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Abstract. — In this paper, we try to extend Berger’s and Colmez’s point of view, using
locally analytic vectors in order to generalize classical cyclotomic theory, in higher rings of
periods. We also explain how the formalism of locally analytic vectors recovers the ring
Bgen of Colmez, and extends to Sen theory in the de Rham case, and to classical (o, T')-
modules theory. We explain what happens when we try to generalize constructions of (p,T')-
modules to arbitrary infinitely ramified p-adic Lie extensions, and provide a conjecture on
the structure of the locally analytic vectors in the corresponding rings. We also highlight
the fact that the situation should be very different, depending on wether the p-adic Lie
extension “contains a cyclotomic extension” or not. Finally, we explain how some of these
constructions may be related to the construction of a ring of trianguline periods.
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Introduction

Let p be a prime, and let K be a finite extension of Q,. We fix Qp = K an algebraic

closure of K, and we let Gx = Gal(K/K) be its absolute Galois group.

A classical idea in p-adic Hodge theory in order to study p-adic representations of G
is to use an intermediate extension K., /K such that K, /K is nice enough but such
that it contains “most of the ramification” of Qp /K, so that Qp /K is almost étale in
the sense of Faltings (which is the same as saying that the p-adic completion of K, is
perfectoid). The main example of such an extension is the cyclotomic extension K (fe)
of K, which has been thoroughly used in p-adic Hodge theory, notably in Sen theory and
(¢, ')-modules theory.

In some sense, Kummer extensions are simpler than the cyclotomic extension, and work
from Breuil [Bre98] and Kisin [Kis06] show that Kummer extensions are very useful in
order to study semistable representations. However, Kummer extensions are never Galois
and this implies that we usually have to replace them by their Galois closure which
increases the difficulty of the situation. Lubin-Tate extensions attached to uniformizers
of K, of which the cyclotomic extension when K = Q, is a particular case, trivialize
local class field theory and thus seem particularly useful in order to extend the p-adic
Langlands correspondence to GLo(K) (see for example [KR09, FX14, Berl6b| for
work in this direction). More generally, the interesting framework should be the one
of infinitely ramified Galois extensions whose Galois group is a p-adic Lie group, with
potential applications in Iwasawa theory [Ven03].

Let V' be a p-adic representation of G, and let Ko = K(pp~), Hx = Gal(Q,/Kx)
and I'y = Gal(K/K). Recall that the cyclotomic character xcye : ' — Z, identifies
'k with an open subgroup of Z*. Since QP/KOO is almost étale, (V ®q, C,)"x Q= Cp ~
V ®q, C,, so that the study of the C,-representation V' ®q, C, is reduced to the one of
(V ®q, Cp)x. The idea of Sen to study such a representation [Sen80] is to consider the
subspace Dge, (V) of K-finite vectors, which are elements of (V ®q, C,)* which belong
to finite dimensional sub-K-vector spaces stable by FE'\ This is a sub-K-vector space
of (V ®q, Cp,)"x, and Sen proved that Dge,(V) @k, Koo =~ (V ®q, C,)x.

If K is any infinitely ramified p-adic Lie extension K. /K, and if V is a Q,-
representation of Gx, then since Qp /K is almost étale, we still have an isomorphism
(V®q,C,p)" @ C, ~ V®q,C,, but if the dimension of 'k = Gal(K./K) as a p-adic
I/Jiggroup is greater or equal to 2, then the space of K-finite vectors of this semilinear
K -representation of I'i is no longer suitable, as shown by [BC16, Prop. 1.5].

In order to generalize Sen theory to any infinitely ramified p-adic Lie extension K, /K,
Berger and Colmez suggested to replace the space of K-finite vectors and the use of
normalized Tate’s traces maps (which no longer exist in general [Fou09]) by the space
of locally analytic vectors, which are elements x such that the orbit map g — g(x) is a

locally analytic function on I'k. This gives a decompletion of (V ®q, Cp)Gal(Qp/ K<) into
——Ila

a K. -vector space of dimension dimq, V', but in general [/(;la strictly contains K.
Recall that the strategy developped by Fontaine (see [Fon94b]) to study p-adic rep-

resentations of Gy is to construct some p-adic rings of periods B, which are topological

Q,-algebras endowed with an action of Gx and additional structures such that if V' is a
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p-adic representation of G, then the B9-module Dp(V) := (B ®q, V)< is endowed
with the structures coming from those on B, and such that the functor V +— Dpg(V)
gives some interesting invariants attached to V. For Fontaine’s strategy to work, one
requires that these rings of periods B are Gi-regular in the sense of [Fon94b, 1.4.1] (this
implies in particular that B9% is a field). We then say that a p-adic representation V' of
Gr of dimension d is B-admissible if B ®q, V ~ B¢ as B-representations. The strategy
of Fontaine then consists of classifying p-adic representations according to the rings of
periods for which they are admissible. In the case where V' is admissible, Dg(V) can
usually be used to recover V', or at least V|g, for some finite extension L of K.

Colmez has constructed in [Col94] a ring of periods Bge, which recovers Sen’s theory
in the cyclotomic setting. Precisely, he defines Bg,, as the set of power series in the
variable u over C,, with radius of convergence > p~", and endows it with an action of
Gal(Q,/K (pn)) by g(u) = u + 10g Xeyai(g) (this makes sense since log xeya(9) € p"Ox
if g € Gk, ). He then shows that (Bgen)gK(“P”’ = K(up) and that K ®k, (B&., Qq,

V)90 g isomorphic to Dgen(V) for n big enough.

One other key ingredient in the study of p-adic representations of Gx is the theory of
(p, 'k )-modules, which provides an equivalence of categories V' +— D(V) between the
category of all p-adic representations of Gi and the category of étale (¢, 'x)-modules.
In Fontaine’s theory, (¢, 'k )-modules are finite dimensional vector spaces, defined over
a 2-dimensional local ring Bx and endowed with semilinear actions of a Frobenius ¢ and
of I'r which commutes one to another.

One variant of the theory, which has been used with many useful applications, is the the-
ory of (¢, I'k)-modules over the Robba ring Blig - The theorem of Cherbonnier-Colmez
[CC98| shows that the category of étale (¢, 'k )-modules over By actually embedds into
the category of (¢, ['kx)-modules over Biig’ 5 of slope 0, and the slope filtration theorem
of Kedlaya [Ked05] shows that this is an equivalence of categories.

One interesting feature of the Robba ring is that it can be used as a bridge between
the classical theory of (¢, 'x)-modules and p-adic Hodge theory, as its elements can
be embedded inside Bl;. In particular, Berger has shown [Ber02] how to recover the
invariants attached to a p-adic representation V' in p-adic Hodge theory from its (¢, I'k)-
module on the Robba ring.

Kisin and Ren have defined Lubin-Tate (¢,, I'x)-modules [KR09] and proved that
the category of Lubin-Tate étale (¢, I'x)-modules is equivalent to the one of Q-
representations, but unfortunately a result from Fourquaux and Xie [FX14] shows that
those (¢4, I'k)-modules are usually not overconvergent. Results from Berger [Ber13]
[Ber16b]| suggest that the right objects to consider are once again the locally analytic
vectors inside some higher rings of periods.

In this paper, we try to understand what happens if we use the point of view of Berger-
Colmez of locally analytic vectors in “higher rings of periods™.

Our first remark, which follows from the formalism of locally analytic vectors, is that
Colmez’s construction of Bge, can be generalized to construct rings of periods which
“compute the cyclotomic theory”. More precisely, if B is a Q,-Banach (or Fréchet)
ring endowed with an action of Gk, such that the functor V' — Dg(V)"® := (B ®q,

V)Gal(Qp/ Kupo=)) T =12 gives interesting invariants of V', where V is a p-adic representation
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of G, then the ring C'*(I'x, B)1, the stalk at the identity of the sheaf of locally analytic
functions on ' with coefficients in B, “computes” the functor V + Dg(V)", in the
sense that

(C*(Tk,B)1 ®q, V)9 ~ ((B®q, V)"x)x—t,

In particular, this allows us to provide constructions recovering cyclotomic (¢, T')-
modules and cyclotomic Sen theory for B -representations in this spirit, which extend
to the F-analytic Lubin-Tate case as remarked by Berger [Ber16b, §8,9,10] and Porat
[Por22, §3].

In order to generalize (p,['x)-modules theory to any infinitely ramified p-adic Lie

HrTr—la  where

extension, one would like to understand the structure of the rings (]§I )
the rings B are some higher rings of periods which are properly defined in §1. For the
theory to behave well and indeed generalize, we should expect that (B!)#xTx=la can be
interpreted as a ring of power series in d variables, where d is the dimension of 'k as
a p-adic Lie group. We expect that if K, contains a twist by an unramified character
of the cyclotomic extension, in which case we say that the extension K., /K contains
a cyclotomic extension, then the theory does generalize and the rings (]§I Yirla can be
interpreted as rings of power series in d variables:

Conjecture 0.1. — If K. /K contains a cyclotomic extension, then the rings
(BL)I»=2n can be interpreted as rings of power series in d variables, with some
convergence condition.

More precisely, we expect that, for n > 0, there exist d elements x1,,...,Tqn 0
(BI )= such that (BL)'=20 s the set of power series D i (ini)

variables (mi,n)ie{l,...,d} with coefficients in K such that the series Ei:(ihm’id)eNd aix;{n

eNd GiTj, in the

converge in (BL)I»—an,

It was proven by Berger in [Ber16b, Thm. 4.4] that this conjecture holds when K.,/ K
is a Lubin-Tate extension. In the particular case of the cyclotomic extension, Berger’s
result shows that (BL)I"~2" is a ring of power series in one variable with coefficients in K,
such that the series converge on some annulus depending only on n and /. Moreover, this
variable is, up to some power of the Frobenius, exactly the one used in the construction
of cyclotomic (¢, I')-modules. In particular, just as in [BC16], we notice that locally
analytic vectors applied to the cyclotomic setting recover the classical theory.

In this paper, we are able to generalize Berger’s result and to prove our conjecture in
a particular case:

Theorem 0.2. — Let K. /K be an infinitely ramified p-adic Lie extension which is a
successive extension of Zy-extensions and contains a cyclotomic extension. Then the
conjecture above is true for Ko /K.

The fact that we expect the need to contain a cyclotomic extension follows from the
following, which shows that for p-adic Lie extensions which do not contain a cyclotomic
extension, the situation looks different:



LOCALLY ANALYTIC VECTORS AND RINGS OF PERIODS 5

Theorem 0.3. — Let K.,/Q,2 be the anticyclotomic extension, where Q2 is the un-

ramified extension of Q, of degree 2. Then the rings (ﬁI)HK’FK_la are equal to Q2 if
0el.

If W is a Fréchet representation of a p-adic Lie group, the space of locally analytic
vectors W' can be defined but is too small in general to be able to recover W from W',
We provide in this paper computations of locally analytic vectors for Robba rings in the
F-analytic Lubin-Tate case, which highlights this fact. We also show that taking F-
locally analytic vectors in the (¢4, I'x)-modules on Robba rings recovers modules defined
by Colmez in [Col14] through different methods:

Theorem 0.4. — Let V be an F-analytic representation of G, and let D! (V) be its

rig
attached (g, Ik )-module over the Robba ring BL&K. We have the following:

- (Eiig,K>FK_la = (Biig,K)FK_la = K((tx)) ;
— Diig(V)FK_la = ﬂnZOgO”(DLg(V)) and is a free K({tz))-module of rank < dimq, V' ;

where t, is the “Lubin-Tate analog of t” and K((T)) denote the set of power series
in T with coefficients in K and infinite radius of convergence.

This theorem alongside theorem 3.23 of [Col14]| show that in general the rank of
DLg(V)la as a K ((t;))-module is strictly smaller than dimq, V' and is thus too small to
recover Diig(V).

Finally, we highlight the fact that thinking of the rings C'*(I'x, B); as rings of periods
could have applications in order to define rings of periods for trianguline representations:
a trianguline representation is a representation such that its attached (¢, 'k )-module
on the Robba ring is a successive extension of rank 1 (¢, 'x)-modules, but that does
not mean that the corresponding representation itself is a successive extension of rank 1
representations, because the (¢, ' )-modules of rank 1 that appear in the decomposition
do not need to be étale. Trianguline representations are assumed to be related to repre-
sentations coming from global geometric objects (see for example [Eme09] and [Kis03))
and for example the representations attached to overconvergent modular forms of finite
slope are trianguline.

In order to better understand and parametrize trianguline representations, it would
make sense to construct a ring which would be to trianguline representations what B,y
is to crystalline representations, and we try to offer candidate rings for that purpose.

Note that, since unramified representations of G are crystalline and thus trianguline,
we expect such rings to contain Qp™. Moreover, when we talk about rings of periods
B, we expect that the corresponding modules attached to p-adic representations V' and
defined by Dg(V) = (B ®q, V)9 satisfy at least the three following properties:

1. B is reduced;

2. for any p-adic representation V of G, Dg(V) is a free B9<-module;

3. the B-linear map ay : B ®gox Dp(V) — B ®q, V deduced from the inclusion
Dg(V) C B®q, V by extending the scalars to B, is injective.

The reason why one would have to define several rings is the following:
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Proposition 0.5. — There is no ring of periods B satisfying those three properties and
containing Q™ such that for any finite extension K of Qp, B is a trianguline period ring

for Gk

Therefore, our ring of trianguline periods of G has to be dependent on K. In the
case K = Q,, since every rank 1 representation is trianguline, our ring has to contain
every exp(alogt) with a € F, a field of coefficients. In particular, the ring Biiq, we

tri
define is to B,

rig
C*(T'k,BJ,)1, which is also the inductive limit of the rings C**(I', , B,). Proposition
7.1 shows that ( {Lri7Qp)gKn = Q,((t)), the set of power series in ¢ with infinite radius
of convergence. The module Do (V) is therefore a module over Q,((t)) and is also

endowed with a Frobenius ¢ coming from the one on ]§;§g and an operator V coming

from the action of the Lie algebra of I'x and commutes with the action of ¢. We then
extend these constructions to the F-analytic case, constructing a ring B{j; x in the same
fashion, and we extend Fontaine’s classical formalism of admissibility to take this setting
into account.

Generalizing the notion of refinements of p-adic representations [Maz00] [BC09a] to

our setting, we prove the following:

what the ring Bse, introduced in [Col94] is to C,: Bijq is the ring

Theorem 0.6. — Let V' be an F-analytic representation of Gr which is B -
admissible. Then V is trianguline.

While the ring Bgj ;¢ is too small to contain the periods of all F-analytic trianguline
representations of G, we could adapt our constructions to “add a log to our ring”, which
would cover the semistable periods, but we would still be missing the “nongeometric” pe-
riods of trianguline representations, which appear in item (iz) of theorem 3.23 of [Col14].
It is not yet clear how many periods one would have to add to B{j ;- to get a ring of
trianguline periods.

Structure of the paper

The first section of the paper recalls the theory of classical rings of periods and the
theory of (¢, I')-modules and the rings it involves. The second section recalls the theory
of locally and pro-analytic vectors. In §3, we recall the main results from [BC16]. We
explain in §4 how this framework recovers classical Sen theory for Bl;-representations,
and we compute what (B )% looks like in some particular cases with emphasis on the
Lubin-Tate one. In section 5 we explain how (¢, I')-modules theory is recovered through
our framework. In §6, we explain what we expect to happen in general when trying to
generalize (p,I")-modules theory by using locally analytic vectors, prove the particular
case of the conjecture and highlight some problems which may arise in the anticyclotomic
case. The computations of locally analytic vectors in Robba rings is done in §7. Finally,
§8 is devoted to the applications to trianguline representations and towards a construction
of rings of trianguline periods.
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1. Classical p-adic rings of periods and (¢, [')-modules

1.1. Fontaine’s strategy and some rings of periods. — Let p be a prime, let K be
a finite extension of Q, and let Gx = Gal(K/K) be its absolute Galois group. Let k be
the residual field ok K and let F' = W (k)[1/p] be the maximal unramified extension of Q,
inside K. Let C, be the p-adic completion of K. Let Fl, = Q, (i) be the cyclotomic
extension of Q,. For n > 1 let K,, = K(u,~) be the extension of K generated by the
p"-th roots of unity, and let Ko = |, K (ppn) = K - F5 be the cyclotomic extension
of K. Let Hq, = Gal(Q,/Fx) and I'q, = Gal(F/Q,). Let Hx = Gal(K/K) and
I'x = Gal(K/K). Recall that the cyclotomic character Xcye1 : Gx — Z,; factors through
['x and identifies it with an open subset of Z;. We also let Kj denote the maximal
unramified extension of Q, inside K.

Recall that the strategy developped by Fontaine (see [Fon94b)]) to study p-adic rep-
resentations of G is to construct some p-adic rings of periods B, which are topological
Q,-algebras endowed with an action of Gk and additional structures such that if V' is a
p-adic representation of G, then the B9%-module Dg (V) := (B ®q, V)% is endowed
with the structures coming from those on B, and such that the functor B — Dg(V)
gives some interesting invariants attached to V. In Fontaine’s original setting, one re-
quires that these rings of periods B are Gx-regular in the sense of [Fon94b, 1.4.1] (this
implies in particular that B9% is a field). We then say that a p-adic representation V of
Gk of dimension d is B-admissible if B ®q, V ~ B¢ as B-representations. The strategy
of Fontaine then consists of classifying p-adic representations according to the rings of
periods for which they are admissible. In the case where V is admissible, Dg(V') can
usually be used to recover V', or at least V|g, for some finite extension L of K.

We now recall the construction of some rings of periods.

Let Bt = lim Oc, = {(x(o), ) €O (D) = x(”)} and recall [Win83, Thm.

TP
4.1.2] that this ring is naturally endowed with a ring structure which makes it a perfect

ring of characteristic p which is complete for the valuation vg defined by vg(z) = v,(z®).
Let E be its field of fractions and note that it is algebraically closed. We denote by ¢ the
absolute Frobenius  — 2?7 on E* and E. The action of Gq, on Og, induces a continuous
action of Gq, on E.

Choose a sequence € = (¢"),eN € E* of compatible p"-th roots of unity (with e # 1).
Let 7 =¢—1 € E* and let Eq, := F,(7) C E. Let E = Eq! be the separable closure
of Eq, inside E. The field Eq, is left invariant by the action of Hq, so that we have a
morphism Hq, — Gal(E/Eq,). By [Win83, Thm. 3.2.2], it is actually an isomorphism.
We also let Ex = Ef%. Note that I'x acts on Eg, and that the action of Gq, on v is
given by g(v) = (1 + v)Xeval9) — 1

Let A = W(E) and let At = W(ET). We also let B = Frac(A) = A[l1/p] and
Bt = A*[1/p]. By functoriality of Witt vectors, the action of Gq, extends to an action
on A and B that commutes with the Frobenius @. If L is a finite extension of Q,, we let
B, =Bt and A; = A"t where H; = Gal(Q,/L(j1y~)).
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Note that any element z of At can be written as z = > ko P¥lxk] where the zy

belong to E* and [-] denotes the Teichmiiller lift. Recall [Fon94a, 1.5.1] that we have

a surjective morphism of rings 6 : :&+—>OCP given by 0(x) = >, pkx,(co)

and whose
kernel is a principal maximal ideal of A*. This morphism 6 naturally extends to B+ to
a surjective morphism that we still denote by 6 : ]§+—>Cp. For m € N, we let B,,, be the
ring B+ /ker(6 )mBJr and we endow it with the structure of a p-adic Banach ring by taking

the image of A* as its ring of integers. We let Bl = 1# m B,, be the completion of B+
meN
for the ker(f)-adic topology and we endow it with the Fréchet topology of the projective

limit. By construction, § extends to a continuous morphism 6 : BY; — C,, and the action
of Gq, on B+ extends by continuity to a continuous action on Bl,. We let B4r be the
fraction field of BJ;. The power series defining log[e] converges in B, to an element ¢
that generates the maximal ideal ker(6 : Bjz — C,) of Blz, so that Bqr = Biz[1/1].
Note that the action of Gq, on ¢ is given by g(t) = Xcya(g) - t. We endow Bgr with a
filtration by setting Fil'Bqg = t'Bls. We call representations that are Byr-admissible
“de Rham representations”.

Fontaine has also defined several other rings of periods, among which By and By,
in order to study p-adic representations. Recall that By is endowed with a Frobenius
¢, By contains By, is endowed with a Frobenius ¢ and a monodromy operator N
such that By = BY=C, and Bgg is a field endowed with a filtration {Fil'Byg }icz and
such that there is an injective map By — Bgr. Moreover, these rings all contain the
element ¢, and there exist rings B . and B such that B = Bi,[1/t] and By =
B.[1/t]. Representations that are B..ys-admissible and Bg-admissible are respectively
called crystalline and semi-stable representations. The relations between those rings
imply that crystalline representations are semi-stable and that semi-stable representations
are de Rham. We do not recall the proper definitions of By and B as they are not
needed in this note.

crys

1.2. Cyclotomic (¢, I')-modules. — Let us now recall briefly the theory of (¢,I')-
modules and some of the rings involved in the theory. Let v = [¢] — 1. Let Aq, be the

p-adic completion of Z,((v)) inside A. This is a discrete valuation ring with residue field
Eq,. Since

p(v)=(1+v)P =1 and g(v) = (1+0v)=@ —1if g € Gq,,

the ring Aq, and its field of fractions Bq, = Aq,[1/p] are both stable by ¢ and 9q,-
For r > 0, we define B the subset of overconvergent elements of “radius” r of B by

~ r
B = {x = Z p"lx,] such that lim vg(xg) + ]%k = +oo}

k—+o0
N —0oo

and we let Bf = U0 B'" be the subset of all overconvergent elements of B.
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Let BIQZ be the subset of Bq, given by

BTT = Za,v a; € Q, such that the a; are bounded and lim v,(a;) + i P 400 ¢,
pyr= i——00 p—1

and note that Bg; = Bgq, N BT

Let BIQ = U, -0 BIQ:) By §2 of [Mat95], this is a Henselian field, and its residue ring

is still Eq,. Since BIQ is Henselian, there exists a finite unramified extension B,/ Bg
p P

inside ]§, of degree f and whose residue field is Ex. Therefore, there exists r(K) > 0 and
elements xy,..., 2 in B}’{T(K) such that B = @/, Bg; - x; for all s > r(K). We let
By be the p-adic completion of BZ( and we let A be its ring of integers for the p-adic
valuation. One can show that B is a subfield of B stable under the action of pand 'k
(see for example [Col08a, Prop. 6.1]). Let A be the p-adic completion of UK/QP Ay,
taken over all the finite extensions K/Q,. Let B = A[1/p]. Note that A is a complete
discrete valuation ring whose field of fractions is B and with residue field E. Once again,
both A and B are stable by ¢ and Gq,. Moreover, we have A = A and Bx = B,
so that Ak is a complete discrete valuation ring with residue field Ex and fraction field
By = Ag[l/p]. If L is a finite extension of K, then B /B is an unramified extension
of degree [Lo : K and if L/K is Galois then so is By, /By, and we have the following
isomorphisms: Gal(B,/Bg) = Gal(B./Bg) = Gal(EL/Ex) = Gal(Lo /Ko) = H /Hy.

Definition 1.1. — If K is a finite extension of Q,, a (¢, 'x)-module D on A (resp.
Bg) is an A g-module of finite rank (resp. a finite dimensional B x-vector space) endowed
with semilinear actions of ' and ¢ that commute one to another.

It is said to be étale if 1® ¢ : ¢*D — D is an isomorphism (resp. if there exists a basis
of D such that Mat(p) € GL4(Ak)).

If K is a finite extension of Q, and if V' is a p-adic representation of G, we set
D(V) = (B®q, V)"~.

Note that D(V') is a (¢, 'k )-module. Moreover, if V' is a p-adic representation of G, then
D(V) is étale and (B ®g,. D(V))?=! is canonically isomorphic to V' (see [Fon90, Prop.
1.2.6]). The functors V + D(V) and D — (B ®g, D)?=! then induce an equivalence of
tannakian categories between p-adic representations of Gx and étale (¢, 'k )-modules.

For r > 0, we define a valuation V (-, r) on B*[1/[0]] by setting

_ p—
V(z,r) = 1?61;(/{: +

vg(zr))

for w =37, o P[] N

For r = 0, we let V'(-,0) be the p-adic valuation on B*[1/[v]].

If I is a closed subinterval of [0; 4+o0[, I # [0,0], we let V(z,I) = inf,cr,20 V (2, 7) (one
can take a look at remark 2.1.9 of [GP19] to understand why we avoid defining V'(-,0)).

We then define the ring B’ as the completion of B¥[1/[t]] for the valuation V (-, I) if



10 LEO POYETON

0 ¢ I, and as the completion of BT for V/(-, 1) if I = [0;7]. We will write ﬁl{g for Blr+oel
and ]§;§g for BIO-+oel, We also define ]§Lg = U0 ]§Lg

Let I be a subinterval of [0, +o00[ which is either a subinterval of |1, 4-o00[ or of the form
[0, 7], for some 7 > 0. Let f(Y) = >, .5 axY" be a power series with a; € F and such
that v,(ax) 4+ k/p — 400 when |k| — +o0 for all p € I. The series f(v) converges in B’
and we let B{Qp denote the set of all f(7) with f as above. It is a subring of ﬁ&p

We also write BI{;Q for BESJFOO[. It is a subring of Bg;s] for all s > r and note that
)P P P

the set of all f(v) € BL’;QP such that the sequence (ay)rez is bounded is exactly the ring

Tr T T,r
BQP' Let BQP — UT>>OBQP‘

Recall that, for K a finite extension of Q,, there exists a separable extension Ex/Eq,
of degree f = [K : Fix] and an attached unramified extension B} / BTQ,, of degree f with

residue field Eg, so that there exists 7(K) > 0 and elements 1, - - -z € B}’{T(K) such that
Bl = @Zf:l IQ‘; -x; for all s > r(K). If r(K) < min([), we let B, be the completion of
BE’(T(K) for V(-,I), so that BL. = @Zf:lBép - T

We actually have a better description of the rings Biig ;1 general:

Proposition 1.2. — Let K be a finite extension of Q,.

1. There exists vg € A}’;(K) whose image modulo p is a uniformizer of Ex and such
that, for r > r(K), every element x € BJ}{ can be written as x =Y, ., arvl, where
a, € I = Q;m N K, and the power series Zkez apT* is holomorphic and bounded
on {p~Vexr <|T| < 1}.

2. Let H3(T) be the set of power series Y, 5 axT" where aj, € F' and such that, for
all p € o 1], kl_l)Iinoo lax|p* = 0 and let oy = p~ /5", Then the map H$. (T) — BL’;K

sending f to f(vg) is an isomorphism.

Proof. — The first item is proved in [Col08a, Prop. 7.5] and the second one in [Col08a,
Prop. 7.6]. Be careful that the notations for the rings and the normalizations of the
valuations used in Colmez’s paper are a bit different than ours. O

The following theorem is the main result of [CC98] and shows that every étale (¢, 'k )-
module is the base change to B of an overconvergent module:

Theorem 1.3. — If D is an étale (o, 'x)-module, then the set of free sub-B}{-modules
of finite type stable by ¢ and Tk admits a bigger element DT and one has D = Br®gt Dt.
K

In particular, if V' is a p-adic representation of Gx, then there exists an étale (¢, 'k )-
module over B, which we will denote by DT(V) and such that D(V) = Bg ®gt DI(V).
K

We let D, (V) = B, , ©gy DI(V).

rig
If £ if a finite extension of Q,, we can make the following definition:

Definition 1.4. — A (p,I'x)-module over E®q, BL&K is a finite module D over F®q,
Bf

rig > €quipped with a semi-linear Frobenius ¢p and a continuous semi-linear action
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of T such that D is free as a B! r-module, id ® ¢p BLgK ®, Bt D—D is an

rig, rig, K
isomorphism and that the actions of ¢p and I'x commute.

By [Nak09, Lemm. 1.30], a (¢, 'k )-module over E®QPBLg7K is free as an E®QPBLg7K-
module. We say that a (¢,['x)-module over £ ®q, BL&K is étale if its underlying ¢-

+ .
module over By, - is étale.

1.3. Lubin-Tate (p,')-modules. — We now recall the theory of (¢,I')-modules in
the Lubin-Tate setting. We let I be a finite extension of Q,,, 7 a uniformizer of Op and
LT be a Lubin-Tate formal Op-module attached to the uniformizer 7 of Op. Let ¢ be the
cardinal of the residue field of F and let h be such that ¢ = p". Let Fy = F N Q. We
let F,, denote the extension of F' generated by the points of 7"-torsion of LT for n > 1,
and Flo = U,5 Fn- Welet I'p = Gal(F/F) and Hp = Gal(F/F). By Lubin-Tate’s
theory [LT65, Thm. 2], the Lubin-Tate character x, : Gr — O induces an isomorphism
I'r ~ Of. For a € Op, we let [a](T) denote the power series that corresponds to the
multiplication by a map on LT. Let vy = 0 and for each n > 1, let v, € Qp be such that
[7](vn) = Vp—1, With vy # 0.

Recall that we defined rings A, A+, A and B, B, B previously, and in what follows
we will keep the same notations for those rings tensored over Fy (resp. Op, in the case
of A and AT), by F (resp. Op). We let 0, = ¢°" and we let rp, = p"1(p—1) for k > 1.

Recall that by [Col02, §9.2], there exists v € A" whose image in ET is (vg, V1, ),
where E* = lim Oc,/m (by [BC09b, Prop. 4.3.1], this is the same ring E* as before)

x—xd

and such that g(v) = [xx(9)](v) and ¢,(v) = [7](v). We also let t, = log;(v) € ]~3r+ig SO
that g(tr) = xx(9) - tr and ¢,(t.) = 7wt,. Note that when F' = Q, and © = p, this is
exactly the classical ¢ of p-adic Hodge theory.

Forp>0,let p'=p-e-p/(p—1)-(¢—1)/q, where e is the ramification index of F//Q,.
Let I be a subinterval of [0, +oo[ which is either a subinterval of |1, +oo[ or of the form

[0, 7], for some r > 0. Let f(Y) = >,z axY" be a power series with aj, € F and such
that v,(ay) + k/p’ — +o0o when |k| — +o0 for all p € I. The series f(v) converges in BY
and we let BL denote the set of all f(v) with f as above. It is a subring of BL.. We also

write BI{QF for BE;HFOO[.

We let Ay denote the p-adic completion of O ((v)) inside A, and we let Bp = A[1/p)].
As in the cyclotomic case, to any extension L/F finite, there corresponds extensions
A /Ap and B;/Bp, of degree Lo : Fi] where Lo, = L-F,, equipped with actions of ¢,
and 'z, := Gal(Lw/L). As in the cyclotomic case, we fix once and for all a finite extension
K of F' and will apply the theory to p-adic representations of G = Gal(Qp /K). There
is also a theory of (¢,, I'x)-modules over By, which are finite dimensional Bx vector
spaces endowed with commuting semilinear actions of I'x and ¢,. Once again, such a
(g, I'k)-module is said to be étale if there exists a basis in which Mat(p,) belongs to
GL4(Ak). By specializing Fontaine’s constructions [Fon90, A.1.2.6 and A.3.4.3], Kisin
and Ren prove the following, which is [KR09, Thm. 1.6):
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Theorem 1.5. — There is a tannakian equivalence of categories between F-linear rep-
resentations of Gk and étale (¢4, I')-modules over By.

However, unlike in the cyclotomic case, these (¢4, I'x) modules are rarely overconver-
gent. Berger showed in [Berl6b] that the right subcategory of representations corre-
sponding to overconvergent (y,, 'x)-modules was the one of F-analytic representations
(note however that there are representations which are not F-analytic but whose attached
(¢4, Txc)-module is overconvergent). An E-representation V of G, where E D F&! is
said to be F-analytic if for any 7 € Emb(F, Qp), T # id, the semilinear C,-representation
C, ®" V is trivial. In that case, theorem 10.4 of [Ber16b| shows that one can attach to

Vlan étale F-analytic (gp,T], 'k )-module DLg(V) on BLgK,
0g g

o x () 1ig(V). Note that, when F' = Q,, every representation of G is
Q,-analytic.

For an F-analytic character 6 : K*—E*, we let w(d) denote its weight, which is defined
by w(d) = §'(1).

which means that the operator
is F-linear on D

Lemma 1.6. — Let D be a rank 1 F-analytic (¢, ' k)-module over E & BIig,K‘ Then
there exists § an F-analytic character K*—E* and a basis e of D in which g(e) =

5(xa(g) - ¢ and pq(e) = () - c.
Proof. — This is the same as in [Col08b, Prop. 3.1], using [Ber16b, Thm. 10.4]. O

2. Locally and pro-analytic vectors

Here, we recall some of the theory of locally- and pro-analytic vectors, following the
presentation of Emerton in [Emel7]| and of Berger in [Ber16b].

Let G be a p-adic Lie group, and let W be a Q,-Banach representation of G. Let H be
an open subgroup of G such that there exists coordinates ¢y, -+ ,cq : H = Z,, giving rise
to an analytic bijection ¢ : H — Zg. We say that w € W is an H-analytic vector if there
exists a sequence {wy }y e such that wy — 0in W and such that g(w) = >, na €(9) wi
for all g € H. We let WH=21 be the space of H-analytic vectors. This space injects into
C*(H,W), the space of all analytic functions f : H — W. Note that C*(H,W) is
a Banach space equipped with its usual Banach norm, so that we can endow W#7—an
with the induced norm, that we will denote by || - ||z. With this definition, we have
||w||g = supgene [|wi|] and (WH=22 || - ||g) is a Banach space.

The space C**(H, W) is endowed with an action of H x H x H, given by

((91,92,93) - [)(9) = 91 - f(93 ' 993)

and one can recover W2 as the closed subspace of C*"(H, W) of its A; »(H)-invariants,
where Ay, : H — H x H x H denotes the map g — (g,¢,1) (we refer the reader to
[Emel7, §3.3] for more details).

We say that a vector w of W is locally analytic if there exists an open subgroup
H as above such that w € W22 Let W@ be the space of such vectors, so that
wh = g WH= where H runs through a sequence of open subgroups of G. The space
W' is naturally endowed with the inductive limit topology, so that it is an LB space.
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Lemma 2.1. — If W is a ring such that |zy| < |z| - |y| for x,y € W, then

L. WH= s q ring, and |zvy|g < |z|x - |ylg if z,y € WH—;
2. ifw € WX N W8, then 1/w € W2, In particular, if W is a field, then W' is also
a field.

Proof. — See [BC16, Lemm. 2.5]. O

It is often useful to choose a specific fundamental system of open neighborhoods of G:
let Gy be a compact open subgroup of G which is p-valued and saturated (see [Sch11,
§26 and 27| for the definition and proof of existence), with coordinates c, and set G,, =
Gr" = {gp" 1g € G()} for n > 0.

These are subgroups ([Sch11, Remark 26.9]) which have induced coordinates ¢ : G,, —
(p"Z,)?. The normalization is such that for w € W& =21 we can write

g(w) = Z C(Q)kwk

keNd

for g € G, and {wy by na With ¥l — 0, and the Banach norm is given by
lwle,—an = sup [p™wi].

It is easy to check if w € W =2 then |w|g,, —an < |w|a
|w]| for m > n (see [BC16, Lemme 2.4]).

Let W be a Fréchet space whose topology is defined by a sequence {p; },, of seminorms.
Let W; be the Hausdorff completion of W at p;, so that W = @WZ The space W'

1>1

can be defined but as stated in [Ber16b] and as will be explained in §7, this space is too
small in general for what we are interested in, and so we make the following definition,
following [Ber16b, Def. 2.3]:

mi1—an form > nand |w|a,,—an =

Definition 2.2. — If W = @ W; is a Fréchet representation of G, then we say that a
i>1

vector w € W is pro-analytic if its image m;(w) in W; is locally analytic for all i. We let

WP denote the set of all pro-analytic vectors of W, so that WP?* = mz > 1wl

We extend the definition of W' and WP for LB and LF spaces respectively.

Proposition 2.3. — Let G be a p-adic Lie group which is a uniform pro-p-group, let
B be a Banach G-ring and let W be a free B-module of finite rank, equipped with a
compatible G-action. If the B-module W has a basis w1, ...,wy in which g — Mat(g) is
a globally analytic function G — GLg(B) C My(B), then

1. WH—an — @;l:l BH=n , if H is a subgroup of G

a d a

2. Wl = ®j=1 Bl 'U)j.
Let G be a p-adic Lie group, let B be a Fréchet G-ring and let W be a free B-module
of finite rank, equipped with a compatible G-action. If the B-module W has a basis
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Wy, ..., wq in which g — Mat(g) is a pro-analytic function G — GL4(B) C My(B), then
d
Wpa == @Bpa C Wy .
j=1

Proof. — The part for Banach ring is proven in [BC16, Prop. 2.3] and the one for
Fréchet rings is proven in [Ber16b, Prop. 2.4]. O

Note that the map log x, : 'k — Op induces isomorphisms I';, ~ 7"Op for n > 0,
and endows ' with an Op-analytic structure as a p-adic Lie group.

If W is an F-linear Banach representation of I'xr = Gal(K«/K), and if n > 1, we say
that w € W is F-analytic on I',, = Gal(K/K,) if there exists a sequence {wy}r>o of
elements of W such that 7"%wj;, — 0 such that g(w) = >, - 1log xx(9)"wy, for all g € T,
This means that w is a I',-analytic vector, with I',, viewed as a p-adic Lie group defined
over Op instead of Z,.

If W is a locally analytic representation of [', we can define operators V. : W — W
for 7 € ¥p := Emb(F, Qp) in the following way, as in [Ber16b, §2].

Definition 2.4. — Let L be a field that contains F@!. If 7 € Xp, then we have the
derivative in the direction 7, which is an element V. € L ®q, Lie(I'r). The L-vector
space Homgq, (F, L) is generated by the elements of Xp. If W is an L-linear Banach
representation of I'p and if w is a Q,-locally analytic element of W and g € I'p, then
there exists elements {V,},ex, of F9* @q, Lie(T'r) such that we can write

log g(w) = > 7(log Xx(9)) - V+(w).

TEX R

In particular, there exist m > 0 and elements {wy},cnsr such that if g € Ty,
then g(w) = Yy enzr 108 Xx(9) Wi, where log x#(9)* = [] ey, 7 0 log xx(9)*. We have
V.- (w) = wy. where 1, is the X p-tuple whose entries are 0 except the 7-th one which is
1. If k € N and if we set V¥(w) =[] VE (w), then wy, = V¥(w)/k!.

TEX R

Remark 2.5. — If w is an F-analytic element of W, so that there exists a sequence
{wi}x>0 of elements of W such that 7wy, — 0 such that g(w) = 7, log xx(g)*wy for
all g € T,,, with n > 0, then w;, = V¥ (w)/k!.

The standard notations for the set of F-analytic elements of W is W»—anF=la following

the notations from [Berl6b, §2]. These are the I',-analytic vectors when we treat I,
as a p-adic Lie group over O instead of Z,. Since in this article we almost always
consider the former case and in order to improve the readability and reduce the need for
additional notations, we will still denote by WT=—2" the set of I',, F-analytic vectors of
W in the Lubin-Tate setting. We also let W' = [J, ., W'~2". The main advantage
of this formalism is that the cyclotomic case is exactly the particular case in the Lubin-
Tate setting where F' = Q, and m = p, so that the statements made in the “F-analytic
Lubin-Tate setting” also contain the statements regarding the cyclotomic case.

In the rare cases where we will consider Q,-locally analytic vectors of W in the Lubin-
Tate setting, we’ll write W™ for the set of Q,-locally analytic vectors of W. We also
use the same formalism for pro-analytic vectors.
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3. Sen theory by Berger-Colmez

Recall that to a p-adic representation V' of Gk, one can attach the K. -vector space
Dgen (V) which is the set of elements of W = (C, ®q, V))* which belong to some finite
dimensional K-vector subspace of W which is stable by I'x. The K.-vector space Dgey
comes equipped with an action of the Lie algebra of I'x and admits a canonical generator
V = lim, ,; chz%;)fl which is the operator of Sen, usually denoted by Oge, and whose
eigenvalues are called the generalized Hodge-Tate weights of the representation V.

Colmez has constructed in [Col94] a ring Bge, as follows:

Definition 3.1. — Let u be a variable and Bg,, = C,{{u}}, be the set of power series

Sen
> ko axu”® with coefficients in C,, such that the series Y, (p")*a; converges in C, and

equip it with the natural topology and with an action of Gal(K /K (fpn)) by setting

9> " aru®) = gla)(u + 108 Xeya (9))"-

k>0 k>0

Note that this makes sense since 1og Yeyel(9) € p"Z, if g € Gal(K /K (yn)). Let Bgen =

U,i>0 BSen> endowed with the inductive limit topology.

We let V, denote the C,-linear operator on Bg,, given by V, = —%.

We now recall the following properties (for more details, see [Col94] and [BC16, §2.2]):

Proposition 3.2. —
1. We have (B2, )9 = K,, ;

Sen

2. 4if V is a p-adic representation of Gk and if n is an integer, let Dg, (V) =

Sen,n
(B&., ®q, V)90 equipped with the operator V., induced by the operator V,, on B2

Sen

(meaning that (Vu)py vy acts by V, ® 1 on By, ®q, V) and let Dg,, (V) =

Sen

Unso Déenn(V). Every element & of D, (V) can be written as 6© + 6Wu + - -
where the 6% belong to C, ®q, V. Then the map § — §©) induces an isomorphism
of K-vector spaces between D%, (V') and Dge,(V'), and of K, -vector spaces between
Doy (V) and Dgen o (V') for n>> 0. Moreover, the image of V,, by this isomorphism

18 ()Sen-

Proof. — Ttem (i) is [Col94, Thm. 2 (i)]. For item (ii), see [Col94, Thm. 2 (ii)] and
[BC16, Prop. 2.8]. O

When K, /K is any p-adic Lie extension with Galois group I'c (such that dim 'y > 2
or such that K. /K is almost totally ramified), Berger and Colmez offer to replace classical
Sen theory with the tll@gry of locally analytic vectors, by considering the locally analytic
vectors of semilinear K -representations of I'k:

Theorem 3.3. — IfW is a l/(;-semilz'near representation of Ik, then the map
Koo @ —1 WRSW

is an isomorphism. Moreover, if Ko /K is the cyclotomic extension of K, and if W =

(Cp ®q, V)HE then Win—an = Dgenn (V).
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Proof. — The main claim is theorem 3.4 of [BC16]|, and the particular case for the
cyclotomic extension follows from remark 3.3 of ibid. n

—la
We also have in general a nice description of the structure of K, : if K, /K is a p-adic
Lie extension with Galois group I'x = Gal(K/K), then by [BC16, Thm. 6.1 and Rem.

——TI',,—an

6.2 (ii)], if L is a subfield of C,, containing K. (pm) for m > 0, then L&, Ko
is isomorphic to the set L{{Xj,..., Xq_1}}, of power series with coefficients in L and

—TI',,—an

radius of convergence > p~", where K, = K, N K

Note that in the cyclotomic case, the map log Xc¢ya : ' — Zj, induces isomorphisms
between C*"(T',,, C,) and B, , and by taking the inductive limit, between C'*(I'g, C,)1,
the stalk at the identity of the sheaf of locally analytic functions on I'x with coefficients
in C, and Bge,, so that this formalism generalizes the construction of Bge, of Colmez.
More generally, we make the following definition:

Definition 3.4. — For any topological Q,-algebra B which is an LF or LB space,
equipped with a continuous action of Gy, we denote by C*(I'k,B); the stalk at the
identity of the sheaf of locally analytic functions on 'y with coefficients in B, which is
the inductive limit of the rings C**(T',,, B), endowed with the inductive limit topology.

Using the rings C**(I',,, Q,), we can recover Sen theory (and its generalization by Berger
and Colmez):

Proposition 3.5. — Let K,,/K be a p-adic Lie extension with Galois group I'x =
Gal(K/K) and let V be a p-adic representation of Gx. Then we have

((Cp ®Qp V)HK)FK*I& _ U (Can(rm Cp) ®Qp V)gKn’
n>1

where G, acts on C**(I',,, Cp) ®q, V ~ C*(I',,, V) through the A1, map defined in §2.

Note that this proposition is the consequence of the following proposition which is
itself an immediate consequence of the definition of locally analytic vectors, as stated in

[Emel7, §3.3]:

Proposition 3.6. — Let B be a Q,-algebra which is an LF or LB space, endowed with
an action of Gk, and let V be a Q,-representation of Grx. Then for any n > 0, we have

(Can(rna Qp)@QpB)gKn ~ (BHK)Fn—an
and
((Can(rn, Qp)@QpB) ®Qp V)gKn ~ (B ®Qp V)Hern—an.
Moreover, we have
J(€™ (1, Q)Bq,B) % o (B e
n>1

and

U (™ (T, Qp)®QpB)) ®q, V)gK” ~ (B ®Qq, V)HK’FK_la,

n>1
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Proof. — For LB spaces, this is tautological, since Hy acts trivially on C**(I',, Q,,) and
since the set of I',-locally analytic vectors of W := (B ®q, V)Hx is by definition the

subset of elements of C**(I',,, W) = C**(I',,, Q,)®q, W which are invariant by the action
given by A, following the notations of §2.

For LF spaces, the proof is almost the same because the set of I'j,-analytic vectors of
W is still the subset of elements of C**(I',,, Q,)®q, W which are invariant by the action
given by A; 5 by [Emel7, Coro. 3.4.5].

The last two isomorphisms follow by taking the inductive limit. O]

In particular, if B is a topological Q,-algebra which is an LF or LB space, endowed
with an action of G such that for V a p-adic representation of Gx, ((B ®q, V)Hx )«
is related to some module attached to V' which appears in p-adic Hodge theory (e.g.
its (i, I')-modules), then C**(I',,, Q,)®q,B can be thought of as a ring of periods that
computes those modules.

4. de Rham computations

In this section we compute locally analytic vectors and pro-analytic vectors in By,
both in the cyclotomic case and in the Lubin-Tate case, and we explain how to recover
the module D (V') attached to a p-adic representation V' thanks to the use of the locally
analytic vectors. The fact that locally analytic vectors are able to recover Df,..(V) has
already been proven in [Por24, §6.1] but here we will also use proposition 3.6 to produce
a ring of periods which “computes” the functor Dy .

4.1. Computations in Bj;. — We let B}, ;- and Bgr,x denote respectively B
and BX. Recall (cf. [Ber02, §2]) that there is a natural injective, Gx-equivariant map
]§&—>B5{R, which sends ¢, to a generator of ker(#) in Bl and we still denote the image
of t, through this map by ¢,. For 7 € ¥, we have a corresponding element ¢, € ﬁig
defined in [Ber16b, §5] such that g(t;) = 7(x«(9)) - t;, and we still denote the image
of ¢, through the map E;Eg%Bji'R by t,. Note that ¢, € (B:{R’FGM)X if 7 # id (see for

example item 2 of [BDM21, Prop. 3.4]). We let 0iq = ivid.

Lemma 4.1. — We have 6id((B;{R7K)pa) - (BIR,K)pa-

Proof. — Let x € (Bg ;)™ Then 0(z) € f/(;la. Since Viqg = 0 on l/(;la, we get that
Viao0(x) =0 = 6o Vig(z) so that Viq(z) € t,Bs. Therefore, dq(x) € Bl;. Since ¢,
is a pro-analytic vector of Bqr, x and since z € (BJ x )P, we obtain di(z) € (Bar,x )™
In order to conclude, we need to prove that (Bfg )P* = (Bar,x )" N Bl k. But this is
straightforward, because if z is a pro-analytic vector of (Bagr i )P* which belongs to B(J{R’ K

then the % belong to By  and thus x € (B ;)™ by remark 2.5. O
Lemma 4.2. — We have (Bar k)" = Koo((tz)) and (Big x)P* = Kuo[tr].

Proof. — See [Por22, Prop. 2.6]. O
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We let (B ;)™ P* denote the set of Q,-pro-analytic vectors of By, , which are killed
by Vid.

Proposition 4.3. — We have (BCTR’K)pa = {Zkzo apth ay € (B(J{RK)E()—P&},

i+-k
Proof. — Let x € (Bg x)*. For i >0, we let z; = %Zkzo(_l)kwtfr- By lemma
4.1, we have that for any i,k > 0, 0/7"(x) belongs to (Big. )™ so that the sum

T2 kso(—1 )ka‘d S )tk converges in (B ;)P to an element x; such that diq(z;) = 0.
The sum ZZ>0 x;tt converges in (B§R7 )P* and a simple computation shows that z =
2 izo Tty
Conversely, it is easy to check that if (az)x>0 is a sequence of elements of (Bir.) ™™,
the sum )7, axth converges to an element of (Bjg )P O

Lemma 4.4. — Let v € (Byg ;)™ P such that tr|x in Big. Then x = 0.

Proof. — Let z € (Bl )™ P such that ¢,|x, and assume that z # 0. We can therefore
write z = tfa with £ > 1, o € B and ¢, does not divide o in Bjj;. Moreover, since ¢,
is pro-analytic for the action of I'r, we get that « is pro-analytic for the action of I'.

By proposition 4.3, we can write v = 3 a;t} where the a; are elements of (B g )®
killed by Viq. The fact that x is killed by Vld translates into

> (k+ j)ath =o0.

J=0

a

Applying 9% to this equality and reducing mod ¢, we obtain that ap = 0 mod ¢, and
thus ¢,|«, which is not possible. ]

Corollary 4.5. — For any N > 1, the map Oy : (Bgg ;)™ P*—=(Bgg i /tY Bip k)0 ™
18 injective.

Yo—la —Yp—la ——Qp—la

Note that (Bip x/t:Bir )™ " = K and that K. = Ko by

[Ber16b, Prop. 2. 10] Note that this also implies that for any m > 0, the natural map
Qp I'm—an

0 : (Bj{R i) ImmanSopa_y )¢ is injective. By the same argument as in the

——Q,-1
proof of the surjectivity in [Por24, Thm. 6.2], the map 6 : (BJ x)¥ ™=K e
is surjective. In particular, using proposition 4.3, we get the followmg “description” of
(Big,x) ¥ P

Proposition 4.6. — The natural map = € (Blg )%™ = Y. 0(z)th, where

T = 5 Y pso(—1 )"3ad (w)tfr, induces a T -equivariant isomorphism from (Bl )%™ to

——Qp-la
Ko 7 1.

Proof. — We already know from the above that the map z € (B(J{RJ()QP_pa >

> izo O(xi)th is injective. To prove that it is surjective, recall that the map 6

——Qp—la D —Qp-1
(Big ) ¥ ™=Ky " s surjective. If y € Koo, let a € (Big. )% such that
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O(x) = y. One can write x = Zizo z;tt with Oiq(x;) = 0 for all ¢, and thus zy satisfies
0(zo) = 0(x) =y and I(zo) = 0, so that the map above is injective. O

Remark 4.7. — We have B}y ;, ~ f(\oo[[tﬁ]] noncanonically but this isomorphism is not
I'k-equivariant. However, taking only the Q,-pro-analytic vectors on both sides gives us
a canonical isomorphism which is I'x-equivariant.

4.2. The modules D (V). — When K, /K is the cyclotomic extension of K,
Fontaine has proven in [Fon04] that the set of sub-K[t]-modules free of finite type
of (BJz ®q, V)"x and stable by the action of 'y admits a maximal element, usually
denoted by D{,;(V'), and which is such that Bi; ®. g Dhy(V) = Bii ®q, V.

If v € 'k is close enough to 1, then the power series defining log(+y) converges as a

power series of Q,-linear operators of Df..(V), and the operator Vy = % does
cyc

not depend on the choice of v and satisfies the Leibniz rule Vi (A - x) = AVy () + V(\)z
for all A € K [t] and € D{(V). The map 6 : By — C, induces a surjective
morphism of modules with connexions (D{(V), Vi/)—(Dgen(V), ©y) (see for example
[Ber02, §5.3]).

The map ¢, : ]~3L’g”—>Bj{R sends BIY™ into K, [t] C By and D (V) in a sub-K,,[]-
module of D (V), and we let Dy (V) = Ky[t] ®,,. Bl tn(DP™ (V). Proposition
5.7 of [Ber02] shows that D, (V) = Ko[t] ®x, [ Dy, (V) for n>> 0.

The fact that one could retrieve the modules D7 (V') and Dy (V) using the theory
of locally analytic vectors had already been noticed by Berger and Colmez [BC16, Rem.
3.3] and proven by Porat in [Por22, Prop. 3.3] and [Por24, Thm. 6.2] but we now
explain how this incorporates into the setting laid out at the end of §3.

Note that B, endowed with its natural topology, is not a Banach ring but a Fréchet
ring, and as Berger points out in [Ber16b], locally analytic vectors in the setting of
Fréchet spaces usually have to be replaced with the weaker notion of pro-analytic vectors,
because the resulting objects are too small in general. However, in the setting of B,
and D{.(V), locally analytic vectors are actually sufficient to recover the theory.

Lemma 4.8. — We have (Bfg ;)" ™" = Ku[tz], (Big x)* = U, Knlts].

Proof. — The second equality follows directly from the first one. For the first equality,
take z € (B x)'"*". We have f(z) € R;Fnian = K, by [BC16, Coro. 4.8], so that we
can write x = xo+t,y, with o € K,, and y € BIRyK, and one checks that y is I',-analytic
because x, xg and ¢, are. By induction, x € K, [t,]. Because K, C (B;{R’K)Fn_an and

because t, is T'g-analytic, we have K, [t.] C (Bjg ;)" ", which finishes the proof. [J

Proposition 4.9. — Forn>> 0, we have Df; (V) = (Big ®q, V)"<)2".

Proof. — Since (Bg x)'"* = Ky[t], it suffices to prove that the elements of
Ln(DT7 (V) are T'p-analytic for n > 0.
Let m > 0 be such that D" (V) has the right dimension, and let ey, - - , eq be a basis

of D™ (V). We can see the elements of D' (V) as elements of DI""=(V). By §2.1
of [KRO09], these elements are I';,-analytic for n > m big enough. A direct consequence
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of lemma 2.2 of [BC16| shows that if we let u; = " ™(¢;), 1 < i < d, then the u; are
I',-analytic as elements of DI"I(V) and we know that it is a basis of D™ (V) (since
¢*(DY(V)) ~ Df(V)) and thus of DI#"I(V). Therefore, (1,(uy), - ,tn(uq)) generates
Dy, (V), and forms a basis of I',-analytic elements of D (V). O

Proposition 4.10. — We have D, (V) = (B ®q, V)7# )P

Proof. — This is proposition 3.3 of [Por22] and also follows from the previous proposi-
tion: we know that D (V) = Ko [t] ®k,1q Dy, (V). Rewriting this using lemma 4.8
and proposition 4.9, we get:

DB]f(‘/) - (BXR,K)pa ®(BCTR,K)F"7&" ((Bj{R ®Qp V)HK)Fn_an
so that D, (V) = ((Bfg ®q, V)"¥)P* by proposition 2.3. O

We can use this result to generalize the theory to the Lubin-Tate case, as it has been
done in [Por22, §3]: we define D{},;(V') by the formula D (V) := (B} ®q, V)7*)P?,
so that our object is indeed the classical Di.; when F' = Q, by proposition 4.10, and if
V is an F-representation of Gx then D{}..(V) is a free K [t,]-module of rank dimg(V),
and the natural map Bl @k p,] Doy (V)—Big ®F V is an isomorphism.

Note that when V is an F-analytic representation of Gg, one can define a module
DBif’n(V) in the F-analytic Lubin-Tate case using the same arguments as given in the
proof of proposition 4.9: we can define Dy (V) by Dfj; (V) := ((Bjg ®q, V)7 )
for n > 0, and we have Dj;(V) = Ky [tz] @k, ft,) D, (V) for n>> 0.

In particular, the rings C**(T',,, BiR) and C**(I'x, B}z )1 allow us to compute the mod-
ules D}..(V') in the spirit of Fontaine’s strategy. Moreover, this shows that every p-adic
representation of Gg is “C**(I'x, B1z )1-admissible”.

In general, when K. /K is any p-adic Lie extension, one could define a module
D (V) in the same manner, taking the pro-analytic vectors of (Bjg)”* for the
action of I'x. The fact that this module has the same dimension as dimq, V' follows
from an unpublished result of Porat, and one could show in that case that the ring
Jm Limy (C** (I, Q,)®q,Br/t") computes the said module.

k n

5. (p,I')-modules

Computations made by Berger in [Berl6b, §4, §8] show that classical cyclotomic
(i, T')-modules over the Robba ring BLg’ , can be recovered by using pro-analytic vectors,
and theorem 10.1 of ibid shows that this can be extended to F-analytic representations.
If V is an F-analytic representation of Gx then we can attach a (¢,, I'x)-module which

we will denote DLg(V).

Given an F-analytic E-representation V' of G , we let ﬁi{;,K(V) = (]§1ng ®p V)Hx,
For r > 0 and n > 1 we let BL’;K” = goq_"(BIi’g}gn), and we let BL’;K’OO =Up>1 BL’;’K’OO
in EI{;,Ka and BIig,K,n = U’r‘>0 BI{;,K,n’ BIig,K,oo = Ur>0 BI{;,K,w

Proposition 5.1. — We have
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1. (BTTk )a BTTk

rig, K rig, K, )
2. DT (V) BLg K,00 ®Bjig’K DIlg,K(‘/);

I‘lg7

3. if D is a (¢4 I'x)-module over Bing such that Drng(V) = Bingoo . D
then D = DL’;K(V).

Proof. — The first item is item 3 of theorem 4.4 of [Ber16b]. The second item is item 2
of theorem 8.1 of [Ber16b] in the cyclotomic setting, or follows from the proof of theorem
10.1 of ibid. in the Lubin-Tate setting. For the last 1tem, let M denote the base change
matrix and P, P, denote the matrices of ¢ on D, Drlg (V) respectively. There exists

n > 0 such that M e GLd<Br1gKn) and the equation M = Py 'y, (M)P, implies that

In particular, taking the pro-analytic vectors of Drlg (V) allows us to recover the

(g, ' )-module DL; x(V), either in the cyclotomic setting or in the F-analytic Lubin-
Tate setting.

As in the constructions for Bqg and C,, the rings C'*(T',,, B);, for B an LB or LF space,
are not endowed with an action of I'x but only with an action of its Lie algebra, so that if
V is a p-adic representation of Gx, the module (C'*(T,,, B); ® V)% is only endowed with
an operator V coming from the infinitesimal action of 'k, and from the operator Viq,
which we still denote by V., in the Lubin-Tate setting. In particular, the constructions
laid out in this subsection can only allow us to recover the (¢, V)-module (or F-analytic
(g, V)-module) attached to a representation V.

Proposition 5.2. — Let V' be an F-analytic representation of Gr and let r > 0.

The collection (|J,,(C*™™(Tn, B') ®q, V)9 )min(n)>r equipped with natural transition maps

U, (T, ]A?;I)(X)Qp V)9rn— |, (C*(T,, ]§J)®Qp V)95n when J C I, and Frobenius maps

¢, U, (€ (0., BN ®q, V)95 — |, (C*(T,,, BY) ®q, V)9%n defines a (g, V)-module D

over @(can(rn,ﬁl))gKn ~ (ﬁl{;,K)pa, and we have D ~ DI (V)P as (¢,, V)-modules.
I

rig

Moreover, there ezists a (pq, V)-module D on BTng inside D such that D =
(ﬁiig,K)pa ®pi D and if D' is a (pg, V)-module on B, ¢k Such that DmgK(V)paL =
BLgKOO Rgt D then D = D'. In particular, D ~ DngK(V)

rig, K

Proof. — The first part of the proposition follows from the definition of pro-analytic
vectors, proposition 3.6 and proposition 5.1.

Since (BL; )P = BL;KOO, there exist elements vy, - -+ ,vg of D and n > 0 such that

D :=al Bil’g - ©"(v;) generates D. The unicity of D follows from the same argument
as in the proof of the last item of proposition 5.1. m

6. Generalization to other p-adic Lie extensions

6.1. General results when K, contains a cyclotomic extension. — In what
follows, K is a finite extension of Q,, K. /K is an infinite Galois p-adic Lie extension,
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with dim['x > 2, and such that K., contains a cyclotomic extension, in the sense that
there exists an unramified character n : Gx—Z; such that K, N Qpnxcyd is infinitely
ramified. We let K7 denote the extension K, N Qpnxcyd.

Recall that K7 /K is the extension of K attached to nyeya. Let 'k, = Gal(KZL/K)
and Hy, = Gal(Q,/KZ). Let Bl Bk and Bl , be asin [Berl6b, §8]. By
the same arguments as in [Ber16b, §8], there is an equivalence of categories between
étale (¢, 'k ,)-modules over F ®q, Bingn (it is also true over £ ®q, Bkn) and E-
representations of Gg.

If V is a p-adic representation of G, we let D} (V) := J,50 DI (V), where D" (V) =

(Bl" ®q, V)<, Let D) and Dilg ,(V) denote the various completions of D" (V). We

let DI*(V) = (Bl @q V) H<a and DI (V) = (Bl @q, V)<, By the variant of the

rig,n rig

Cherbonnier-Colmez theorem for twisted cyclotomic extensions, we have that ]52" . V) =
Bg?‘j} ] DI and DI (V) = BL; Kn OBl DL;KU(V)

rig,n

Lemma 6.1. — Let r > 0 be such that D)™ (V) is free of rank dimq, (V) as a BIIgKn

module, and let s > r. Then the elements of Dg;s](V) are locally analytic for the action
of Gal(K1 /K).

Proof. — See the proof of [Ber16b, Thm. 8.1]. O

Corollary 6.2. — Let V be a p-adic representation of G which factors through 'k,
and let 7 > 0 be such that DI" (V') is free of rank dimg, (V) as a BIngn module, so that

ij Rq, V =~ Bj;’“ ®BT,T DT’T(V). Then the coefficients in BL”“ of a base change matriz
between V' and DI (V) belong to (B[Tns )@ for any s > .

Proof. — Let V' be such a p-adic representation of Gi. Since V factors through I'x and
by Cartan’s theorem (see for example [Emel7, Prop. 3.6.10]), the elements of V = V&
are locally analytic vectors for the action of I'x. Now, we have

DI(V)* = (B, ®q, V)"
since V' factors through 'y, and thus
(6.1) DI(V)* = (B ©q, V

7T] P
by proposition 2.3.
Since K contains K, the elements of D[r s](V) are locally analytic for the action of
'k, as they are locally analytlc for the action of I'i,, by 6.1 and invariant by the action

of Gal(K, /K1) (which is just an other way of saying that the action of I'x on Dy[;“;s](V)
factor through a locally analytic action of I'}).
By proposition 2.3, this implies that

(6.2) ]5[1?5](‘/)1:1 _ (B[T 5])la R i D[r 5]
Putting equations 6.1 and 6.2 together, we obtain that
(B @ DI = (B @q, V-
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In particular, this implies that the coefficients of the base change matrix in GLd(BL"‘)
belong to (E%ﬂ‘:})la, and thus to (B[I?;])la. O

This corollary will prove very useful in order to produce locally analytic vectors for Ik
in the rings (B%).

Remark 6.3. — Note that the fact that K contains K is crucial for the proof of
corollary 6.2 to work.

6.2. Higher locally analytic vectors. — Let V' be a Banach representation of a p-
adic Lie group G, and assume that G is small in the sense of [Por24, §2.1], so that the
set of G-analytic vectors of V' is well defined.

The functor V — V&2 is left exact, and following §2.2 of [Pan22|, [RJRC22] and
[Por24, §2.3], we define right derived functors for i > 0:

E_an(V) = Hz(G’ V®Qpcan(G7 Qp))?

where we consider continuous cohomology on the right hand side.

If G is a compact p-adic Lie group (without the smallness assumption) with subgroups
{G,}, >, asin §2, taking the colimit over n, there are right derived functors for V + V&1
given by

RZG—la(V) = hﬂ RZGn—an(V) = m Hl(G”7 V®QPCaH(Gn7 QP))

Following [Por24, §2.3], we call these groups the higher locally analytic vectors of V.
Note that if
0=V —=>W-=X-—=0

is a short exact sequence of G-Banach spaces, we then have a long exact sequence
0= Ve WP - X" 5 RE L, (V) 2 Ry (W) = Re_p, (X) — ..

The fact that the functor V +— V' is exact is thus equivalent to the vanishing of the
higher locally analytic vectors R, _,, (V) for i > 1.

We now prove several results and recall some results from [Por24] regarding locally
analytic vectors attached to p-adic Lie extensions in the rings B!. We let K. /K be a

general p-adic Lie extension with Galois group I'g, and we let Hr = Gal(Q,/K.). We
let BL = (B!)Hx.
We recall the following result, which is item (ii) of corollary 5.6 of [Por24]:

p

P +ool, if Ky contains a cyclo-
tomic extension K

Proposition 6.4. — If I is a compact subinterval of |
2, and if M s a finite free ﬁ%-semilmear representation of I'i then

the higher analytic vectors R! (M) are zero fori > 1.

Lemma 6.5. — Let I = [ry;r¢]. For any m € [k;{] integer, the kernel of 0 o o™ :

AL —O= is a principal ideal.

Proof. — The same proof as in [Win83, Prop. 4.3.7] (we are in the same setting since

K. /K is strictly arithmetically profinite by the main theorem of [Sen72]) shows that

the kernel of 6 : A}—)Of; is principal, generated by some element y such that vg(y) =
vp(TK ), where Tk is a uniformizer of O.
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o' (y)

The same proof as for item 1. of lemma 3.2 of [Ber16b] shows that ——— is then a
generator of the kernel of 6 o p ™ : A%—)Of{; [
Corollary 6.6. — Let I = [ry;r]. If Ko contains a cyclotomic extension K then for

any m € [k; (] integer, the map 6 o o™ : (E%)la%fwla is surjective.
Proof. — We have an exact sequence
0— ker(6 : Bl —K ) »BL—K.o—0
which gives rise to the exact sequence
0— (ker(6 : BL K. )2 —(BL)*— (Ko )* = RL (ker(6 : BL—=K.0))— ...
By lemma 6.5, the kernel of § o ¢ ™ : A%—KQ@ is a principal ideal so that it gives rise

to a one dimensional ]éf(—semilinear representation of ', and thus by proposition 6.4 we
have that R} (ker(6 : BL.—K,.)) = 0, so that we get the exact sequence

0 (ker(0 : Bie—Ko0))* = (Blo) "= (K) "0,
and thus the map 6 o ¢ ™ : (ﬁﬁg)la%}/(;m is surjective. 0

—la
Recall that by theorem 6.2 of [BC16], K., is a ring of power series in d — 1 variables.
Since in the case we consider Ko, contains a cyclotomic extension, lemma 6.5 shows that
ker(@ogpq_m) is a principal ideal generated by a locally analytic vector of B, and corollary

~ —1la
6.6 shows that the map fop,™ : (B} )*—K, is surjective. This (and the computations
of section 6.4) makes us think that the following conjecture should hold:

Conjecture 6.7. — If K /K contains a cyclotomic extension, then for n > 0, there
exist d elements 1, ..., %4y N (ﬁ%)rn*an such that (ﬁ%)rn*an is the set of power series
Zi:(z‘l,...,z‘d)eNd aim;{n in the variables (;y)ic(1,.. ,ap With coefficients in K such that the
SETies D s (i i)eNd azx?, converge in (Bl )Fn—an,

6.3. The anticyclotomic case. — Berger and Colmez have proven in [BC16] that
the theory of locally analytic vectors is the right object to consider in order to generalize
classical Sen theory to arbitrary p-adic Lie extensions. With that in mind, and considering
the results above that show that in the cyclotomic (and in the F-analytic Lubin-Tate)
case one recovers classical (¢, [')-modules theory, it seems reasonable to assume that the
theory of locally analytic vectors is the right object to consider in order to generalize
(¢, T')-modules to arbitrary p-adic Lie extensions.

It has already been noticed that, even in the Lubin-Tate case, “one dimensional
(¢4 'k )-modules” do not behave well [FX14] and that the kind of objects one should
consider are multivariable Lubin-Tate (¢4, Ik )-modules [Ber13| which arise from locally
analytic vectors [Ber16b].

Therefore, in general, one should expect to use that theory for arbitrary p-adic Lie

extensions to get a theory of (¢4, I'x)-modules over (ﬁzig )P?, and such that the functor

V = ((V ®q, Buig)"*)P* is a faithfully exact functor. We now give some insight as to
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why such a generalization does not seem to be true in general, using the anticyclotomic
extension as a potential counterexample.

Let F/Q, be the unramified extension of Q, of degree 2. We take 7 to be equal
to p in our Lubin-Tate setting. We let o denote the Frobenius on F. By [Berl6b,
§5] the element y, = p(u) € A* is such that g(y,) = [xp(9)]°(¥s) for g € Gr. Since
[p|(T") € Z,[T], the series log; (1) and expy,r(7') have all their coefficients in Q,, so that
te = p(tp) = logrr(ys)-

Let Feyao = F(pp~) denote the cyclotomic extension of F. We let F,. be the anti-
cyclotomic extension of F': it is the unique Z, extension of F', Galois over Q,, which is
pro-dihedral: the Frobenius o of Gal(F/Q,) acts on Gal(F,./F’) by inversion. It is linearly
disjoint from Fiyq over F', and the compositum Fiyq - F. is equal to the Lubin-Tate exten-
sion F;T attached to p by local class field theory. The anticyclotomic extension is then the
subfield of F, fixed under G, := {g € Gal(F/F) : x»(9) = 0(x»(9))}, and the cyclo-
tomic extension of F' is the one fixed by G := {g € Gal(F/F) : x,(9) = (c(x»(9))) '}
Note that G ~ Gal(F,./F) as F/F is abelian, and we still write G for the Galois group
of Fo./F. We let Hp,. denote the group Gal(Qp/ F,.), and if B is a ring of periods we
let Br . denote BHFaec. We write t; for ¢, and ¢ for t,.

Proposition 6.8. — We have (BXR’F’Qc)pa = I [[%]]

Proof. — Clearly, if z € Fac[[i—;]], then the corresponding power series converges to an
element of BJ; which is invariant by Hp and pro-analytic for the action of T'f.
1
Now if 2 € (Big jrq0)", We have 6(z) € Fpe = F, by [BC16, Thm. 3.2]. We can

therefore write z = 6(z) 4 t1 - 2’ in Bjg. Since & belongs to (Big y,.)"* N Fil'Bag, we
can write z = 0(2) + 2 with 25 in (Bgg p,.)*". Now we can do the same thing for 2,

and doing this inductively gives us the result. O]

If I is big enough, so that the corresponding annulus contains a zero of ¢; and ¢, then
the localization map at the zero of ¢ gives an embedding (Bf,,.)* = (Bg r00)™* = Fac %ﬂ,
and it seems difficult for an element in fﬁﬁac to have an “essential singularity at a zero
of t5”, even if it’s after a localization at a zero of t;. Moreover, it is easy to prove that
the image of (B f,.)?* in By does not intersect Koo[?]\ F' as soon as I is such that
the corresponding annulus contains a zero of t5. It seems therefore reasonable to expect
that (B(TR Fae)’t = F, even though we do not have a proof of that statement, except for

I a subinterval of [0, co[ containing 0, which we are now going to prove.
We let P(T) = [p|[(T') =T+ pT.

Lemma 6.9. — We have POk(go;k(up))ﬁyg in A+ when k——+oc for the p-adic topology.
Proof. — Let s;, := P (o *(uP)) € A*, for all k > 0. We therefore have sy = u?, and

Skr1 = g (P(sk). B
Let us assume that s, — s;_; belongs to p’A*, with b > 1.
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Then we have s41 = ¢, '(P(si)), and we can write

S—S
P(se) = sk1+zp SR IG I

Since b > 1 and since PUYNT) € pOg[T], this means that P(s;) = P(sx_1)+ (sp—5k_1)hs,
with hy € pA™. But then this means that

Skl — Sk = g (8 — sk—1), | ()

and thus sy q — s, € pPT1AT

We already know that s; —sqg € pgﬁ (because 57 = 55 = u” mod p) so that the sequence
(sg) converges in A* to an element that we will denote by s.

Because both ¢ and 6 are continuous for the p-adic topology, we know that Hogp(;j (s) =

lim P*(0 o *(uP)) = P*(u uf, ). Therefore by lemma 5.3 of [Ber16a], s is such that

k—+o00

0oy, (s) =009, (y,) for all j € N, so that s = y,. O

In particular, in lemma 5.3 of [Berl6b], we can actually take z, to be equal to
P (@ *(uP)) for some k> 0. In what follows, we let he(u) := P (o (u?)).

Let I = [0,70], let m > 0 and let x € (BL)'™~Q»=an Then there exists n > 0 such that
105 (2)|r,, < p™*|z|r,,. Moreover, by [BC16, Lemm. 2.4, there exists ko > m such that
|z|r, = || for all k > ko. There exists £ > ko such that hy(u) — y, € p"Al, and there
exists m’ > ¢ such that hy(u), y, € (BL) =@~ and such that |he(u) — ys
all s > m/.

Then for s > m/, the series z; := %ZDO(—l)k@i*k(aB)M converges in

o Bl
(BL)Ts=Q—an and we have
= S

in (BL)Cs=Qr=an (this is the same as the proof of theorem 5.4 of [Ber16bl).
Now let

X5 1= {93 € (Bp) ¥ o = > @i(yo — he(u)) and x; € (ﬁ})rs_a‘“} :

i>0

r, < p " for

The above shows that any z € (BL)? % belongs to some X, s > ¢ > 0.
We denote by F[T1, T3] the set of power series with coefficients in F' in two variables
Ty and Tj, endowed with an F-linear action of Gal(F}" /F) given by g(T1) = x,(9) - Th

and g(Ty) = o(x,(9)) - T2

Proposition 6.10. — There is an injective, Galois-equivariant F-linear map tps :
X&S—)F[[Tl,TQ]].

Proof. — Let x € X;. We can write © = Y. %i(ys — he(u))’, where x; € (BL,)Fs—an,
Note that (BL)s—an < B}, by [Ber16b, Thm. 4.4] so that we can write z; = f; (¢, *(u)),
with f; € Fu].
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We can write 3 (z) = 3. fiw)(P*(y,) — P*(u?))", so that

=>_ filu Z ( )(P"S(yg))k(—zaoswp))k—i

>0

and this is equal to (if everything converges)

D P )Y fren(u) (=P ().

k>0 j>0

Let Ay := 350 fivn(w)(=P°*(uP))? € Flu]. This is a well defined element of F'[u] since
P°*(uP) € u - F[u] and since the f; 4(u) belong to F[u]. Since P°*(y,) € o - F[ys]
(because s > £), the sum >, -, (P°*(y,))" Ay defines an element of F[y,,u]. Now because
ty € Yo - Fly,] and t, € F[u], this can be rewritten as an element of F[T},Ty]. It
remains to check that the map we have just constructed is well defined relative to the
Galois action, which is straightforward (because ¢ * is I'-equivariant and then the rest
is just rewriting power series in F[Y7,Ys] = F[T1, Ts]).

In order to see that the map that we obtain this way is injective, we can see that at
every step the operations we make are injective. To see that we indeed have defined a
map this way, we have to prove that the x; coming from z are uniquely defined, which
follows from the formula given in the proof of [Ber16b, Thm. 5.4]. ]

Corollary 6.11. — We have (B2"™)aela — o,

Proof. — Let V1, Vy denote respectively the maps T} - d;% and 15 - d;% on F[T,T,]. It is
clear from the definition of the Galois action of Gal(F,”" /F)) on F[T}, T3] that this action
is locally analytic, and that the corresponding operators Vg and V,, coincide respectively
with Vl and VQ.

By the previous proposition, it therefore suffices to prove that F[T}, To]V1TV2=0 = K.
This is straightforward because

(Vi+V2)OayTiTY) = > (i + j)ayTiT3

1,J 1,J

which is equal to 0 if and only if a;; = 0 for all 7, j # 0. m

Those results highlight that in general, the rings (ﬁ%)la could be really small, even if
we restrict ourselves to the case of p-adic abelian extensions. However, if we assume that
K. /K contains a cyclotomic extension, then most of those problems should disappear.
Note that the case of the anticyclotomic extension is precisely a case where we removed
the cyclotomic extension contained inside the Lubin-Tate extension.

It would be interesting to know if “containing a cyclotomic extension” is the key com-
ponent for the theory to behave properly:

Question 1. — Are there Galois p-adic Lie extensions Ko /K almost totally rami-
fied, not containing any cyclotomic extension, such that for all compact subinterval I
of [0; +00o[, (BL)* £ K?
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Note that, if we do not assume that K., /K is Galois but that its ramification is infinite
and its Galois closure L, := K$ is such that L., /K is a p-adic Lie extension with Galois
group I'y, := Gal(Lw/K), there is still a way to define locally analytic vectors attached
to the extension K /K, in the following way: if W is a p-adic Banach representation of
I';, we define the 7K .-locally analytic vectors of W by W=l .— (e —la)Gal(loo/Koo)
Kummer extensions are particular cases of this setting, and in this case the theory does
behave properly [GP19]. It is therefore not clear what to expect if we generalize the
theory to “non Galois p-adic Lie extensions”.

6.4. A particular case of the conjecture. — We now explain how to prove conjec-
ture 6.7 in a very particular case, which is already nontrivial and is a generalization of
the Kummer case.

In this section, we assume that K., /K is a p-adic Lie extension which is a successive
extension of Z,-extensions: there exist (Ko ;)icqo,....q} such that for all i, K ;/K is Galois,
Ky = Ked, Ko = K, and Gal(Kxit1/Kwi) =~ Z,. We also assume that there
exists n : Gx — Z, an unramified character such that K., = KJ,. In particular,
this implies that I'k is isomorphic to a semi-direct product Z, x --- x Z,. We write g —
(ca(g), ..., c1(g)) for the isomorphism 'y >~ Z, x- - - xZ,, where if 1 < j < dand g € I'g,
(¢j(g),--- ,c1(g)) denotes the image of ¢ in the quotient Gal(K o ;/K) >~ Zy, X - - - X Z,,.

For any ¢« € {1,---,d}, we let ¢; € Gal(Kw/K;—1) be such that ¢;(¢;) = 1, so
that its image in the quotient Gal(K« /K1) is a topological generator, and we
let V; € Lie(T'x) denote the operator corresponding to logg;. Note that since g; €
Gal(Kw/Kxo,i—1), we have ¢;(g;) = 0 for j < i. Since it is clear that the g; generate
'k topologically, the operators V; define a basis of the Lie algebra of I'x. We also let
G = Gal(K,;/K).

Lemma 6.12. — If x is a locally analytic vector of a p-adic Banach representation of
Uk such that there exists j > 2, such that for all k > j, Vi(x) = 0, then for all { < j
and for all k > j, Vi o V(x) =V,0Vi(z) =0.

Proof. — Let W be a p-adic Banach representation of I'x. Let x be a locally analytic
vector of W which is killed by Vi, for all £ > j. By definition of the Vj operators,

this implies that there exist fg,..., f; integers such that we have gifk () = z for all
k€ {j,...,d}. Therefore, z belongs to WG (K=/M) for some finite extension M of K,
which we can assume to be Galois over K. But then g,(z) € WS (K</M) for all £ < j, so

that Vi o Vy(z) = 0. O
Proposition 6.13. — For any i € {2,--- ,d}, there exists r; > 0 and b; € B}(zo such
that (g; — 1)(b;) = 1 and the image of b; in ﬁﬁ(oo,w for min(I) > r;, is a locally analytic
vector of ]AE);%OM for the action of G;.

Proof. — We only prove it for ¢ = d, the proof for ¢ < d is the same replacing ['x by G;.
Let V' denote the 2-dimensional p-adic representation of G given by

(3 )
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By the theorem of Cherbonnier-Colmez, the (¢, ')-module attached to V' is overcon-
vergent, so that it admits a basis on (B} ). If (e;,es) was the basis of V giving rise
to the matrix representation above, we see that a basis of the attached (¢, I')-module on
(B7)1" is given by (e ® 1,e ® 1 — ey ® b) for some b € BI. The fact that this basis
is invariant by the action of Gal(Qp /K1) means that it also is invariant by the action
of Gal(Q,/Kx,-1) and thus we get that g4(b) = b+ ca(gs) = b+ 1 by our choice of gy.
The fact that we can find such an element b which is a locally analytic vector of ]:5»%(00
follows from corollary 6.2. O

We let 7, = max(r;) so that the (b;) can all be seen as elements of (B}®).
Recall that if M is a finite extension of K then there corresponds a finite unramified

extension B;r\/lm/B}(,n of degree [M1 : K2, and there exists r(M) > 0 and elements
x1,...,2y in AR’/;(TIM) such that A}r\’zn = GB{:IA}& - x; for all s > r(M).

Lemma 6.14. — Let M, C K be a finite extension of KI,. If r¢ > r(M) then the x;
defined above belong to (BI{;fK)pa and are killed by V; for all i > 1.

Proof. — The fact that the x; are pro-analytic is a consequence of the proof of item 2 of
[Ber16b, Thm. 4.4]. The second part is straightforward as M2 /K is finite. O

If M7 is a finite extension of K, and if I is a compact subinterval of [0;+oo| such
that min(I) > r(M), we let Aj,, be the completion of AM;M) for V(-,I), and we let
By, = Ay, [1/p]

Lemma 6.15. — Ifx € A}’{T and if k,n € N then there exists M a finite extension of
KIl,m>0andy € go_m(A}r\f’:T) such that v —y € T AN + uF AT,

Proof. — By reducing mod 7, we obtain that T € Ex. But Ex = |JE), where M goes
through the set of finite extensions of K, contained in K. In particular, there exists
a finite extension M, of K ,, contained in K, and yy € Ay such that  — yp € pAg,
since Ay, C Ag. Since x;yo € Ak, the same arguments show that there exists a finite

extension M of K ,, contained in K, and y; € Ay, , such that x;yo — 1y € TAg, so
that © — yg — py1 € TAk, and we can without loss of generality assume that My C M;.
By induction, we find yo, y1,- - , Yn in Ay, n, with M, finite extension of K , contained
in K., such that x — yo — py1 — --- — p"yp € ™1 Ak. Let 2z, = yo + --- + 7"y,. Let
S oo D[z be the way z is written in Axg = W (Eg). Then 2 = 32" p'[x,] is such

that z — 2™ € 7" Ak, and thus () — z, € 7" A . In particular, since 2, € Ay, by
construction, we deduce that the x; all belong to Eyy, ,, for ¢ < n, and thus ™ e A M-
Since z € Al we have in particular that 2" € A", By corollary 8.11 of [Col08al],

AMWOOW is dense in AM”] for tNhe topoli)gy induced by V(-,7), so that we can find y €
A%mm sucli that (™ —y € 7" AT 44 A+ We thus have z —y = (z —2™)+ (2 —y) €
T AT+ ub AT O

Lemma 6.15 shows that for any I = [r;s| with > r}, and any integer n we can find
elements bY, such that b, — b’ € p" Al for all £ € {2,...,d}, which by lemma 6.14 belong
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0 (ﬁ%)la and are killed by V;, for all j € {2,...,d}. Since they are locally analytic
vectors, we let m = m(n, ) be such that all these elements, along with the elements by,

belong to (Bf )Tm—an,

Proposition 6.16. — Let [ = [r;s] withr > 1, and let m > m(n,I). Let { € {2,...,d}
and let x € (BL)™ be such that for all k > {, Vi(x) = 0. Then there exist (z;);en €
(BI)m=0 such that |x;p™|—0, for all k > ¢, Vi(z;) =0 and z = > is0Ti(be — b))l

Proof. — Let x € (BL)'=—2n By [BC16, Lemm. 2.6], there exists n > 1 such that for
all j > 1, |Vi(2)|r,, <p™|z| forall £ € {2,...,d}. Let

Lj ]lz bz_b)vj()

k>0

Similarly to the proof of [Berl6b, Thm. 5.4], the series converges in (BL)Im—2 to an
element :CJ such that V,(z;) = 0. Moreover, by construction of the b, and b, we have
Vi(by — b)) = 0 for all k > ¢, and thus using lemma 6.12, the z; are killed by Vj,
k> O

Proposition 6.17. — Let [ = [r,s] and let m > m(I,n). Then there exists M a finite
extension of K1, depending only on m, and k > 0 depending only on s, m and M, such
that

(ﬁ%)Fm—an,Vd:m:VQZO C SO_k(BIJJ\Z,In)-

Proof. — Note that if 2 € (BL)T=2 and is killed by V; for some i € {2,--- ,d}, then
this means that the orbit map g — g(x), from the p-adic Lie group G; := giz” to Ef(, is an
analytic function on G; N T, which becomes constant on some compact open subgroup
of G; since V; ( ) = 0. It is therefore constant on G; NT',,. It follows that if we let

M1 = (Ky )gd =168 =1 then 1 is invariant by Gal(K./M2). Note that since I'gx is
topologically generated by the g; fori =1...d, M1 is a finite extension of K7 .
Now we can conclude using the same argument as in the proof of theorem 4.2.9 of

[GP19]. We let f = [MZ : KZ] and we let 7(M) > 0 and 1, -~ ,z; in A" be such
that A}r\’zn = EBLIA}’(‘TW - x; for all s > r(M). Note that the proof of item 2 of [Ber16b]

shows that the z; are locally analytic for the action of Gal(K,,/K), so that there exists
k > m such that the x; are all I',,,-analytic. Then we have

™ —an,Gal(Koo /MY ™ n)E—an
(B%)Fk ;Gal(Koo /M) (Bg\/l,n)(rK’l)k

- (EB’L"f:]_Bi(’n . l‘i>(FK,n)k—an

fry @{:1(E§Qn>(FK,n)k73n . :L',L-
k1

< @{:ﬁpk(BIID(,n) " Ty

where the second equality follows from proposition 2.3, and the last inclusion follows from
the specialization of [Ber16b, Thm.4.4] to the twisted cyclotomic case.
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and since k > m, we obtain that (BL)Im—anGal(Ke/MX)=1 — of (Blj(g) ~x; C

gok(Bﬁ;;), which is what we wanted. O

We can now prove the conjecture:

Theorem 6.18. — Let Ko /K be a p-adic Lie extension of rank d which is a successive
extension of Z,-extensions over a cyclotomic extension. Then for n > 0, there exist
d elements x1,,. .., Tan in (B such that (BL)'»72" s the set of power series
Zi:(il )N aix;{n in the variables (Tin)icq1,.. qy with coefficients in K such that the
SETIES 3 i (i1 in)eNd aia:;fn converge in (B )Cn—an.

Proof. — Let I = [r, s] with r > 7, and let m > m(n, I). Let z € (BL)Tm—an,

We start by applying proposition 6.16 with £ = d, so that there is no condition on
the nabla operators. Therefore, there exist (z;)jen € (Bk)'™ ™" such that |z;p"|—0,
Va(z;) =0and z = ijo zi(by — L)

Now each z; belongs to (BL)Tm—an_and is such that Va(x;) = 0 so that we can apply
proposition 6.16 to each x; with ¢ = d — 1, so that there exist (z;;);ren in (B )Im—an
such that |z;p"U %] —0, for all k > d — 1 Vk(:vjk) =0and z; = >0 Zjk(bg—1 — 0L )"

We thus have z = >, oy @j(ba — b)Y (bg_y — b M)k, where |z;p"TH)]|—0, for all
k>d—1 Vi(xj) =0. We can now apply proposition 6.16 to each z;;, with { =d — 2.

Inductively, we find (;)ientza such that |z |—0, where |i| = 2?22 ij, for all
k>1,Vi(x;) =0 and

By proposition 6.17, the elements z; all belong to go_k(Bp ;) for some finite extension
M of K, depending only on m, and k£ > 0 depending only on s, m and M.

Proposition 7.5 of [Col08a] and its analogue in the twisted cyclotomic case show that
the elements of By, are power series in one variable over a subfield of K which converge
on some annulus depending on J, and so we are done. O

7. Locally analytic vectors for Robba rings

In this section we study what happens when we take the locally analytlc vectors at-
tached to Lubin-Tate extensions in the corresponding Robba rings B In particu-
lar, we show that those locally analytic vectors recover objects that Were defined by
Colmez using completely different methods in [Col14]. We then use this result to ex-
plain why locally analytic vectors are usually not the right object to consider when
working with Fréchet rings, and recall some properties satisfied by the corresponding
attached modules. Finally, we prove that if V is an F-analytic representation of V', then
(B+ ® V)HK,F la ~ (BT ® V)HK,F la_

rig rig



32 LEO POYETON

7.1. Locally analytic vectors in Robba rings. — If T"is a variable and L is a finite
extension of Q,,, we let L((T")) denote the set of power series in T" with coefficients in L
and with infinite radius of convergence.

Proposition 7.1. — We have (ﬁiig,K)la = (B = K({t.)).

rig

Proof. — Let r > 0 and let z € (ﬁl{g)la. It is therefore I',-analytic for some n > 0, so

that for any s > r, z is a [',,- F-analytic vector of B By applying enough times ¢, to
item 1. of [Ber16b, Thm. 4.4], we have that the images of z in Bl all belong to B[gs]
as long as s is such that r,, < s, where r,, = p""~1(p — 1) was defined in §1.3. Taking the

[rss].

inverse limit, this implies that z € BL’;’ K-

Since ¢ commutes with the Galois action, the reasoning above also applies to gp;l(z).
Therefore, for all k > 0, ¢, *(z) € BL&K. This implies that z belongs to the ring K ({¢.)).
Indeed, in the cyclotomic case this is [Col14, Prop. 3.9], and for the general case this
follows from the same arguments, using the dictionary developped by Colmez in the
Lubin-Tate case in [Col16, §2].

To finish the proof, it suffices to notice that any element of K((t,)) is indeed F-locally
analytic (and is actually I'g-analytic). ]

Proposition 7.1 already shows that the set of F-analytic vectors of ﬁii& i 1s really small
compared with the set of F-pro-analytic vectors of ]T’)L& %

We now explain what is Diig, x (V) and prove that its rank as an E({f,))-module is
too small in general.

Given a (p,I')-module D over E (in the cyclotomic setting), Colmez has defined
[Col14, §3.3] a module denoted by DX {0} by N,>0¢™(D), which is a free (¢, I')-module
over E((t)) of rank < dim(V') by [Col14, Thm. 3.20].

Proposition 7.2. — Let V be an F-analytic representation of Gy . Then
(BT ®Qp V)HKIK_la = DIig,K(V)la = ngOQOZ(DIlg,K(V))

rig
Proof. — Let r > 0 be such that Diig(V) and all its structures are defined over BL’; 5 and
let I be a compact subinterval of [r, +o00[ such that INgl # (). Let z € (DL’;,K(V))F"_”.

Let m > n be such that there exists a basis (b,...,bq) of D!(V) of T',-analytic
vectors of D?(V') (this is possible by the same argument as in §2.1 of [KR09]). Then by
proposition 2.3, this implies that

(DY (V)= = o, (BR) -
Since D}, (V) is a @ -module, the elements ¢q(by), . . ., p,(bg) form a basis of D9 (V),

rig
and are I',,-analytic vectors of D% (V) since p, commutes with the Galois action. In

particular, we get that
(D (V)" = @, (BI) ™" - o, (b).
Applying inductively the same argument, we see that for ¢ > 0, we have

¢ —an £ m—an
(DL (V) = @l (BE) " - ol (bi).
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But by applying ¢, enough times to item 1. of [Ber16b, Thm. 4.4], we see that for
{ big enough, (Bf )= = g, (BY)™~™), so that for £ > 0, (D7 (V))Fm=n =
0 (DTI(V))Im=an " Therefore, the image of the element z € (Di[igvK(V))F”*an in
(DI(V)) is also in @ ((DI7(V)), for £ > 0, and thus z € go(DIigK(V))F"_an. This
proves that
Dy (V)™ = Mo (Dl 1 (V™) € Nuzoil (Dl 1 (V):

Note that (B, ®q, V)% = ]§Lg7K OB, DL&K(V). Using item 3. of [Ber16b, Thm.

rig

4.4] and the proof of Theorem 10.4 of ibid, we know that

(Diig,K(V))FKipa = U 80;m<DLg,K(V))-
m>0

Since I',-analytic vectors are in particular also pro-analytic vectors of I'x, this means
that

(Dl x (V)" = [ (0" (DL g (V)7
m>0
by taking the I',-analytic vectors, and thus (]§Lg
latter is stable by taking inverse powers of ¢,.
It remains to prove that D;rig’K(V)la D ngOWZ(DIig,K(V))-
If z € ﬂnzmﬂZ(DIi&K(V)), then x belongs to a free K ((t;))-module which is I'x-stable

so that for g € Gal(K«/K), g(x) = Mat(g) - © where Mat(g) € GL4(K({tz))), so that
the Galois action on x is locally analytic. This finishes the proof. m

Rq, V) Tx—la — DL&K(V)la since the

In particular, the following result of Colmez shows that in general the module
D! (V)" is too small:
rig, K

Proposition 7.3. — Let V' be a two dimensional irreducible representation of Gq,. If
V' is not trianguline then DLgK(V) X {0} =0.

Proof. — This is item (i) of theorem 3.23 of [Col14]. O

Remark 7.4. — Theorem 3.23 of [Coll4] also says that if V' is a semistable, noncrys-

talline 2-dimensional representation, then DLg’ (V)X {0} is a (¢,I')-module of rank 1
over E((t)).

7.2. p-modules on L((t,)). — By proposition 7.2, to any E-representation V' of G
we can attach a module on E((t,)), which is endowed with a Frobenius ¢, and an operator
V coming from the action of the Lie algebra of I'x. Note that ¢, and I'x act on E((t.))
by

Soq(tﬂ) = Ty, g(tﬂ) = Xw(g)tﬂ-

We can also define an operator V on E{(t;)) by V, = tﬂ%.

As a matter of fact, p-modules on E((t,)) were already studied by Colmez in [Col14,
3.1] and the results proved by Colmez show that ¢-modules on E((t;)) are not as bad
as one may think. Be careful that what we call E((t,)) corresponds in the notations of
Colmez to E{{t,}}. In this section, we recall Colmez’s results on p-modules on F({t,)).
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Definition 7.5. — A (p,,'x)-module on E((t,)) is a finite free E((t,))-module, en-
dowed with semilinear actions of ¢, and I'x which commute one to another and such
that ¢, is an isomorphism.

A (¢4, V)-module on E((t,)) is a finite free E((t,))-module, endowed with semilinear
actions of ¢, and V which commute one to another and such that ¢, is an isomorphism.

A (¢4, I'k)-module on E{(t;)) gives rise to a (¢4, V)-module on E((t;)) by taking the
log(g)
log x(9)
The ring E((t,)) can be interpreted via analytic functions, as it is the projective limit

of the rings of analytic functions on the disks v,(x) > —ne for n € N. Those rings are
principal Banach rings and therefore E((¢;)) is a Fréchet-Stein ring, which in particular
implies that any closed submodule of a free module of rank d is free of rank < d and that
a submodule of finite type of a free finite type module is closed and thus free. Moreover,
Newton polygons theory show that an element f € E((t;)) does not vanish if and only if
f € E*, sothat (E((t)))* = E*.

same p-structure and taking V to be the operator for g close enough to 1.

Lemma 7.6. — Let M be a rank d p,-module on E{(t;)) and let v € M be such that
there exists « € E* such that ¢,(v) = av. Then there exists k € N such that t_*v € M
and M/E{{t,))t-*v is free of rank d — 1 on E{{t,)).

Proof. — See [Col14, Lemm. 3.4]. O

Let M be a p,module on E{(t;)) and let M = M/t,M. If P € E[X] is unitary of
degree d and irreducible, then we let Mp (resp. Mp) denote the set of elements v € M
(resp. in M) such that P(p,)"-v = 0 for n > 0 and if & € N, we let P[k] be the
polynomial 78 P(X /7).

Theorem 7.7. — If M is a ¢,-module of rank d on E{((t;)), there exists a basis ey, ..., eq
of M in which the matriz of p is A+ N, where A € GL4(L) is semisimple and invertible,
and N is nilpotent and commutes with A. Moreover, N splits into N = Ny +t, N1+ ...,
where N; € My(L) sends the kernel Mp of P(A) into the one Mp_y of P(x"A) for all P
(and thus in particular the sum is finite).

Proof. — See [Col14, Thm. 3.6]. O

Given a (¢4, I'x)-module D on E((t;)), we say that an element v of D is proper for
the action of ¢, and I'k if there exists an F-analytic character 6 : K* — E* such that
p(v) = 0(m)v and g(v) = 0(xx(g))v for all g € T'k.

Lemma 7.8. — Given a (¢4, I'x)-module D of rank 1 on E((tx)), F-analytic, with basis
e, then there exists an F-analytic character 6 : K*—E* such that e is proper for .

Proof. — This just follows from the fact that a rank 1 (¢, I';)-module on E((t,)) has a
unique basis e, up to multiplication by an element of (E((t;)))* = E*. O
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7.3. Frobenius regularity. — We now explain how to use the fact that our rings are
embedded with a Frobenius in order to show some regularity property. This section is in
the same spirit as [Ber02, §3.1 and §3.2].

Lemma 7.9. — Let h be a positive integer. Then

+00 +oo

m s AT — AT gnd ﬂ W_hsgii’g_sw - E;ﬁg.

5=0 s=0
Proof. — This is [Ber02, Lemm. 3.1] when K = Q,. The generalization when K is a
finite extension of Q,, is straightforward. O]
Proposition 7.10. — Let r,v be two positive integers, and let A € var(ﬁiig). If
P e GLy(K((tx))) is such that P € My(K[t]) and such that A = Pp *(A) then A €

M’UX’I"(BIg) .

Proof. — Write A as (a;;) and P as (p;;). Let hg be such that the 7"p;;. belong to Op[t.],
and let n be the highest degree of the p;. as polynomials in ¢,. The assumption on the
relation between P and A can be translated as:

pilwil(alj) + - +piv§071(avj> =a;; Vi<wv,j<r.

Let ¢ > 0 and r > 0 be such that the a;; belong to p‘cgii’g.
P and A, this implies that the a;; belong to p‘ho_c;&T-’” T Okltr]n, where Ok|t,] denotes

rig
the ring of polynomials in ¢, with degree < n. Note that if ¢, € 7P A" then since

rig?
¢, (tx) = Ltr, we get that ¢, € Wl_ﬁAL’g/q and thus t, € W‘ﬁAL’;/QZ for all £ > 0. We
fhofcfn,B:&Tﬂ"/q

rig

Using the relation between

therefore have that the a;; belong to = and applying the result inductively,

the a;; belong to W‘C_hoe_”ﬁfgii’;qfe. We can thus apply lemma 7.9 to the p°a;;, which
shows that they belong to B;Eg, as we wanted. O
Proposition 7.11. — Let V' be an F-analytic E-representation of Gi. Then the mor-
phism

(E-‘r ® V)HK,FK—la. - (gT ® V)HK,FK—la

rig rig

+C]§T

vig lig» 18 an isomorphism of (g, V)-modules on E((tx)).

induced by the inclusion B

Proof. — Let (v1,...,v,) and (dy, ..., d,) be respectively an E-basis of V and an E((t.))-
basis of (Bl ®p V). There exists A € M,,,(Bl. ) such that (d;) = A(v;). Let P €

rig rig
GL,(E((tz))) be the matrix of ¢, in the basis (d;). By theorem 7.7, we can assume that
the basis (d;) of (Bf,, ®p V) is such that P € M,(K[t;]). We then have ¢, (A) = PA

rig

and thus A = ¢! (P)g,; ' (A). By proposition 7.10, we have A € M,,(By;,) and hence
(]T))Iig ) V)la - (]’-B)Ig ®E V)la'
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8. Applications to trianguline representations

We now explain how some of the rings previously introduced provide some results
towards the question of the existence of a ring of periods for trianguline representations.
We will start by recalling the notions of trianguline representations and refinements.

In a previous version of this paper, we claimed that trianguline representations of Gq,

were admissible for the ring C'*(I'g, f%gg)l but there was a gap in the proof and the claim
is actually not true. We do expect though that if such a ring exists then it has to be
some intermediate ring B between C*(T'x, B}, )1 and the rings C'*(I'x, B')1, but it is not
clear at all “how many periods we have to add” to C**(T'k, B;gg)l. These constructions
naturally extend to the F-analytic Lubin-Tate case.

8.1. Trianguline representations and refinements. — We start by recalling the
definitions of trianguline representations and some associated properties. The notion of
trianguline representations was introduced by Colmez in [Col08b]. Here we choose to

follow Berger’s and Chenevier’s definitions [BC10] instead of Colmez’s.

Definition 8.1. — We say that an FE-representation V of Gk is split trianguline if
D:fig(V) is a successive extension of (¢, I'x)-modules of rank 1 over E ®q, BLg’ -

We say that an L-representation V' of G is trianguline if there exists a finite extension
E of L such that the F-representation £ @y V is split trianguline.

We say that an F-representation V' of Gg is potentially split trianguline (resp. po-
tentially trianguline) if there exists a finite extension K’ of K such that Vig,, is split

trianguline (resp. trianguline).

Definition 8.1 can be equivalently stated in terms of B-pairs. We quickly recall that a
B-pair is a pair W = (W,, W), where W, is a free B, := (Erﬁg[l/t])“’:l—module of finite
rank endowed with a continuous semi-linear action of Gg, and WjR is a Gi-stable lattice
in Wyr := Bgr ®B, We. To a p-adic representation V' of G one can attach a B-pair
W(V) by W(V) = (B.®q, V,Bl; ®q, V). If E is a finite extension of Q,,, one extends
the definition of B-pairs to E-linear objects, and one gets objects called B%(E—pairs in
[BC10] or E — B-pairs of Gk in [Nak09]. Those objects are pairs W = (W, Wiz),
where W, is a free B, g := F ®q, B.-module of finite rank endowed with a continuous
semi-linear action of Gg, and WJR is a Gg-stable lattice in Wyg 1= (F Rq, Bar) @B, ; We.

The category of B%(E -pairs is equivalent to the one of (p, 'k )-modules over E ®QPBJr

rig, K’
and thus an E-representation V' of G is split trianguline if the attached B%E—pair is a
successive extension of rank 1 B(ﬁf-pairs.
Lemma 8.2. — Let V be an F-analytic representation. Then the following are equiva-
lent:

1. V' is split trianguline.
2. The Lubin-Tate (¢4, I'i)-module Diig(V) is a successive extension of F-analytic

Lubin-Tate (¢4, I'x)-modules of rank 1.
Proof. — See [Poy23, Thm. 4.11]. O
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For a B, g-representation, we say that it is split triangulable if it is a successive exten-
sion of rank 1 B, g-representations.

Lemma 8.3. — An E-representation V' of Gg is split trianguline if and only if the
corresponding B, gp-representation is split triangulable as a B, g-representation of Gk .

Proof. — See [BDM21, Coro. 3.2|. O

Proposition 8.4. — The categories of split trianguline representations and of triangu-
line representations are stable by subobjects, quotients, direct sums and tensor products.

Proof. — The fact that it is stable by quotients and subobjects follows from [BDMZ21,
Prop. 3.3]. For direct sums and tensor products it is a straightforward consequence of
definition 8.1. N

Let D be a (p,'x)-module of rank d over £ ®q, BL&K and equipped with a strictly
increasing filtration (Fil;(D));o..4 :

Fily(D) := {0} C Fily(D) C -+ C Fily(D) C -~ C Fily_1(D) C Fily(D) := D,

—=

of (¢, 'k )-submodules which are direct summand as £ ®q, BLg -modules. We call such

a D a triangular (¢, [ )-module over £ ®q, B! and the filtration 7 := (Fil;(D)) a

rig, K
triangulation of D over E ®q, BLg, K

Let D be a triangular (p, 'x)-module. By proposition 3.1 of [Col08b], each

is isomorphic to the (o, 'k )-module on E ®q, BIig 5 attached to a character 9; for some
unique §; : K*—FE*. Following [BC09a, 2.3.2], we define the parameter of the triangu-
lation to be the continuous homomorphism

0:= ((57;)7;:17...7(1 : KX—>(EX)d.

When K = Q,, the parameter of a triangular (¢, I'x)-module refines the data of its
Sen polynomial:

Proposition 8.5. — Let D be a triangular (p,I')-module over E ®q, Biig’QP and § the
parameter of a triangulation of D. Then the Sen polynomial of D is
d

H(T— w(6;))-

i=1
Proof. — See [BC09a, Prop. 2.3.3]. O

We now recall the notion of refinements for crystalline trianguline representations of
Gq, as in [BC09a, §2.4]. Let V' be finite, d-dimensional, continuous, E-representation of
Gq,- We will assume that V' is crystalline and that the crystalline Frobenius ¢ acting on
D.,ys(V) has all its eigenvalues in £*.

By a refinement of V', using the definition of [Maz00, §3], we mean the data of a full
p-stable E-filtration F = (F;)i=o,..a of Deys(V):

fozogflg---gfd:])crys(v)'
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As in [BC09a, 2.4.1], we remark that any refinement F determines two orderings:
1. It determines an ordering (¢1, - - - , ¢q) of the eigenvalues of ¢, defined by the formula

i

det(T —¢7) = [ [(T - ¢5).

J=1

If all these eigenvalues are distinct then such an ordering conversely determines F.

2. It determines also an ordering (sy,---,s4) on the set of Hodge-Tate weights of V|
defined by the property that the jumps of the weight filtration of De,ys(V') induced
on F; are (s1,- -+, ;)

The theory of refinements has a simple interpretation in terms of (¢, I')-modules: let D
be a crystalline (¢, I')-module as above and let F be a refinement of D. We can construct
from F a filtration (Fil;(D));—o... 4 of D by setting

Fil;(D) := (E ®q, B, o [1/t|F:) N D,

which is a finite type saturated £ ®q, BLgVQP—submodule of D.

Proposition 8.6. — The map defined above (F;) — (Fil;(D)) induces a bijection be-
tween the set of refinements of D and the set of triangulations of D, whose inverse is F; :=
Fil;(D)[1/t]'. In the bijection above, fori =1,...,d, the graded piece Fil;(D)/Fil;_1(D)
is isomorphic to the (p,I")-module on E ®q, BLg,QP attached to 6; where 0;(p) = @;p~ %
and o;p = x°', where the @; and s; are defined by items 1 and 2 above.

Proof. — See [BC09a, Prop. 2.4.1]. O

Remark 8.7. — In particular, Proposition 8.6 shows that crystalline representations
are trianguline, and that the set of their triangulations is in natural bijection with the
set of their refinements.

We now finish this section with a result regarding trianguline representations that we
were not able to find in the litterature.

Proposition 8.8. — Let V be an L-representation of Gix. Then V is trianguline if and
only if the underlying Qp-representation of V' is trianguline.

Proof. — Let V be an L-representation of Gx and let E be a finite extension of L,
containing all the images of the embeddings 7 : L — K and such that £ ®; V is split
trianguline. Then E®q, V = (E®q, L) @V = ®,ex(E® V), where ¥ = Emb(L, K).

In particular, E' ®p V' is a subrepresentation of &/ ®q, V' and this concludes the first
half of the proof by proposition 8.4. For the other direction, let W = W (E ®1 V) the
corresponding B, g-representation and let Wy =0 C W, C ... W; = W a triangulation
of W. For 7 € ¥, let Bepr = E®r,Bep. Form € ¥and 1 <7 < d, let W;, =
B.r- ®B, p W;. By construction

0CWi,C...C Wy,
is a triangulation of W((E ®r V);) and thus F ®q, V is trianguline. O
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8.2. Discussion on a ring of periods for trianguline representations. — By
proposition 8.4, we know that the category of (split) trianguline representations of G
is a Tannakian category. Because of this and because of proposition 8.8, it appears
reasonable to look for a ring B such that trianguline representations are exactly the
representations which are B-admissible in the sense of Fontaine.

Recall that the notion of admissibility in the sense of Fontaine is defined for what he
called regular rings and is as follows (we only recall the definitions of [Fon94b] in the
particular case of Q,-representations because that’s all we need here).

Let B be a topological Q,-algebra endowed with an action of a group G. For any
Q,-representation of G, we let Dg(V) := (B®q, V). We let ag(V) denote the B-linear
map B ®gc Dg(V) — B ®q, V deduced from the inclusion Dg(V) C B ®q, V' by
extending the scalars to B. The ring B is said to be G-regular if the following hold:

1. B is reduced;

2. for any p-adic representation V of GG, the map ay is injective;

3. any element b of B which is nonzero and is such that the Q,-line generated by B is
G-stable is invertible.

The last condition implies in particular that B¢ is a field. If B is G-regular, a represen-
tation V' of G is said to be B-admissible if ag(V') is an isomorphism, which is equivalent
as saying that dimge Dg(V') = dimq, V.

Unfortunately, it seems to us that in the case we consider, the last condition is too
strong and thus we extend the notion of G-regularity as follows: we say that B is G-
regular if the following conditions are met:

1. B is reduced;
2. for any p-adic representation V of G, Dg(V) is a free B¢-module;
3. the map ay is injective.

It is clear that G-regular rings in the sense of Fontaine are G-regular for us, but that
the converse does not hold.

In the rest of the paper, G-regularity and admissibility are to be understood in our
sense.

We now explain exactly what we mean by a ring of trianguline periods.

Definition 8.9. — A Gg-regular ring B is said to be a trianguline periods ring for Gg
if trianguline representations of G are B-admissible, and if B-admissible representations
of Gk are trianguline.

Proposition 8.10. — Let B be a G -reqular ring and let V' be an L-representation of
Gx. Then V' is B-admissible if and only if there exists a finite extension E of L such
that V @1 E is B-admissible.

Proof. — It’s clear that if V' is B-admissible, then there exists a finite extension F of L
such that V @ E is B-admissible. To show the reverse, first note that the admissibility of
an F representation V' does not depend on wether one considers it as a Q,-representation
or as an E-representation (the B9<-module Dg(V) = (V ®q, B)9% is always the same).
Now because the category of B-admissible representations is clearly stable by subobjects,
it suffices to note that V' is a sub-Q,-representation of V ®, E. O



40 LEO POYETON

Unlike in the crystalline or semistable case, if such a ring exists, it has to depend on
K:

Proposition 8.11. — There is no ring B satisfying the properties above such that, for
any finite extension K of Q,, B is a trianguline periods ring for Gx.

Proposition 8.11 is a consequence of the following result:

Proposition 8.12. — Let L/K be any finite extension. Then there exists a representa-
tion V of Gk such that V is trianguline as a representation of Gr but is not trianguline
as a representation of Gi .

Proof. — Let n : G, — L* be a character such that there exists 71 # 7 € Emb(L,Qp)
with (71);x = (72)|x, and such that 7 is 71-de Rham but not 7-de Rham in the sense of
[Din14]. Our claim is that such a character can’t possibly extend to G and neither can
any of its conjugate, i.e. there is no character p : Gx — L* such that pig, = o(n) for
some 0 € Emb(L,Q,). Indeed, if such a p existed, then the dimension of Dgg . (o(n))
would only depend of the dimension of Dgg «(p), which is not the case because of the
assumption on 7y and 7.

We now let V' = indgf n. This is a p-adic representation of Gg, whose restriction to
Gy, is the sum of the conjugates of 1, so that it clearly is trianguline as a representation
of Gr.. Let us assume that it also is trianguline as a representation of Gg. Let W be the
B%—pair attached to V. As a B(‘XL’L—pair, we can write

W =@, W(o(n)).

Since we assumed that W is trianguline as a B%{L—pair, there exists W; C W a direct

summand of rank 1. For 7 € Emb(L,Qp), we have the following exact sequence
0= @rzo W(a(n)=W—=W(r(n))—0

so that, since W is a direct summand of rank 1 of W and by proposition 2.4 of [ BDM21],
we either have Wy = W(r(n)) or Wi C @,.,W (o(n)). By induction, W; has to be equal
to one of the W (7(n)). Therefore, one of the conjugates of 1 has to extend to Gx, which
we have proven is not possible. O

We can now give a proof of proposition 8.11:

Proof. — By the results of §5, the periods of any representation live in Cla(FK,ﬁI )1,
for I any compact subinterval of [rp;+oo[, and in particular so do the periods of any
trianguline representation V of G, so that we can assume that B C C'*(I'g, BY);. Since

unr

every unramified representation of Gx is trianguline, we can assume that B D Q,
Moreover, if L/K/Q, are unramified then it is easy to see that (C**(I'g, B);)9% = L ®
(C'*(I', BY);)9% , and thus we can assume that B9 = L @ B9 .

Assume that B is a ring satisfying the properties, and such that for any finite extension
K/Q,, B is a trianguline periods ring for Gx. Let K be a finite unramified extension
of Qp, let L be a finite unramified extension of K. Let V' be a p-adic representation of
Gx which is not trianguline as a representation of Gx but becomes trianguline over Gy,
which exists by the previous proposition. Let Dy = (B ® V)9%. It is a B9 -module,
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endowed with a semilinear action of Gal(L/K). Let D = Dgal(L/ K) By Speiser’s lemma,
D; ~ L ®x D and thus D;, = B9 ®pox D. Thus, V is B-admissible as a representation
of QK. ]

8.3. F-analytic Bfj x-admissible representations. — Since we are now thinking

of rings of periods for trianguline representations, we let B ;- = C?*(T'g, ]§Ig)1. We now
explain why B{}} i is a good starting candidate as a ring of trianguline periods. Note that
by proposition 7.2 and remark 7.4 we already know that there are F-analytic trianguline
representations of Gr which are not B{j} x-admissible. To put some emphasis on the

point of view of rings of periods, we write D% (V') for (DL (V)™ and Dk (V) for

» rig
(Dfiy (V)" = (C*(T, BJy,) ®q, V)95

rig rig

Proposition 8.13. — The ring By} ;- is Gk -reqular for F-analytic representations.

Proof. — By proposition 7.11, it suffices to prove that the ring Cla(FK,ﬁLg)l is G-
regular for F-analytic representations. But now this follows from proposition 7.2 and in
the cyclotomic case from lemma 3.19 and theorem 3.20 of [Col14]. The proof of those
results extend to the Lubin-Tate case verbatim. O

We now define a notion of refinements for F-analytic representations of G which are
B{}i x-admissible. We let V' be a B{j -admissible L-representation of dimension d of
Gk. By a refinement of V, we mean the data of a full ¢ - and I'-stable L((¢.))-filtration
F = (F)izo...a of (D))"

rig
Fo=0G Fi G- Fa= (D)

.....

Note that, as in the crystalline case studied in [BC09a], the theory of refinements
has a simple interpretation in terms of (p,, 'k )-modules: let DLg(V) be the triangulable

(g, Ik )-module over L®KBLg,K attached to V and let F be a refinement of DIig(V)ﬁ{O}.
We can construct from F a filtration (Fil;(D))iq.....q of DI (V) by setting

rig
Fil(Df,(V)) :== (L ®x B, 1) @1ty Fi)
which is a finite type saturated £ ®@x BLg -submodule of Diig(V).

Proposition 8.14. — The map defined above (F;) — (Fili(DT

rig
between the set of refinements of V' and the set of triangulations of D

is Fy = ((Fil,-(DLg(V)))la>.

(V) induces a bijection

T

1ig(V'), whose inverse

Proof. — This is exactly as in the crystalline case. O]

Proposition 8.15. — Let M be a (¢4, 'x)-module of rank d on L{{t:)). Then, up to
extending the scalars to some finite extension E of L, there exists a filtration

My=0C M C...C My=M
of M by saturated sub-(¢,, 'k )-modules.
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Proof. — We prove the result by induction. If d = 1 there is nothing to prove. Assume
now that d > 2 and that the result holds for d — 1.

By theorem 7.7 and lemma 7.6, upto replacing L by a finite extension E’ of L, there
exists e; proper for the action of ¢ and 'k such that E’({(t;)) - e; is saturated in M. By
induction, M/(E'({t;)) - e1) admits a full (¢,, ['x)-stable filtration (F;)¢=!. We let M;,,
be a lift of F; containing E'((t;)) - e; and we put My = E’{({t;)) - e;. We then have that
(M;)L, is a full (p,, [k )-stable filtration of M. O

Theorem 8.16. — Let 'V be a B -admissible F-analytic p-adic representation V.
Then V' is trianguline.

Proof. — By proposition 8.15 and proposition 8.14, there exists a finite extension L of
K such that DY, (V ®x L) is a triangulable (¢,, I'x)-module over L ® BLg’K.

rig
Moreover, we see from lemma 7.8 that the characters appearing in the triangulation

are F-analytic. O

Lemma 8.17. — Let'V be an F-analytic E-representation of Gi such that the attached

(¢g: L' )-module Diig(V) is triangulable, and let 6 : (K*)4—(E*)? be the parameter of

a triangulation of DLg(V). Then in an adapted basis for the refinement of D (V)
corresponding to 6 by proposition 8.14, the matrices of V and p, are respectively of the
form:

w(dy) * * dq () * %
0 w(d) --- * o 0  dg(m) -+
00w 00 am)

Proof. — We prove it by induction on d. For d = 1, by proposition 3.1 of [Col08b] there
exists a basis es of Diig(V) in which g(es) = d(xx(9))es and p4(es) = d(m)es, and the
action if [-analaytic, so that e; is a basis of D{%(V) which satisfies the result of the
lemma. To see that it is unique note that since (L((t.)))* = L*, the matrices of V and

¢q in an other basis of D{{"% (V) would be the same.
Assume now that d > 2 is such that the result holds for d—1 and let (Fili(DLg(V)))i:O ..... d

be the filtration of DLg(V) corresponding to the triangulation. Since our constructions
are stable by saturated sub-objects, we get by induction that in an adapted basis for the
refinement of D} ?((Fild_l(DLg(V))), the matrices of V, and ¢ are respectively of the

form:

w(dy)  x e * o(m) % - *
0 w(d) --- * nd 0 do(m) --- *
00wl 00 e s

Since our constructions are also stable by quotients by saturated sub-objects and using
the proof in the rank 1 case, we know that the matrices of V and ¢, in a basis of

Diig(V)/Fild,l(DT (V) ~ FE Qg BLgK(éd) are respectively of the form (w(dq)) and

rig
(d4(m)). Therefore, in an adapted basis for the refinement of D ;- (V) corresponding to
0, the matrices of ¢, and V, are as we wanted. O
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In particular, as in the crystalline case, a refinement defines an ordering on both the
eigenvalues of ¢, and on the set of Hodge-Tate weights of V', and encodes the data of the
Hodge-Tate weights of its parameter.

Finally, we just remark that given the construction of our rings of periods, it is quite
obvious that the modules D{{" (V') attached to F-analytic p-adic representations of Gx
contain its crystalline periods:

Proposition 8.18. — Let V be an F-analytic p-adic representation. Then
L. D$ys(v> - D?E,K(V)VZO;

2. Dy (V) C (D (V)[1/2]) V0.

Proof. — This just follows from the fact that Df (V) = (E;Eg ®q, V)% and that

Deys(V) = (B} [1/t:] ®q, V)9 by lemma 3.8 of [Por22). O
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