to ask for which extensions one could have an overconvergent lift, but in this case almost
nothing is known.

An other idea to generalize (p,I')-modules theory, and which has been used with suc-
cess by Berger and Colmez [BC16] to generalize Sen theory, has been to use the theory of
locally analytic vectors, initially introduced by Schneider and Teitelbaum [STO03]. Berger
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and Colmez have shown that Sen theory could be completely generalized to any arbitrary
infinitely ramified p-adic Lie extension by using locally analytic vectors. Computations
from Berger [Ber16] showed that locally analytic vectors in the cyclotomic setting recov-
ered the cyclotomic (@, I')-modules over the Robba ring, and suggested that the theory
of locally analytic vectors should be able to define a theory of (¢, I')-modules for any
arbitrary infinitely ramified p-adic Lie extension. In [Ked13], Kedlaya conjectured that
indeed, locally analytic vectors should provide a nice (¢, T')-module theory for any such
p-adic Lie extension, and that the theory should even be defined at an integral level.

Up until recently, locally analytic vectors were only defined in a setting in which p
is inverted, so it was difficult to use them in an integral setting (and even more in
characteristic p). One could say that an element z in a free Z,-algebra was locally
analytic if it became locally analytic after inverting p, which is what Kedlaya does in the
statement of his conjecture, but this definition is not very practical and does not extend
for characteristic p algebras.

Recently, Berger-Rozensztajn [BR22a, BR22b]|, Gulotta [Gul19], Johansson and
Newton [JN19] and Porat [Por24] have generalized the classical notion of locally analytic
vectors (denoted by “Super-Holder vectors” in the works of Berger and Rozensztajn) to a
characteristic p and integral setting, by using classical tools of p-adic analysis like Mahler
expansions. In [Por24|, Porat has proven that these new integral locally analytic vectors
can be used to recover cyclotomic (¢, ')-modules, thus generalizing the computations of
Berger [Berl6] to an integral setting. This makes it possible to reinterpret Kedlaya’s
conjecture in terms of those new integral locally analytic vectors.

In this paper, we focus on the particular case of Z,-extensions, of which both the
cyclotomic and the anticyclotomic extensions are a particular case, and try to give a
description on what the locally analytic vectors in the rings used to define (¢, I')-modules
are. We thus let K, /K be a totally ramified Z,-extension, and we look at the structure
of the ring (A1)GlQy/Ko).Gal(Koo/K) =l hich we write (Al )" in what follows.

Our first result is that only two very different situations may occur:

Theorem 0.1. — 1. Either there is no nontrivial locally analytic vectors in A}, that
18 (A}()la = OK,'
2. or (AL = (AL, where Al is a ring of overconvergent functions in one
variable.

In the second case, we prove in the meantime that everything behaves as in the cyclo-
tomic setting. In particular, we obtain an overconvergent lift of the field of norms, and
we also prove that the existence of such a lift guarantees that we are in the second case
of theorem 0.1:

Theorem 0.2. — If K /K is a Z,-extension, then there exists an overconvergent lift of
the field of norms of Ko /K if and only if there exists a nontrivial locally analytic vector

Moreover, we also obtain a description of the rings (ﬁ%)la which matches the spe-
cialization to the cyclotomic setting of theorem 4.4 of [Ber16], under some additional
assumption (which holds for example when K/Q, is unramified).
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Of course, if one believes in Kedlaya’s conjecture, then the first situation in theorem
0.1 above should never arise. In the anticyclotomic setting, we prove that if we are in the
second case of the theorem, then we can construct an element of the field of fractions of
Robba ring which is invariant under a substitution map, thus contradicting a conjecture
of Berger [Ber22]. In particular, this proves the following:

Theorem 0.3. — Kedlaya’s conjecture and Berger’s are incompatible.

Notations

For the rest of the paper, we fix a prime p and we let K be a finite extension of Q,,
with residue field kg of cardinal ¢ = p”, and ramification index e. We let Ok denote the
ring of integers of K, and we let m be a uniformizer of O.

1. Lubin-Tate and anticylotomic extensions

Let LT be a Lubin-Tate formal Og-module attached to the uniformizer m of Q. For
a € Ok, we let [a](T) denote the power series giving the multiplication by a map on LT.
Let T be a local coordinate on LT such that [7](T) = T? + 7T, except in the particular
case where K = Q,, and m = p, where we choose instead a local coordinate 7" such that
p|(T) = (1 +T)» — 1. We let K,, = K(LT[n"]) be the extension of K generated by
the 7"-torsion points of LT, and we let Kip = U,>1K,,. We let I'ty = Gal(Kpr/K)
and Hyp = Gal(Q,/Kyr). By Lubin-Tate theory (see [LT65]), if g € I’y then there
exists a unique a, € Oy such that g acts on the torsion points of LT through the power
series [a,](T"), and the map x, : g € I'ur — a, € O is a group isomorphism called the
Lubin-Tate character attached to .

For n > 1, we let I',, = Gal(LT/K,,) so that I';, = {g € I'ur, x(g9) € 1 + 7"Ok}. We
let ug = 0 and for n > 1 we let u,, € Qp be such that [7](u,) = u,_1, with u; # 0. We
have K, = K(uy), and u,, is a uniformizer of K,,. We also let Q,(7") be the minimal
polynomial of u,, over K, so that Qo(T) =T, Q1(T) = [x|(T)/T and Q11 = Q,([7](T))
if n>1.

We let log;r =T 4 O(deg > 2) € K[T] denote the Lubin-Tate logarithm map, which
converges on the open unit disk and is such that log;([a](T)) = a - log (T for a € Ok.
We recall that logy,p(T") = T ][5, Qx(T") /7, and we let expy,r denote the inverse of logyp.

When K = Q,2, the unramified extension of Q, of degree 2, and 7 = p, then Kir
contains two special and particularly interesting sub-Z,-extensions: the cyclotomic ex-
tension Koy = K (ppo) of K, which is defined, Galois and abelian over Q,, and the
anticyclotomic extension K, which is the unique Z,-extension of K, defined, Galois and
pro-dihedral over Q,,: the Frobenius o of Gal(K/Q,) acts on Gal(K,./K) by inversion. It
is linearly disjoint from K.y over K, and the compositum Ky - K, is equal to Kyr. If we

let x, denote the Lubin-Tate character corresponding to Ky, then xcya = N K/Qp(Xp) =

a(xp) - Xp- One defines an anticyclomic character x,. : Gal(K,./K)—Ox by g — Jg‘;;(gg)))

which is an isomorphism on to its image, and the anticyclotomic extension is the subfield
of Kyt fixed by the elements g € I'ir such that y..(g) = 1.
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2. Locally analytic and super-Ho6lder vectors

In this section, we recall the classical notion of locally analytic vectors, following
[Emel7]| and [Berl6, §2], along with the notion of locally analytic vectors for Z,-Tate
algebras as introduced by Porat [Por24].

Let G be a p-adic Lie group, and let Gy be an open subgroup of G which is a uniform
pro-p-group (see §4 of [DDSMSO03] for the definition of a uniform prop-p-group and
Interlude A of ibid for the statement). The main interest of such a subgroup Gy is that
it provides a nice specific fundamental system of open neighborhoods of GG, along with
coordinates c : G0—>Z1‘f, where d is the dimension of G as a p-adic Lie group. Namely, if

we let G; = {¢g”", g € Gy} then we have the following properties (see §4 of [DDSMS03]
for the proof):

1. for ¢« > 0, G; is an open normal uniform subgroup of Gjy;

2. [Gi: Giy1] = p% .

3. there is a coordinate ¢ : Go—Z¢ such that for i > 0, ¢(G;) = (p'Z,)%;
4. For g,h € Gy, we have gh™! € G, if and only if c(g) — c(h) € (p'Z,)*.

In the rest of this article, if G is a p-adic Lie group then we assume that we also have
chosen such a subgroup Gy, along with coordinates ¢ and the (G;);>o as a fundamental
system of open neighborhoods of G.

Let H be an open subgroup of G which is uniform pro-p, with coordinate ¢ : H — Zg.
Let W be a Qp-Banach representation of G. We say that w € W is an H-analytic
vector if there exists a sequence {wy } e Stuch that wy — 0 in W and such that g(w) =
> kene €(g)Fwi for all g € H. We let WH=2 be the space of H-analytic vectors. This
space injects into C*"(H, W), the space of all analytic functions f : H — W. Note that
C*(H, W) is a Banach space equipped with its usual Banach norm, so that we can endow
WH= with the induced norm, that we will denote by || - ||z. With this definition, we
have ||w||g = supyend ||wi|| and (WH=22 || - || ;) is a Banach space.

The space C**(H, W) is endowed with an action of H x H x H, given by

((91,92,93) - [)(9) = 91+ f(95 " 993)

and one can recover W~ ag the closed subspace of C*™(H, W) of its A; o(H )-invariants,
where A 5 : H — H x H x H denotes the map g — (g,9,1) (see [Emel7, §3.3] for more
details).

We say that a vector w of W is locally analytic if there exists an open subgroup
H as above such that w € W= Let W' be the space of such vectors, so that
W = @H WH=an where H runs through a sequence of open subgroups of G. The
space W' is naturally endowed with the inductive limit topology, so that it is an LB
space.

Let W be a Fréchet space whose topology is defined by a sequence {p; },, of seminorms.
Let W; be the Hausdorff completion of W at p;, so that W = 1£n W;. The space W' can

i>1
be defined but as stated in [Ber16] and as showed in §7 of [Poy22b], this space is too
small in general for what we are interested in, and so we make the following definition,
following [Ber16, Def. 2.3]:
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Definition 2.1. — If W = @ W; is a Fréchet representation of G, then we say that a
i>1

vector w € W is pro-analytic if its image m;(w) in W; is locally analytic for all i. We let

WPra denote the set of all pro-analytic vectors of W.

We extend the definition of W' and WP for LB and LF spaces respectively.

Because the classical definition of locally analytic vectors involves denominators in p,
it may seem difficult to generalize this notion for Z,-algebras where p is not invertible
(and may even be 0). The main idea to generalize the classical notion of locally analytic
vectors to this setting is (as often in p-adic analysis) to replace Taylor expansions with
Mahler expansions, using binomial coefficients. This is explained and used in [BR22a)]
and [Por24]. Following those two papers, we place ourselves in the following setting:
R is a Z,-algebra, which is a Tate ring endowed with a valuation valgp : R—(—00, o]
satisfying the following properties:

1. valg(x) = oo if and only if z = 0 (meaning that R is separated for the topology

induced by valg);

2. valg(zy) > valg(z) + valg(y) for all z,y € R;

3. valg(z +y) > inf(valg(x), valg(y)) for all x,y € R;

4. valg(p) > 0.

We extend this definition to R-modules.

In what follows, GG is a uniform pro-p-group. For an R-module M, endowed with a
compatible valuation valys, we write C°(G, M) for the set of continuous functions from G
to M.

Following [Por24], we make the following definition:

Definition 2.2. — 1. Let A\, p € R. Welet C*~**(Z2, M) denote the set of functions
[+ Z2—M such that valy(an(f)) = p* - ploge(inl)l 4y for every n = (nq, -+, ng)
in Zg, where |n|. denotes the maximum of the n;. Note that it is contained in
CoG, M) (see §2 of [Por24]).

2. We define C*~* (G, M) by pulling back along c : G—>ZZ the definition of
Con M (ZE, M).

3. We let C* (G, M) denote the set of functions f : G—M such that there exists
p € R such that f € Cav~M(G, M).

4. We let C'*(G, M) be the colimit of the cofinal system {C*"~**(G, M)}, ., or equiv-
alently, of the cofinal system {C* (G, M)},.

We refer the reader to §2 of [Por24] to see different characterization of those sets of
functions.

We now assume that G is a uniform pro-p-group, acting on M by isometries. As in
the Banach-space setting, the space C°(G, M) is endowed with an action of G x G x G,
given by

((91,92,93) - F)(9) = g1~ f(95" 993)
and we define M (resp. MEA730 pesp. MEA=314) as the subspace of C*(G, M)
(resp. C(G, M)%A=a0 resp. C(G, M)EA=21) of its Ay o(G)-invariants, where A; 5 : G —
G X G x G denotes the map g — (g,9,1).
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We define the locally analytic vectors of M as the elements of

Mla = hﬂMGi_la.

As explained in Example 2.1.3 of [Por24|, when R = Q,, M is a Q,-Banach space
and we recover the classical locally analytic vectors. We can actually give a more pre-
cise statement. Let LA(Z,, Q,) be the space of functions f : Z,—Q, whose restric-
tion to any ball of the form a + p"Z, is the restriction of an analytic function f, .
This is a Banach space with the obvious norm. If W is a Q,-Banach space we define
LAL(Z,, W) := WRq,LAw(Z,, Qp). Theorem 3 of [Ami64] and theorem 1.4.7 of [Col10]
have the following corollary:

Corollary 2.3. — If f € C%(Z,,Q,), the following are equivalent:

- f € LAh(Zpa Qp)f
— [ €C™NZy, Q) for all X > —h — 8-l

log(p)

Proof. — See the proof of [Col10, Coro. 1.4.8]. n

In particular, if M be a Q,-Banach space on which G acts by isometry, then there exists
X € R such that z € M%~22 if and only if there exists n > 0 such that € M/ @»—an (in
the sense of the classical definition).

Finally, one may define higher locally analytic vectors, coming from the derived functor
induced by M ~ M'™. Once again, we follow Porat [Por24, §2.3] by setting

y (M> = liﬂHi(GﬁCl%Gj?M)%

la

where the cocycles considered are continuous, and we take the inductive topology on
C'*(G;, M) induced from that of its submodules C*~*"(G;, M). These groups form what
we call the higher locally analytic vectors of M, and if

0—M;—My—Ms—0
is an exact sequence (in the appropriate category) then we have a long exact sequence
0—M>—MP—MP—RL (M)~ - -
Lemma 2.4. — If v,y € RE " then vy € REAa0,

Proof. — See lemma 3.3.1 of [Gull9]. O

3. Locally analytic vectors for classical rings of periods

In this section we quickly recall the definition of some classical rings of periods, and
then recall several results regarding the locally analytic vectors attached to p-adic Lie
extensions (and especially in the cyclotomic and Lubin-Tate cases) in those rings. We
also explain how the normalization of the valuation may affect the “radius of analyticity”
of the elements considered.
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3.1. Some rings of p-adic periods. — In this section, we recall the definition of some
rings of p-adic periods, defined in [Fon90, Fon94|, [Ber02] and [Col02]. We also recall
the definitions of some rings of periods attached to Lubin-Tate extensions, which can be
specialized to recover the rings appearing in the cyclotomic setting.

We let ET = @ Oc,/m be the tilt of Oc,. It is a perfect ring of characteristic p

x—xd
which is equipped with a valuation vg coming from the one of C,, and is complete for

this valuation. We let E denote the fraction field of ET. If F is a subfield of Cp, let af
be the set of elements z of F' such that vg(z) > ¢, and for any ¢ > 0 we identify E* with
l‘glazﬁa:q Ocp/a%p'

If {un}n>o are as in §1, then the sequence uw := (g, Uy, --) € (Ocp/’ﬂ')N belongs to
E*t, and we have vg(u) = q/(q — 1e.

We let AT = O R0y, W(ET), and BT = AT[1/x]. We also let A = O R0k, W(E)
and B = A[1/7]. We write [-] for the Teichmiiller map. We endow these rings with the
Frobenius map ¢, = id ® ¢".

By §9.2 of [Col02], there exists u € At whose image is @, and such that ¢, (u) = [7](u)
and g(u) = [xx(9)](u) if g € Tg. If K = Q, and 7 = p, then u = [¢] — 1, where ¢ € E*
is a compatible sequence of ¢"-th roots of 1. We let Q) = Qi (u) € AT,

Recall that we have a map 0 : K*%Ocp which is a ring homomorphism, whose kernel
is a principal ideal generated by ¢, ' (Q1) or by [7] — [7] (see proposition 8.3 of [Col02]),
where 7 € E* is a compatible sequence of ¢"-th roots of 7. In particular, ¢, (Q1)/([7]—n)
is a unit of A" and so are the elements Q;/([7]?" — 7) for all k > 1.

Every eclement of BT[1/[a]] can be written as > koo T k], where (zp)rez is a

bounded sequence of E. For r > 0, we define a valuation V() on B¥[1/[z]] by the
formula

V(z,r) = inf (§+p_ 1UE(xk)) ifz= Y mn.

hez pr k>>—o00

If I is a closed subinterval of [0, 4+o0[, I # [0,0], we let V(z,I) = inf,cr,0 V(x,7) (one
can take a look at remark 2.1.9 of [GP19] to understand why we avoid defining V'(-,0)).
We define B as the completion of B+[1/[ ] for V(-,1)if 0 & I. If 0 € I, we let B! be
the completion of BT for V(-,1). We let A’ be the ring of integers of B! for V(-,I). By
§2 of [Ber02], we have that A" is also the p-adic completion of A+[ R [1;] .

For k > 1, we let rj, = p*"~1(p—1) and p = p~*"*. The map Bopy k. A+—>OCP extends
by continuity to Al, provided that ry € I, in which case we have that #o goq_k(gf ) C O,

For r > 0, we define B the subset of overconvergent elements of “radius” r of B, by
~ . pr
Bim={z= Flz)] such that lim wvg(x) + ————Fk = +00
{ k;(x)ﬂ- [ k] k—+o0 E( k) ( - 1)

Note that B can naturally be identified with a subring of B and we endow it with
the valuation V' (-,r). We let
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Afr = {x — E 7™*z,] € AN B such that Vk > 0, vg(xy) + %k > O}
p—1e
k>0

and we also endow it with the valuation V'(-,7). Note that A" s also the p-adic
completion of K*[#] If p =", we let A := AT"[1/[@]]. We endow A with the
valuation v, given by the [u]-adic valuation, so that pv, = V(-,r) and v, = =V (-, 7).
Note that A" is the ring of integers of A7) for v, and also for V(-,7). Moreover, for
any p > 0, we have A® /(1) = E and A% /() = Ex.

We let Bf := U,»oB!" and AT = U,.,A 07,

For p > 0,let o’ = p-e-p/(p—1)-(¢—1)/q. Note that we have V (u’,7) =i/r’. Let I be
a subinterval of [0, +oo[ which is either a subinterval of |1, +oo[ or such that 0 € I. Let
fY) =Y 1czaxY”® be a power series with a; € K and such that v,(ay) + k/p' — 400
when |k| = +o00 for all p € I. The series f(v) converges in B! and we let BL denote the
set of all f(v) with f as above. It is a subring of BL = (BY)¥x which is stable under the
action of I'x. The Frobenius map gives rise to a map ¢, : B%%B%.

We shall write ]:3;1{; for BIn+e°l and BI{;’ 5 for B[I?Jroo[. We let BEY denote the set of

f Su) IS BL’Q & such that the sequence {Nak}kez is bounded. This is a subring of ﬁ}(’" =
(BI")HK. We also define A" = Bl n Afr,

Lemma 3.1. — An element v = Y, " [zi] € AT s a unit of A if and only if
vg(x0) = 0 and V(x — [zo],7) > 0. Moreover, if z € Al is such that vg(xz¢) > 0 then :

1. there exists r > 0 such that v € AT ; N B
2. there exists s > r such that ﬁ belongs to AT and is a unit of Ab*.

Proof. — The first statement is [Col08, Lemm. 5.9].

For item 1, let us write z = Y oo, p¥[z)]. Since z € AT, there exists ¢ > 0 such that
Ey %IUE(%) goes to +o0o when k — +oo, so that tEe sequence (% + pp;tlvE(xk)) is
bounded below by some constant C. If C' > 0 then z € A" so the first item is satisfied.
Otherwise, it is bounded by —D for some D > 0. Then if s > t- (eD + 1), we have

Ey pp_slvE(xk) >0 for k > 1, and since vg(z) > 0, this means that V(z,s) > 0.

For item 2, one uses item 1 to find s > r such that [x—”“;] belongs to AT’S, and then up to

increasing again s this element is a unit of Ats by the first statement of the lemma. [

Proposition 3.2. — Let k > 0. Then:
~ kb~
1. ker (9 o,k A[”W’J—>Ocp> = WT_WA[T’“”];
2. ker (9 o gp;k : A/(O’pk]—>Cp

= ([77" — ) A0,
ke

3. ker <0 e} gp;k : AT’W—)(?CP> — ?"]—ZW;&T,T;Q'

[
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Proof. — Up to composing by a suitable power of ¢,, it suffices to prove the case for
k = 0. The first item is a generalization of §2.2 of [Ber02] and can be found as item 1.
of lemma 3.2 of [Ber16] (along with the discussion before lemma 3.1 of ibid.).

For the second item, we remark that since [7] is a unit in Al the ideal generated
by ([7] — 7) is also generated by <[ 5 1> Moreover, A0ril = Afrk[[?l]] and AT is the

p-adic completion of A+[[ ]] [ T — 1] (see §2.1 of [Ber02]). Therefore, we have that

~ ~ 1
A7) = m) == (AR - ) =]
T
since localization and quotient commute. Moreover, the RHS is isomorphic to C, as
A*/([7] = 7) ~ Oc,. Therefore, ([7] — ) is a maximal ideal of A®* which is clearly
contained in the kernel of 6, and this means that ker(#) = ([7] — 7) which proves item 2.
It remains to prove the third item. Let z € AT such that 6(z) = 0. By the second

item, there exists z € A0 such that = = (1 - G ]) z. Let us assume that z does not
belong to AT and let us write z = > iso T [z in A. This means that there exists
J > 0 such that vg(z;) < j/e. Let jo be the smallest such j and let wy : A—R U {+o0}
denote the function we(y) = infice(y;) for y = D7 7'[yi] € A. Recall that wy(z +
y) > inf(w(z), we(y)) with equality if wy(x) # we(z) (see for example the beginning
of §5.1 of [Col08]). A direct computation shows that wg([’l]z) = wy_1(z) — 1. The
property of the function w, recalled above shows that, by our definition of jy, we have
wiy (2 — f72) = wjy(2) and thus inf;>o(ve(z;) + 1) = 1nf]>0(wj (z)+21) <0, so that z does

not belong to Atro, Therefore, the assumption that z does not belong to Atro g wrong,

and thus % — 1 divides z in AT, This finishes the proof. O]

Lemma 3.3. — Letx € A, whose image modulo m iST = (Ty)n>0 N E, and assume that

there exists n > 0 such that x € :U’T", so that T € E*. Then form > n, Hngq_m(x) =Ty
in Og,/ag, where ¢ = qq_—el.

Proof. — If z € Atz = > ko ™[] in A, then 6 o @, " (x) is well defined for m > n
and given by # o gpq‘m(:v) = Zkzo wkx,(j") (this is a direct consequence of lemma 5.18 of
[Col08]). But then the fact that € AT implies that for m > n, the 72™ k # 0
have p-adic valuation > <—=. Thus 0 o ¢ ™(7) = a:(()m) mod ag . O

Proposition 3.4. — Let k > 0 and let r = ry,. Ify e Al 7 Al gnd if {yi}iso s
a sequence of elements of AT such that y — zz 0 y2 (Qr/m)" belongs to ker(0 o *)! for
all j > 1, then there ewists j > 1 such that y — 370 y; - (Qr/7)" € T - Alrrl,

Proof. — This is almost the same proposition as proposition 3.3 of [Ber16] except that
we allow the y; to belong to AT". Our proof follows the one of ibid almost verbatim.

By lemma 3.1 of ibid. there exist j > 1 and ay, ..., a;_1 elements of AT such that we
have

(3.1) y— (a0 + a1 (Qu/m) + -+ +aj_1 - (Q/m)y ") € Al
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We have ag € Zﬁ, Yo € A" so that both belong to Afr, By assumption, we have
0o @;k(yo —ag) € mO¢, so that by proposition 3.2 there exists ¢y, dy € A" such that
ap = yo + (Qr/ [%]qk)co + mdy. This implies that the identity (3.1) holds if we replace ag

by wo.
We now assume that f < j — 1 is such that the identity (3.1) holds if we replace each
a; by y;, for t < f — 1. The element

Jj—1 Jj—1
Zai (Qr/m)" — Zyi - (Qr /)’
=0 =0
belongs to wAlr + (Q./7) Al By assumption, the element
J=1= J=1=f
Z ag - Qk/ﬂ' Z Yi Qk/ﬂ'

i=f
belongs to Al 4 (Q /7))~ Alr] since WA[T’T] N (Qu/m)Alrl = 7(Qy/m)f Alr] by
applying enough times item (2) of lemma 3.2 of ibid. Now as € A*, (TS A" so that
both belong to AT’T, and we have that 6 o gp;k(yf —ay) € 10g, so that by proposition
3.2 there exists ¢f,dy € AT such that ay = ys + (Qu/[F])" )es + mdy, so that the identity
(3.1) also holds by replacing ay with y;.
By induction, this shows that y — Zl "o Vi (Qr/7)" belongs to TAl, ]

3.2. Locally analytic vectors in those rings and a conjecture of Kedlaya. — We
now explain the relations between the classical point of view of locally analytic vectors in
Banach representations of p-adic Lie groups and the new point of view of locally analytic
vectors in mixed characteristic, in the context of the ring AT.

In the rest of this subsection, we let K,/K be an infinitely ramified p-adic Lie exten-
sion, with Galois group 'k, a p-adic Lie group of rank d. We also choose coordinates c
along with a nice fundamental system (I',),>1 of open neighborhoods of the identity of
I'x as in §2. If R is a ring endowed with an action of Gx we write R for RYx.

Note that if p’ < p, then v, > v, by definition. Therefore, if z € ;&gg,p] is such that it

is A, p-analytic for I',,, then it is also A, y-analytic for I[',, as an element of ‘X; 001 for all
p' < p. Tt therefore makes sense to define (Al )Im—andn — lgl( 0] )im= an)‘“, and we

p>0
also define (A )Tm=an2 and (Al )Tx~1 in the same way.
Lemma 3.5. — We have x € (AU\Tx=a0X 48 and only if o (x) € (Aﬁ?’q””])FK*an:hH.
Proof. — This just follows from the fact that v,-1,(p4(x)) = qu,(z) (which is item (v) of
[Col08, Prop. 5.4]). O

Lemma 3.6. — Let x € Ag?’p]. Then x € (A(O p])FK " if and only if x € (B[M])FK =,
where = 1o/ p.

Proof. — Let © € (A(O Plk—la By definition, there exists A € R such that = €
(Ag’p})rff A=an - The fact that for 7 = 79/p we have an inclusion A o1 < Bl shows
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that 2 € (BI)IxA=an for o, Since v, = LV (+,r), this means that z € (Blrr])Tm—anX’
where ' = A — a with « such that p* = %, and is thus locally analytic as an element of
(BI"™]) by corollary 2.3.

For the converse, the reasoning is the same: by corollary 2.3, if x € AQ”’ ) belongs
to (BI"))Tx~1 then there exist A € R such that = € (BI2")'xA-an The relation v, =
=V (-,r) implies that € (A0 Pm—an)" where N = A 4 o and so we are done. O

Proposition 8.7. — Letz € Al.. Thenz € (Al if and only if x € (]’_S,LgK)FK—pa_

Proof. — Let p > 0, m > 0, and A\, € R be such that z € (Kﬁ?"])rm—an*“ Let
r =1o/p. By the remark above, if s > r and p' = 1¢/s, then = € (A(Op])rm aAk 5o that
by lemma 3.6, there exist m’ > m, X, i/ € R such that z € (B[S S])Fm an A Usmg the
maximum principle (see corollary 2.20 of [Ber02]), this implies that = € (B[T s]) —an A"
for 7 = max(\, ) and p” = max(p/, ). Therefore, = belongs to (B[[ZS})FK*M by
corollary 2.3. Since this is true for every s > r, we deduce that x € (EL; )RR,

For the converse, assume that x € (ﬁiigyK)FK_pa. Then z € (BY)'x 1 for any r > 0
such that z € Bf". Therefore, z € (AS\I'x=la for o = ro/r by lemma 3.6 and thus
z e (Al)Fra, O

Corollary 3.8. — We have (K}()FK—la — AT N (]A_D;L&K)Fx—pa.

Remark 3.9. — Note that since the valuations on A and B2 are not normalized
in the same way, we do not have that (A}()FK’la = AN (BLgK)FK’la. Actually, one
can show that in the cyclotomic case, the ring (]~3Lg,K)FK ~lais quite ~small (see §7 of
[Poy22b]) and does not contain u = [¢] — 1, which clearly belongs to (A% )<,

We now recall the conjecture of Kedlaya [Ked13, Conjecture 12.13].

Conjecture 3.10 (Kedlaya). — Let T be a finite free Z,-module equipped with a con-
tinuous action of Gi. For r > 0, let D(T) = (At ®z, T)"% and let DI (1) xla
denote the set of locally analytic elements of IN)J}{T(T) for the action of I' as defined in
§2, which is a module over (A}’(r)FK*Ia. Then for any r > 0, the natural map

RJ? 3y s D (1) 4B (7)
is an isomorphism.

Note that the natural map A" @ NE Dsi? (T)— A" ®z, T is an isomorphism thanks
K
to for example §8 of [KL15]. We quickly remark that thanks to lemma 3.6 it is easy to

check that the definitions of locally analytic elements in AT used in [Ked13] coincide
with ours.
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4. Overconvergent lifts of the field of norms

Let K., be an infinite totally ramified Galois extension of K whose Galois group is a p-
adic Lie group. The main theorem of [Sen72| shows that K, /K is “strictly arithmetically
profinite” (or strictly APF) in the terminology of [Win83| and we can thus apply the
field of norms construction of ibid. to K. /K. We let Xg(K) be the field of norms
attached to the extension K. /K, which is a local field of characteristic p with residue
field kx by theorem 2.1.3 of ibid. In particular there exists a uniformizer u of Xy (K)
such that X (Ks) = kx(u)). Moreover, this field comes equipped with an action of 'k
and of the absolute Frobenius ¢ : x — aP.

If we let £k denote the set of finite subextensions K C F C K, then by definition,
elements of Xy (K ) are norm-compatible sequences (25)peg(k..) such that xp € E for
all £ € £(K), and Np/g(xr) = x5 whenever B, F € £(Ky), E C F.

Since K. /K is strictly APF, there exists by [Win83, 4.2.2.1] a constant ¢ =
¢(Kw/K) > 0 such that for all F C F’ finite subextensions of K. /K, and for all
x € Opr, we have

Ng X
UK(%;) -1 >c

We can always assume that ¢ < vg(p)/(p — 1) and we do so in what follows. By §2.1
and §4.2 of [Win83], there is a canonical Gx-equivariant embedding 15 : Ag(Ko) < ET,
where Ax(K) is the ring of integers of Xy (K ). We can extend this embedding into
a Gi-equivariant embedding X (K ) < E where E is the fraction field of E*, and we
note Ex its image. We also let E. denote the ring of valuation of Ex. We can actually
give an explicit description of this embedding.

Proposition 4.1. — Let 0 < ¢ < ¢(Kw/K).
1. the map vx : Ax(Ko)— fm Ok, /0% = E}“{ is injective and isometric;
2. the image of vy is lim Ok, /a% ..

Proof. — This is proven in §4.2 of [Win83]. O

Let E be a finite extension of Q,,, with residue field kg = kk. Let g be a uniformizer
of B, and let Ax denote the wg-adic completion of Og[T][1/T] (the notation Ak is
used here for compatibility witht the action of Gx but be mindful that this is actually
dependent on E even if it does not appear in the notation). The ring Ak is a wg-Cohen
ring of Xg(Kw) = kx((7k)), and following the definition of [Ber14], we say that the
action of ' is liftable if there exists such a field E and power series {F,(T)}ger, and
P(T) in Ak such that:

1. Fy(rg) = g(mk) and P(7mg) = 7;

2. FjoP=PoF,and F,o Fj, = Fy, for all g,h € I'g;
where the notations Fg and P stand for the reduction of the power series mod wp.

When the action of ' is liftable we get a (¢, I')-module theory as in Fontaine’s classical
cyclotomic theory [Fon90] in order to study Opg-representations of Gg, replacing the
cyclotomic extension in the theory of Fontaine by the extension K, /K. In particular,
if the action of 'k is liftable, then there is an equivalence of categories between étale
(pg; I'k)-modules on A and Opg-linear representations of Gi (see [Berl4, Thm. 2.1]).
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Proposition 4.2. — There is a Gx-equivariant embedding Ak — AK and compatible
with @, that lifts the embedding v : Xk (Ks) = Ex = EGa(Qy/Koo)
Proof. — See [Fon90, A.1.3] or [Ber14, §3|. O

Let Al7 denote the set of Laurent series > wez @ T* with coefficients in Ok such that
vp(ax) + kr/e > 0 for all k € Z and such that v,(a;) + kr/e — 400 when k — —oco. We
say that a lift of the field of norms is overconvergent if the power series P(T") giving the
lift, of the Frobenius belongs to AL® for some 7 > 0.

We now assume that there is an overconvergent lift of the field of norms. Let u € A K
be the image of T' by the embedding given by proposition 4.2, so that ¢,(u) = P(u) and
g(u) = Fy(u) for g € I'k.

Lemma 4.8. — If P(T) € Al then u e A",

Proof. — We assume without any loss of generality that P(T') € A}’(r with r > ”T.

We have u € A, and we write u = (u — [u]) + [@]. Since T € E*, we have u €
(A" + wpA). Let us write P(T) = P™(T) + P~ (1/T), with PT(T) € T + mg[T] and
P(T) =3, .0aT™ € mg[T] with v,(a,) > ne/r. We thus have

P*(u) € (P*([a]) + w3A) C (AT + wpA)

1y (11 Sl g
r(3)-r ([m [gﬂ)e(P NTUMGe

since ——= 1+ € 1+ wpA. Thus P(u) € (P([u]) + @w%A) C (A" + w%A).
o _
Therefore, u = o, '(P(u)) € (AFr/1 4+ 2 A) € (AT 4+ w2 A). Now let us assume that

u e (AT + @k A) for some k > 2. Let us write u = a + b, with a € A" and b € whA.
Since u = @, we have that belongs to and is a unit of AN with r’' = r+ p ! by lemma

3.1. Writing a = £[a] shows that b/a € wh A and thus
1 1( 1 @1~
o) e @ 4 kA,
u a<1+§>e(a[6]+wE )

P(u) € P(@%) + @b A) c A 4 hA)

and

Therefore, we have

and thus u = @' (P(u)) € (Afr'/1 4 R A) © (AP + @k A). We can now conclude
by using the fact that for any r > 0, we have ﬂkzo(;&” + wﬁ;;‘;) — Afr (which follows
from the definition of A7), O

Remark 4.4. — If one looks closely at the proof of lemma 4.3, one could improve the
radius of surconvergence of u, but we don’t need this level of precision here.

By [Berl4, Rem. 4.3, we have the following:



RELATING TWO CONJECTURES IN p-ADIC HODGE THEORY 15

Proposition 4.5. — Forallge Tk, F,(T)eT - (A}’{)X.
Proposition 4.6. — We have u € (Al )'x~la,

Proof. — Recall that Al7 is endowed with a valuation v, given by Vi(f(T)) =
infrez(vp(ar) + krje) it f(T) = Y czaT® Since the Galois action on Al s
1

continuous, there exists n > 0 such that for all g € T, V,.(g(u) — u,r) > - Up to

increasing r if needed, we can assume that V,.(F,(T) —T) > p%l for all g € I',,.

For g € Iy, let A, : A7 —Al" be the map defined by h(T) — h(F,(T)) — h(T). We
claim that the target of this map is indeed contained in AL (i.e. that A, (A) ¢ AL
and that it satisfies |Ay(R)|. < |p|° - |h|, for any ¢ < Zﬁ. In order to prove this
claim, we write h = h* + h™, where W(T) = > ,a, 7", h'(T) = >, ,a,T" and
h=(T) =3, .oanT™, which we rewrite as h™ (1) = >, ., b7 ". Then

n>0

W (E(T)) = B (1) = 3 an (Fy(T)" = T7) = 3" au(By(T) Z Fy(1) T

n>0 n>0

and since |Fy(T)|, = |T|, by proposition 4.5, this means that

Ay (BNl < Y lanlplAg(T) AT
n>0
We do the same for h™: we have h™(Fy(T)) —h™(T) = _, -, bn(w — 7). We write
B(T) = 70z € (AR)*. Thus
1 1 Tr—F(T)" Tr— F,(T)"
- = = B(T)".
By T @Rmy e o)
and hence i
1 1 " (E,(T)\" B(T)"
— — =(T—F,(T . :

Since FgéT) is a unit of A% (and so is B(T)), we obtain that

-y (42) ZE — i - BT,

k=0

so that
|2 (R (D)]s < NT = Ey(D)e > bulp |71 = IT = Fy(D)|o | (T)]-
n>0

Therefore, |A,(R(T))|, < |T — Fy(T)||(T)],, which gives us exactly the result
claimed. B
To conclude, let B := {f(u), f(T) € A7[1/p]} € B} Then the completion of B for

V(-,r) is a Q,-Banach space (contained in ﬁ&?r]) which is I'j,-stable, and over which we

showed that the I',,-action satisfies |y —1| < pfp%l for any v € I';,, so that the I'k-action

on this Banach space is locally analytic by [BSX15, Lemm. 2.14]. Thus u € (B[T T])FK la
which finishes the proof thanks to lemma 3.6. D
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5. Structure of locally analytic vectors in AT for Z,-extensions

In this section, we assume that K. /K is a totally ramified Z,-extension, with Galois
group I'x >~ Z,. The goal of this section is to prove that if there are nontrivial locally
analytic vectors in ;&}(, that is if (;&}()FK ~la £ O, then everything behaves just as if
K. /K was the cyclotomic extension.

Let K. /K be a totally ramified Z,-extension, with Galois group I'x ~ Z,,. We assume
furthermore that (;‘;})la # Op, which means that it contains a nontrivial locally analytic
vector. For n > 1 we let K,,/K be the subextension of K, /K such that Gal(K,,/K) =
Z/p"Z and we let ', = Gal(K,/K,) C I'x. We also let Hg = Gal(K/K,,). Note that,
up to extending the field K, we can always assume without loss of generality that K/Q,
is Galois, and we do so in what follows.

We let s : A A / 7A ~ E denote the projection map given by the reduction modulo 7.
Note that it induces by restriction projections that we will still denote by s: AK%EK,
AT—E and A}(—>E x and whose kernel is still generated by 7.

Proposition 5.1. — We have (Eg)'x0 < Eg, and we have (Eg)'xe
Unzo 90q_n<EK)-
Proof. — This is theorem 2.2.3 of [BR22b]. O

In what follows, we choose the smallest integer A such that (EK)FK ATan B, In
particular, A < 0.

Corollary 5.2. — We have s((Al,)'xA=a) € Ex and s((Al)'x—1a) ¢ 0, (Ex).

Proof. — Let 2 € (Al)'xA=an Then s(z) € Al /Al ~ Eg is M-analytic (for T'x) for
the valuation induced on Ex by the one on :&}( Proposition 5.1 shows that s(z) € Ek,
so this proves the first part of the corollary. The second part comes from the fact that
z € A7 is kanalytic (for ) if and only if po(x) is (k — fl)-analytic (for T'g) by

lemma 3.5. [
Lemma 5.3. — There exists © € (Al )52 whose image by s belongs to B \ k.
Proof. — Since we assumed that (Kk)la is non trivial, there exists m > 0, K > 0 and

x € (A}()Fm’”*an whose image by s is an element of ¢, *(Ex)\ kx for some k& > 0. Indeed,
up to substracting an element of O and dividing by 7 and repeating this process enough
times to any nontrivial element of (;‘;J}{)la will yield a locally analytic element of (;‘;J}{)la
whose image is not in kg.

We now use proposition 3.3.5 of [Gull9]: for x < 0, we have (;‘;}{)Fm’“*an =
(KTK)FK (k=m)=an - Therefore, up to decreasing s, we can always assume that our element
belongs to (:&}()FK #=an By applying ¢ to this element for £ > 0, we find using lemma
3.5 that there exists z € (AL)**" whose image by s is an element of Ex \ k.

We can assume up to replacing z by its inverse that s(z) belongs to Ef: since s(x) # 0,

the inverse of x belongs to AT and not just ]§T, and its inverse is locally analytic by lemma
2.5 of [BC16] and lemma 3.6. O
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Definition 5.4. — We let o := min{vg(s(z)), vg(s(x)) > 0,z € (Al )FxA-an},

Note that the set of elements z in (Al )TxA=a guch that the valuation of s(z) is
nonzero is nonempty by lemma 5.3, and that the set of s(z) such that z € (Al )TxA=an jg
included in E}. by corollary 5.2. Since the valuation on E}; is discrete, this means that o
is well defined, and that the minimum is reached for some element in (AJ}()FK A=an which
will be denoted by v.

Since o = vg(s(v)) > 0, the sequence (v"),s0 goes to 0 in A for the (m, [s(v)])-adic
topology (for which A and Ay are complete), and thus Ok (v )) is naturally a subring of

Ag. We let Ay denote the m-adic completion of O ((v)) in Ak (we recall that A is
m-adically complete).

In the definition 5.4 above, we can thanks to lemma 3.1 assume that our choice of v
satisﬁes the additional assumption that there exists n > 0 such that v € A and such
that belongs to AT and is a unit of this ring. In order to avoid additional notations
we erte r for r,, in the rest of this section.

Lemma 5.5. — We have s((Al)'<A=a0) C kg ((s(v))).

Proof. — Let x € (A}()FK”\*”. By corollary 5.2, we know that s(z) € Ex. Let k =
ve(s(x)), and let k = goav + 7 be the euclidean division of £ by a. We have v~ %z €
(Al )TxA=an by lemma 2.4, and 0 < vg(s(v"%x)) = r < @, so that 7 = 0 by definition
of a. There exists therefore ¢y € kg such that z := [co|v?® satisfies vg(s(z) — s(z)) >

vg(s(x)). Now z — z € (AL)'x*=2 and thus we can apply the same reasoning to = — z
instead of x. This yields ¢; € kx and ¢; > qo such that z; := x — [co]v® + [¢q]v? is
such that UE(S(Zl)) > vg(s(x — 2)). Applying the same process inductively gives us

(¢:)i>0 € ZN an increasing sequence and (c;);iso € k¥ such that s(z) = > % ¢;s(v)% and
thus (z) € ki (5(2)). .

Lemma 5.6. — We have (Al)'<?—0 ¢ Ay

Proof. — Let x € (AL)'<*=n, By lemma 5.5, we know that s(z) € kx((s(v))). There-
fore, there exists Py(T) € O ((T) such that = — Py(v) € wAl.. Moreover, since z,v €
(AL )TrA=an this implies that  — Py(v) € (AL )TxA-an qr Al = p(AL)FA—an [et
z = %0(”) € (K}()FK A=an - Then applying the same process for z instead of z yields
Py(T) € Ok ((T)) such that z — Py(v) — - P(v) € 7Al.. Inductively, we find a sequence
(Pi(T))is0 of elements of O ((T) such that z =Y. 7"+ P;(v), and this series converges

in A since it is m-adically complete, to an element of A by definition of A. O
Lemma 5.7. — We have (AT ) C o (Ak).

Proof — Let x € (Al)Tx=1  Therefore there exists m > 0 and p € R such that
z € (AL)Fm#=an Note that by lemma 1.10 of [BR22a, this is equivalent to the existence
of ' € R such that = € (A})FK’“/*“. If k£ is an integer such that kh + ' > A, then
oh(z) € (AT )Tl k) =an = (AT \TrA=an g6 that ©k(z) € Ak by lemma 5.6, and thus
z € o *(Ak). O
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Recall that A%* denotes the set of Laurent series > wez @ TF with coefficients in Ok
such that v,(ax) + ks/e > 0 for all k € Z and such that v,(ax) + ks/e — +oo when
k — —oo.

Recall also that there exists some > 0 such that v € A" and such that ( j 1s @ unit
in AT For s > r, we let Al* denote the set of P(v) € A such that P € Al*. We also
let Al = U, (ALS[1/0]).

Proposition 5.8. — For s > r, we have (Al)TxA—an — ATs,

Proof. — By lemma 3.1 and the choice of r we made, v belongs to AT" and is such that
G 18 @ unit in At

Now the proof of item (i) of [Col08, Prop. 7.5] carries over and shows that AxNAL =
Al for r > 5. To finish the proof, it suffices to notice that if z € (AL7)'xA=an then
z € Ag by lemma 5.6, and z belongs to Al O

Corollary 5.9. — There exists P(T) in A" such that p(v) = P(v), there exists Q(T)
in AV such that o,(v) = Q(v) and for each g € Tk, there exists a series Fy(T) in AL
such that g(v) = F,(v).

Corollary 5.10. — We have (Al)F'x—1o = p (AL,

Proposition 5.11. — There exist k > 0 and w € (Al)T57% such that o=*(s(w)) is a
uniformizer of Ex.

Proof. — Let u be a uniformizer of Ex, and let us write v for s(v). Note that
kr(w)/kk(v)) is a finite extension of local fields of characteristic p. It can thus be
decomposed as a purely inseparable extension of a separable extension of kx (7)), so that
there exists £ > 0 and a separable monic polynomial P with coefficients in k(7)) such

that ¢*(u) is a root of P. Now let y := ¢*(u) and let P(T") € Ok ((v))[T] C B be a lift
of P which is monic. Since BY, := Al [1/ p| is a Henselian field (cf §2 of [Mat95]) and
since BT is absolutely unramified and has E as a residue field which contains s Ef¢, there
exists y € Bk lifting y such that P(A) = 0 and by construction y € Ai( and P’@) # 0.
Since P'(§) # 0 and since ﬁ}( is a field, there exists r > 0 such that P'(7) is invertible
in BiY and such that all the coefficients of P belong to BY' ¢ B} (up to increasing
r if needed for the last inclusion to make sense). Since the coefficients of P belong to
B;’g, they are locally analytic for the action of I'x as elements of Bl by lemma 3.6.
Thus there exists £ > 0 such that for ¢ € Gy, we have that the coefficients of gP are
analytic functions of Gj. Moreover, we have the equality (¢P)(g(7) = 0 and P'(7) is
invertible in ]A?;[;;’r} so that § € (E[I?T})FK ~12 by the implicit function theorem for analytic
functions (which follows from the inverse function theorem given on page 73 of [Ser92]).

Using once again lemma 3.6, this shows that y € (:&k) and thus w = y satisfies the
claim. O

FK—la

Corollary 5.12. — In definition 5.4, s(v) is actually a uniformizer of Ex.
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Proof. — Let w be as in proposition 5.11. Since we assumed at the beginning of the
section that K/Q, is Galois, we can find 7 € Gal(K/Q,) whose image in Gal(ky /F,) is
the absolute Frobenius . We let ¢, : A = Ok R0, W (E)—A be the map defined by
(T ® ¢). Note that this map preserves locally analytic vectors, but that there is a shift
in terms of “level of analyticity” coming from lemma 3.5.

We have . =%(w) € (AL)™ and thus by corollary 5.10 t7%(w) € gpq_f(AJ}() for some ¢ > 0.
Therefore there exists r > 0 and R(T) € A" [1/T] such that .*(w) = ¢ “(R(v)).

We also know by proposition 5.11 that ¢ *(w) lifts a uniformizer u of Eg, so that if
R € kg ((T)) denotes the Laurent series obtained by reducing the coefficients of R modulo
p, we have u = gp;g(}_%(s(v))). Since s(v) € Ej and since u is a uniformizer of E, there
exists f(T') € kk[T] such that s(v) = f(u). This means that we have the inclusions

ki (0g () C ki (5(v)) € b ()

and thus since the extension kg ((u))/kx (%(w))) is purely inseparable, so is kx (u)) /kx (s(v))).
This means that there exists h > 0 such that ¢"(s(v)) is a uniformizer of kg ((u)).

But now s (L;h(gk)rK’A_an) C kx((@™"(s(v))) = Exg by lemma 5.5, and thus \' =
A — h satisfies proposition 5.1. However, this contradicts our choice of A, so that h =0
and s(v) is a uniformizer of E. O

Remark 5.13. — In particular, corollaries 5.9 and 5.12 show that the existence of a
nontrivial locally analytic vector implies the existence of an overconvergent lift of the field
of norms as defined in §4. Note that this only holds a priori for Z,-extensions, because
super-Holder vectors in this case recover exactly the perfectization of the corresponding
field of norms. As pointed out in remark 2.2.4 of [BR22b], as soon as K.,/ K is a p-adic
Lie extension whose Galois group is of dimension (as a p-adic Lie group) at least 2, then
the set of super-Holder vectors of Ex contains the field of norms X (Lso) of any p-adic
Lie extension L., /K contained in K, and is thus no longer generated by a single element
over k.

The following theorem summarizes most of the results of the section:

Theorem 5.14. — Let Ko/K be a totally ramified Z,-extension, and assume that
(Al )Tx—la £ O Then there exists A\ € Ry and v > 0 such that for s > r,
(A}’{)FK’A_‘“1 ~ A}’(r. Moreover, we have (A}()FK_1a = gpq—oo(A}{)’\_a“.

6. The kernel of § when K/Q, is unramified

In what follows, we assume that K/Q, is unramified. While we expect the conclusions
of this section to hold without that assumption, the author does not have a proof of
proposition 6.4 which does not rely on that assumption. We also still assume that K /K
is a Z,-extension, so that it is abelian and by local class field theory, there exists a
Lubin-Tate extension Kpp/K such that K., C Kypr. We let I'yy = Gal(Kpr/K) and

Hir = Gal(Qp /Kyr) and we keep the notations from §1 and from the previous section.
In particular, there exists n > 0 and v € AJ}’{T" such that v lifts a uniformizer of the field
of norms of K., /K and is a locally analytic vector of A}’{r” for I'. Since v € AT and
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since 6 : A”O—K’)CP is well defined, we can consider v,, := oy " (v) for all m > n/h. By
lemma 3.3 and proposition 4.1, we have vy (o, " (v))—0 when m—+o00, so up to increasing
n we can always assume that for all m > n, vg(f o ¢, ™(v)) < ¢ where ¢ = ¢(Ky/K) is
as in §4, and we do so in what follows.

Recall that Al® is the set of Laurent series f(T) = 3. rez e TF with coefficients in Og
such that v,(ax) + ks/e > 0 for all k € Z and such that vy(f) = v,(a;) + ks/e — 400
when k — —oo and that A%® is the set of P(v) € A such that P € AL® for s > r,. We
let R3 denote the Fréchet completion of A}*[1/p] for the valuations vy, s’ > s.

Proposition 6.1. — If s > r,, then a power series R(T) =3, a,T", a, € K is such
that R(v) € BL’;K if and only if R(T) € RS.

Proof. — This follows directly from the proof of proposition 5.8, using the same argu-
ments as in proposition 7.5 and 7.6 of [Col08]. O

Since v € (AE’(T”)FK A0t s a pro-analytic element of EL;"K for the action of I'x by

proposition 3.7. The operator V :=log g, for g € 'k close enough to 1 is well defined on

(BI{QK)FK*?‘" so that V(v) € (BL’;‘K)FK*W. If v € T'k is a topological generator, then we

also have .
p _
V(v) = lim g Ok}
n—+oo pr
. L F_pn (T)-T .
In particular, by proposition 6.1 the sequence ———— converges in R? for s > r, to an
element H(T') such that H(v) = V(v).
. Fn(T)-T n o1 Epe@-T .

We can rewrite p—" = (F'Y(T) — T) Hk:l 5 W . Since FfY(T) — T be-
longs to Aj and is nonzero, it is invertible in the Robba ring Ry := Us=oRj}, and the
convergence of the sequence W in R thus implies the convergence in R of the
infinite product

H 1 F (T)-T
el 2 F e (T)—-T
) 1 F ok (T)-T . . .
Let us write Hi(T) := - | === |. The convergence in Ry of the infinite product

p\F o 1(D-T
~P
above is equivalent to the fact that, for s > 0, we have |H(T")|s—1 when k— + oc.

Lemma 6.2. — We have (l/(;)rm’an = K.

Proof. — One can follow the first part of the proof of [BC16, Thm. 3.2]. O
Lemma 6.3. — There exists ng > n and £ > 0 such that for all m > ngy, K(v,) =
Ok

Proof. — For m > n, we let L,, = K(v,,) be the extension of K generated by v,,. Since v
is locally analytic for the action of ['x and since 0 and ¢ are Gx-equivariant, we get that
the v, are algebraic over K by lemma 6.2 and that L,, C K. Let L = U,,>,L,,, C K.
We first prove that L = K., which is equivalent to the fact that an element of I'gk
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acting trivially on L is trivial. Let g € 'y be such that g, = idg, for all m > n.
Then by definition of L,,, we have g(v,,) = v, for all m > n. Thus the power series
F,(T)—T e A} admits infinitely many zeroes in the open unit disc (since |v,,|—1) and
is therefore zero (since it is bounded). We thus obtain that F,(T") = T" hence g(v) = v.
Therefore g acts as the identity on the field of norms of K. /K thus g = id in I'x and
we are done.

Now the inclusion K C L,, induces a continuous injective morphism Gal(K/L,) C T'x
whose image is compact open and thus K, /L, is a sub-Z,-extension (totally ramified) of
K /K. In order to prove the proposition, it thus suffices to prove that for m big enough,
Lpyi1/ Ly, is of degree p.

Recall that p(v) is an overconvergent series in v, so that there exists P(T') € A" such
that ¢(v) = v. By definition of the elements v,,, this means that we have P? " (vp,41) =
Uy, where P is the series P where we have applied ¢ to the coefficients. Since [V |p,—1
in C,, by the Weierstrass preparation theorem and the theory of Newton polygons, we
have v (Vmy1) = Z—lij(vm) (we have P(T') = T? mod mg by definition). Since L, 11/Ly,
has at most degree p by Weierstrass preparation theorem and since K., /L, is totally

wildly ramified (since K., /K is as such), we have vy, (v,,) = M[L

” m ¢+ Lm—1] so
that the sequence (vr,, (Vm))m>n 1S nonincreasing. Since it is bounded below and has
integers values, it is constant for m big enough and the relation v (vy,11) = }DUK(vm) for

m > 0 implies that for m > 0, the extension L,,,1/L,, is of degree p.
Therefore, there exists £ > 0 such that for m big enough, we have L,, = K,,,. This
proves the result O

If 7 is as in lemma 6.3, we let for k > n/h, fi :==p- Hipio(v) € A}r"

Proposition 6.4. — For k > n/h big enough, fi/Qx is a unit in AT qnd fr/pis a
generator of ker(f o o : Al 50g ).

Proof. — It may not even be clear that fj, belongs to Jj, := ker(f o ¢, * : KT””C%OCT,),
so we first prove that statement. Let my be as in lemma 6.3, so that for m > my,
K(Um> = Km+g.

Since 7 is a topological generator of 'k, we know that g := ,kahH is a topological
generator of Gal(K ../ Kypye) for k > 0. By lemma 6.3, this means since 6 and ¢ are Gg-
equivariant maps that F,, (vin) = gk(vkn) = vkn, but also that Fy,  (ven) = ge—1(ven) #
vgn- Therefore, vy, is a root of Hypie(T') and thus 6 o gpq_k (fx) = 0 so that fi, € Jg.

We know by proposition 3.2 that for £ > 1, (Jy, is a generator of ker(&ogp;k : A(O’pk‘]—>0p)
so that there exists [ € A©ri guch that fr = Qg - Br. Moreover, the sequence % goes
to 1 in ﬁi{; (see for example §1 of [Ber16] and the discussion following lemma 3.4 of
ibid.). Since K/Q, is unramified, p/7 is a unit of Ok, and fy—p/7 so that it is a unit
of AO#il for k big enough, and thus is a unit of AtTE for k big enough (since AT is the
ring of integers of A(O’p'f]). Therefore, fi/p generates the same ideal as @)y in At and
so is a generator of ker(f o gp;k : A[T’“’T’v]—)(’)cp) by proposition 3.2. ]

Lemma 6.5. — We have { = 0, and for m > n big enough, v, is a uniformizer of K,,.
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Proof. — By proposition 6.4, for k > n/h big enough, f,/Qy is a unit in AT and fi
belongs to ker(f o ¢ * K[T’V””k}%(?cp). Writing fr = Y ,5[yilp’, this means by lemma
3.1 that vg(yo) = ve([7]*") = ¢*v,(n).

Let us write pHy,¢(T) = f1(T) - R(T) where R is a monic polynomial with coefficients
in O and f1 is invertible in A7.. Since f; is not a unit in A"+ and since fT(v) is a unit
in A% R(0) is not a unit in @} and thus R(0) € 7Ok.

Since f; belongs to the kernel of 6 : :&T””’@—K’)CP, this means that vy, is a root of R(T).
Let us write

R(v) =v* 4 ...+ R(0)
where d is the degree of R. Since R(0) € 7Ok, we get that vg(s(R(v))) = d - vg(s(v)) =
v,(7) (since s(v) is a uniformizer of the field of norms of K /K), and this has to match

the value of vg(yo) computed above as fT(v) is a unit in A" Therefore, d = ¢*. But
now this means that vy, which generates K, over K which is of degree p’**", is a root
of R which is a polynomial of degree ¢*. This means that £ = 0. O

By lemma 6.5, we can assume up to increasing n that for all m > n, v,, is a uniformizer
of K,,, and we do so in what follows.

Proposition 6.6. — Let © € At be such that for all m > 0, ;" (z) € Ok,,,- Then

T € (ﬁ%O’TO})FK_an and x € (A&?J])FK,O—@.

Proof. — By corollary 6.9 of [DK11], the map z € A" — (f o @, "())r=0 induces an

isometric isomorphism from A" to the ring denoted by ¢ (E),(C,) in ibid. Looking
at definition 6.5 of ibid, this means that the norm of z € At for V(-,70) is equal to the
well defined limit limy>q |6 o cp;k(x)\gk\.

Let k¥ > 0 and let 2, = # o gpq_k(x) € Ok,, and let (amx)m>o denote the Mahler
coefficients of the function g € I'x +— g(z). Since the x; are I'yy-analytic, we have by
corollary 2.3 that liminf 2v,(a, ;) > m. Moreover, if we let (a,,)m>0 denote the

Mahler coefficients of the function g € I'x — g(x) in A7 then since the isometric
isomorphism coming from corollary 6.9 of [DK11] is Gx-equivariant, we obtain that for

all m > 0, V(am,r0) = limgso ¢*v, (6 o gp;k(amk)). Since lim inf %Up(an’k) > W, this

means that lim inf %V(am, ro) > ]ﬁ. Therefore, using once again corollary 2.3, we find

that = is ['x-analytic as an element of Bom) and that z € (AlS)x.0-an, O

Proposition 6.7. — Let m > n. Then:

L@, (v) € (B Fnon;
2. v e (Bl Tm-an

Proof. — We start with the first item. Let m > n. Then for all £ > 0, we have
00 o ;™ (v) € Ok, 50 that @™ (v) € (Bl P —an 1y proposition 6.6.
Item 2 follows directly from item 1 by applying ¢g" to v, and using the fact that ¢, is

a continuous Q,-linear map from ﬁ[f{”‘)] to ﬁg@m’rm]. O
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7. Locally analytic vectors in the rings B! for good Z,-extensions

Our goal is now to derive results regarding the structure of the rings (]éﬁ()rm_a“,
assuming that K. /K is a “good” Z,-extension, i.e. for which there are nontrivial locally

analytic vectors in ;‘1}( Since K /K is a Z,-extension, it is abelian and by local class
field theory, there exists a Lubin-Tate extension Kpr/K such that K, C Kpp. We let
I'ur = Gal(Kpr/K) and Hyr = Gal(Qp/KLT) and we keep the notations from §1 and
from the previous section. In particular, there exists n > 0 and v € jNX}{" such that v
lifts a uniformizer of the field of norms of K /K.

We also assume that there exists 3, € A}r“ such that f3,,/m generates the kernel of
the map 0o ™ : ;&[T’”’T"J%Ocp (note that this is automatically the case when K/Q, is
unramified by proposition 6.4).

For I a subinterval of |1,+oo[ such that min(f) > r,, let f(V) = Y,z aY" be a
power series with a; € Ok and such that v,(ay) + kro/re— + oo when |k|— + oo for all
r € I. The series f(v) converges in B! and we let BL denote the set of f(u) where f
is as above. Note that this is a subring of ﬁﬁ{ which is stable by the action of I'x. The
Frobenius map gives rise to a map ¢, : BL—B%. If m > 0, then ¢, ™(B% ') C B! and
we let Bf,, = go;m(B'}:I), and Bf . = U0 Bk We let Al denote the ring of
integers of BL for V (-, I). -

For the rest of this section (and only for the rest of this section), for m > 1 we write
Iy, for ',y and K, for Koo N Ky .

Lemma 7.1. — Let I = [ry, 1] with h > n, and let mg > 0 be such that t,,t./Q and
Qx/ Bk belong to (B ) tmmo=2" If m > mg and if a € B is such that B;-a € (Bf)'m—an
then a € (B, )Fm—an,

Proof. — Let us write 0 - a = Q - % -a. By [Berl6, Lemm. 4.3], we know that

% ca € (BLp)Tvrmo—an . Since Qy/By € (BLy) immo=an this implies that a itself belongs

to (BLp) wrmo—a" and since a € (BL) this finishes the proof. O

The following theorem, relying on the exact same ideas as theorem 4.4 of [Ber16],
gives a description of the locally analytic vectors of BX:

Theorem 7.2. — Let I = [rh, 6] and let m > 0 be such that t,,t,/Qr and Qy /Py belong
to (BLp)Fm+r—an_ Then:

1. (Bf)tm C B
2. (BL)" = B ..

Proof. — This is basically the same proof as the one of [Ber16, Theo 4.4] (note that
there’s a slight gap in ibid. which is fixed in [Ber18]) once we have the same “ingredients”.
Note that the second item follows directly from the first one, so we only need to prove
the first item. _

We start by proving the result when h = k so that I = [rg, 7). Let # € AL N
(Bl)Pmes,
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If d = q"~1(q — 1) then by a straightforward generalization of corollary 2.2 of [Ber02],
we have Alrers] = Al0: Tk]{ﬂ/[ (v)]}. Thus for all n > 1, there exists k, > 0 such
that ([S(U)]d/ﬂ') .z e ALl 4o Alrersd - Since v/[s(v)] is a unit of ATt we have
(vi/m)kn .z e (Abre)< . (ALl 4 zn Alerid) Note that if 2 € AL N (BL)Tmes—an and if
r, = (v?/7)k" . 2 then by proposition 6.7 we have that x,, € K[;(’“T’“] N (BlE#) Pk —an g
that 0 o p=*(z,) € Ogﬁk*la = Ok,,,, by lemma 6.2.

By proposition 6.7 there exists Yno € OK[cp;m(v)] such that 0o, *(2,,) = 00 @, " (yn)-

[rk7x]

By proposition 6.4, there exists x, ; € A such that z,,—yn0 = (B /7)-Tp1. By lemma
71, x,1 € (B[IZ" ] Ym+r—an - Applying this procedure inductively gives us a sequence

{Yn,i}izo of elements of Ok[p,™ (v)] such that for all j > 1, we have

Ty — (yn,o + Yna - (Br/m) + -+ Ynjo1 - (Bk/ﬂ)j_l) € ker(6 o SDq_k)j-

Since the vy, ; belong to At and since Bm/Qm is a unit by proposition 6.4, we can
apply proposition 3.4 so that there exists j > 0 such that

— (Um0 + Yot - (Br/T) 4+ Ynjor - (Be/m) ) € mAIETH]

and thus belongs to m(Al07+] + 7n=1 Alerel) by item (3) of [Berl6, Lemm. 3.2]. We can
thus write @ = (yn,0 + Y1 - (Br/T) + -+ + yngo1 - (B/m) ") = ma, with ], € (A0 4
=1 Alreril) By proposition 6.7, x!, belongs to (ﬁ%’“’rk})rm“_an. We can now do the same
with 27, instead of x,, and we thus find some j > 0 and elements {y,; }i<; of O™ (v)]
such that if ¥, = yno + Yn1- (Bk/7) + -+ Ynj-1- (Bx/m)? ! then y, — x, € ar Alrerel | Tf
zn = (m/vDEry, then z, — x = (/v (y, — x,) € 7" Ao and thus (z,)n>1 converges
p-adically to z, and for all n > 0 z, belongs to A}/ I T"] so that x € Ag’;’“n’;k .

This proves the result when h = k. Assume now that h # k. The same proof shows
that if = € AL N (BL)'+2" then x = ¢, "(v) where f converges on the annulus
corresponding to the interval [¢™ry, ¢™ry]. Let us write f(Y) = f7(Y) + f~(Y), where
fH(Y) is the positive part and converges on [0,¢™rg] (note that we only know that
fH(e;™(v)) belongs to Bl and f~(Y) is the negative part and converges and is
bounded on [¢"ry; +oo[. If we let = = @™ (f~(v)) then it belongs to both Blreirel (by
the fact that = = x — 2" where % = " (f"(v)) € Bl ¢ Blrersl) and to Blretoel
so that it belongs to Blra+oel,

The final result needed to conclude is that if the power series f~(Y') converges on
[¢™ %, +00] and if f~(v) belongs to Bla" 4ol then f~(v) converges on [¢"™ry, +00[. The
proof is the same as the one of [Col08, Prop. 7.5] (see also [CC98, Lemm. I1.2.2]).

[Th k)

Therefore, we have z € A" ™, as claimed. O

8. The case of the anticyclotomic extension

In this section, we explain how to use the results from the previous sections to produce,
in the anticyclotomic case, an element of Frac Ry which is invariant by ¢,. This shows



RELATING TWO CONJECTURES IN p-ADIC HODGE THEORY 25

that Berger’s conjecture on substitution maps on the Robba ring and Kedlaya’s conjecture
are incompatible.
We start by recalling Berger’s conjecture [Ber22, Conj. 3.1].

Conjecture 8.1. — Let R be the Robba ring with coefficients in K, and let s be an
overconvergent substitution of R. Then (Frac R)*=! = K.

Proposition 8.2. — Let K = Q2 and let Ky /K be the anticyclotomic extension of

K. Suppose that there exists nontrivial locally analytic vectors in ;‘:}{ for the action of
I'x. Then there exists an overconvergent substitution f of the Robba ring Ry such that

(FracRy)=! # K.

Proof. — Let us assume that there exist nontrivial locally analytic vectors in ;‘1}( in
the anticylotomic case. Therefore, there exists v € A}(, locally analytic and lifting a
uniformizer of EJ, as in §5.

By proposition 6.4, up to increasing n, then for k& > n/h | fi,/Q is a unit in At
and fi/p is a generator of ker(f o o " : A[’”k””’@]—>(90p). Moreover, the infinite product
M(T) = z;.ol Hy,(T') converges in R} and the infinite product H;iol fr/p converges in
Bl to A ().

Since each f, is divisible by Q, A1 is divisible in B o by the infinite product tq =
yur - [ [ Qk/7 (the argument is the same as in lemma 4 6 of [Ber02]). But since fi/Qx
is a unit in AP+ for k > n, the same argument shows that A, divides tq in ]§Lg7LT. This
means that there exists a € (]A_5>£T7rig)X such that \; = o - tiq and thus o € Bl (for
example by [FF19, Prop. 1.8.6]).

Recall that we have overconvergent power series P(T'), Q(T) such that P(v) = ¢(v)
and Q(v) = ¢,(v). Applying ¢ to the equality A\ (v) = a-tiq gives us A\y(v) = 5-t,, where
B = ¢(a) € Bl and A\y(T) = XY o P(T) which belongs to BL’Z}}. Moreover, the same
proof as in lemma 5.1.1 of [GP19] shows that both a and § are pro-analytic vectors of
EL&LT for the action of Gal(Kyr/K). Writing

o_ M)ty

B Xa(v)ta
shows that § is invariant by Gal(Kir/Ko) (since it is the case of Ai(v), Az2(v) and {=).

R(T) belongs to Aj for some s > pr,,. Slnce t‘(’i is invariant by ¢, so is 3

1
. oQ°t o
is cpq(/\lgvg)R(v) = % - R(v). Therefore, the element % R(T ) € FracR is

invariant by the overconvergent substitution Q(7). O

In particular, using propositions 4.6 and 8.2, we obtain the following result:

Corollary 8.3. — If Berger’s conjecture holds then there is no overconvergent lift of
the field of norms in the anticyclotomic setting.

Proposition 8.4. — Let K/K be a Z, extension with Galois group I'x, and assume
that (ATK)FK’M = Ok. Then Kedlaya’s conjecture is false for K. /K.
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Proof. — Let us assume that (;‘;}{)F k=l — O and that Kedlaya’s conjecture is true.
This means that if 7' is a free Og-representation of Gx then DIP™(T) = (Af ®z,
T)Hc k=1 s an O-module such that At ®p, DI (T) ~ Al @z, T and thus (At @0,
DL(T))#=! ~ T

Moreover, since (AJ}()FK & = Ok, we can assume that K, /K is not (an unramified
twist of) the cyclotomic extension of K. Now let T" be a rank 1 Og-representation of G,

with basis e. By Kedlaya’s conjecture, there exists y € AT such that (T ®o, AT)HK’FK*IB‘
is a rank 1 Og-module generated by e ® y, and comes equipped with an Og-linear action
of I'x and ¢,. In particular, there exists a € Oy (since ¢, is an isomorphism) such
that (e ®y) = a- (e ®y), and I'kx acts on e ® y by multiplication by some character

n:Txk—0.
By local class field theory, there exists z in Oz, the ring of integers of the p-adic
completion of the maximal unramified extension of K, such that ﬁ = a. Since O C

At C A, we have that z € Al and if 2 = e @y ® z € DI (T) @0, Al ~ T ®p,. Al we
get that ¢,(z) = x so that yz € AT is invariant by ¢, and thus belongs to Ok.

This means that y € O, and since 'k acts on e ® y by multiplication by some

character n : I'x—Oj, this means that Gk acts on e by multiplication by a character
which factors through Gal(K - K™ /K). Since this is true for any rank 1 representation
T of Gg, this means by local class field theory that K = K. - K" which is possible
if and only if K, is a Lubin-Tate extension of K. Since K /K is a Z,-extension, this
means that X' = Q, and that K. /K is an unramified twist of the cyclotomic extension

of K, which as stated above is ruled out by the assumption that (A}()FK = 0. O
As a corollary of propositions 8.2 and 8.4, we obtain the following theorem:
Theorem 8.5. — Berger’s conjecture and Kedlaya’s conjecture are incompatible.

We finish this section and paper by exhibiting, assuming that Berger’s conjecture holds,
nontrivial higher locally analytic vectors in the anticyclotomic setting:

Proposition 8.6. — Let K. /Q,2 be the anticyclotomic extension. Then for anyn > 0,
we have an embedding K, C Rlla(Agg’p"]).

Proof. — Let n > 0, and let x be a generator of ker(¢ : A&g’p”] — OE;) given by
proposition 6.4. Consider the following exact sequence:

~ 1~ ~ ~
O%Aﬁg’p"]ﬁ(zAﬁg’p”])%Aﬁ?’p”}/xAgg’p"]%O
and note that AQ’” "] / x:&g’p " Ko Taking I'x-analytic vectors, we obtain:

Noyn —la 1N0,n —la /\FK_Ia NO,n
0 (AR (CARM) R Ko S Ry (AR

By proposition 8.2, assuming that Berger’s conjecture holds, we have (J&ﬁ?’ﬂ ”])FK —la —
Ok. Moreover, we have (%A&?’p ”]) C AT, so that still by proposition 8.2, we have
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((%;‘;g’p"}))rf{*la = Ok. Finally, l/(;FK_la ~ K. by [BC16, Thm. 1.6]. This gives
us the result we wanted. ]
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