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Abstract. — We prove that a formulation of a conjecture of Lubin regarding two power
series commuting for the composition is equivalent to a criterion of checking that some
extensions generated by the nonarchimedean dynamical system arising from the power series
are Galois. As a consequence of this criterion, we obtain a proof of Lubin’s conjecture in a
new case.
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Introduction

Let K be a finite extension of Qp, with ring of integers OK and maximal ideal mK .
Families of power series in T ·OK [[T ]] that commute under composition have been studied
by Lubin [Lub94] under the name of nonarchimedean dynamical systems, because of
their interpretation as analytic transformations of the p-adic open unit disk. This study
led Lubin to remark that “experimental evidence seems to suggest that for an invertible
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series to commute with a noninvertible series, there must be a formal group somehow in
the background”.

Various results have been obtained to support Lubin’s observation, see for instance
the following non exhaustive list [Li96], [Li97a], [Li97b], [LMS02], [Sar05], [Sar10],
[SS13], [Ber17], [Spe18], [Poy22].

This observation has led to several versions of what might be called Lubin’s conjec-
ture, and these versions have all been proved under very strong assumptions on the
nonarchimedean dynamical system considered.

In this note, we consider two power series P, U ∈ T · OK [[T ]] such that P ◦ U = U ◦ P ,
with P ′(0) ∈ mK and U ′(0) ∈ O×

K . Our so called version of Lubin’s conjecture is the
following:

Conjecture 0.1. — Let P, U ∈ T · OK [[T ]] such that P ◦ U = U ◦ P , with P ′(0) ∈ mK

and U ′(0) ∈ O×
K not a root of unity, and such that P (T ) ̸= 0 mod mK. Then there exists

a finite extension E of K, a formal group S defined over OE, endomorphisms of this
formal group PS and US and a power series h(T ) ∈ T · OE[[T ]] such that P ◦ h = h ◦ PS

and U ◦ h = h ◦ US.

In the conjecture above, we say following Li’s terminology [Li97a] that P and PS are
semiconjugate and that h is an isogeny from PS to P .

In several proven cases of this conjecture [Sar05, Ber17, Spe18], the Lubin–Tate
formal group is actually defined over OK . However, this is not true in general.

The goal of this note is to prove the following theorem, which gives a new criterion to
prove Lubin’s conjecture in some cases:

Theorem 0.2. — Let (P, U) be a couple of power series in T ·OK [[T ]] such that P ◦U =
U ◦ P , with P ′(0) ∈ mK and U ′(0) ∈ O×

K, and we assume that P (T ) ̸= 0 mod mK and
that U ′(0) is not a root of unity. Then there exists a finite extension E of K, a Lubin-
Tate formal group S defined over OL, where E/L is a finite extension, endomorphisms
of this formal group PS and US over OE, and a power series h(T ) ∈ T · OE[[T ]] such that
P ◦h = h◦PS and U ◦h = h◦US, if and only if the following two conditions are satisfied:

1. there exists V ∈ T · OK [[T ]], commuting with P , and an integer d ≥ 1 such that
Q(T ) = T pd mod mK where Q = V ◦ P ;

2. there exists a finite extension E of K and a sequence (αn)n∈N where α0 ̸= 0 is a
root of Q and Q(αn+1) = αn such that for all n ≥ 1, the extension E(αn)/E is
Galois.
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The role of the field L in the theorem above may be confusing, but essentially comes
from the fact that Lubin-Tate formal groups are a special case of more general formal
groups, and that a formal group defined over OE arising from a Lubin-Tate formal group
over OL is usually no longer a Lubin-Tate formal group over OE.

The proof of this theorem relies mainly on the same tools and strategy used in [Poy22],
which are the tools developed by Lubin in [Lub94] to study p-adic dynamical systems,
the “canonical Cohen ring for norms fields” of Cais and Davis [CD15] and tools of p-adic
Hodge theory following Berger’s strategy in [Ber16a].

As a corollary of our main theorem, we obtain the following result, which is a new
instance of Lubin’s conjecture:

Theorem 0.3. — Assume that P (T ) ∈ T ·OK [[T ]] is such that P (T ) = T p mod mK and
that there exists U ∈ T ·OK [[T ]], commuting with P , such that U ′(0) is not a root of unity.
Then there exists a finite extension E of K, a Lubin-Tate formal group S defined over
OL, where E/L is a finite extension, endomorphisms of this formal group PS and US over
OE, and a power series h(T ) ∈ T · OE[[T ]] such that P ◦ h = h ◦ PS and U ◦ h = h ◦ US.

In order to prove our main theorem, we also need to prove that some extensions are
strictly APF, which is a technical condition on the ramification of the extension. Cais
and Davis have considered in [CD15] what they called “φ-iterate” extensions, and later
on proved with Lubin that those extensions are strictly APF [CDL16]. Here, we show
that that this result still holds for more general extensions which generalize the φ-iterate
extensions of Cais and Davis:

Theorem 0.4. — Let K∞/K be an extension generated by a sequence (un) of elements
of Qp such that there exists a power series P (T ) ∈ T · OK [[T ]] with P (T ) = T d, where
d is a power of the cardinal of kK, and an element π0 of mK such that u0 = π0 and
P (un+1) = un.

Then K∞/K is strictly APF.

Organization of the note. — The first section recalls the construction and properties
of some rings of periods which are used in the rest of the paper. The second section is
devoted to the proof of theorem 0.4, using the rings of periods of the first section in order
to do so. In the third section we recall the main result of [Lub94] which explains why
“Lubin’s conjecture” seems reasonable. In section 4, we prove that our version of Lubin’s
conjecture implies that the two conditions of theorem 0.2 are satisfied. Section 5 and 6
show how to use p-adic Hodge theory, using the same strategy as in [Poy22], along with
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results from [Lub94], in order to prove that the infinite extension generated by such a
Q-consistent sequence is actually generated by the torsion points of a formal Lubin–Tate
group. In section 7, we show how to use the “canonical Cohen ring for norms fields” of
Cais and Davis [CD15] to prove that there is indeed an isogeny from an endomorphism
of a formal Lubin–Tate group to Q. Section 8 is devoted to the proof of theorem 0.3.

1. Rings of periods

Let K be a finite extension of Qp, with uniformizer πK , and let K0 = Qunr
p ∩K denote

the maximal unramified extension of Qp inside K. Let q = ph be the cardinality of kK ,
the residue field of K, and let e be the ramification index of K, so that eh = [K : Qp].
Let vK denote the p-adic valuation on K normalized so that vK(K×) = Z and let vK still
denote its extension to Qp. Let c > 0 be such that c ≤ vK(p)/(p− 1). If F is a subfield
of Cp, let ac

F be the set of elements of F such that vK(x) ≥ c.
We now recall some definition of properties of some rings of periods which will be used

afterwards. We refer mainly to [CC98] [Fon94] for the properties stated here. The
slight generalization to the classical rings by tensoring by OK over OK0 can for example
be found in [Ber16b].

Let O♭
Cp

:= lim←−
x7→xp

OCp/ac
Cp

. This is the tilt of OCp and is perfect ring of characteristic p,

whose fraction field Ẽ is algebraically closed. It is endowed with a valuation vE induced
by the one on K. We let WK(·) = OK ⊗OK0

W (·) denote the OK-Witt vectors, and let
Ã+ = WK(Ẽ+) and Ã = WK(Ẽ).

Any element of Ã (resp. Ã+) can be uniquely written as ∑
i≥0 πk

K [xi] with the xi ∈ Ẽ
(resp. Ẽ+). We let wk : Ã−→R ∪ {+∞} defined by wk(x) = infi≤k vE(xi).

For r ∈ R+, we let Ã†,r denote the subset of Ã of elements x such that wk(x) + pr
e(p−1)k

is ≥ 0 for all k and whose limits when k−→ +∞ is +∞. We let n(r) be the smallest
integer n such that r ≤ pnh−1(p− 1).

We also let Ã = ⋃
r>0 Ã†,r.

Lemma 1.1. — Let x ∈ Ã†,r + πk
KÃ, then x

[x] is a unit of Ã†,r′ + πk
KÃ, with r′ =

r + (p−1)e
p

vE(x).

Proof. — Since x ∈ Ã†,r + πk
KÃ, we can write x = ∑k−1

i=0 πi
K [xi], where x0 = x, and

wi(x) + pr
e(p−1)i ≥ 0 for all i between 0 and k − 1.
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Now we can write x
[x] ∈ Ã as ∑

i≥0 πi
K [yi], where yi = xi

x
for i between 0 and k − 1. In

particular, y0 = 1. Now a direct computation leads to the fact that wi( x
[x]) + pr′

e(p−1)i ≥ 0
for all i ≤ k − 1, where r′ = r + (p−1)e

p
vE(x).

Using the fact that x
[x] ∈ (Ã†,r′ + πk

KÃ)∩ (1 + πKÃ), we obtain that its inverse also lies
into Ã†,r′ + πk

KÃ.

Let φq : Ẽ+ → Ẽ+ denote the map x 7→ xq. This extends to a map Ẽ→ Ẽ also given
by x 7→ xq, and by functioriality of Witt vectors those maps extend into maps φq on Ã+

and Ã.
Recall that there is a surjective map θ : Ã+ → OCp which is a morphism of rings.

Moreover, if x ∈ Ã+ and x = (xn) ∈ Ẽ+, then θ ◦ φ−n
q (x) = xn mod ac

Cp
.

Also recall that, for n ≥ n(r), the maps θ ◦ φ−n
q : Ã+ → OCp extend into surjective

maps θ ◦ φ−n
q : Ã†,r → OCp .

2. Strictly APF extensions

Recall that a (slight generalization of what Cais and Davis in [CD15] have called a)
φ-iterate extension K∞/K is an extension generated by a sequence (un) of elements of
Qp such that there exists a power series P (T ) ∈ T · OK [[T ]] with P (T ) = T d, where d

is a power of the cardinal of kK , and a uniformizer π0 of OK such that u0 = π0 and
P (un+1) = un.

The main theorem of [CDL16] gives a necessary and sufficient condition for an infinite
algebraic extension L/K to be strictly APF, and in particular implies directly that those
φ-iterate extensions are strictly APF.

In this section we will prove that this result remains true if we remove the assumption
in the definition above that π0 is a uniformizer of OK , and instead just assume that
π0 ∈ mK . We even allow π0 to be equal to 0, which is basically what we’ll consider when
looking at consistent sequences attached to a noninvertible stable power series.

If L is a finite extension of Qp, we let vL denote the p-adic valuation on L normalized
such that vL(L×) = Z, and we still denote by vL its extension to Qp. If L/M is a finite
extension, we also let EmbM(L, Qp) denote the set of M -linear embeddings of L into Qp.

For the rest of this section, we let P (T ) ∈ T · OK [[T ]] with P (T ) = T s, where s is a
power of the cardinal of kK , we let π0 be any element of mK , and we define a sequence
(vn)n∈N of elements of Qp as follows: we let v0 = π0, and for n ≥ 0, we let vn+1 be a
root of P (T ) − vn. We let Kn = K(vn) the field generated by vn over K, and we let
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K∞ = ⋃
n Kn. If v0 = 0, then we choose v1 to be ̸= 0, so that the null sequence is

excluded from our considerations.

Proposition 2.1. — There exists n0 ≥ 0 and d ≥ 1 such that, for all n ≥ n0, we have
vKn(vn) = d and the extension Kn+1/Kn is totally ramified of degree s.

Proof. — The fact that the Weierstrass degree of P is greater than 1 along with Weier-
strass preparation theorem show that the sequence vp(vn) is strictly decreasing. In par-
ticular, there exists n0 ≥ 0 such that for n ≥ 0, the Newton polygon of P − vn has only
one slope, equal to 1

s
vp(vn). This implies that for n ≥ n0, we have vp(vn+1) = 1

s
vp(vn),

and thus vKn(vn+1) = 1
s
vKn(vn).

Recall that, if M/L/Qp are finite extensions, then we have [M : L]vL ≥ vM , with
equality if and only if M/L is totally ramified. Let dn := vKn(vn). Since s is the
degree of a non zero polynomial with coefficients in Kn whose root is vn+1, we know
that [Kn+1 : Kn] ≤ s. This implies that svKn ≥ [Kn+1 : Kn]vKn ≥ vKn+1 . For n ≥ n0,
we have dn = s · vKn(vn+1) ≥ [Kn+1 : Kn]vKn(vn+1) ≥ vKn+1(vn+1) = dn+1, so that the
sequence (dn)n∈N is decreasing. Since this sequence takes its values in N, it is stationary
and therefore there exists n1 ≥ n0 such that, for all n ≥ n1, dn+1 = dn. In particular, this
implies that the inequalities above are all equalities and thus that for n ≥ 1, s = [Kn+1 :
Kn] and that Kn+1/Kn is totally ramified, and we can take d = dn1 .

Let us write d = pkm where m is prime to p.
Since P (T ) = T s mod mK , the sequence (vn) gives rise to an element v of Ẽ+ =

lim←−
x 7→xs

OCp/πK . We let φs denote the s-power Frobenius map on Ẽ+ and Ã+.

Proposition 2.2. — There exists a unique v ∈ Ã+ lifting v such that φs(v) = v. More-
over, we have θ ◦ φ−n

s (v) = vn.

Proof. — One can use the same argument as in [CD15, Rem. 7.16] to produce an element
in Ã+ such that P (v) = φs(v) and such that θ ◦ φ−n

s (v) = vn (note that one also needs
to extend the results from ibid to the case where the Frobenius is replaced by a power of
the Frobenius, which is straightforward).

Such an element automatically lifts v by definition of the theta map. For the unique-
ness, one checks that the map x 7→ φ−1

s (P (x)) is a contracting map on the set of elements
of Ã+ which lift v, so that v = limm−→+∞ φ−m

s (P ◦m([v])) and is thus unique.

Since Ẽ is algebraically closed, there exists u ∈ Ẽ such that um = v. Since such a u

necessarily has positive valuation, it actually belongs to Ẽ+.
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Since P (T ) = T s mod πK , we can write P (T ) = T s(1 + πh(T )), with h(T ) ∈
1

T s−1OK [[T ]]. Let Q(T ) = T s(1 + πKh(T m))1/m ∈ ̂OK [[T ]][1/T ], which is well defined
because m is prime to p. Note that Q(T ) is overconvergent, meaning that it converges
on some annulus bounded by the p-adic unit circle.

Proposition 2.3. — There exists u ∈ Ã†, um = v.

Proof. — We first construct u such that φs(u) = Q(u). Just as the proof as in 2.2, the
map x 7→ φ−1

s (Q(x)) is a contracting map on the set of elements of Ã lifting u, so that
u = limm−→+∞ φ−m

s (Q◦m([u])) and is unique.
Therefore, there exists u ∈ Ã such that φs(u) = Q(u). Since u ∈ Ẽ+, we can write

u = [u] + πKz1 ∈ Ã+ + πKÃ. Let r be such that πK

[u]d ∈ Ã†,r and let f = (p−1)e
p

vE(x). Let
us write Q(T ) = T s(1 + πK

T s g(T ))1/m, with g(T ) ∈ OK [[T ]].
Now assume that there exists some k ≥ 1 and r′ > 0 such that u ∈ Ã†,r′ + πk

KÃ. We
can thus write u = uk + πk

Kzk, where uk ∈ Ã†,r′ and zk ∈ Ã. We have

Q(u) = Q(ukπk
Kzk) = (ukπk

Kzk)s(1 + πK

(ukπk
Kzk)s

g(ukπk
Kzk))1/m.

Using the fact that u
[u] is a unit in Ã†,r′+f +πk

KÃ, we obtain that Q(u) ∈ Ã†,r′′ +πk+1
K Ã,

where r′′ = max(s× r′, r′ + f).
Since φ−1

s (Q(u)) = u, this implies that u ∈ Ã†,r′′/s + πk+1
K Ã.

By successive approximations, we have u ∈ Ã†.
Finally, we compute φs(um) = φs(u)m = Q(u)m = P (um) by construction of Q, so

that φs(um) = P (um). Since um lifts um = v, we have um = v by unicity in proposition
2.2.

Recall that since u ∈ Ã†, there exists some r > 0 such that u ∈ Ã†,r and there exists
n(r) ≥ 0 such that, for all n ≥ n(r), the element un := θ ◦ φ−1

s (u) is well defined and
belongs to OCp . Actually, since um = v, we have that um

n = vn, and in particular we
know that vK(un)−→0.

Lemma 2.4. — There exists a constant c > 0, independent of n, such that for any
n ≥ n(r) and for any g ∈ GKn and any i ≥ 1, we have

vK(g(un+i)− un+i) ≥ c.

Proof. — Let n ≥ n(r). We have um
n+i = vn+i, so that vK(g(un+i)m−um

n+i) = vK(g(vn+i−
vn+i). This means that

vK(g(vn+i)− vn+i) = vK(g(un+i)− un+i) + (m− 1)vK(un+i)
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since m is prime to p.
Since m is fixed and vK(un)−→0, it suffices to prove that there exists c > 0 independent

on n such that vK(g(vn+i)− vn+i) ≥ c for all g ∈ GKn .
Since P (T ) = T s mod mK , and since P ◦j(vn+i) = vn, we already know that for all

n ≥ 0 and for all g ∈ GKn , we have vK(g(vn+i) − vn+i) ≥ 1, so that vK(g(vn+i

vn+i
− 1) ≥

1 − vK(vn+i) ≥ 1 − vK(vn). The statement follows from the fact that vK(vn)−→0 when
n−→+∞.

Recall that d = pkm, where d is such that vKn(vn) = d for n ≫ 0. Recall also that
s is a power of p, and let j ≥ 0 be such that sj ≥ pk > sj−1. Let f ≥ 0 be such that
p−fsj = pk. In particular, we have vKn(upf

n+i) = pfs−jvKn(un) = 1
mpk vKn(vn) = d

d
= 1.

We let E∞ = ⋃
n≥0 K(un), and F = Qunr

p ∩ E∞ be the maximal unramified extension
of Qp inside E∞. Finally, we let F (m) denote the unramified extension of F generated by
the elements [x1/m], x ∈ kF .

For n ≥ n0, let πn denote a uniformizer of OKn . Since for all n ≥ n0 the extensions
Kn+1/Kn are totally ramified, the minimal polynomial of πn+1 over Kn is an Eisenstein
polynomial, and we choose the πn so that NKn+1/Kn(πn+1) = πn for all n ≥ n0.

Lemma 2.5. — For any n ≥ n(r), we can write πn = [h] · upf

n+j(1 + x), with x ∈ OKn+j

and h ∈ kF (m).

Proof. — Note that vKn(πm
n ) = vKn(vpf

n+j) and that both elements belong to OKn+j
, so

that we can write
πm

n

vpf

n+j

= [h0] + πn+j(· · · ),

with h0 ∈ kF . Taking the m-th root, this implies that there exists h1 ∈ kF (m) such that
πn

upf

n+j

= [h1](1 + πn+j(· · · )),

where the coefficients belong to OKn+j
and h1 ∈ kF (m) .

Theorem 2.6. — The extension K∞/K is strictly APF.

Proof. — In order to prove the theorem, it suffices by [Win83, Prop. 1.2.3] to prove
that the extension F (m) ·K∞/F (m) ·Kn0 is strictly APF.

To prove that F (m) · K∞/F (m) · K is strictly APF, it suffices to prove that the vK

valuations of the non constant and non leading coefficients of the Eisenstein polynomial
of πn+1 over F (m) ·Kn, for n ≥ n0, are bounded below by a positive constant independent
of n, so that F (m) ·K∞/F (m) ·Kn0 satisfies the criterion of the main theorem (Thm 1.1)
of [CDL16]. Let n ≥ n0.
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By the lemma 2.5 and by induction, we can write

πn+1 = upf

n+j+1([h0] + upf

n+1+2j([h1] + · · · ))

where the hi belong to kF (m) .
Let g ∈ GF (m)·Kn

. We have

g(πn+1)− πn+1 = g(upf

n+j+1)([h0])− upf

n+j+1([h0]) + · · ·

where all the terms on the RHS have vK-valuation at least equal to c > 0 by lemma 2.4,
so that vK(g(πn+1)− πn+1) ≥ c > 0.

The conjugates of πn+1 over Kn are the elements g(πn+1), for g ∈ GKn , and satisfy the
conditions vK(g(πn+1)− πn+1) ≥ c > 0, which ensures that the vK valuations of the non
constant and non leading coefficients of the Eisenstein polynomial of πn+1 over F (m) ·Kn

are bounded below by a positive constant independent of n, which is what we wanted.

3. Non archimedean dynamical systems

Let K be a finite extension of Qp, with ring of integers OK , uniformizer π, maximal
ideal mK and residual field k of cardinal q = ph. We let K0 = K ∩Qnr

p be the maximal
unramified extension of Qp inside K and we let OK0 denote its ring of integers. We let Cp

denote the p-adic completion of Qp. Let P, U ∈ T ·OK [[T ]] such that P ◦U = U ◦P , with
P ′(0) ∈ mK and U ′(0) ∈ O×

K . In this note, we assume that the situation is “interesting”,
namely that P (T ) ̸= 0 mod mK and that U ′(0) is not a root of unity.

Proposition 3.1. — There exists a power series H(T ) ∈ T · k[[T ]] and an integer d ≥ 1
such that H ′(0) ∈ k× and P (T ) = H(T pd) mod mK.

Proof. — This is theorem 6.3 and corollary 6.2.1 of [Lub94].

Near the end of his paper [Lub94], Lubin remarked that “Experimental evidence seems
to suggest that for an invertible series to commute with a noninvertible series, there must
be a formal group somehow in the background.” This has led some authors to prove
some cases (see for instance [Li96], [Li97a], [Li97b], [Sar05], [Sar10], [SS13], [Ber17],
[Spe18]) of this “conjecture” of Lubin. The various results obtained in this direction can
be thought of as cases of the following conjecture:

Conjecture 3.2. — Let P, U ∈ T · OK [[T ]] such that P ◦ U = U ◦ P , with P ′(0) ∈ mK

and U ′(0) ∈ O×
K not a root of unity, and such that P (T ) ̸= 0 mod mK. Then there exists

a finite extension E of K, a formal group S defined over OE, endomorphisms of this
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formal group PS and US, and a power series h(T ) ∈ T · OE[[T ]] such that P ◦ h = h ◦ PS

and U ◦ h = h ◦ US.

Remark 3.3. — While in many instances of the cases where this conjecture is proven,
the formal group is actually defined over OK [Sar05, Ber17, Spe18], one can produce
instances where the formal group is defined over the ring of integers of a finite unramified
extension of OK [Ber19, §3]. The author does not know of a case where the extension
E the formal group is defined over is ramified over K so it might be possible that the
assumption that E is an unramified extension of K can be enforced.

4. Endomorphisms of a formal Lubin–Tate group

Let P, U ∈ T · OK [[T ]] such that P ◦ U = U ◦ P , with P ′(0) ∈ mK and U ′(0) ∈ O×
K not

a root of unity, and such that P (T ) ̸= 0 mod mK . In this section, we assume that there
exists a finite extension E of K, a Lubin–Tate formal group S defined over OL with E/L

finite, a power series h ∈ T · OE[[T ]] and an endomorphism PS of S such that h is an
isogeny from PS to P .

Lemma 4.1. — There exists V ∈ T · OK [[T ]], commuting with P , and an integer d ≥ 1
such that Q(T ) = T pd mod mK where Q = V ◦ P . Moreover, there exists QS endomor-
phism of S such that h is an isogeny from QS to Q.

Proof. — First note that for any VS invertible series commuting with PS, there corre-
sponds an invertible power series V commuting with P . Since S is a formal Lubin–Tate
group over OL, PS corresponds to the multiplication by an element α ∈ mL. Let [ϖL]
denote the multiplication by ϖL on S, a uniformizer of OL such that [ϖL](T ) = T Card(kL)

mod mL (we can find such a uniformizer since S is a Lubin–Tate formal group defined
over OL). Since α ∈ mL, there exists c ∈ O×

L and an integer d ≥ 1 such that α = c ·ϖd
L.

In particular, we have wideg([α]) = wideg(P) = wideg([ϖd
L]) = Card(kL)d.

We let V denote the power series commuting with P such that h ◦ [c−1] = V ◦ h. We
then have that h ◦ [c−1] ◦ [α] = V ◦ P ◦ h, and that h ◦ [c−1] ◦ [α] = h ◦ [ϖd

L], so that h is
an isogeny from [ϖd

L] to Q := V ◦ P . Reducing modulo mL, we get that

h(T )Card(kL)d = h(T Card(kL)d) = h ◦Q mod mL

so that Q = T Card(kL)d = T wideg(P) mod mL.

Let (un)n∈N be a sequence of elements of Qp such that u0 ̸= 0 is a root of QS, and
QS(un+1) = un. In Lubin’s terminology (see the definition on page 329 of [Lub94]), the
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sequence (vn) is called a QS-consistent sequence. Let En = E(un) and let E∞ = ⋃
n En.

Then for all n ≥ 1, the extensions En/E are Galois.
Let Q as in lemma 4.1 and let vn := h(un).

Lemma 4.2. — The sequence (vn)n∈N is Q-consistent, and the extensions E(vn)/E are
Galois for all n ≥ 1.

Proof. — We know that En/E are Galois abelian extensions. Since E ⊂ E(vn) ⊂ En,
this implies that the extensions E(vn)/E are Galois. The fact that the sequence (vn)n∈N

is Q-consistent follows directly from the fact that h is an isogeny from QS to Q.

5. Embeddings into rings of periods

Let L := Kn0 with n0 as in proposition 2.1. Since P (T ) = T pd mod mK , there exists
m ≥ 1 such that P ◦m acts trivially on kL, so that the degree r of Q is a power of the
cardinal of kL. From now on we fix such an m. We let w0 = vn0 and (wn) be a sequence
extracted from (vn) such that Q(wn+1) = wn. For n ≥ 1, we let Ln = L(wn). Let
L′ = Qunr

p ∩ L be the maximal unramified extension of Qp inside L, and let Ã+ :=
OL ⊗OL′ W (Ẽ+).

Since K∞/L is strictly APF, there exists by [Win83, 4.2.2.1] a constant c =
c(K∞/L) > 0 such that for all F ⊂ F ′ finite subextensions of K∞/L, and for all x ∈ OF ′ ,
we have

vL(NF ′/F (x)
x[F ′:F ] − 1) ≥ c.

We can always assume that c ≤ vL(p)/(p − 1) and we do so in what follows. By §2.1
and §4.2 of [Win83], there is a canonical GL-equivariant embedding ιL : AL(K∞) ↪→ Ẽ+,
where AL(K∞) is the ring of integers of XL(K∞), the field of norms of K∞/L. We can
extend this embedding into a GL-equivariant embedding XL(K∞) ↪→ Ẽ, and we note EK

its image.
It will also be convenient to have the following interpretation for Ẽ+:

Ẽ+ = lim←−
x→xp

OCp = {(x(0), x(1), . . . ) ∈ ON
Cp

: (x(n+1))p = x(n)}.

To see that this definition coincides with the one given in §1, we refer to [BC09, Prop.
4.3.1].

Note that, even though EK depends on K∞ rather than on L, it is still sensitive to L:
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Proposition 5.1. — Let L′ be a finite extension of L contained in K∞. Let Lt (resp.
L′

t) be the maximal tamely ramified extension of K∞/L (resp. K∞/L′). Let EK′ denote
the image of XL′(K∞) in Ẽ by the embedding given in [Win83, §4.2].

Then as subfields of Ẽ, EK′ is a purely inseparable extension of EK of degree [L′
t : Lt].

In particular, if L′ = Lt then EK′ = EK.

Proof. — See [CD15, Prop. 4.14].

The sequence (wn) defines an element w ∈ Ẽ+.

Proposition 5.2. — There exists a unique w ∈ Ã+ lifting w such that Q(w) = φr(w).
Moreover, we have that θ ◦ φ−n

r (w) = wn.

Proof. — This is the same proof as for the proposition 2.2.

For all k ≥ 0, we let

Rk := {x ∈ Ã+, θ ◦ φ−n
d (x) ∈ OLn+k

for all n ≥ 1}.

Proposition 5.3. — For all k ≥ 0, there exists zk ∈ Rk such that Rk = OL[[zk]].

Proof. — Note that for all k ≥ 0, Rk is an OL-algebra, separated and complete for the
πL-aidc topology, where πL is a uniformizer of OL. If x ∈ Rk, then its image in Ẽ+

belongs to lim
x 7→xr

OLn+k
/ac

Ln+k
.

Note that the natural map Rk/πLRk → Ẽ+ is injective. To prove this, we need to
prove that πLÃ+∩Rk = πLRk. Let x ∈ Rk∩πLÃ+ and let y ∈ Ã+ be such that x = πLy.
Then since x ∈ Rk we have that θ ◦φ−n

r (x) ∈ OLn+k
and thus θ ◦φ−n

r (y) ∈ 1
πL
OLn+k

. But
since θ ◦φ−n

r maps Ã+ into OCp we get that θ ◦φ−n
r (y) ∈ Ln+k∩OCp = OLn+k

. Therefore
the natural map Rk/πLRk → Ẽ+ is injective.

We know by the theory of field of norms that lim
x 7→xr

OLn/ac
Ln
≃ kL[[v]] for some v ∈ Ẽ+,

so that the valuation induced by vL on Ẽ+ is discrete on R/πLR. Let u ∈ R/πLR be an
element of minimal valuation within

{x ∈ R/πLR, vL(x) > 0}.

Since the valuation on R/πLR is discrete, and since this set is nonempty because it
contains the image of the element w given by proposition 5.2, such an element u exists,
and we have R/πLR = kL[[u]], so that R = OL[[u]] for u ∈ R lifting u since R is separated
and complete for the πL-adic topology.

Proposition 5.4. — There exists k0 ≥ 0 such that, for all k ≥ k0, we can take zk+1 =
φ−1

r (zk) and we let z = zk0.
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Proof. — The proof of proposition 5.3 shows that Rk/πLRk injects into lim←−
x 7→xr

OLn+k
/ac

Ln+k
.

By [Win83, Prop. 4.2.1] lim←−
x 7→xr

OLn+k
/ac

Ln+k
is the image of ring of integers of the field of

norms of L∞/Lk inside Ẽ by the embedding ιL, and we will denote lim←−
x 7→xr

OLn+k
/ac

Ln+k
by

Yk. We normalize the valuation of Yk so that vYk
(Yk) = Z. By proposition 5.1, we get

that for k ≥ n0, we have Yk+1 = φ−1
r (Yk) and thus the valuation vYk+1 is equal to rvYk

.
Now let v(k) := vYk

(zk) for k ≥ 0. We know by definition of the sets Rk that φ−1
r (zk) ∈

Rk+1 for all k ≥ 1 and thus vYk+1(zk+1) ≤ rvYk
(φ−1

r (zk)) by construction of the zk. This
implies that the sequence (v(k))k≥n0 is nonincreasing, and since it is bounded below
by 1, this implies that there exists some k0 ≥ n0 such that, for all k ≥ k0, we have
v(k) = v(k0) > 0. Thus for all k ≥ k0 we have vYk+1(zk+1) = vYk

(zk) and by construction
of the zk this implies that we can take zk+1 = φ−1

r (zk) which concludes the proof.

We now let k0 be as in proposition 5.4. Note that in particular, for all k ≥ k0, we have
Rk = φk0−k

r (OE[[w]]) = OE[[φk0−k
r (w)]].

Lemma 5.5. — The ring OL[[z]] is stable by φr. Moreover, there exists a ∈ mL such that
if z′ = z − a then there exists S(T ) ∈ T · OL[[T ]] such that S(z′) = φr(z′) and S(T ) ≡ T r

mod mL.

Proof. — The set {
x ∈ Ã+, θ ◦ φ−n

r (x) ∈ OLn+k0
for all n ≥ 1

}
is clearly stable by φr and equal to OL[[z]] by proposition 5.4, so that φr(z) ∈ OL[[z]] and
so there exists R ∈ OL[[T ]] such that R(z) = φr(z). In particular, we have R(z) = zr and
so R(T ) ≡ T r mod mL.

Now let R̃(T ) = R(T + a) with a ∈ mL and let z′ = z − a. Then φr(z′) = φr(z − a) =
R(z) − a = R̃(z′) − a and we let S(T ) = R̃(T ) − a so that φr(z′) = S(z′). For S(0)
to be 0, it suffices to find a ∈ mL such that R(a) = a. Such an a exists since we have
R(T ) ≡ T r mod mL so that the Newton polygon of R(T ) − T starts with a segment of
length 1 and of slope −vp(R(0)).

Now, we have S(z′) = φr(z′) and so S(z′) = z′r, so that S(T ) ≡ T r mod mL.

Lemma 5.5 shows that one can choose z ∈
{
x ∈ Ã+, θ ◦ φ−n

r (x) ∈ OLn+k0
for all n ≥ 1

}
such that φr(z) = S(z) with S(T ) ∈ T · OL[[T ]], and we will assume in what follows that
such a choice has been made.
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Lemma 5.6. — Assume that there exists m0 ≥ 0 such that for all m ≥ m0, the extension
Lm/Lm0 is Galois. Then the ring OL[[z]] is stable under the action of Gal(K∞/Lm0), and
if g ∈ Gal(K∞/Lm0), there exists a power series Hg(T ) ∈ OL[[T ]] such that g(z) = Hg(z).

Proof. — Let f0 = max(m0, k0). Since for all m ≥ m0, Lm/Lm0 is Galois, the set{
x ∈ Ã+, θ ◦ φ−n

r (x) ∈ OLn+f0
for all n ≥ 1

}
is stable under the action of Gal(K∞/Lm0), and by proposition 5.4, this set is equal to
OL[[φk0−f0

r (z)]]. In particular, if g ∈ Gal(K∞/Lm0), then g(φk0−f0
r (z)) ∈ OL[[φk0−f0

r (z)]]
and so there exists Hg(T ) ∈ OL[[T ]] such that Hg(φk0−f0

r (z)) = g(φk0−f0
r (z)), and thus

Hg(z) = g(z).

6. p-adic Hodge theory

Let us assume that there exists m0 ≥ 0 such that for all m ≥ m0, the extension
Lm/Lm0 is Galois. Lemma 5.6 shows that in this case we are in the exact same spot
as the situation after lemma 5.15 of [Poy22]. In particular, the exact same techniques
apply.

We keep the notations from §4 and we let κ : Gal(K∞/Lm0)−→O×
L denote the character

g 7→ H ′
g(0).

Proposition 6.1. — The character κ : Gal(K∞/Lm0)−→O×
L is injective and crystalline

with nonnegative weights.

Proof. — This is the same as corollary 5.17 and proposition 5.19 of [Poy22].

For λ a uniformizer of Lm0 , let (Lm0)λ be the extension of Lm0 attached to λ by local
class field theory. This extension is generated by the torsion points of a Lubin–Tate formal
group defined over Lm0 and attached to λ, and we write χ

Lm0
λ : Gal((Lm0)λ/Lm0)→ O×

Lm0

the corresponding Lubin–Tate character. Since K∞/Lm0 is abelian and totally ramified,
there exists λ a uniformizer of OLm0

such that K∞ ⊂ (Lm0)λ.

Proposition 6.2. — There exists F ⊂ L and r ≥ 1 such that κ = NLm0 /F (χLm0
λ )r.

Proof. — Theorem 5.27 of [Poy22] shows that there exists F ⊂ Lm0 and r ≥ 1 such that
κ = NLm0 /F (χLm0

λ )r. The fact that κ takes its values in O×
L shows that F is actually a

subfield of L.

Recall that relative Lubin–Tate groups are a generalization of usual formal Lubin–Tate
group given by de Shalit in [dS85].
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Theorem 6.3. — There exists F ⊂ L and r ≥ 1 such that κ = NL/F (χL
λ)r. Moreover,

there exists a relative Lubin–Tate group S, relative to the extension F unr ∩ L of F , such
that if LS

∞ is the extension of L generated by the torsion points of S, then L∞ ⊂ LS
∞ and

LS
∞/L∞ is a finite extension.

Proof. — This is the same as [Poy22, Thm. 5.28] using proposition 6.2 instead of theo-
rem 5.27 of ibid.

7. Isogenies

In the setting of theorem 6.3, let α be an element of F unr ∩ L such that LS
∞ is the

field cut out by < α > of F ab by local class field theory, so that the relative Lubin–Tate
group S is attached to α. Up to replacing L by a finite extension, we can assume that
LS

∞ = L∞ and we do so in what follows. We let u0 = 0 and let (un)n∈N be a nontrivial
compatible sequence of roots of iterates of [α], the endomorphism of S corresponding to
the multiplication by α, so that [α](un+1) = un with u1 ̸= 0. We let q denote the cardinal
of the residue field of F unr ∩ L so that wideg([α]) = q. Let u = (u0, . . .) ∈ Ẽ+. By §9.2
of [Col02], there exists u ∈ Ã+ whose image in Ẽ+ is u and such that φq(u) = [α](u),
g(w) = [χα(g)](u) for g ∈ GL.

Recall that Cais and Davis have defined a “canonical ring” attached to L∞/L, denoted
by A+

L∞/L which is a subring of Ã+ and is defined via the tower of elementary extensions
attached to L∞/L by ramification theory. The following lemma shows that this canonical
ring is related to the ring OL[[u]] for the extension L∞/L:

Lemma 7.1. — There exists k ≥ 0 such that A+
L∞/L = φ−k

q (OL[[u]]).

Proof. — See [Poy22, Lemm. 8.1]. Be mindful that here L and u play respectively the
role of E and w in ibid.

Recall that (wn)n∈N is a Q-consistent sequence, where Q commutes with P and is such
that Q(T ) = T s mod mL, and that w ∈ Ã+ is such that θ ◦ φ−n

r (w) = wn.

Proposition 7.2. — There exists i ≥ 0 such that φi
r(w) ∈ A+

L∞/L.

Proof. — The proof is exactly the same as in [Poy22, Prop. 8.2].

Proposition 7.3. — There exists d ≥ 1 such that there is an isogeny from [αd] to Q.

Proof. — Lemma 7.1 and proposition 7.2 show that there exist i ≥ 0 and h(T ) ∈ OL[[T ]]
such that w = h(φ−i

r (u)). Let d be such that φr = φ◦d
q and let ũ = φ−i

r (u), so that w =
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h(ũ). For g ∈ GL, we have φr(w) = Q(w) so that Q(w) = φr(w) = φr(h((̃u)) = h(φr(ũ))
and thus Q ◦ h(ũ) = h ◦ [αd](ũ) which means that Q ◦ h = h ◦ [αd].

Theorem 7.4. — Let (P, U) be a couple of power series in T ·OK [[T ]] such that P ◦U =
U ◦ P , with P ′(0) ∈ mK and U ′(0) ∈ O×

K, and we assume that P (T ) ̸= 0 mod mK and
that U ′(0) is not a root of unity. Then there exists a finite extension E of K, a Lubin–
Tate formal group S defined over OL, where E/L is a finite extension, endomorphisms
of this formal group PS and US over OE, and a power series h(T ) ∈ T · OE[[T ]] such that
P ◦h = h ◦PS and U ◦h = h ◦US if and only if the following two conditions are satisfied:

1. there exists V ∈ T · OK [[T ]], commuting with P , and an integer d ≥ 1 such that
Q(T ) = T pd mod mK where Q = V ◦ P ;

2. there exists a finite extension E of K and a sequence (αn)n∈N where α0 ̸= 0 is a
root of Q and Q(αn+1) = αn such that for all n ≥ 1, the extension E(αn)/E is
Galois.

Proof. — Lemmas 4.1 and 4.2 of §2 imply that if such a Lubin–Tate formal group exist
then the two conditions are satisfied.

If those two conditions are satisfied, then proposition 7.3 shows that there exist a finite
extension E of K, a subfield F of E, a relative Lubin–Tate group S, relative to the
extension F unr∩E of F , and an endomorphism QS of S such that there exists an isogeny
from QS to Q. Thus there exists an isogeny from an endomorphism PS of S to P . In
order to conclude, it suffices to notice that a relative Lubin–Tate formal group S, relative
to an extension F unr∩E of F is actually isomorphic over F unr∩E to a Lubin–Tate formal
group S ′ defined over F .

8. A particular case of Lubin’s conjecture

We now apply the results from the previous sections to the particular case where
P (T ) = T p mod mK . Let P, U ∈ T · OK [[T ]] such that P ◦ U = U ◦ P , with P (T ) = T p

mod mK and U ′(0) ∈ O×
K not a root of unity. We consider as in §3 a P -consistent

sequence (vn) and we let Kn = K(vn) for n ≥ 0. We let n0 be as in proposition 2.1.

Proposition 8.1. — There exists m0 ≥ 0 such that for all m ≥ m0, the extension
Km/Km0 is Galois.

Proof. — By [Lub94, Prop. 3.2], the roots of the iterates of P are exactly the fixed points
of the iterates of U . Up to replacing U by some power of U , we can assume that U ′(0) = 1
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mod mK and that there exists n ≥ n0 such that U(vn) = vn but U(vn+1) ̸= vn+1 (since
U(T )− T admits only a finite number of roots in the unit disk).

Since U(vn) = vn and U commutes with P , this implies that U(vn+1) is also a root of
P (T ) − vn. The discussion on page 333 of [Lub94] shows that the set {U◦k(vn+1)}k∈N

has cardinality a power of p, and is not of cardinal 1 since U(vn+1) ̸= vn+1 by assumption.
Since P (T )− vn has exactly p roots, this implies that the set {U(vn+1)} has cardinality
p, and thus all the roots of P (T )− vn are contained in Kn+1, so that Kn+1/Kn is Galois.

Let m > n. The extension Km/Kn is generated by all the roots of P ◦(m−n)(T )− vn =
P ◦(m−n)(T )− U(vn). Since U swaps all the roots of P (T )− vn, it is easy to see that the
U -orbit {U◦k(vm)}k≥0 contains all the roots of P ◦(m−n)(T )−vn, so that Km/Kn is Galois.
This proves the proposition.

We are now in the conditions of our theorem 7.4, which yields the following:

Corollary 8.2. — Lubin’s conjecture is true for (P, U).
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