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Abstract. — In this paper we explain how to attach to a family of p-adic representations
of a product of Galois groups an overconvergent family of multivariable (φ, Γ)-modules,
generalizing results from Pal-Zabradi and Carter-Kedlaya-Zabradi, using Colmez-Sen-Tate
descent. We also define rings of multivariable crystalline and semistable periods, and explain
how to recover this multivariable p-adic theory attached to a family of representations from
its multivariable (φ, Γ)-module. We also explain how our framework allows us to recover the
main results of Brinon-Chiarellotto-Mazzari on multivariable p-adic Galois representations.
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Introduction

Let p be a prime number and let K be a finite extension of Qp. Let GK be the absolute
Galois group of K. The study of p-adic representations of GK , that is finite dimensional
Qp-vector spaces, endowed with a continuous action of GK , and more generally of families
of p-adic representations of GK , classicaly relies on the rings of periods of p-adic Hodge
theory [Fon94] and on (φ,Γ)-modules [Fon90].

Recently, interest has risen around the study of p-adic representations of products of
Galois groups of p-adic fields, initiated by Zabradi [Záb18] and followed up by Zabradi
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and other authors [PZ21, CKZ21, BCM24]. Products of Galois groups naturally ap-
pear in the approach to geometric Langlands developed for GL2 by Drinfeld [Dri80] and
extended to GLn by L. Lafforgue [Laf97] and to other reductive groups by V. Lafforgue
[Laf14, Laf18], and the development of a multivariable p-adic Hodge theory appears to
be a necessary step in order to understand the p-adic representations of those products
of Galois groups.

In the work of Scholze and Weistein [Wei17, SW20], a product of Galois groups
GK1×· · ·×GKδ

of δ p-adic fields, with δ ∈ N, can be understood as the fundamental group
of a diamond SpdK1 × · · · × SpdKδ. It then makes sense to study p-adic representations
for this fundamental group, viewed as coefficients for the diamond SpdK1×· · ·×SpdKδ.

In this article, we develop an analogue of the framework of classical p-adic Hodge
theory and (φ,Γ)-modules in the multivariable setting, and prove various results which
are analogue to the classical ones, following and expanding upon the work of Carter,
Kedlaya, Pal and Zabradi [Záb18, PZ21, CKZ21] and of Brinon, Chiarellotto and
Mazzari [BCM24].

In what follows, ∆ is a finite set of cardinality δ, and for each α ∈ ∆, Kα is a finite
extension of Qp. We also let GK,∆ := ∏

α∈∆ GKα .
In the classical setting, that is when δ = 1, Fontaine has constructed [Fon90] an

equivalence of categories V 7→ D(V ) between the category of p-adic representations of
GK and the category of étale (φ,ΓK)-modules, which are finite dimensional vector spaces
over a local field BK of dimension 2, endowed with commuting semilinear actions of a
Frobenius φ and of the Galois group ΓK of the cyclotomic extension K∞ of K. The
étaleness condition only depends on the φ-action.

In order to study p-adic representations of GK , Fontaine has moreover introduced (see
[Fon94]) rings of p-adic periods Bcrys,Bst and BdR, which are topological Qp-algebras
endowed with an action of GK and with additional structures, such that if B is any of
those rings and if V is a p-adic representation of GK , then DB(V ) := (B ⊗Qp V )GK is a
BGK -module that inherits those additional structures and provides interesting invariants
attached to V . A p-adic representation V is said to be admissible if V ⊗Qp B ≃ Bd as
GK-modules. The case where B = Cp had been previously studied by Tate [Tat67] and
Sen [Sen80].

In [Záb18], Zabradi has constructed the analogue of Fontaine’s (φ,Γ)-modules for the
multivariable case. As in the classical setting, p-adic representations of GK are classified by
étale (φ∆,ΓK,∆)-modules over some ring E∆, where the ring E∆ is equipped with δ distinct
Frobenii and ΓK,∆ is the product of the Galois groups ΓKα , and (φ∆,ΓK,∆)-modules are
defined as projective modules over E∆, endowed with commuting semilinear actions of
ΓK,∆ and of each partial Frobenius. In contrast with what happens in the classical setting,
the étaleness condition also involves the Galois action in the multivariable setting.

In [BCM24], Brinon, Chiarellotto and Mazzari have defined BdR,∆, an analogue of the
ring Cp and of the ring of periods BdR, which are the first step to constructing analogues
of all the rings of periods of classical p-adic Hodge theory.
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One key result in the classical setting is the overconvergence of p-adic representations,
proven in [CC98] by Cherbonnier and Colmez, which means that the (φ,Γ)-modules of
Fontaine over BK are the extensions of scalars to BK of (φ,Γ)-modules defined over a
smaller ring B†

K which has an analytic interpretation as bounded Laurent series defined
over an annulus whose outer boundary is the unit circle. This result of overconvergence
is crucial to recover the p-adic Hodge theory attached to a representation V from its
(φ,Γ)-module [Ber02], using the Robba ring B†

rig,K as a bridge.
The theory can be extended to p-adic families: let S be a Qp-Banach algebra with

maximal spectrum X and such that for x ∈ X , S/mx is a finite extension of Qp. A family
of representations of GK is a free S-module of finite rank endowed with a continuous
S-linear action of GK .

The theorem of overconvergence of Cherbonnier and Colmez has been extended to
families [BC08] thanks to the use of so-called “Colmez-Tate-Sen” conditions, and one
can once again relate the p-adic Hodge theory attached to a family of representations with
its overconvergent (φ,Γ)-module [Bel15]. The functor V 7→ D†(V ) defined by Berger
and Colmez is however no longer an equivalence of categories.

The constructions of [Záb18, PZ21, CKZ21, BCM24] suggest that the right point
of view in order to define analogues of the classical rings appearing in p-adic Hodge theory
for products of Galois groups is to take the completed tensor product (which sometimes
means that we have to make a choice on what topology we put on our rings) of δ copies
of the classical rings of p-adic Hodge theory, endowed with natural actions of GK,∆ and
of partial Frobenii φα (when they exist on the classical rings) each corresponding to the
action of the Frobenius on one copy of those rings.

Our first step is to construct various rings of periods relying on this formalism of
taking completed tensor products of δ copies of classical rings of periods, some of which
were already defined this way in [Záb18, PZ21, CKZ21, BCM24], and prove that
some of them are actually isomorphic to some rings defined in a different fashion in one
of [Záb18, PZ21, CKZ21, BCM24]. In particular, we define a ring BK,∆ which is
isomorphic to the ring E∆ of [Záb18, CKZ21], and an overconvergent subring B†

K,∆

isomorphic to the ring E†
∆ appearing in [PZ21, CKZ21]. This allows us to define the

same multivariable (φ,Γ)-modules over either of the rings Ã†
K,∆, ÃK,∆ A†

K,∆ or AK,∆,
which are defined in §3, and to apply the results from those papers to ours rings. Just as in
the classical case, the ring BK,∆ does not have a nice analytic interpretation but the ring
B†
K,∆ does: it corresponds to bounded Laurent series over a δ-dimensional polyannulus

whose outer boundary is the unit polycircle.
One consequence of this point of view when defining an analogue of some of the rings

appearing in the classical setting is that the Colmez-Tate-Sen conditions can be ap-
plied “factor by factor” and we are thus able to recover the multivariable Sen theory of
[BCM24] over the ring C∆ := Cp⊗̂Qp · · · ⊗̂QpCp, and generalize it to families admitting
a Galois stable integral lattice. In what follows, n denotes a δ-uple of positive integers
(nα)α∈∆ and if L = (Lα)α∈∆ then Ln,∆ = Lα1(µpnα1 )⊗Qp · · · ⊗Qp Lαδ

(µpnαδ ).
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Theorem 0.1. — Let S be a Qp-Banach algebra, let T be an OS-representation of
dimension d of GK,∆, and let V = S ⊗OS

T . Let L = (L1, . . . , Lδ) be such that for all
i ∈ ∆, Li/Ki is Galois extension and such that GL,∆ acts trivially on T/12pδ. Then there
exists n(L) depending only on L such that for all n ≥ n(L), (S⊗̂C∆) ⊗S V contains a
unique sub-(S ⊗ Ln,∆)-module DL∆,n

Sen (V ), free of rank d, such that:

1. DL∆,n

Sen (V ) is fixed by HL,∆ and stable by GK,∆;
2. DL∆,n

Sen (V ) contains a basis over S⊗Ln,∆ which is c-fixed by ΓL,∆, for some c ∈ R>0
(in the sense of [BC08, Proposition 3.3.1]);

3. the natural map (S⊗̂C∆)⊗S⊗Ln,∆ DL∆,n

Sen (V )→(S⊗̂C∆)⊗S V is an isomorphism.

Moreover, we have S/mx ⊗S DL∆,n

Sen (V ) ≃ DL∆,n

Sen (Vx).
Additionally we explain how to use the notion locally analytic vectors to recover this

multivariable Sen theory, both for C∆ and for B+
dR,∆, following the ideas of [BC16].

The same approach of the Colmez-Tate-Sen axioms for completed tensor products
allows us to derive an overconvergence result for multivariable (φ,Γ)-modules, which
recovers the main results from [PZ21] and [CKZ21], and which once again also applies
to families of representations admitting a Galois stable integral lattice:
Theorem 0.2. — If V is an S-family of representations of GK,∆, free of dimension d,
admitting a Galois-stable integral lattice, and if s ≥ s(V ) (a set of integers depending
only on V ), then:

1. D†,s
K,∆(V ) is a projective S⊗̂QpB†,s

K,∆-module of rank d;
2. the map (S⊗̂QpB̃†,s

K,∆)⊗
S⊗̂Qp B†,s

K,∆
D†,s
K,∆(V )→(S⊗̂QpB̃†,s

K,∆)⊗S V is an isomorphism;

3. if x ∈ X , the map S/mx ⊗S D†,s
K,∆(V )→D†,s

K,∆(Vx) is an isomorphism.

We explained above that unfortunately and in contrast with the classical setting, the
notion of étaleness involves the ΓK,∆-action. Theorem 6.19 of [CKZ21] shows that this
condition can be relaxed by asking that the ΓK,∆-action is “bounded” but the authors are
only able to prove it for (φ∆,ΓK,∆)-modules over A†

K,∆ or AK,∆. The Colmez-Sen-Tate
conditions allow us to descend multivariable (φ,Γ)-modules over Ã†

K,∆ to multivariable
(φ,Γ)-modules over A†

K,∆ while preserving this boundness condition, and this fact allows
us to show that their result is also true for (φ,Γ)-modules with coefficients in these larger
rings.

We then prove that the ring B+
dR,∆ defined in [BCM24] can also be defined within our

framework (so that their ring is isomorphic to the completed tensor product of δ copies
of the classical B+

dR). This allows us to prove that a representation is “multivariable
de Rham” if and only if its restriction at each factor GKα is de Rham (this result was
also proved in [Ked23] using different methods), and thus to give a positive answer
to the following question of Brinon Chiarellotto and Mazzari: if V is a multivariable
representation such that its multivariable de Rham module DdR,∆ := (BdR,∆ ⊗Qp V )GK

if free of rank dimQp V over (BdR,∆)GK,∆ , is V admissible for BdR,∆ ?
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Finally, we give an analogue of the results of [Ber02] and [Bel15] for the classical
setting, defining multivariable crystalline and semistable representations, and explaining
how to recover the modules Dcrys,∆(V ) and Dst,∆(V ) attached to a (family of) p-adic
representation(s) V from the multivariable (φ,Γ)-module D†

rig,∆(V ) attached to V and
defined over the multivariable Robba ring B†

rig,K,∆:
Theorem 0.3. — Let V be a representation of GK over S admitting an invariant OS-
lattice. Then

Dcrys,∆(V ) ∼= (D†
rig,∆(V )[1/t∆])ΓK,∆ ,

and
Dst,∆(V ) ∼= (D†

log,∆(V )[1/t∆])ΓK,∆ .

Acknowledgments. — The authors would like to thank Olivier Brinon and Bruno
Chiarellotto for their interest and for several fruitful discussions on the content of the
article.

1. Non archimedean functional analysis

This section is devoted to some lemmas and propositions related to completed (pro-
jective) tensor products. As we will interchange the viewpoint of normed modules (as
in [BGR84]), topological vector spaces (as in [Sch02]), and adic rings (as in [Hub93]),
we firstly make sure that in our case the various notions of completed tensor product
coincide.
Remark 1.1. — Let V and W be Banach spaces over a nonarchimedean field K. Then
the completed tensor product of [Sch02] is the same as the completed tensor product of
[BGR84], as the projective tensor product can be defined using the tensor seminorm,
see [Sch02, p. 103].

Let now n ∈ N, and let R1, . . . , Rn be topological rings over Zp, where the topology
in Ri is defined by a principal ideal (ri), for ri ∈ Ri and i = 1, . . . , n. Suppose that Ri is
separated for the ri-adic topology, for i = 1, . . . , n. We can define a norm on Ri setting,
for ai ∈ Ri, r = 1, 2,

(1) ∥ai∥Ri
= 2−m,

where m is the biggest natural number such that ai ∈ (ri)m. It is clear that the (ri)-adic
topology and the topology defined by the norm (1) on Ri coincide. We assume that
p ∈ (ri), for i = 1, . . . , n. This implies that Ri is a normed module over Zp, as

∥pa∥Ri
≤ |p|Zp∥a∥Ri

,

for a ∈ Ri (if we normalize the norm on Zp setting |p|Zp= 1
2).

Proposition 1.2. — The topology induced by the tensor seminorm on R1⊗Zp . . .⊗ZpRn

coincides with the (r1, . . . , rn)-adic topology.
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Proof. — Suppose ∥a∥R1⊗Zp ···⊗ZpRn
≤ c, for c a nonzero rational number. Thus since the

tensor seminorm is discrete a can be written as a finite sum ∑
j∈J a

1
j ⊗Zp . . . ⊗Zp a

n
j , for

a1
j ∈ R1, . . . , anj ∈ Rn, such that j̄ ∈ J that satisfies∥∥∥a1

j

∥∥∥
R1
. . .

∥∥∥anj ∥∥∥
Rn
≤ c,

for every j ∈ J . But this clearly implies a ∈ (r1, . . . , rn)⌊max{0,−log2(c)⌋}. Conversely
suppose that a ∈ (r1, . . . , rn)m, for m ∈ N. Then a can be written as a = imb, for
i ∈ (r1, . . . , rn)m and thus it is clear that ∥a∥R1⊗Zp ...⊗ZpRn

≤ 2−m.

In particular the Proposition above implies that the completion of R1 ⊗Zp · · · ⊗Zp Rn

for the tensor seminorm coincides with its (r1, . . . , rn)-adic completion.

Proposition 1.3. — Let K be a finite extension of Qp. If U0→U1 and V0→V1 are
injective continuous maps of K-Fréchet spaces, then the induced map U0⊗̂KV0→U1⊗̂KV1
is injective.
Proof. — This follows from [Eme04, Proposition 1.1.26] (note that Fréchet spaces are
Hausdorff and complete locally convex topological vector spaces by definition, and they
are bornological by [Sch02, Proposition 8.2]).

In this article we will need to take group invariants of iterated completed tensor prod-
ucts. To do so we mainly rely on the following lemmas.
Lemma 1.4. — Let K be a finite extension of Qp. Let A = limi∈IAi and A′ = limj∈JA

′
j

be Fréchet spaces, where Ai and A′
j are Banach spaces over K for each i ∈ N and for

each j ∈ N. Suppose that there is a topological group G acting on A, that stabilizes each
Ai, and for which the diagram defining limi∈IAi is G-equivariant. Assume that the action
is continous and K-linear. Then

(A⊗̂KA′)G = AG⊗̂KA′.

Proof. — By [Eme04, Proposition 1.1.29] we have

A⊗̂KA′ ∼= limi∈I limj∈JAi⊗̂KA′
j.

Choosing a basis Bj of Aj for each j ∈ J we obtain an isomorphism

A′
j
∼=Bj

⊕̂
i′∈Ij

K

for each j ∈ J (this can be done by [Sch02, Proposition 10.1]). These isomorphisms
induce a G-equivariant isomorphism

A⊗̂KA′ ∼=B limi∈I limj∈J
⊕̂
Ai

using [BGR84], Proposition 2.1.7.8.. Thus we obtain

(A⊗̂KA′)G ∼=B (limi∈I limj∈J
⊕̂
Ai)G = limi∈I limj∈J

⊕̂
AG
i .

But this implies the claim.



MULTIVARIABLE p-ADIC HODGE THEORY FOR PRODUCTS OF GALOIS GROUPS 7

The lemma above implies the following corollary
Corollary 1.5. — With the hypotheses of Lemma 1.4, let n ∈ N, and let Ai =
limji∈Ji

Aji, with Aji Banach spaces over K, for ji ∈ Ji and i = 1, . . . , n. Let Gi be
a topological group acting K-linearly and continously on Ai, for i = 1, . . . , n. Suppose
moreover that for i = 1, . . . , n the diagram defining Ai = limji∈Ji

Aji is Gi-equivariant.
Then

(A1⊗̂K · · · ⊗̂KAn)G1×···×Gn ∼= AG1
1 ⊗̂K . . . ⊗̂KAGn

n .

Proof. — The claim follows using Lemma 1.4 inductively, as

AGi
i = limji∈Ji

AGi
ji ,

and AGi
ji is a closed subspace of Aji (so in particular it is a Banach space over K), which

implies that AGi
i is Fréchet over K.

Remark 1.6. — The claim of Corollary 1.4 holds also if Ai is a strict equivariant
union of Fréchet spaces over K (satisfying the hypotheses of Lemma 1.4), see [Van24,
Subsection 1.12.2]). In what follows we assume that the LF spaces we consider are of this
type, unless stated otherwise.

Let K be a finite extension of Qp, and let M be a normed module over K. We define
the unit ball of M as the submodule of elements of norm less or equal to 1. We denote it
by OM .
Lemma 1.7. — Let A be a Banach space over K and let OA be its unit ball. Let M be
a normed module over K, with unit ball OM . The the unit ball of A⊗̂KM is OA⊗̂OK

OM .
Proof. — We know that choosing a basis B of A, we have an isometric isomorphism
A ≃B

⊕̂
i∈IK. We remark that the unit ball of ⊕̂

i∈IK is ⊕̂
i∈IOK .

We have A⊗̂KM ∼=B
⊕̂

i∈IM , whose unit ball is ⊕̂
i∈IOM . But⊕̂

i∈I
OM ∼=B

⊕̂
i∈I
OK⊗̂OK

OM ,

by [BGR84, Proposition 2.1.7.8], and this gives us the claim.

Lemma 1.8. — Let A be a K-Banach space and let M be a normed module over K,
endowed with an isometric K-linear action of a topological group G. Then

(OA⊗̂OK
OM)G ∼= OA⊗̂OK

OG
M

Proof. — Since the action of G is isometric then it preserves the unit ball, so the claim
makes sense. Using the same strategy as in the proof of Lemma 1.4, it is easy to see that

(A⊗̂KM)G ∼= A⊗̂KMG,

but then taking the unit balls of these spaces we get the claim.

Arguing similarly as in the proof of Corollary 1.5 we obtain the following
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Corollary 1.9. — Let n ∈ N, and let Ai be a Banach space over K, for i = 1, . . . , n.
And let Gi be a topological group acting isometrically, K-linearly and continously on Ai,
for i = 1, . . . , n. Then

(OA1⊗̂K · · · ⊗̂KOAn)G1×···×Gn ∼= OG1
A1⊗̂K . . . ⊗̂KO

Gn
An
.

Let S be a Qp-Banach algebra. A family of p-adic representations of GK,∆ is a free
S-module of finite type, endowed with a continuous linear action of GK,∆. We will assume
that our families admit a Galois-stable integral subring, i.e. that there exists a free OS-
module T such that V = S ⊗Zp T . As in the one-variable case, if S = E is a field, this
condition is always satisfied:
Lemma 1.10. — If V is an E-representation of dimension d, then there exists a free
OE-module T of dimension d, stable by GK,∆ such that V = E ⊗OE

T = T [1/p].
Proof. — This is the same proof as the one of [BC08, Lemm. 2.3.1], replacing GK by
GK,∆.

We also recall the following, which is a slight variant of an étale descent result and
proposition 2.2.1 of [BC08]:

Let now B be a Qp-Banach algebra, endowed with a continuous action of a finite group
G. Let B♮ denote the ring B endowed with trivial G-action. We assume that:

1. the BG-module B is free of finite rank and faithfully flat;
2. we have B ⊗BG B♮ ≃ ⊕g∈GB

♮ · eg (where egeh = δgheg and g(eh) = egh).
In this case, the following result holds.
Proposition 1.11. — If S is a Qp-Banach algebra, endowed with a trivial G-action,
and if M is a finitely generated free S⊗̂QpB-module, endowed with a semilinear action of
G, then:

1. MG is a finitely generated projective S⊗̂QpB
G-module;

2. the map (S⊗̂QpB)⊗S⊗̂QpB
G MG→M is an isomorphism.

Proof. — Let πG = 1
|G|

∑
g∈G g ∈ B[G]. If N is a B[G]-module, we get a decomposition

N = πGN ⊕ kerπG, and NG = πGN . In particular, M = MG ⊕ kerπG and thus MG is
a direct factor of the free module M and thus is projective. For item 2 the proof is the
same as in [BC08, Prop. 2.2.1].

2. Locally analytic vectors

We now recall some of the theory of locally and pro-analytic vectors, following the
presentation of Emerton in [Eme04] and of Berger in [Ber16].

Let G be a p-adic Lie group, and let W be a Qp-Banach representation of G. Let H be
an open subgroup of G such that there exist coordinates c1, · · · , cd : H → Zp giving rise
to an analytic bijection c : H → Zd

p. We say that w ∈ W is an H-analytic vector if there
exists a sequence {wk}k∈Nd such that wk → 0 in W (for the cofinite filter) and such that
g(w) = ∑

k∈Nd c(g)kwk for all g ∈ H. We let WH−an be the space of H-analytic vectors.
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This space injects into Can(H,W ), the space of all analytic functions f : H → W . Note
that Can(H,W ) is a Banach space equipped with its usual Banach norm, so that we can
endow WH−an with the induced norm, that we will denote by ||·||H . With this definition,
we have ||w||H= supk∈Nd ||wk|| and (WH−an, ||·||H) is a Banach space.

The space Can(H,W ) is endowed by an action of H ×H ×H, given by

((g1, g2, g3) · f)(g) = g1 · f(g−1
2 gg3)

and one can recover WH−an as the closed subspace of Can(H,W ) of its ∆1,2(H)-invariants,
where ∆1,2 : H → H × H × H denotes the map g 7→ (g, g, 1) (we refer the reader to
[Eme04, §3.3] for more details).

We say that a vector w of W is locally analytic if there exists an open subgroup H

as above such that w ∈ WH−an. Let W la be the space of such vectors, so that W la =⋃
HW

H−an, where H runs through a fundamental system of open subgroup neighborhoods
of G. The space W la is naturally endowed with the inductive limit topology, so that it is
an LB space.
Lemma 2.1. — If W is a ring such that ||xy||≤ ||x||·||y|| for x, y ∈ W , then

1. WH−an is a ring, and ||xy||H≤ ||x||H ·||y||H if x, y ∈ WH−an;
2. if w ∈ W× ∩W la, then 1/w ∈ W la. In particular, if W is a field, then W la is also

a field.
Proof. — See [BC16, Lemm. 2.5].

It is often useful to choose a specific fundamental system of open neighborhoods of G:
let G0 be a compact open subgroup of G which is p-valued and saturated (see [Sch11,
§26 and 27] for the definition and proof of existence), with coordinates c, and set Gn =
Gpn =

{
gp

n : g ∈ G0
}

for n ∈ N. We say that such a system (Gn)n∈N is a system of
coordinates for G.

The normalization is such that for w ∈ WGn−an we can write

g(w) =
∑

k∈Nd

c(g)kwk

for g ∈ Gn and {wk}k∈Nd with pn|k|wk → 0, and the Banach norm is given by

||w||Gn−an= sup
k
||pnkwk||.

It is easy to check if w ∈ WGn−an then ||w||Gm−an≤ ||w||Gm+1−an for m ≥ n and ||w||Gm−an=
||w|| for m≫ n (see [BC16, Lemm. 2.4]).

In the case where G = ΓK is the Galois group of the cyclotomic extension K∞/K,
the map logχcycl : ΓK → Z×

p induces isomorphisms Γn ≃ pnZp for n ≫ 0, where
Γn = Gal(K∞/K(µpn)), so that the groups Γn form such a fundamental system of open
neighborhoods of ΓK for n big enough.

Let W be a Fréchet space whose topology is defined by a sequence {pi}i≥1 of seminorms.
Let Wi be the Hausdorff completion of W at pi, so that W = lim←−

i≥1
Wi. The space W la can
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be defined, but as stated in [Ber16] and explained in §7 of [Poy22], this space is too
small in general for what we are interested in, and so we give the following definition,
following [Ber16, Def. 2.3]:
Definition 2.2. — If W = lim←−

i≥1
Wi is a Fréchet representation of G, then we say that a

vector w ∈ W is pro-analytic if its image πi(w) in Wi is locally analytic for all i. We let
W pa denote the set of all pro-analytic vectors of W .

We extend the definition of W la and W pa for LB and LF spaces respectively in the
obvious way.
Proposition 2.3. — Let G be a p-adic Lie group, let B be a Banach G-ring and let
W be a free B-module of finite rank, equipped with a compatible G-action. If the B-
module W has a basis w1, . . . , wd in which g 7→ Mat(g) is a globally analytic function
G→ GLd(B) ⊂Md(B), then

1. WH−an = ⊕d
j=1 B

H−an · wj if H is a subgroup of G;
2. W la = ⊕d

j=1 B
la · wj.

Let G be a p-adic Lie group, let B be a Fréchet G-ring and let W be a free B-module
of finite rank, equipped with a compatible G-action. If the B-module W has a basis
w1, . . . , wd in which g 7→ Mat(g) is a pro-analytic function G→ GLd(B) ⊂Md(B), then

W pa =
d⊕
j=1

Bpa · wj.

Proof. — The part for Banach ring is proven in [BC16, Prop. 2.3] and the one for
Fréchet rings is proven in [Ber16, Prop. 2.4].

For α ∈ ∆, let Gα be a p-adic Lie group. Let G = ∏
α∈∆ Gα. This is also a p-adic Lie

group, and if (Gα,n)α∈∆,n∈N are systems of coordinates of Gα, α ∈ ∆, it is easy to see that
the subgroups of G defined by (Gn = ∏

α∈∆ Gα,n)n∈N form a system of coordinates of G.
Lemma 2.4. — For α ∈ ∆, let Gα be a p-adic Lie group. Let G = ∏

α∈∆ Gα, and let
(Gα,n)α∈∆,n∈N be systems of coordinates of Gα, α ∈ ∆. We have

Can(Gn,Qp) ≃ ⊗̂
α∈∆
Qp
Can(Gα,n,Qp).

Proof. — Suppose that cα : Gα,n → Zdα
p are analytic bijections, for α ∈ ∆ and n ∈ N.

These induce analytic bijections c : Gn → Zdα1 +···+dαδ
p , for n ∈ N. We have then that

⊗̂α ∈∆
Qp
Can(Gα,n,Qp) ≃ ⊗̂

α∈∆
Qp
Can

(
Zdα
p ,Qp

)
≃ ⊗̂α∈∆

Qp
Qp⟨xα1 , . . . , xαdα

⟩
≃ Qp⟨xα1

1 , . . . , xα1
dα
, . . . , xα1 , . . . , x

αδ
dαδ
⟩

≃ Can
(
Zdα1 +···+dαδ
p ,Qp

)
≃ Can(Gn,Qp).
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Corollary 2.5. — For α ∈ ∆, let Gα be a p-adic Lie group, and let Bα be a Banach
(or LB, or Fréchet, or LF) space, endowed with a continuous Qp-linear action of Gα

(1).
Let G = ∏

α∈∆ Gα and let B = ⊗̂α∈∆
Qp

Bα, where the action of Gα on the tensor product is
trivial on Bβ if α ̸= β. We have

BGn−an = ⊗̂α∈∆
Qp

(Bα)Gα,n−an,

BG−la = ⊗̂α∈∆
Qp

(Bα)Gα−la,

and
BG−pa = ⊗̂α∈∆

Qp
(Bα)Gα−pa.

Proof. — By lemma 2.4, we have

Can(Gn,Qp) ≃ ⊗̂
α∈∆
Qp
Can(Gα,n,Qp).

Since BGn−an = (Can(Gn,Qp)⊗̂QpB)Gn where the action on the tensor product is diagonal
and the action on Can(Gn,Qp) is given by the ∆1,2-action, we obtain that

BGn−an ≃ (⊗̂α∈∆
Qp
Can(Gα,n,Qp))⊗̂QpB)Gn .

Using the fact that Gn = ∏
α∈∆ Gα,n and lemma 1.4 successively for each of the Gα,n, we

obtain that BGn−an = ⊗̂α∈∆
Qp

(Bα)Gα,n−an. The result for locally analytic vectors follows
by taking the inductive limit over n, and the result for pro-analytic vectors follows by
taking the projective limit over the Hausdorff completions defining the Fréchet (or LF)
topology.

3. Classical and multivariable rings of periods

3.1. Classical rings of periods and cyclotomic (φ,Γ)-modules. — Let p be a
prime and let k be a perfect field of characteristic p. Let F = W (k)[1/p] the field of
fractions of its ring of integers OF = W (k). This is a complete discrete valuation field
of characteristic 0 for the p-adic valuation vp, with residue field k. We let K be a finite
totally ramified extension of F . We fix K an algebraic closure of K and we let C denote
the p-adic completion of K. Let vp denote the p-adic valuation on C normalized so that
vp(p) = 1. We let F∞ = F (µp∞) be the cyclotomic extension of F . If L is a finite
extension of F , we let, for n ≥ 1, Ln = L(µpn) be the extension of L generated by the
pn-th roots of unity, and let L∞ = ⋃

n≥1 L(µpn) = L · F∞ be the cyclotomic extension of
L. We let HL = Gal(K/L∞) and ΓL = Gal(L∞/L). Recall that the cyclotomic character
χcycl : GL → Z×

p factors through ΓL and identifies it with an open subset of Z×
p .

Let C♭ = lim←−
x→xp

C denote the tilt of C and let O♭C = lim←−
x→xp

OC be the tilt of OC as defined

in [Sch12]. Recall that the ring O♭C is the ring of integers of C♭ for the valuation vE

(1)In the case of Fréchet or LF spaces, we also assume that the Bα satisfy the same assumptions as in
Lemma 1.4 and Remark 1.6.
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induced by v on C♭, and that C♭ is an algebraically closed complete field of characteristic p
endowed with a continuous action of GK coming from the one on C. We let Ã+ = W (O♭C)
(which is also classically denoted by Ainf).

Recall that there is a surjective GK-equivariant ring homomorphism

θ : Ã+→OC

given by θ(∑
k≥0 p

k[xk]) = ∑
k≥0 p

kx
(0)
k . The kernel of θ is principal, generated by ξ =

[p̃] − p where p̃ = (p, p1/p, . . .) ∈ O♭C . This map extends to a surjective GK-equivariant
ring homomorphism θ : W (O♭C)[1/p]→C. Recall that B+

dR is defined as the completion
for the ker(θ)-adic topology of W (O♭C)[1/p]. The power series defining log[ε] converges in
B+

dR to an element t that generates the maximal ideal ker(θ : B+
dR → C) of B+

dR, so that
BdR = B+

dR[1/t]. Note that the action of GF on t is given by g(t) = χcycl(g) · t.
We choose a sequence ε ∈ O♭C of compatible pn-th roots of unity (with ε(1) ̸= 1). Let

u = ε− 1 ∈ O♭C and let EF := k((u)) ⊂ C♭. Let E = Esep
F be the separable closure of EF

inside C♭. The field EF is left invariant by the action of HF so that we have a morphism
HF → Gal(E/EF ). By [Win83, Thm. 3.2.2], it is actually an isomorphism. We also
let EK = EHK . Note that ΓK acts on EK , and that the action of GF on u is given by
g(u) = (1 + u)χcycl(g) − 1.

Let Ã = W (C♭) and let u = [ε]− 1 ∈ Ã+. Let AF be the p-adic completion of OF ((u))
inside Ã. This is a discrete valuation ring with residue field EF . Since

φ(u) = (1 + u)p − 1 and g(u) = (1 + u)χcycl(g) − 1 if g ∈ GF ,

the ring AF and its field of fractions BF := AF [1/p] are both stable by φ and GF . We
let B̃ = Ã[1/p]. If L is a finite extension of F , we let B̃L = B̃HL and ÃL = ÃHL .

For r > 0, we define B̃†,r the subset of overconvergent elements of “radius” r of B̃, by

B̃†,r =
{
x =

∑
n≫−∞

pn[xn] such that lim
k→+∞

vE(xk) + pr

p− 1k = +∞
}

and we let B̃† = ⋃
r>0 B̃†,r be the subset of all overconvergent elements of B̃.

Let B†,r
F be the subset of BF given by

B†,r
F =

{∑
i∈Z

aiu
i, ai ∈ F such that the ai are bounded and lim

i→−∞
vp(ai) + i

pr

p− 1 = +∞
}
,

and note that B†,r
F = BF ∩ B̃†,r.

Let B†
F = ⋃

r>0 B†,r
F . By §2 of [Mat95], this is a Henselian field, and its residue ring

is still EF . Since B†
F is Henselian, if L is a finite extension of F , there exists a finite

unramified extension B†
L/B

†
F inside B̃, of degree f = [L∞ : F∞] and whose residue field

is EL. Therefore, there exists r(K) > 0 and elements x1, . . . , xf in B†,r(L)
L such that

B†,s
L = ⊕fi=1B

†,s
F · xi for all s ≥ r(L). We let BL be the p-adic completion of B†

L and we
let AL be its ring of integers for the p-adic valuation. One can show that BL is a subfield
of B̃ stable under the action of φ and ΓK (see for example [Col08, Prop. 6.1]). Let



MULTIVARIABLE p-ADIC HODGE THEORY FOR PRODUCTS OF GALOIS GROUPS 13

A be the p-adic completion of ⋃
L/F AL, taken over all the finite extensions L/Qp. Let

B = A[1/p]. Note that A is a complete discrete valuation ring whose field of fractions is
B and with residue field E. Once again, both A and B are stable by φ and GF . Moreover,
we have AHK = AK and BK = BHK , so that AK is a complete discrete valuation ring
with residue field EK and fraction field BK = AK [1/p]. If L is a finite extension of K,
then BL/BK is an unramified extension of degree [L∞ : K∞] and if L/K is Galois then
so is BL/BK , and we have the following isomorphisms: Gal(B̃L/B̃K) = Gal(BL/BK) =
Gal(EL/EK) = Gal(L∞/K∞) = HK/HL.

For r ≥ 0, we define a valuation V (·, r) on B̃+[ 1
[u] ] by setting

V (x, r) = inf
k∈Z

(k + p− 1
pr

vE(xk))

for x = ∑
k≫−∞ pk[xk]. If I is a closed subinterval of [0; +∞[, we let V (x, I) =

infr∈I V (x, r). We then define the ring B̃I as the completion of B̃+[1/[u]] for the valua-
tion V (·, I) if 0 ̸∈ I, and as the completion of B̃+ for V (·, I) if I = [0; r]. We will write
B̃†,r

rig for B̃[r,+∞[ and B̃+
rig for B̃[0,+∞[. We also define B̃†

rig = ⋃
r≥0 B̃†,r

rig. We also let Ã†,r
rig

be the ring of integers of B̃†,r
rig for the valuation V (·, r).

We define Ã†,r by

Ã†,r =

x =
∑
n≥0

pn[xn] ∈ Ã such that V (x, r) ≥ 0 and lim
k→+∞

vE(xk) + pr

p− 1k ≥ 0

 .

We let ρ(r) = p−1/r and we let Ã(0,ρ(r)] = Ã†,r[1/[u]]. We also let Ã†,r
K = (Ã†,r)HK =

ÃK ∩ Ã†,r and Ã(0,ρ(r)]
K = (Ã(0,ρ(r)])HK = ÃK ∩ Ã(0,ρ(r)]. We also define A†,r = A ∩ Ã†,r,

A†,r
K = A ∩ Ã†,r

K and A(0,ρ(r)] = A ∩ Ã(0,ρ(r)]. All of these rings are complete for the
valuation V (·, r).

Let I be a subinterval of ]1,+∞[ or such that 0 ∈ I. Let f(Y ) = ∑
k∈Z akY

k be a
power series with ak ∈ F and such that vp(ak)+k/ρ→ +∞ when |k|→ +∞ for all ρ ∈ I.
The series f(u) converges in B̃I and we let BI

F denote the set of all f(π) with f as above.
It is a subring of B̃I

F .
We also write B†,r

rig,F for B[r;+∞[
F . It is a subring of B[r;s]

F for all s ≥ r and note that the
set of all f(u) ∈ B†,r

rig,F such that the sequence (ak)k∈Z is bounded is exactly the ring B†,r
F .

Let B†
F = ∪r≫0B†,r

F which we call the Robba ring over F .
For n ≥ 0 we let rn := pn−1(p− 1).
If L is a finite extension of F and if r(L) ≤ min(I), we let BI

L be the completion of
B†,r(L)
L for V (·, I), so that BI

L = ⊕fi=1BI
F · xi.

We actually have a better description of the rings B†,r
rig,K in general:

Proposition 3.1. — Let L be a finite extension of F and let eL = [L∞ : F∞].
1. There exists uL ∈ A†,r(L)

L whose image modulo p is a uniformizer of EL and such
that, for r ≥ r(L), every element x ∈ B†,r

L can be written as x = ∑
k∈Z aku

k
L,
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where ak ∈ F ′ = W (k)[1/p] ∩ L∞, and the power series ∑
k∈Z akT

k is bounded on{
p−1/eLr ≤ |T |< 1

}
.

2. Let Hα
F ′(T ) be the set of power series ∑

k∈Z akT
k where ak ∈ F ′ and such that, for

all ρ ∈ [α; 1[, lim
k→±∞

|ak|ρk = 0 and let αrL = p−1/eLr. Then the map Hα
F ′(T )→ B†,r

rig,L

sending f to f(uL) is an isomorphism.
Proof. — The first item is proved in [Col08, Prop. 7.5] and the second one in [Col08,
Prop. 7.6]. Be careful that the notations for the rings and the normalizations of the
valuations used in Colmez’s paper are a bit different than ours.

Definition 3.2. — A (φ,ΓK)-module D on AK (resp. BK) is an AK-module of finite
rank (resp. a finite dimensional BK-vector space) endowed with semilinear actions of ΓK
and φ that commute with each other.

It is said to be étale if 1⊗φ : φ∗D→ D is an isomorphism (resp. if there exists a basis
of D such that Mat(φ) ∈ GLd(AK)).

If V is a p-adic representation of GK , we set

D(V ) = (B⊗Qp V )HK .

Note that D(V ) is a (φ,ΓK)-module. Moreover, if V is a p-adic representation of GK , then
D(V ) is étale and (B⊗BK

D(V ))φ=1 is canonically isomorphic to V (see [Fon90, Prop.
1.2.6]). The functors V 7→ D(V ) and D 7→ (B ⊗BK

D)φ=1 then induce an equivalence
of tannakian categories between p-adic representations of GK and étale (φ,ΓK)-modules
over BK .

The following theorem is the main result of [CC98] and shows that every étale (φ,ΓK)-
module is the base change to BK of an overconvergent module:
Theorem 3.3. — If D is an étale (φ,ΓK)-module, then the set of free sub-B†

K-modules
of finite type stable by φ and ΓK admits a bigger element D† and one has D = BK⊗B†

K
D†.

In particular, if V is a p-adic representation of GK , then there exists an étale (φ,ΓK)-
module over B†

K which we will denote by D†(V ) and such that D(V ) = BK ⊗B†
K

D†(V ).
We let D†

rig(V ) = B†
rig,K ⊗B†

K
D†(V ).

3.2. Multivariable setting and first multivariable constructions. — Let ∆ be a
finite set, and let δ denote its cardinal. For each α ∈ ∆, we fix a finite extension Kα of
F . We define GK,∆ := ∏

α∈∆ GKα , HK,∆ := ∏
α∈∆ HKα and ΓK,∆ := ∏

α∈∆ ΓKα .
For α ∈ ∆, we let GK,α denote the image of GKα by the group homomorphism ια :
GKα→GK,∆ mapping g to the element whose component of index α is g and whose other
components are 1. We define groups HK,α and ΓK,α in the same fashion. We let χ∆
denote the ∆-cyclotomic character of GK,∆ with values in (Z×

p )δ by χ∆ = ∏
α∈∆ χcycl. It

factors through ΓK,∆ and identifies it with an open subgroup of (Z×
p )δ.

Our goal is to generalize the construction of classical rings of p-adic periods in order
to study p-adic representations of GK,∆, following and expanding upon [Záb18, PZ21,
BCM24, CKZ21]. In those papers except the last one, the fields Kα are taken to be
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the same, but we see no reason to restrict ourselves to this setting, and thus will work
with this level of generality.

The main way to construct rings of p-adic periods for products of Galois groups is to
take some completion of the tensor product of δ copies of the classical rings of periods
one wishes to consider. One tricky question is which ring our tensor products have to be
taken over.

In [PZ21] the fields Kα are all equal to Qp so that the authors are taking the tensor
products over either Qp or Zp (depending on the situation). In [BCM24] the fields Kα

are all equal to the same K which is a finite extension of Qp, with residue field k, and the
tensor products are taken over either W (k) or W (k)[1/p], which simplify the cohomology
computations (over taking the tensor products over either Zp or Qp). However, this
means that the multivariable rings of periods they construct depend on k, and thus one
would get different rings of de Rham periods depending on the fields Kα we chose.

Because of this, we make the choice here to do everything over Qp (or Zp) so that the
construction of the rings of multivariable crystalline, semi-stable and de Rham periods
will not depend on our choice of the Kαs. Moreover, it extends naturally to our setting
where we allow ourselves to consider distinct fields Kα, for α ∈ ∆. Note that this was also
the point of view in [CKZ21] in order to generalize the results of [Záb18] and [PZ21]
for finite extensions of Qp.

In particular, this means that our rings OC∆ and B+
dR,∆ will correspond to the par-

ticular case k = Fp of [BCM24], so that we can apply their results and proofs because
the constructions and definitions we’re using here are specializations of theirs, by only
considering tensor product over Zp (resp. Qp) instead of the more general W (k) (resp.
W (k)[1/p]).

If (Lα)α∈∆ is a set of subfields of C such that Lα ⊃ Kα, we let OL∆
be the p-adic

completion of the tensor product ⊗α∈∆
Zp
OLα and we let L∆ = OL∆

[1/p]. In order to
simplify the notations, in the case where all the Lα are equal to C, we write OC∆ and C∆
respectively for OL∆

and L∆.
Note that OC∆ and C∆ are naturally endowed with an action of GK,∆, and that C∆

comes equipped with the p-adic valuation vp coming from the one on C.
Since O∆

C /(p) ≃ (OC/(p))⊗∆ where the tensor product is taken over Fp and since the
Frobenius map on OC/(p) is surjective, the Zp-algebra OC∆ is perfectoid and we can
define its tilt O♭C∆

by

O♭C∆
= lim←−

x→xp

OC∆ = {(x(0), x(1), . . . ) ∈ ON
C∆

: (x(n+1))p = x(n)}.

This is a perfect Fp-algebra endowed with an action of GK,∆ coming from the one on OC∆

and it is complete for the valuation coming from the one on OC∆ .
Let (O♭C)⊗∆ = O♭C ⊗Fp · · · ⊗Fp O♭C where the copies of O∆

C are indexed by ∆. For
α ∈ ∆, we let

p̃α = 1⊗Fp · · · ⊗Fp 1⊗Fp p̃⊗Fp 1⊗Fp · · · ⊗Fp 1
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where p̃ is the factor of index α, and let
εα = 1⊗Fp · · · ⊗Fp 1⊗Fp ε⊗Fp 1⊗Fp · · · ⊗Fp 1.

We let Ip̃ denote the ideal of (O♭C)⊗∆ generated by {p̃α}α∈∆.
Proposition 3.4. — The ring (O♭C)⊗∆ is Ip̃-adically separated, and we have a nat-
ural injective morphism of k-algebras (O♭C)⊗∆→O♭C∆

which induces an isomorphism
(O♭C)⊗∆/Ip̃ ≃ O♭C∆

. Moreover, O♭C∆
is isomorphic to the Ip̃-adic completion of (O♭C)⊗∆.

Proof. — This is [BCM24, Lemma 4.2 and Proposition 4.3].
We still denote by p̃α and εα the images of those elements via the embedding

(O♭C)⊗∆→O♭C∆
.

For α ∈ ∆, we let φα denote the Frobenius map of index α on (O♭C)⊗∆, defined on pure
tensors by

φα(x1 ⊗Fp · · · ⊗Fp xδ) = x1 ⊗Fp · · · ⊗Fp xα−1 ⊗Fp x
p
α ⊗Fp xα+1 ⊗Fp · · · ⊗Fp xδ

and extended by k-linearity on (O♭C)⊗∆. Proposition 3.4 shows that this extends naturally
to a map φα : O♭C∆

→O♭C∆
. We let φ = φα1 ◦ · · · ◦ φαδ

on O♭C∆
. We have that φ :

(O♭C)⊗∆→(O♭C)⊗∆ is equal to x 7→ xp on pure tensors, so that it is equal to the usual
absolute Frobenius on (O♭C)⊗∆ and thus its image in O♭C∆

also is the absolute Frobenius.
We let Ainf,∆ = W (O♭C∆

). For α ∈ ∆, we let ξα = [p̃α] − p ∈ Ainf,∆ (so this is equal
to −ξα in the notations of [BCM24]), ϖα = [εα] − 1 ∈ Ainf,∆ and ωα = ϖα

φ−1
α (ϖα) . By

functoriality of Witt vectors, the maps φα on O♭C∆
give rise to maps that we still denote

by φα : Ainf,∆→Ainf,∆, and we also let φ = φα1 ◦ · · · ◦φαδ
(which also corresponds to the

usual Frobenius on Witt vectors). Also by functoriality of Witt vectors, the OF -algebra
Ainf,∆ is endowed by an action of GK,∆.

The map θ∆ : Ainf,∆→OC∆ defined by θ∆(∑
k≥0 p

k[xk]) = ∑
k≥0 p

kx
(0)
k is a surjective

GK,∆-equivariant morphism of OF -algebras, and induces a surjective GK,∆-equivariant
morphism of F -algebras θ∆ : Ainf,∆[1/p]→C∆.

The ideal ker(θ∆) of Ainf,∆ is generated by {ξα}α∈∆ (this is [BCM24, Corollary 4.4])
and also by {ωα}α∈∆ (one checks that ξα/ωα is invertible in Ainf,∆).

Note that our definition of Ainf,∆ is not exactly the same as the one given in §4 of
[BCM24], as they define Ainf,∆ as the completion of W (O♭C∆

) for the (p, ker(θ∆))-adic
topology. The following lemma shows that W (O♭C∆

) is already complete for this topology,
so that their definition and ours coincide, and so that we can use the results they prove
about Ainf,∆ directly.
Lemma 3.5. — The ring Ainf,∆ = W (O♭C∆

) is (p, ker(θ∆))-adically complete.
Proof. — First note that since ker(θ∆) is generated by {ξα}α∈∆, we have (p, ker(θ∆)) =
(p, [p̃α])α∈∆. In order to simplify the notations, let us write J = ([p̃α])α∈∆, so that the
ideals pnW (O♭C∆

) + Jm form a basis of open neighborhood of 0 for the (p, ker(θ∆))-adic
topology.

We have to prove that, if (xn) is a Cauchy sequence in W (O♭C∆
) for the ker(θ∆)-adic

topology, it converges in W (O♭C∆
). Let us write xn = ∑

m≥0 p
m[xn,m]. Let m ≥ 1. Since
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J induces the Ip̃-adic topology on O♭C∆
modulo p, the sequence (xn,m)n≥1 is Cauchy for

the Ip̃-adic topology, and thus converges in O♭C∆
to an element xm as it is Ip̃-adically

complete. Now if we let x = ∑
m≥0 p

m[xm], the sequence (xn) converges to x for the
(p, J)-adic topology, and so we are done.

Proposition 3.6. — We have a natural isomorphism between Ainf,∆ and the p-adic
completion of the (ϖ1, · · · , ϖδ)-completion of Ã+ ⊗Zp Ã+ ⊗Zp · · · ⊗Zp Ã+.
Proof. — Let A denote the p-adic completion of the (ϖ1, · · · , ϖδ)-completion of Ã+ ⊗Zp

Ã+ ⊗Zp · · · ⊗Zp Ã+. By definition, A is p-adically complete, and A/pA is equal to the
(ϖ1, · · · , ϖδ)-completion of O♭C ⊗Fp O♭C ⊗Fp · · · ⊗Fp O♭C , which is isomorphic to O♭C∆

by
Proposition 3.4. By the universal property of Witt vectors, we get that A ≃ W (O♭C∆

).

3.3. Multivariable rings and (φ,Γ)-modules. — For r = (rα)α∈∆ a set of nonnega-
tive real numbers indexed by ∆, we let A†,r

K,∆ := ⊗̂α∈∆
Zp

A†,rα

Kα
, Ã†,r

K,∆ := ⊗̂α∈∆
Zp

Ã†,rα

Kα
, Ã†,r

∆ :=
⊗̂α∈∆

Zp
Ã†,rα and A†,r

∆ := ⊗̂α∈∆
Zp

A†,rα to be the completions of the tensor product, where
the factors with supscripts rα of the tensor product are endowed with the valuation
vrα := V (·, rα) defined in §3.1. We let vr denote the resulting valuation on those com-
pleted tensor products.

Once again, those rings are naturally endowed with an action of GK,∆, and for each
α ∈ ∆, we have a map φα induced by the map

1⊗Zp · · · ⊗Zp 1⊗Zp φα ⊗Zp 1⊗Zp · · · ⊗Zp 1

from those rings corresponding to r to the rings corresponding to r′ where r′ has the same
components as r for β ̸= α, and rα

′ = prα.
If I = ∏

α∈∆ Iα is a product of subintervals of [0,+∞[, we let B̃I
∆ := ⊗̂α∈∆

Qp
B̃Iα , BI

∆ :=
⊗̂α∈∆

Qp
BIα , B̃I

K,∆ := ⊗̂α∈∆
Qp

B̃Iα
Kα

and BI
K,∆ := ⊗̂α∈∆

Qp
BIα
Kα

.
If r = (rα)α∈∆ and s = (sα)α∈∆ are two sets of nonnegative real numbers indexed by

∆, we say that r ≤ s if for all α ∈ ∆, we have rα ≤ sα. We also write r > 0 when rα > 0
for each α ∈ ∆.

If I = ∏
α∈∆ Iα is such that all the Iαs are of the form [rα,+∞[, we write B̃†,r

rig,∆, B†,r
rig,∆,

B̃†,r
rig,K,∆ and B†,r

rig,K,∆ for B̃I
∆, BI

∆, B̃I
K,∆ and BI

K,∆ respectively.
We let B̃†

rig,∆ := ⋃
r>0 B̃†,r

rig,∆, B†
rig,∆ := ⋃

r>0 B†,r
rig,∆, B̃†

rig,K,∆ := ⋃
r>0 B̃†,r

rig,K,∆ and
B†

rig,K,∆ := ⋃
r>0 B†,r

rig,K,∆.
Lemma 3.7. — Let I = ∏

α∈∆ Iα. We have

(B̃I
∆)HK = B̃I

K,∆,

and if for all α ∈ ∆, r(Kα) ≤ min(Iα), then

(BI
∆)HK = BI

K,∆.

Proof. — This is lemma 1.4.



18 LÉO POYETON, PIETRO VANNI

Our definitions of multivariable rings involve completing the (projective) tensor prod-
ucts of rings endowed with a norm, and it may not be completely clear in some cases
that the seminorms induced on the noncompleted tensor products are actually norms. It
may also not be clear that the injections for classical rings give rise to injections for the
completed tensor products. The following results show that this is actually the case for
the rings we consider:
Lemma 3.8. — If J = ∏

α∈∆ Jα ⊂ I = ∏
α∈∆ Iα then the inclusion B̃Iα ⊂ B̃Jα (resp.

BIα ⊂ BJα, resp. B̃Iα
Kα
⊂ B̃Jα

Kα
, resp. BIα

Kα
⊂ BJα

K ) gives rise to an inclusion B̃I
∆ ⊂ B̃J

∆

(resp. BI
∆ ⊂ BJ

∆, resp. B̃I
K,∆ ⊂ B̃J

K,∆, resp. BI
K,∆ ⊂ BJ

K,∆).
Proof. — This is a direct consequence of proposition 1.3.

Lemma 3.9. — Let I = ∏
α∈∆ Iα. Then the topology on ⊗α∈∆

Qp
B̃Iα induced by the

valuations V (·, Iα) is separated.
Proof. — This follows from [Sch02, Proposition 17.4 ii.].

Lemma 3.10. — Let r = (rα)α∈∆ and let I = ∏
α∈∆ Iα be such that for all α ∈ ∆,

rα ∈ Iα. Then the injections Ã†,rα→B̃Iα induce an injective map Ã†,r
∆ →B̃I which is

bounded by 1.
Proof. — First note that because of lemma 3.8, it suffices to prove the result in the case
where Iα = [rα, rα] for all α ∈ ∆, and we thus assume now that this is the case. The
rings Ã†,rα , ÃIα and B̃Iα are flat Zp-algebras (because torsion free) so that the injections
Ã†,rα→ÃIα→B̃Iα give rise to injections

⊗α∈∆
Zp

Ã†,rα→⊗α∈∆
Zp

ÃIα→⊗α∈∆
Zp

B̃Iα = ⊗α∈∆
Qp

B̃Iα .

Because of the definition of the topology on the tensor product, and because the valuations
V (·, Iα) contain the valuations vrα , the induced maps on the tensor products are bounded
by 1. Since the topology on ⊗α∈∆

Qp
B̃Iα is separated by lemma 3.9, so is the one on

⊗α∈∆
Zp

Ã†,rα .
We therefore get map Ã†,r

∆ →B̃I which is bounded by 1, and it remains to see that it
is injective. Let us write A for ⊗α∈∆

Zp
Ã†,rα endowed with the topology induced by the

valuations vrα , and B = A[1/p] = A⊗Zp Qp equipped with the topology induced by this
tensor product. By Proposition 4 of [BGR84, §2.1.7], we have an isometric isomorphism
B̂ ≃ Â⊗̂ZpQp so that Â→B̂ is injective. To conclude, it suffices to go back to the
definition of B to notice that B̂ ≃ B̃I by using once again Proposition 4 of [BGR84,
§2.1.7] since the completion of Ã†,r[1/p] for vr is exactly B̃[r,r].

Our aim is now calculating the invariants for the actions of HK,∆ on Ã†,r
∆ and A†,r

∆ . We
firstly need to establish some lemmas.
Lemma 3.11. — The topology induced by V (·, r) on Ã†,r coincides with the [ϖ]-adic
topology (see also [Por24, p. 6]).
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Proof. — It is clear that the V (·, r)-topology coincides with the ([ϖ], p)-adic topology.
The claim follows from the fact that [ϖ] divides pm in Ã†,r, if m ∈ N is such that
V (pm/[u], r) > 0.

Lemma 3.12. — Let A be a ring endowed with the I-adic topology, for I a finitely
generated ideal of A. Let a be an element of a such that a is regular in A and in Â. Then
the ideal generated by a is closed in Â for the I-adic topology.
Proof. — The ideal generated by a in A is a rank one free module over A, so that the
map aÂ → (̂aA) is surjective (by [Sta24, Lemma 0315]) and injective since Â has no
a-torsion. We conclude by using item (2) of [Sta24, Lemma 0ARZ] which shows that
(̂aA) is closed in Â.

Lemma 3.13. — We have that

(Ã†,r
∆ )HK = Ã†,r

K,∆,

and
(A†,r

∆ )HK = A†,r
K,∆,

Given these lemmas we can finally calculate the invariants.
Proof. — We only prove the statement for Ã†,r

∆ , as the proof for A†,r
∆ is the same. We

start by showing that

(Ã†,rα1 ⊗̂Zp . . . ⊗̂ZpÃ†,rαδ )HK = Ã†,rα⊗̂Zp . . . ⊗̂Zp(Ã†,rαδ )HK

We notice that
Ã†,rα1 ⊗̂Zp . . . ⊗̂ZpÃ†,rαδ

∼= limm∈N(Ã†,rα1/([ϖα1 ])m)⊗Z/plm Z . . .⊗Z/plm Z (Ã†,rαδ/([ϖαδ
])m)

∼= limm∈N(Ã†,rα1/([ϖα1 ])m)⊗Z/plm Z . . .⊗Z/plm Z (Ã†,rαδ−1/([ϖαδ−1 ])m)⊗̂ZpÃ†,rδ ,

where lm is an integer such that [ϖα]m divides plm in Ã†,rα , for α ∈ ∆ and m ∈ N (cfr.
the proof of Lemma 3.11).
Since, for α ∈ ∆, (Ã†,rα/([ϖα])m is a discrete, plm-torsion Zp-module, it is isomorphic to
a direct sum ⊕j∈JZ/pjZ, for j ≤ lm, by [Kap18], Theorem 22. Thus it suffices to show
that

(Z/pmZ)⊗̂Zp(Ã†,rαδ )HK = ((Z/pmZ)⊗̂ZpÃ†,rαδ )HK ,

for m ∈ N, but this follows from the fact that pm is a regular element invariant by HK in
Ã†,rδ , and that the ideal generated by pm is closed in Ã†,rαδ for the [ϖαδ

]-adic topology
by Lemma 3.12,

so that
(Z/pmZ)⊗̂ZpÃ†,rδ ≃ Ã†,rδ/pm.

Applying this method inductively we can conclude.

https://stacks.math.columbia.edu/tag/0315
https://stacks.math.columbia.edu/tag/0ARZ
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Lemma 3.14. — Let r = (rα)α∈∆ and s = (sα)α∈∆ be two sets of nonnegative real
numbers indexed by ∆ such that r ≤ s. The natural injective map A†,rα→A†,sα (resp.
A†,rα

Kα
→A†,sα

Kα
, resp. Ã†,rα→Ã†,sα, resp. Ã†,rα

Kα
→Ã†,sα

Kα
) induces an injective map A†,r

∆ →A†,s
∆

(resp. Ã†,r
K,∆→Ã†,s

K,∆, resp. Ã†,r
∆ →Ã†,s

∆ , resp. Ã†,r
K,∆→Ã†,s

K,∆).
Proof. — We will just prove that statement for the map Ã†,r

∆ →Ã†,s
∆ . For the other maps

the proof is analogous.
First note that if for α ∈ ∆ we let Iα := [rα, sα] and Jα := [sα, sα], we have an injection

bounded by 1: Ã†,r
∆ ⊂ B̃I , and an injection of Qp-Banach spaces B̃I ⊂ B̃J by lemmas

3.10, 3.9, and 3.8. To prove the statement, it remains to see that the image of Ã†,r
∆ by

this composite map is contained in (the image in B̃J of) Ã†,s
∆ .

We let β = maxα∈∆(sα)
minα∈∆(rα) . Let (xn) be a sequence of elements of ⊗α∈∆

Zp
Ã†,rα , which con-

verges in Ã†,r
∆ for vr. If xn = ∑d

i=1 xn,i, with xn,i = ⊗α∈∆xn,i,α, we have by definition
of the normed tensor product that for all i, vr(xn,i) ≤ βvs(xn,i) using the fact that
rvr ≤ svs if r ≤ s (this is checked directly from the definition of V (·, r)). Therefore,
vr(xn) ≤ βvs(xn) (as the sup is taken over every possible way to write xn this way, and
since the map ⊗α∈∆

Zp
Ã†,rα→⊗α∈∆

Zp
Ã†,sα is injective because each of the rings involved is a

flat Zp-algebra, each way of writing xn as such in ⊗α∈∆
Zp

Ã†,rα is a way to write xn as such
in ⊗α∈∆

Zp
Ã†,sα). This implies that the sequence (xn) converges in Ã†,s

∆ .

Let ϖ := ∏
α∈∆ ϖα. We let A†

K,∆ := ⋃
r>0 A†,r

K,∆[1/ϖ], Ã†
K,∆ := ⋃

r>0 Ã†,r
K,∆[1/ϖ],

A†
∆ := ⋃

r>0 A†,r
∆ [1/ϖ], Ã†

∆ := ⋃
r>0 Ã†,r

∆ [1/ϖ].
We now define AK,∆ (resp. ÃK,∆ resp. A∆ resp. Ã∆) to be the p-adic completion of

A†
K,∆ (resp. Ã†

K,∆ resp. A†
∆ resp. Ã†

∆).
We let B̃K,∆ = ÃK,∆[1/p] and B̃∆ = Ã∆[1/p]. As above, all these rings are naturally

endowed with commuting actions of GK,∆ and (φα)α∈∆.
Lemma 3.15. — The rings A†,r

K,∆, Ã
†,r
K,∆,A

†,r
∆ and Ã†,r

∆ are p-adically separated.
Proof. — The arguments are the same in all four cases. By construction, those rings are
separated for vr. If x is in any of those rings, x ̸= 0, then vr(x) is bounded above. Since
vr(pn) = n, this implies that there exists N ≥ 0 such that for n ≥ N , pn does not divide
x (because by construction vr is ≥ 0 on those completed tensor products). This finishes
the proof.

Corollary 3.16. — Let r = (rα)α∈∆. The natural injective map A†,rα→A (resp.
A†,rα

Kα
→AKα resp. Ã†,rα→Ã resp. Ã†,rα

Kα
→ÃKα) induce an injective map A†,r

∆ →A∆ (resp.
Ã†,r
K,∆→ÃK,∆ resp. Ã†,r

∆ →Ã∆ resp. Ã†,r
K,∆→ÃK,∆).

Proof. — This follows from Lemma 3.14.

In [PZ21], Pal and Zabradi define multivariable overconvergent rings and multivariable
Robba rings as follows: first they define R∆ := ⋃

ρ∈(0,1)∆R(ρ,1)
∆ as the ascending union of
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the rings of multivariable power series

R(ρ,1)
∆ :=

 ∑
i∈Z∆

aiXi, ai ∈ Qp, convergent on B(ρ,1)

 ,

where Xi = ∏
α∈∆ X

iα
α and the polyannulus B(ρ,1) for the tuple ρ = (ρα)α∈∆ ∈ (0, 1)∆ is

defined as

B(ρ,1) :=
{
X = (Xα)α∈∆ ∈ C∆ such that ρα < |Xα|p< 1 for all α ∈ ∆

}
.

For each tuple 1 > σ > ρ, we can define the σ-norm on R(ρ,1)
∆ by |∑i∈Z∆ aiXi|σ=

supi|ai|p
∏
α∈∆ σ

iα
α .

Then they define
E†

∆ := {f ∈ R∆, lim sup
σ→1

|f |σ<∞}

and
O†

E∆
:= {f ∈ R∆, lim sup

σ→1
|f |σ≤ 1}.

Note that their Xα correspond to our ϖα and we won’t make a distinction in what
follows between the two, as the following result holds.
Lemma 3.17. — We have a natural isomorphism between R∆ and B†

rig,Qp,∆.
Proof. — We have that

R(ρ,1) = limn∈NQp⟨
x−1

ρ+ 1/n,
x

1− 1/n⟩ = limn∈NQp⟨
y

ρ+ 1/n,
x

1− 1/n⟩/(xy − 1).

Thus
R(ρ1,1)⊗̂Qp . . . ⊗̂Qp R(ρδ,1) ≃ limn∈NQp⟨

y1

ρ1 + 1/n
,

x1

1 − 1/n
⟩/(x1y1 − 1)⊗̂Qp . . . ⊗̂Qp Qp⟨

yδ

ρδ + 1/n
,

xδ

1 − 1/n
⟩/(xδyδ − 1).

But since ideals in Tate algebras are closed we get

R(ρ1,1)⊗̂Qp . . . ⊗̂QpR(ρδ,1) ≃ limn∈NQp⟨
x−1

1
ρ+ 1/n,

x1

1− 1/n, . . . ,
x−1
δ

ρ+ 1/n,
xδ

1− 1/n⟩

that is R(ρ,1)
∆ . From this the claim follows.

Lemma 3.18. — We have a canonical isomorphism

(2) A†,r
Qp,∆

∼= S,

where S is the setf =
∑
i∈Z∆

aiXi : ai ∈ Zp, f converges in B[ρ,1), |f |ρ≤ 1

 .

Proof. — The one variable case is [CC98, Proposition II.2.1].
We prove the multivariable case using the universal property of the completed tensor
product (see [BGR84, Proposition 2.1.7]). Note that we have a bounded map

A†,r1
Qp,∆ × . . .×A†,rδ

Qp,∆
φ−→ S,



22 LÉO POYETON, PIETRO VANNI

given by
φ : (

∑
i1

ai1X
i1
1 . . . ,

∑
iδ

aiδX
iδ
δ ) 7→

∑
i∈Z∆

ai1 . . . aiδX
i.

Note that such a map is bounded because |ai1 . . . aiδXi|ρ= |ai1X i1
1 |ρ1 . . . |aiδX

iδ
1 |ρδ

. Let M
be a Banach module over Zp and let

A†,r1
Qp,∆ × . . .×A†,rδ

Qp,∆
ψ−→M

be a bounded multilinear map. Then ψ factors uniquely through φ as ψ′ ◦ φ, where

ψ′ :
∑
i∈Z∆

aiXi 7→
∑
i∈Z∆

aiψ(X i1
1 , . . . X

iδ
δ ).

note that ψ′ is well defined and bounded because, since ψ is bounded, there exists a
constant C ∈ R such that∥∥∥aiψ(X i1

1 , . . . X
iδ
δ )

∥∥∥
M
≤ C|a|Zp|X i1

1 |ρ1 . . . |X
iδ
δ |ρδ

= C|aiXi|ρ,

for each i ∈ Z∆. Thus we obtain (2).

Proposition 3.19. — Through the identification between R∆ and B†
rig,Qp,∆ given by

Lemma 3.17, we have O†
E∆

= A†
Qp,∆ and OE∆ = AQp,∆.

Proof. — Proposition 3.1.2 of [PZ21] shows that the p-adic completion of O†
E∆

is iso-
morphic to OE∆ so that with our definition of AQp,∆ as the p-adic completion of A†

Qp,∆

it suffices to prove that O†
E∆

= A†
Qp,∆.

Since we have an inclusion A†,r
Qp,∆ ⊂ B†,r

rig,Qp,∆ for any r ≥ 0 (this follows from Lemma
3.18), we obtain an injection (through the identification between R∆ and B†

rig,Qp,∆)

A†,r
Qp,∆[1/ϖ]→R(ρ(r),1)

∆ . Moreover, we have vr(aiϖ
i) = vp(ai) + ∑

α∈∆ iαvrα(ϖα) so that
if x ∈ A†,r

Qp,∆ then |x|ρ≤ 1 for ρ = (p−vrα (ϖα))α∈∆. Using the fact that A†,r
Qp,∆ ⊂ A†,s

Qp,∆

for s ≥ r by lemma 3.14, and using the fact that for any k ≥ 0, lim supσ→1|ϖk|σ= 1, we
obtain that if x ∈ A†

Qp,∆ then its image in R∆ is in O†
E∆

.
It remains to see that any element of O†

E∆
can be written as an element of A†,r

Qp,∆[1/ϖ]
for some r ≥ 0. We fix an order on ∆, and for i ∈ Z∆, we let h(i) ∈ ∆ denote
the smallest α ∈ ∆ such that minα∈∆ iα = ih(i). We also let j(i) = minα∈∆ iα. Let
x ∈ O†

E∆
, x = ∑

i∈Z∆ aiϖ
i. Recall that by lemma 3.1.1 of [PZ21], this implies that all

the ai belong to Zp.
By definition of O†

E∆
, if C > 0 then there exists ε > 0 such that for all ρ ∈ (1− ε, 1)∆,

we have x ∈ R(ρ,1)
∆ and |x|ρ< pC . Let ρ = (ρ)∆ ∈ (1 − ε, 1)∆ and let r > 0 be such that

ρ = p−1/r. Since ρ ∈ (1 − ε, 1)∆, we have that for all i ∈ Z∆, v(ai) + ∑
α∈∆ iαr > −C.

We write x = x+ + ∑
α∈∆ xα where

x+ =
∑

i∈Z∆,i≥0
aiϖ

i
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and
xα =

∑
i∈Z∆,i ̸≥0,h(i)=α

aiϖ
i.

The fact that for all i ∈ Z∆, v(ai) + ∑
α∈∆ iαr > −C translates into the fact that

for all i ∈ Z∆, v(ai) + ∑
α∈∆ iαr > −C. If i ̸≥ 0, this translates into the fact that

v(ai) + j(i)(δr) > −C (since j(i) is negative in this case). In particular, if k is such
that vδr(ϖkα

α ) > C then the aiϖ
i+k belong to ⊗α∈∆

Zp
A†,δr

Qp
for all i ∈ Z∆. Moreover,

since x ∈ R(ρ,1)
∆ , this implies that the aiϖi go to zero for vr (and thus for vδr) for the

cofinite filter. Therefore, x+ and each of the xα belong to ϖ−kA†,δr
Qp,∆, and thus we have

x ∈ϖ−kA†,δr
Qp,∆, which is what we wanted.

In particular, this shows that all our definition are compatible with those of Pal and
Zabradi in [PZ21] when K = Qp and naturally extend to any K where each Kα is a
finite extension of Qp. Moreover, it follows directly from proposition 3.19 and from the
definitions of the objects involved that our ring Ã†

∆ contains the ring O†
Êur

∆
defined in §3.2

of [PZ21].
Finally, in [CKZ21, §2.2], rings ÕE∆ , OE∆ , Õ†

E∆
and O†

E∆
are constructed. The defi-

nitions of those rings differ from the ones of [PZ21], so we now prove that those rings
coincide respectively with our rings ÃK,∆,AK,∆, Ã†

K,∆ and A†
K,∆ (in particular, this state-

ment alongside proposition 3.19 shows that their rings and constructions do extend the
ones of [Záb18] and [PZ21]).
Proposition 3.20. — The rings ÕE∆, OE∆, Õ†

E∆
and O†

E∆
defined in [CKZ21, §2.2]

coincide respectively with our rings ÃK,∆,AK,∆, Ã†
K,∆ and A†

K,∆.
Proof. — In [CKZ21, §2.2], Carter, Kedlaya and Zabradi show that their rings ÕE∆ and
OE∆ satisfy the following:

ÕE∆ = lim←−
m

(ÃKα1
/pmÃKα1

)⊗̂Zp · · · ⊗̂Zp(ÃKαδ
/pmÃKαδ

)

and
OE∆ = lim←−

m

(AKα1
/pmAKα1

)⊗̂Zp · · · ⊗̂Zp(AKαδ
/pmAKαδ

)

where the completed tensor products are taken for the (ϖα)α∈∆-adic topology.
In order to prove that our ring ÃK,∆ (resp. AK,∆) is isomorphic to their ring ÕE∆ (resp.
OE∆), it suffices to prove that for m ≥ 1 and r ≥ r0, (Ã†,r

K,∆[1/ϖ])/pm is isomorphic to
(ÃKα1

/pmÃKα1
)⊗̂Zp · · · ⊗̂Zp(ÃKαδ

/pmÃKαδ
) (the statement and the proof are the same

in the non tilde case). First note that for any m ≥ 1 and for any r ≥ p−1
p

, Ã†,r
K [1/ϖ]/pm ≃

ÃK/p
m.

Let us prove first that (Ã†,r
K,∆[1/ϖ])/pm is isomorphic to the I-adic completion of

(Ã†,r1
Kα1

/pm ⊗Zp · · · ⊗Zp Ã†,rδ
Kαδ

/pm), where I = (ϖα)α∈∆. It suffices to prove that the ideal
generated by pm is closed in Ã†,r

K,∆, which follows from Lemma 3.12.
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Let r1, . . . , rδ such that for all α ∈ ∆, rα ≥ p−1
p

(this is to ensure that ϖα

[ϖα] is a unit in
Ã†,rα) and let m ≥ 1. By [BGR84, §2.1.7, Prop. 4], we have that the vr-completion of
(Ã†,r1

Kα1
/pm⊗Zp · · · ⊗Zp Ã†,rδ

Kαδ
/pm) is isomorphic to (Ã†,r1

Kα1
/pm⊗̂Zp · · · ⊗̂ZpÃ†,rδ

Kαδ
/pm), where

the completion is taken with respect to the induced valuations vrα on Ã†,rα

Kα
/pm (note that

we used that (Ã†,r1
Kα1

/pm ⊗Zp · · · ⊗Zp Ã†,rδ
Kαδ

/pm) ≃ (Ã†,r1
Kα1
⊗Zp · · · ⊗Zp Ã†,rδ

Kαδ
)/pm using for

example [Qin06, Exercise 1.3, Chapter 1]).
Since localizations commute with quotients, it remains to check that the (ϖα)α∈∆-

adic topology on (Ã†,r1
Kα1

/pm ⊗ · · · ⊗ Ã†,rδ
Kαδ

/pm) coincides with the vr-topology, which is
straightforward as the denominators are bounded below.

For the rings Õ†
E∆

and O†
E∆

, we proceed as in the proof of Proposition 3.19: thanks to
the identification between ÕE∆ and ÃK,∆, we check that the condition defining Õ†

E∆
in

[CKZ21, Notation 2.10] implies that if x ∈ Õ†
E∆

, then it belongs to Ã†
K,∆ (this is exactly

the same proof as in the proof of Proposition 3.19). For the converse, we check that an
element in Ã†,r

K,∆ defined as a limit of elements of the tensor product Ã†,rα1
Kα1
⊗Zp · · · ⊗Zp

Ã†,rαδ
Kαδ

that converges for vr defines an element of ÕE∆ with bounded ρ-norm in the sense
of [CKZ21, Notation 2.6] for some ρ > 0, and thus defines an element of Õ†

E∆
.

Remark 3.21. — Let C♭
∆ be O♭C,∆[1/ϖ]. We have that Ã∆ is isomorphic to W

(
C♭

∆

)
,

as they are strict p-rings with the same residue perfect algebra (see [Ked15, Theorem
1.1.8]). This is because

Ã∆/p ≃ Ã†
∆[1/ϖ]/p ≃ C♭

∆.

In particular every element in Ã∆ can be written as a sum∑
i∈N

[ci] pi,

where ci ∈ C♭
∆ (see also [CKZ21, p. 1337]). Note that if |·|′ is the norm on C♭

∆, if |ci|′ is
bounded in i, then ∑

i∈N
[ci] pi ∈ Ã†

∆.

Moreover we have that if φ∆ is the Frobenius on C♭
∆ satisfies |φ(·)|′= (|·|′)p by definition.

Following [Záb18] and [CKZ21], we make the following definition:
Definition 3.22. — Let A be any of AK,∆,A†

K,∆, ÃK,∆, Ã†
K,∆ and B = A[1/p].

A (φ∆,ΓK,∆)-module D on A (resp. B) is a finitely presented A-module endowed with
semilinear actions of ΓK,∆ and (φα)α∈∆ that commute with one another.

It is said to be étale if the maps 1⊗Zpφα : φ∗
αD→ D are isomorphisms for α ∈ ∆ (resp.

if it is of the form D0[1/p] for some projective finitely generated étale (φ,ΓK,∆)-module
D0 over A).
Remark 3.23. — Contrary to what happens in the classical setting, the étaleness con-
dition in the multivariable setting is also related to the ΓK,∆-action. Thanks to [CKZ21,
Theorem 6.19] (and Remark 6.20 of ibid), this condition can be relaxed by asking that
the action of ΓK,∆ is bounded, in the sense that the action of ΓK,∆ carries D0 in the
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previous definition into p−mD0 for some nonnegative integer m, when A is either AK,∆

or A†
K,∆.

The following is [CKZ21, Thm. 6.15 and 6.16] in the case where the Kα are all equal,
and Theorem 8.2 and 8.3 of ibid. when the Kα are any finite extensions of Qp:
Theorem 3.24. — The category of continuous representations of GK,∆ on finite free
Zp-modules (resp. dimensional Qp-vector spaces) is equivalent to the category of pro-
jective étale (φ∆,ΓK,∆)-modules over each of the rings AK,∆,A†

K,∆, ÃK,∆, Ã†
K,∆ (resp.

BK,∆,B†
K,∆, B̃K,∆, B̃†

K,∆).

3.4. Multivariable crystalline and semistable rings. — Recall ([Fon94]) that
classically the ring Acrys is defined as the p-adic completion of the divided power en-
velope of Ainf with respect to ker(θ) and then one defines B+

crys := A+
crys[1/p] and

Bcrys := B+
crys[1/t] (as t belongs to Bcrys). One could thus mimick this construction in the

multivariable setting, by taking the p-adic completion of the divided power envelope of
Ainf,∆ with respect to ker(θ∆). Here however we decide to follow our philosophy behind
the constructions of the various multivariable rings of periods we have defined. First, re-
call [Col98, §III.2] that one can replace the classical ring B+

crys by the ring B+
max = B̃[0,r0]

and Bcrys by Bmax := B+
max[1/t], which does not change anything for the study of p-adic

representations because of the fact that φ(Bmax) ⊂ Bcrys ⊂ Bmax. One of the main rea-
son behind this change is that the topology on Bmax is much nicer than the one on Bcrys
(namely, as explain in section III.2 of [Col98], the topology on B+

crys induced by the one
on Bcrys is not the natural topology on B+

crys). Moreover, B+
max is a p-adic Banach space

and thus is completely adapted to our point of view and constructions. Recall also that
∩n∈Nφ

n(B+
max) = ∩n∈Nφ

n(B+
crys) = B̃+

rig [Col98, §III.2].
We define

B+
max,∆ := B+

max⊗̂Qp · · · ⊗̂QpB+
max

as the p-adic completion of the tensor product of δ copies of B+
max (note that this is the

same as taking the completed tensor product in the category of p-adic Banach spaces).
For α ∈ ∆ we let

tα = 1⊗Qp · · · ⊗Qp 1⊗Qp t⊗Qp 1⊗Qp · · · ⊗Qp 1 ∈ B+
max ⊗Qp · · · ⊗Qp B+

max

where t is the factor of index α, and we stille denote by tα its image in B+
max,∆. We let

t∆ = ∏
α∈∆ tα ∈ B+

max,∆ and we let Bmax,∆ = B+
max,∆[1/t∆].

Recall that we have defined Fréchet rings B̃†,r
rig,∆, B̃†,r

rig,K,∆ and B†,r
rig,K,∆, and LF rings

B̃†
rig,∆, B̃†

rig,K,∆ and B†
rig,K,∆.

Recall [Ber02, §2.4] that classically one defines rings B̃†,r
log by B̃†,r

log := B̃†,r
rig[Y ] and B̃+

log
by B̃+

log := B̃+
rig[Y ], endowed with an action of GK and of the Frobenius given by

g(Y ) = Y + log([g(p̃)
p̃

]) and φ(Y ) = pY
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using the fact that if x ∈ O♭C is such that v(x(0) − 1) ≥ 1 then the series

log[x] :=
∑
n≥1

(−1)n−1 ([x]− 1)n
n

converges in B̃+
rig (cf proposition 2.23 of [Ber02]). Intuitively, one has to think of Y as

log[p̃], and this intuition can be made explicit as follows: if we fix the p-adic logarithm
by putting log p = 0, then the power series

log([p̃]) = log([p̃]
p

) = −
∑
n≥1

(1− [p̃]/p)n
n

converges in B+
dR and so we get an injective map ιn : B̃†,rn

rig [Y ]→B+
dR extending ιn :

B̃†,rn
rig →B+

dR by ιn(Y ) = p−n log[p̃] (cf proposition 2.25 of [Ber02]).
Mimicking this construction, for α ∈ ∆ we let Yα be a variable, and we define

B̃†
log,∆ = B†

rig,K [Yα]α∈∆

and
B†

log,∆,K = B†
rig,K [Yα]α∈∆.

endowed with an action of GK,∆ and (φα)α∈∆ given by

g(Yα) = Yα + log([g(p̃α)
p̃α

] and φβ(Yα) = pδαβYα

where the series defining log([ g(p̃α)
p̃α

] converges in B̃+
rig,α.

Once again we have injective maps ιn : B̃
†,rn

log,∆→B+
dR,∆ sending Yα to p−nα log([p̃α]) for

α ∈ ∆.
Finally, we also define B̃+

log,∆ := B̃+
rig,∆[Yα]α∈∆, B+

st,∆ := B+
max,∆[Yα]α∈∆ and Bst,∆ :=

B+
st,∆[1/t∆].
For V a p-adic representation of GK,∆, we say that V is crystalline if the map

(V ⊗Qp Bmax,∆)GK,∆⊗̂K∆Bmax,∆ → V ⊗̂QpBmax,∆,

induced by the inclusion

(V ⊗Qp Bmax,∆)GK,∆ ⊂ V ⊗̂QpBmax,∆

is an isomorphism, and is semistable if the map

(V ⊗Qp Bst,∆)GK,∆⊗̂K∆Bst,∆ → V ⊗̂QpBst,∆,

induced by the inclusion

(V ⊗Qp Bst,∆)GK,∆ ⊂ V ⊗̂QpBst,∆

is an isomorphism.
Note that we have the following result:
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Proposition 1. — The morphisms

B̃+
log,∆ → B̃†

log,∆

and
B̃+

log,∆ → B+
st,∆

induced by the inclusion factor by factor is a continous equivariant injection.
Proof. — This follows easily from Proposition 1.1.26 of [Eme04].

Let K be a finite extension over Qp and let F be its maximal unramified subextension.
Using Lemma 1.4 and the fact that

F = (B̃+
rig)GK ⊂ (Bst)GK = F

the following corollary is immediate.
Corollary 2. — We have

(B̃+
log,∆)GK = (Bst,∆)GK = F1 ⊗Qp . . .⊗Qp Fδ.

4. Multivariable Tate-Sen descent

4.1. The Tate-Sen formalism. — Let δ ≥ 1 be an integer, ∆ = {1, . . . , δ} and for
each i ∈ ∆, Gi is a profinite group, admitting a continuous character χi : Gi→Z×

p with
open image and kernel Hi. If G′

i is an open subgroup of Gi, and if H ′
i = G′

i ∩ Hi, then
we let GH′

i
denote the normalizer of H ′

i in Gi. We also let Γ̃H′
i

= GH′
i
/H ′

i, and we let
CH′

i
denote the center of Γ̃H′

i
. By [BC08, Lemm. 3.1.1] CH′

i
is an open subgroup of Γ̃H′

i
.

We let n1(H ′
i) denote the smallest integer n ≥ 1 such that χi(CH′

i
) contains 1 + pnZp,

which is therefore < +∞. When ∆ = {1}, we omit the subscript in the notations. We
let H = H1 × . . . × Hδ, and to avoid additional notations, we also denote by Hi the
subgroup of H generated by the elements (idH1 , . . . , h, . . . , idHδ

) where h ∈ Hi and the
other components are the identity of Hj, i ̸= j.

Let S be a Banach algebra over Qp and let Λ̃ be an OS-algebra, equipped with a map
valΛ : Λ̃→ R ∪ {+∞} satisfying the following conditions:

1. valΛ(x) = +∞ if and only if x = 0;
2. valΛ(xy) ≥ valΛ(x) + valΛ(y);
3. valΛ(x+ y) ≥ inf(valΛ(x), valΛ(y));
4. valΛ(p) > 0.

Remark 4.1. — In [BC08] the fourth item asks that valΛ(px) = valΛ(p) + valΛ(x) but
this is actually never used.

Following [BC08, Def. 3.1.3], we recall the classical Colmez-Tate-Sen conditions in
the case where ∆ = {1}:

(CTS1) There exists c1 > 0 such that for any open subgroups H ′ ⊂ H ′′ of H, there
exists α ∈ Λ̃H′ such that valΛ(α) > −c1 and ∑

τ∈H′′/H′ τ(α) = 1.
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(CTS2) There exist c2 > 0 and for each open subgroup H ′ of H an integer n(H ′) ∈ N,
a nondecreasing sequence (ΛH′,n) of closed OS-subalgebras of ΛH′ , and for n ≥ n(H ′), an
OS-linear application RH,n : ΛH′,n → ΛH′,n satisfying:

1. if H ′ ⊂ H ′′ then ΛH′′,n ⊂ ΛH′,n, and the restriction of RH′,n to Λ̃H′′ coincides with
RH′′,n;

2. the maps RH′,n are ΛH′,n-linear, and RH′,n(x) = x if x ∈ ΛH′,n;
3. for all g ∈ G, we have g(ΛH′,n) = ΛgH′g−1,n, and g(RH′,n(x)) = RgH′g−1,n(g(x));
4. if n ≥ n(H ′), and if x ∈ Λ̃H′ , then valΛ(RH′,n(x) ≥ valΛ(x)− c2;
5. if x ∈ Λ̃H′ , then lim

n→+∞
RH′,n(x) = x.

(CTS3) There exist c3 > 0 and for any open subgroup G′ of G, an integer n(G) ≥
n1(H ′), where H ′ = G′∩H, such that if n ≥ n(G′), if γ ∈ Γ̃H′ is such that n(γ) ≤ n, then
γ−1 is invertible onXH′,n = (1−RH′,n)(Λ̃H′) and we have valΛ((γ−1)−1(x)) ≥ valΛ(x)−c3
for x ∈ XH′,n.

The following proposition, which is proposition 3.1.4 of [BC08], is straightforward:
Proposition 4.2. — If Λ̃ is a Zp-algebra satisfying the Colmez-Tate-Sen conditions,
and if S is a Banach algebra equipped with the trivial G-action, then OS⊗̂ZpΛ̃ satisfies
the Colmez-Sen-Tate conditions with the same constants c1, c2 and c3.

We also recall the following lemma:
Lemma 4.3. — Let Λ̃ be a Zp-algebra satisfying the Colmez-Tate-Sen conditions, with
constants c1, c2 and c3. Let H ′ be an open subgroup of H, n ≥ n(H ′), γ ∈ Γ̃H such
that n(γ) ≤ n and B ∈ GLd(Λ̃H′). Assume that there exists V1, V2 ∈ GLd(ΛH′,n) with
valΛ(V1− 1) > c3 and valΛ(V2− 1) > c3 such that γ(B) = V1BV2. Then B ∈ GLd(ΛH′,n).
Proof. — This is [BC08, Lemm. 3.2.5].

Theorem 4.4. — Let Λ̃ a Zp-algebra satisfying the Colmez-Tate-Sen conditions, with
constants c1, c2 and c3. Let σ 7→ Uσ be a continuous cocycle from G to GLd(Λ̃). If G′ is an
open normal subgroup of G such that Uσ−1 ∈ pkMd(Λ̃), and valΛ(Uσ−1) > c1 +2c2 +2c3
for all σ ∈ G′, and if H ′ = G′ ∩ H, then there exists M ∈ 1 + pkMd(Λ̃) such that
valΛ(M − 1) > c2 + c3 and such that the cocycle σ 7→ Vσ = M−1Uσσ(M) is trivial on H ′

with values in GLd(ΛH′,n(G′)).
Proof. — This is [BC08, Prop. 3.2.6].

Note that this is meant to be applied to Λ̃ representations: if T is a free continuous
Λ̃-representation of rank d of G, and if β is a basis of T over Λ̃, then the map g ∈ G 7→
Matβ(g) defines a continuous cocycle from G to GLd(Λ̃). Conversely, the data of such
a cocycle endows Λ̃ with the structure of a free continuous Λ̃-representation of rank d,
and cohomologous cocycles are exactly obtained by base change over Λ̃, which means
that isomorphism classes of free Λ̃-representations of rank d are in bijection with the
continuous cohomology set H1(G,GLd(Λ̃)).
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Remark 4.5. — In [Por24, Section 4], Porat develops a variant of the Tate-Sen for-
malism for Tate rings, in which the prime p is replaced with a pseudouniformizer f , we
will be interested in defining a multivariable version of this method.

4.2. Multivariable Tate-Sen descent for Tate rings. — Let (Λ,Λ+) be a Tate ring,
with Λ+ ring of definition and pseudouniformizer f . We assume that Λ+ is f -adically
complete. Recall that f defines a valuation valΛ that induces the f -adic topology on Λ.
We will use the notations of the previous subsection. Moreover if (G′

α)α∈∆ is a δ-uple
of subgroups of G, we will write G′

∆ for the product ×α∈∆Gα. Moreover if H ′
∆ =

(H ∩G′
α)α∈∆, we will write ΓH′,∆ for the quotient G′

∆/H
′
∆. We let CH′,∆ be the product

×α∈∆CH′
α,∆, that is the center of ΓH′,∆, as group center commutes with direct products.

Using [BC08, Lemme 3.1.1] we obtain the following
Lemma 4.6. — The group CH′,∆ is open in ΓH′,∆.

Suppose Λ endowed with a continuous action of G∆. We have that the topology in Λ
is given by a valuation valΛ satisfying analogous conditions to the ones of the previous
subsection:

1. Λ is separated with respect to valΛ.
2. valΛ(xy) ≥ valΛ(x) + valΛ(y), for any x, y ∈ Λ.
3. valΛ(x+ y) ≥ inf(valΛ(x), valΛ(y)) for any x, y ∈ Λ.
4. valΛ(f) > 0 and valΛ(fx) = valΛ(f) + valΛ(x) if x ∈ Λ.

We also assume that G∆ acts isometrically on Λ.
Let Λ̃i be a Tate ring over Zp, with ring of definition Λ̃+

i , and pseudo-uniformizer βi,
such that βi divides p in Λ+, for i = 1, . . . , δ. Suppose that Λ̃i is endowed with a continous
action of a profinite group G admitting a continous character χ : G → Zp. Let S be an
affinoid algebra. We set Λ̃+

∆,S to be the completed tensor product

OS⊗̂Zp(⊗̂ZpΛ̃+).

We set
Λ̃∆,S = Λ̃+

∆,S[ 1
β1 . . . βδ

],

and we endow it with the β1 . . . βδ-adic topology. Note then that Λ̃∆,S is a Tate ring with
ring of definition Λ̃+

∆,S and pseudo-uniformizer β1 . . . βδ. In this subsection we will denote
by val the valuation of Λ̃∆,S. We remark that Λ̃∆,S is endowed with an action of G∆

induced by the action of Gi on Λ̃i for i = 1, . . . , δ. We have a continous map

OS → Λ̃+
∆,S.

From now on we assume that βd is invariant by H and that

(Λ̃+
∆)H′

∆ = Λ̃H′
∆
,

where Λ̃+
H′

∆
= Λ̃+

H′
α1
⊗̂Zp . . . ⊗̂ZpΛ̃+

H′
δ
. We moreover assume that Λ̃i satisfies the Tate-Sen

conditions of [Por24, Subsection 4.1]. In particular for each subgroup H ′
α of Hα there
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exist maps
Rα
H′

α,n
: Λ̃H′

α → ΛH′
α,n

that are projections to some subalgebras ΛHα,n for α ∈ ∆ and n ≥ n(Gα). We let

Λ+
H′

∆,n
= Λ+

H′
α1 ,n
⊗̂Zp . . . ⊗̂ZpΛ+

H′
αδ
,n,

and
ΛH′

∆,n
= Λ+

H′
∆,n

[ 1
β1 . . . βδ

].

If we add the subscript S to one of this rings that means that we tensor by OS and
complete for the (β1, . . . , βδ)-adic topology for the +-rings, for the non + ones we do the
same thing to the + ring and we invert p.
Theorem 4.7. — Let c1, c2, c3 > 0. Suppose that for each i ∈ ∆, Λ̃i satisfies the Colmez-
Tate-Sen conditions for Tate rings (see [Por24, Subsection 4.1]) with constants c1, c2 and
c3 for the action of G∆. Let σ 7→ Uσ be a continuous cocycle from G∆ to GLd(Λ̃+

∆,S). If
G′
α is an open normal subgroup of Gα for α ∈ ∆ such that Uσ − 1 ∈ (β1 . . . β)kMd(Λ̃+

∆,S)
and val(Uσ − 1) > δc1 + (δ + 1)(c2 + c3), for all σ ∈ G′

∆, and if H ′
∆ = G′

∆ ∩ H∆, then
there exists M ∈ GLd(Λ̃∆,S) such that val(M − 1) > c2 + c3 and such that the cocycle
σ 7→ Vσ = M−1Uσσ(M) is trivial on H ′

∆ and with values in GLd(ΛH′
∆,n(G′),S).

Proof. — Since Λ̃i satisfies the Tate Sen conditions, for each open subgroup H ′′
α there

exists an αi in Λ̃+
i such that valΛ(αi) > −c1 and ∑

τ∈H′′
α/H

′
α
τ(α) = 1 for i = 1, . . . , δ.

Thus the element α∆ = α1 ⊗Qp . . .⊗Qp αδ satisfies valΛ(α∆) > −δc1 and∑
τ∈H′′

∆/H
′
∆

τ(α) = 1.

Thus in particular the axiom (TS1) of [Por24, Subsection 4.1] is satisfied. This implies
that there exists M ′ ∈ GLd(Λ̃∆,S), such that the cocycle σ 7→M ′−1Uσσ(M ′) is trivial on
H ′

∆, and valΛ(M ′ − 1) > (δ + 1)(c2 + c3). Note that Λ̃∆,S[1/βd] is a complete Tate ring
with pseudouniformizer βd. Moreover we can extend the Tate traces

RHαδ
,n : Λ̃H′

α → ΛH′
α,n

to the completed tensor product Λ̃H′
∆

, that is again a complete Tate ring with pseudouni-
formizer βd. Then using [Por24, Proposition 4.8] we can find a matrix M ′′ ∈ GLd(Λ̃∆,S)
such that the cocycle σ 7→ Vσ = M ′′−1Uσσ(M ′′) is trivial on H∆ and with values in

GLd(OS⊗̂ZpΛ̃+
H′

α1
⊗̂Zp . . . ⊗̂ZpΛ+

H′
αδ,n(G′

αδ
)
).

Note that M ′′ is constructed as an infinite product
+∞∏
i=1

M ′′
i ,

where the first factor is M1 = (γδ − 1)−1(1− RH′
δ
,n(G′

αδ
))(U ′

γδ
), the second is M2 = (γδ −

1)−1(1−RH′
δ
,,n(G′

αδ
))(M−1

1 U ′
γδ
γδ(M1)) and the others are constructed inductively like this.
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Thus since (γδ − 1)−1 sends βkδ to βk−c3
δ , and βi to βi for i = 1, . . . , δ − 1, and RH′

δ
,,n(G′

αδ
)

sends β−k
δ to βk−c2

δ , and βi to βi for i = 1, . . . , δ−1, we get that valΛ(M ′′−1) > δ(c2 +c3).
We can proceed inductively in this way for each variable to findM as in the statement.

Given this result we can prove the following proposition.
Proposition 4.8. — Let T be an OS-representation of dimension d of G, let V =
S ⊗OS

T and let k be an integer such that valΛ(pk) > δc1 + (δ + 1)(c2 + c3). Let G′

be an open normal subgroup of G acting trivially on T/pkT , let H ′ = G′ ∩ H and let
n ≥ n(G′). Then Λ̃+

∆,S ⊗OS
T contains a unique sub-Λ+

H′
∆,n,S

-module D+
H′,n(T ), free of

rank d satisfying:

1. D+
H′

∆,n
(T ) is fixed by H ′ and stable by G;

2. the natural map Λ̃+
∆,S ⊗Λ+

H′
∆,n

D+
H′,n,S(T )→ Λ̃+

∆,S ⊗OS
T is an isomorphism;

3. D+
H′

∆,n
(T ) admits a basis over Λ+

H′
∆,n,S

which is c3-fixed by G′/H ′.

Proof. — The existence of D+
H′

∆,n
(T ) follows from the fact that the Λ+

H′,n,S-module whose
basis is the one provided by the base change given by the matrix M of theorem 4.7 satisfies
those conditions. The fact that there is only one such sub-module is a consequence of a
repeated use of lemma [Por24, Proposition 4.9]. Indeed, assume that there are two such
submodules, with respective bases e1, . . . , ed and e′

1, . . . , e
′
d. Let B ∈ GLd(Λ̃+) the matrix

of the e′
j in the basis e1, . . . , ed. Then B is invariant under the action of H ′, and if W ,

W ′ denote respectively the matrices of a generator γ of H ′
δ in the bases e1, . . . , ed and

e′
1, . . . , e

′
d. We have val(W − 1) > c3, val(W ′ − 1) > c3 by construction, and moreover W

and W ′ belong to GLd(Λ+
H′,n,S). We have W ′ = B−1Wγ(B) so that we can apply Lemma

4.3. Which means that B has its coefficients in OS⊗̂ZpΛ+
1 ⊗̂Zp . . . ⊗̂ZpΛH′

δ
,nδ

. Applying the
same reasoning with generators of Hi, for every i ∈ ∆ shows that B ∈ GLd(Λ+

H′,n,S), so
that the Λ+

H′,n,S-modules generated respectively by e1, . . . , ed and e′
1, . . . , e

′
d are equal.

4.3. Multivariable Sen theory. — We now explain how to recover the results from
[BCM24, §3] as a consequence of the multivariable Colmez-Tate-Sen formalism. As
stated before, this formalism was already underlined in [BCM24] and allows us to extend
their results to families. In what follows, we let K = (Kα)α∈∆ be δ finite extensions
of Qp, and we let Kα,∞ denote the cyclotomic extension of Kα for α ∈ ∆. We let
K∞ = (Kα,∞)α∈∆ and K∆,∞ = ⊗α∈∆

Qp
Kα,∞. We also write K̂∆,∞ = (⊗̂α∈∆

Zp
OKα,∞)[1/p],

and we have K̂∆,∞ = C
HK,∆
∆ by [BCM24, Theorem. 3.3].

Recall the following proposition:
Proposition 4.9. — The ring Λ̃ = Cp = OCp [1/p] satisfies the conditions (CTS1),
(CTS2) and (CTS3), with Λ̃HL = L̂∞ = O

L̂∞
[1/p], ΛHL,n = Ln = OLn [1/p], RHL,n = RL,n

and valΛ = vp, for any c1 > 0, c2 > 0 and c3 >
1
p−1 .

Proof. — See [BC08, Prop. 4.1.1].
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In what follows, we fix constants c1 > 0, c2 > 0 and c3 >
1
p−1 such that δc1 + (δ +

1)(c2 + c3) < vp(12pδ).
Theorem 4.10. — Let S be a Qp-Banach algebra, let T be an OS-representation of
dimension d of GK,∆, and let V = S ⊗OS

T . Let L = (L1, . . . , Lδ) be such that for all
i ∈ ∆, Li/Ki is Galois and such that GL,∆ acts trivially on T/12pδ, and let n ≥ n(L).
Then (S⊗̂C∆)⊗S V contains a unique sub-(S ⊗ Ln,∆)-module DL∆,n

Sen (V ), free of rank d,
such that:

1. DL∆,n

Sen (V ) is fixed by HL,∆ and stable by GK,∆;
2. DL∆,n

Sen (V ) contains a basis over S ⊗ Ln,∆ which is c3-fixed by ΓL,∆;
3. the natural map (S⊗̂C∆)⊗S⊗Ln,∆ DL∆,n

Sen (V )→(S⊗̂C∆)⊗S V is an isomorphism.

Moreover, we have S/mx ⊗S DL∆,n

Sen (V ) ≃ DL∆,n

Sen (Vx).
Proof. — This follows from Proposition 4.9 so that we can apply Proposition 4.8. The
last point follows from the Proposition applied to S/mx and the fact that the image of
S/mx ⊗S DL∆,n

Sen (V ) in (Ex ⊗ C∆) ⊗Ex Vx satisfies the three conditions of the theorem,
where Ex = S/mx.

In particular, we recover [BCM24, Theorem 3.19, Corollary 3.20 and 3.21] (after a
Galois descent argument as in [BCM24, Theorem 3.19]) and the Tate-Sen formalism
allows us to extend those to families of representations.

The multivariable Sen theory developed in [BCM24], just as in the classical case
([Sen80]), makes use of “K∆-finite vectors”: if W is a K̂∆,∞-representation of ΓK,∆, we
say that an element of W is K∆-finite if x lives in a K∆-submodule of finite type of W
which is stable by ΓK,∆, and we let W fin denote the set of K∆-finite vectors of W . Note
that, by Proposition 3.22 of [BCM24], we have K̂∆,∞ = K∆,∞ so that W fin can naturally
be viewed as a K∆,∞-submodule of W .

If V is a p-adic representation of GK,∆, we can define its Sen module by DSen,∆(V ) :=
((C∆ ⊗Qp V )HK,∆)fin as in [BCM24, §3] by analogy with the classical case ([Sen80]).

Note that the notation of DSen,∆(V ) is compatible with the definition of the module
DL∆,n

Sen (V ) in theorem 4.10, since we have DSen,∆(V ) = (L∞,∆ ⊗L∆,n
DL∆,n

Sen (V ))HK,∆/HL,∆

(the proof of [BCM24, Corollary 3.24] shows that L∞,∆⊗L∆,n
DL∆,n

Sen (V ) is the set of L∆-
finite vectors of (C∆⊗Qp V )HL,∆ as ΓL,∆-representations, and the result follows by taking
the invariants by HK,∆/HL,∆ by étale descent using Proposition 3.25 and Corollary 3.27
of ibid.).

We now explain how one can recover the Sen operators and Sen theory developed in
[BCM24, §3] in the spirit of [BC16], using locally analytic vectors.
Lemma 4.11. — We have K̂∞,∆

ΓK,∆−la
= K∞,∆

Proof. — If G = ΓK,∆, then K̂∞,∆
G−la

= ∪n≥1K̂∞,∆
Gn−la

, and Corollary 2.5 implies
directly that K̂∞,∆

Gn−la
= K∆,n.
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Proposition 4.12. — Let W be a free K̂∞,∆-semilinear representation of ΓK,∆ of finite
type. Then W la ≃ W fin.
Proof. — This is the same proof as the one of [BC16, Thm. 3.2]. If x ∈ W fin then
it lies in some finitely generated K∆-module stable by ΓK,∆ and therefore inside some
finite dimensional Qp-vector space endowed with a ΓK,∆-action. By Cartan’s theorem
[Eme04, Prop. 3.6.10], this implies that x ∈ W la.

For the converse, by theorem 3.28 of [BCM24], there exists a basis e1, · · · , ed of W fin

over K∆,∞ which is also a basis of W over K̂∆,∞. Then by Proposition 2.3, W la =
⊕di=1(K̂∆,∞)laei = ⊕di=1K∆,∞ · ei = W fin.

If W is a locally-analytic representation of ΓK,∆, the Lie algebra of ΓK,∆ naturally acts
on W , so that we get operators (∇α)α∈∆ defined by:

∇α = lim
γ∈ΓKα ,γ→1

γ − 1
log(χcycl(γ)) .

The operator ∇α is also equal to log γ for γ ∈ ΓKα close enough to 1 (in the cyclotomic
case these are the generalized Sen operators of [BCM24, Subsection 3.30]).

We define the multivariable HT (Hodge-Tate) weights of V as the elements (λα)α∈∆
such that ∩α∈∆ ker(∇α − λα) is a nontrivial sub-K∞,∆-module of DSen,∆(V ).

4.4. Overconvergent families of multivariable (φ,Γ)-modules. — We now ex-
plain how to attach to a family of representations a family of (φ∆,ΓK,∆)-modules using
these multivariable Colmez-Sen-Tate conditions. When working over a base which is a
finite extension of Qp, these constructions coincide with the ones of [CKZ21] and of
[PZ21].
Proposition 4.13. — The rings Λ̃ = Ã†,r[1/ϖ] satisfy the conditions (CTS1), (CTS2)
and (CTS3) for any r ≥ 1, with Λ̃HL = Ã†,r

L [1/ϖ], ΛHL,n = φ−n(A†,pnr[1/ϖ]), RHL,n =
RL,n and valΛ = vr, for any c1 > 0, c2 > 0 and c3 >

1
p−1 .

Proof. — See [BC08, Prop. 4.2.1].

If V is a (family of) representation(s) of GK,∆, admitting a Galois-stable integral lattice
T such that V = S ⊗OS

T , and if (Lα)α∈∆ is such that for all i ∈ ∆, Li/Ki is Galois and
such that GL,∆ acts trivially on T/12pδ, we let s(V ) = (max(rn(Lα), s(Lα/Kα)))α∈∆, and
up to increasing the s(V )α, we can assume that there exists n(V ) = (n(V )α)α∈∆ such that
s(V ) = (rn(V )α)α∈∆. If s ≥ s(V ), we let D†,s

L,∆(T ) = ((OS⊗̂ZpA†,s
∆ )⊗Zp T )HL,∆ which is by

lemma 3.13 an OS⊗̂ZpA†,s
L,∆-module, which is endowed with an action of ΓL,∆. For n ≥ 0,

we let D†,s
L,∆,n(T ) = φ−n(D†,pns

L,∆ (T )) which is an OS⊗̂ZpA†,s
L,∆,n = φ−n(OS⊗̂ZpA†,pns

L,∆ )-
module.

For s ≥ s(V ), we let D†,s
K,∆(T ) = (D†,s

L,∆(T ))GK,∆/GL,∆ and D†,s
K,∆(V ) = D†,s

K,∆(T )[1/p].
Proposition 4.14. — Let S be a Qp-Banach algebra, let T be an OS-representation of
dimension d of GK,∆ and let V = S ⊗OS

T . Let L = (L1, . . . , Lδ) be such that for all
i ∈ ∆, Li/Ki is Galois and such that GL,∆ acts trivially on T/12pδ, and let n ≥ n(L).
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Then (OS⊗̂Ã†,r0
∆ )⊗OS

T admits a unique sub-OS⊗̂A†,r0
L,∆,n-module D†,r0

L,∆,n(T ) free of rank
d, fixed by HL,∆, stable by GK,∆, having a basis c3-fixed by ΓL,∆ and such that:

(OS⊗̂Ã†,r0
∆ )⊗

OS⊗̂A
†,r0
L,∆,n

D†,r0
L,∆,n(T ) ≃ (OS⊗̂Ã†,r0

∆ )⊗OS
T.

Proof. — This is Proposition 4.8 which we can use thanks to Theorem 4.7 and Proposition
4.13.

If V is an S-family of representations of GK,∆ admitting a Galois-stable integral lattice
T , we let

D†,s
K,∆(V ) := ((S⊗̂QpB†,s

L,∆)⊗
S⊗̂Qp B†,s(V )

L,∆
φn(V )(D†,r0

L,∆,n(V )(V )))HK,∆ ,

where D†,r0
L,∆,n(V )(V ) = D†,r0

L,∆,n(V )(T )[1/p].
Theorem 4.15. — If V is an S-family of representations of GK,∆, free of dimension d,
admitting a Galois-stable integral lattice, and if s ≥ s(V ), then:

1. D†,s
K,∆(V ) is a projective S⊗̂QpB†,s

K,∆-module of rank d;
2. the map (S⊗̂QpB̃†,s

K,∆)⊗
S⊗̂Qp B†,s

K,∆
D†,s
K,∆(V )→(S⊗̂QpB̃†,s

K,∆)⊗S V is an isomorphism;

3. if x ∈ X , the map S/mx ⊗S D†,s
K,∆(V )→D†,s

K,∆(Vx) is an isomorphism.
Proof. — The proof is the same as the one of [BC08, Théorème 4.2.9]: Proposi-
tion 4.14 implies that D†,s

L,∆(V ) is free of rank d over S⊗̂QpB†,s
L,∆ and that the map

(S⊗̂QpB̃†,s
∆ )⊗

S⊗̂Qp B†,s

L,∆
D†,s
L,∆(V )→(S⊗̂QpB̃†,s

∆ )⊗S V is an isomorphism. Proposition 1.11
then implies the first two points of the Theorem. For the last point, the same argument
as in [BC08, Théorème 4.2.9] can be followed verbatim.

It is clear by construction that after tensoring the modules over either OS⊗̂ZpA†
L,∆

(before taking the invariants by HK,∆) or OS⊗̂ZpA†
K,∆ (after having taken the invariants

by HK) what we obtain are étale (φ∆,ΓL,∆)- or (φ∆,ΓK,∆)-modules, as the φα act trivially
on T .

We now specialize our constructions to the case where S is a finite extension of Qp.
Using Lemma 1.10, any S-representation V in this case can be written as V = S ⊗OS

T

for some Galois-stable lattice T of V .
Proposition 4.16. — Let T be a free Zp-representation of GK,∆. Let L = (L1, . . . , Lδ)
be such that for all i ∈ ∆, Li/Ki is Galois and such that GL,∆ acts trivially on T/12pδT ,
and let n ≥ n(L). Then D†,r0

L,∆,n(T ) = φ−n((A
†,rn

∆ ⊗Zp T )HL,∆) is the unique sub-A†,r0
L,∆,n-

module, free of rank d of Ã†,r0
∆ ⊗Zp T satisfying the following:

1. D†,r0
L,∆,n(T ) is fixed by HL,∆ and stable by GK,∆;

2. the natural map Ã†,r0
∆ ⊗

A
†,r0
L,∆,n

D†,r0
L,∆,n(T )→Ã†,r0

∆ ⊗Zp T is an isomorphism;

3. the A†,r0
L,∆,n-module D†,r0

L,∆,n(T ) admits a basis in which if γ ∈ ΓL,∆ then the matrix
Wγ of γ in this basis satisfies vr0(Wγ − 1) > c3.
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Proof. — This is similar to [BC08, Proposition 4.2.3]: the existence of a unique such
sub-A†,r0

L,∆,n-module follows directly from the application of our Colmez-Sen-Tate method,
using Proposition 4.14. It remains to see that this module is indeed D†,r0

L,∆,n(T ) =
φ−n((A

†,rn

∆ ⊗Zp T )HL,∆).
As in the proof of [BC08, Proposition 4.2.3], we are left to compare the module

obtained by our method with the one coming from Theorem 3.24 (which is one of the
main theorem of [CKZ21]). This is done in [BC08] using Lemma 4.2.2 of ibid. and
here we just need the analogue for our multivariable setting, which is given by [CKZ21,
Lemma 6.13].

In particular this implies that if s ≥ rn(L) then D†,s
L,∆(T ) is free of rank d and the

natural map A†,s
∆ ⊗A†,s

L,∆
D†,s
L,∆(T )→A†,s

∆ ⊗Zp T is an isomorphism.

By the unicity property in proposition 4.16, it follows that D†
K,∆(T ) := ∪s≥s(V )D†,s

K,∆(T ),
where D†,s

K,∆(T ) is defined by

D†,s
K,∆(T ) := ((OS⊗̂ZpA†,s

L,∆)⊗OS⊗̂Qp A†,s(V )
L,∆

φn(V )(D†,r0
L,∆,n(T )(T )))HK,∆ ,

is equal to the étale (φ∆,ΓK,∆)-module over A†
K,∆ attached to T by Theorem 3.24.

In particular, this allows us to recover the constructions of [PZ21] and [CKZ21] of
overconvergent (φ∆,ΓK,∆)-modules attached to p-adic representations of GK,∆. Moreover,
these constructions extend to families of representations. As in the classical case, the
functor V 7→ D†(V ) is no longer an equivalence of categories between S-representations
of GK,∆ and étale (φ∆,ΓK,∆)-modules over S⊗̂QpB†

K,∆ if S is no longer a finite extension
of Qp (cf [BC08, Remarque 4.2.10]).

Finally, we are able to apply our constructions to generalize [CKZ21, Theorem 6.19]
(which does not seem to be easy using the methods developed in ibid as stated in their
Remark 6.20). Before doing so, we need several intermediate results, basically following
[Por24, §3] :
Lemma 4.17. — Let R be a commutative ring, endowed with a nonarchimedean val-
uation vR, and an invertible morphism φ : R→R such that vR(φ(x)) = pvR(x). Let
X ∈ GLd(R). Then for any c < p

p−1(vR(X) + vR(X−1)), and for any Y ∈ Md(R), there
exist U, V ∈ Md(R) such that vR(V ) ≥ c and

X−1φ(U)X − U = Y − V

Proof. — This is Lemma 3.3 of [Por24].

Lemma 4.18. — Let M be a free étale φ∆-module over ÃK,∆. Then there exists a
unique free étale φ∆-module M † over Ã†

K,∆, contained in M such that the natural map

M † ⊗Ã†
K,∆

ÃK,∆→M

is an isomorphim.
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Proof. — The idea is the same as for Proposition 3.4 of [Por24]: start with a basis of M ,
and let X denote the matrix of the Frobenius φ∆ = φα1◦· · ·◦φαδ

. Write X = ∑
n≥0 p

n[Xn]
(which is possible because ÃK,∆ = W (C♭

∆) by Remark 3.21). We want to construct a
matrix U = ∑

n≥0 p
n[Un] ∈ GLd(ÃK,∆) such that C = U−1Xφ∆(U) ∈ GLd(Ã†

K,∆). Let
us take U0 = Id. Suppose now that U0, · · · , Un−1 have been defined, and let us write
U ′ = ∑n−1

i=0 p
i[Ui]. We can write (U ′)−1Xφ∆(U ′) = ∑n−1

i=0 p
i[Ci] mod pnMd(ÃK,∆), where

Ci depends only on U0, · · · , Ui, so that there exists Y ∈ Md(ÃK,∆) such that

(U ′)−1Xφ∆(U ′)−
n−1∑
i=0

pi[Ci] = pnY.

We now want to find Un ∈ Md(C♭
∆) such that

(U ′ + pn[Un])−1Xφ∆(U ′ + pn[Un]) =
n∑
i=0

pi[Ci] mod pn+1Md(ÃK,∆)

satisfies that vα(Cn) is bounded below for all α ∈ ∆.
It suffices to prove that the mod p equation

Un −X0φ∆(Un)X−1
0 = Y X−1

0 − CnX−1
0

can be solved in C♭
∆ in both Un and Cn, with each vα(pn[Cn]) bounded independantly of

n. But this is possible by Lemma 4.17, using the (ϖα1 · · ·ϖαδ
)-adic valuation on C♭

∆.
By induction, we obtain a matrix U = ∑

n≥0 p
n[Un] ∈ GLd(ÃK,∆) such that C =

U−1Xφ∆(U) ∈ GLd(Ã†
K,∆), which is what we wanted.

To finish the proof, it remains to prove that the overconvergent module M † obtained
is unique. This follows from the fact that if two such modules existed, then the base
change matrix V ∈ GLd(ÃK,∆) between the two, would satisfy a relation of the form
φα(V ) = AαV Bα, with Aα, Bα ∈ GLd(Ã†

K,∆) for each α ∈ ∆. The same proof as in
[Por24, Prop. 3.5] shows that the coefficients of V belong to Õ†,jα

E∆
for each α ∈ ∆

(following Notation 2.10 of [CKZ21]), and thus V ∈ GLd(Ã†
K,∆).

Proposition 4.19. — Let D be a (φ∆,ΓK,∆)-module over B = A[1/p], where A is
either Ã†

K,∆, A†
K,∆, ÃK,∆ or AK,∆. Assume that D satisfy the following:

1. The underlying φ∆-module of D is the base extension of an étale φ∆-module over
A.

2. The action of ΓK,∆ is bounded: for some finitely generated A-module D0 generating
D over B, the action of ΓK,∆ carries D0 into p−mD0 for some m ≥ 0.

Then D is an étale (φ∆,ΓK,∆) over B.
Proof. — The case where A = A†

K,∆ or A = AK,∆ were treated by [CKZ21, Theorem
6.19], so it remains to prove the last two cases. We let M0 = Ã∆ ⊗A D0 and M =
B̃∆ ⊗B D = M0[1/p] (note that if A = Ã†

K,∆, then we could just tensor by Ã†
∆ over

A directly and skip the next step). By assumption, the action of ΓK,∆ carries D0 into
p−mD0 for some m ≥ 0, so that it carries M0 into p−mM0, and M0 is an étale Ã∆-module.
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By lemma 4.18, there exists M †
0 ⊂ M0 a sub-φ∆-module over Ã†

∆ of M0 which is
étale, and such that the action of ΓK,∆ carries M †

0 into p−mM †
0 (since it is given by a base

change matrix with coefficients in GLd(ÃK,∆)). Now theorem 4.7 can be applied (because
of theorem 4.7 and proposition 4.13) and gives us an étale (φ∆,ΓL,∆)-module over A†

L,∆
for some L = (Lα)α∈∆ such that the Lα/Kα are finite extensions, and which satisfy the
same boundness condition for the ΓL,∆. Inverting p and taking the invariants by HK , we
obtain a (φ∆,ΓK)-module over B†

K,∆ satisfying the conditions of the Proposition, and we
can now apply [CKZ21, Theorem 6.19] to conclude.

5. Multivariable de Rham representations

Recall that in [BCM24, §4], a ring Ainf,∆ is defined, and that by Proposition 3.6, this
ring is isomorphic to the p-adic completion of the completion of Ã+ ⊗Zp · · · ⊗Zp Ã+ for
the (ξα1 , . . . , ξαδ

)-topology. Also recall that there is a map θ∆ : Ainf,∆→OC∆ which is a
surjective GK,∆-equivariant morphism of Qp-algebras θ∆ : Ainf,∆→OC∆ .
Lemma 5.1. — The ring Ainf,∆ is isomorphic to the (p, ker(θ∆))-adic completion of
Ã+ ⊗Zp · · · ⊗Zp Ã+.
Proof. — Let Ã+

∆ denote the (p, ker(θ∆))-adic completion of Ã+ ⊗Zp · · · ⊗Zp Ã+. Since
Ã+⊗Zp · · ·⊗Zp Ã+ is a subring of Ainf,∆, and since the latter is (p, ker(θ∆))-adically com-
plete, we deduce that we have an injection Ã+

∆ ⊂ Ainf,∆. The fact that Ã+
∆ is (p, ker(θ∆))-

adically complete means that it is p-adically complete because (p) ⊂ (p, ker(θ∆)) is finitely
generated (see for example [Sta24, Tag 090T]. Therefore we have Ã+

∆ = lim←−n(Ã+
∆)/pn,

and by construction the topology induced on (Ã+
∆)/pn is the (p, ker(θ∆)) = (p, [ϖα])α∈∆-

adic topology, and thus the ([ϖα])α∈∆-adic topology. This means that Ã+
∆ is the p-adic

completion of the ([ϖα])α∈∆-completion of Ã+⊗Zp · · ·⊗Zp Ã+, and we conclude by Propo-
sition 3.6.

The ideal ker(θ∆) of Ainf,∆ is generated by {ξα}α∈∆ (this is [BCM24, Corollary 4.4])
and also by {ωα}α∈∆ (one checks that ξα/ωα is invertible in Ainf,∆).

As in [BCM24, §4], we define B+
dR,∆ as the ker(θ∆)-adic completion of Ainf,∆[1/p],

and we endow it with the so called canonical topology, which means that each quotient
B+

dR,∆/ker(θ∆)m ≃ Ainf,∆[1/p]/ker(θ∆)m is endowed with the p-adic topology coming from
the one on Ainf,∆, giving the quotient a p-adic Banach space structure. This means that
B+

dR,∆ equipped with the canonical topology is a Fréchet space. The following proposition
shows that we can replace the definition of B+

dR,∆ as in [BCM24] by one which is more
compatible with all our constructions so far:
Proposition 5.2. — We have an isomorphism of topological rings B+

dR,∆ ≃ ⊗̂
α∈∆
Qp

B+
dR,

where each B+
dR is a copy of the classical ring of periods of Fontaine endowed with its

canonical topology which makes it a Fréchet space.

https://stacks.math.columbia.edu/tag/090T
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Proof. — By definition, we have B+
dR,∆ = lim←−n Ainf,∆[1/p]/ker(θ∆)n, and thus

B+
dR,∆ = lim←−

n

((Ainf,∆/ker(θ∆)n)[1/p]),

using the fact that localization and quotients commute. Since ker(θ∆) = (ξα)α∈∆, we
have that for every n ≥ 1, ker(θ∆)nδ ⊂ (ξnα)α∈∆ ⊂ ker(θ∆)n, so that

B+
dR,∆ = lim←−

n

((Ainf,∆/(ξnα)α∈∆)[1/p]).

Moreover, the inclusions ker(θ∆)nδ ⊂ (ξnα)α∈∆ ⊂ ker(θ∆)n imply that Ainf,∆/(ξnα)α∈∆ is
the p-adic completion of (Ã+⊗Zp · · ·⊗Zp Ã+)/(ξnα)α∈∆ by lemma 5.1. By [Qin06, Exercise
1.3, Chapter 1], we have an isomorphism

(Ã+ ⊗Zp · · · ⊗Zp Ã+)/(ξnα)α∈∆ ≃ Ã+/ξnα1 ⊗Zp · · · ⊗Zp Ã+/ξnαδ
,

so that
B+

dR,∆ = lim←−
n

((Ã+/ξnα1⊗̂Zp · · · ⊗̂ZpÃ+/ξnαδ
)[1/p]),

where the completion is taken with respect to the p-adic topology. Now we just note that

lim←−
n

((Ã+/ξnα1⊗̂Zp · · · ⊗̂ZpÃ+/ξnαδ
)[1/p]) = lim←−

n

(Ã+/ξnα1 [1/p]⊗̂Qp · · · ⊗̂QpÃ+/ξnαδ
[1/p])

by lemma 1.7, and that for all α ∈ ∆ and n ≥ 1, (B+
dR)α/ker(θα)n ≃ Ã+/ξnα[1/p], so that

lim←−
n

(Ã+/ξnα1 [1/p]⊗̂Qp · · · ⊗̂QpÃ+/ξnαδ
[1/p]) = ⊗̂α∈∆

Qp
B+

dR

in the category of Fréchet spaces.

We quickly recap some properties and definitions attached to the ring B+
dR,∆, coming

from §4 of [BCM24]. We let t∆ := ∏
α∈∆ tα and we let BdR,∆ := B+

dR,∆[1/t∆]. Since
GK,∆ acts on t∆ by g(t) = χ∆(g) · t∆, the action of GK,∆ on B+

dR,∆ extends to an action
on BdR,∆. We endow BdR,∆ = lim−→n

t−n∆ B+
dR,∆ with the injective limit topology. The ring

BdR,∆ is endowed with a filtration indexed by Z and defined by

FiljBdR,∆ = lim−→
i≥j

t−i∆ Filiδ+jB+
dR,∆

where FiliB+
dR,∆ = ker(θ∆)i. The filtration thus defined on BdR,∆ is decreasing, separated,

exhaustive, and stable by Galois. We let BHT,∆ := grBdR,∆.
If V is a p-adic representation of GK,∆, we let DdR,∆(V ) := (BdR,∆ ⊗Qp V )GK,∆ , which

is a K∆-module, endowed with a filtration coming from the one on BdR,∆. By BdR,∆-
linearity, the inclusion DdR,∆(V ) ⊂ BdR,∆ ⊗Qp V induces a GK,∆, BdR,∆-linear map

αdR,∆(V ) : BdR,∆ ⊗K∆ DdR,∆(V )→BdR,∆ ⊗Qp V.

We define similarly a map αHT,∆(V ), where DHT,∆(V ) = (BHT,∆ ⊗Qp V )GK,∆ .
Proposition 5.3. — We have:

– grrBdR,∆ ≃
⊕

n=(nα)α∈∆∈Z∆,
∑

α
nα=r C∆t

n
∆;

– BHT,∆ ≃ C∆[tα, t−1
α ]α∈∆ ≃ ⊕n∈Z∆C∆(n) as GK,∆-modules.
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Proof. — See [BCM24, Prop. 4.14].

Note that [BCM24, Proposition 4.17] shows that the K∆-modules DdR,∆(V ) and
DHT,∆(V ) are of finite type, and that the maps αdR,∆(V ) and αHT,∆(V ) are injective.
A representation V of GK,∆ is said to be de Rham (resp. Hodge-Tate) when the map
αdR,∆(V ) (resp. αHT,∆(V )) is bijective.

The following proposition generalizes [BCM24, Proposition 4.17] for Noetherian fam-
ilies admitting a Galois stable lattice:
Proposition 5.4. — Let S be a Noetherian Qp-Banach algebra, with unit ball OS, let
T be a free OS-module of rank d, endowed with a continuous OS-linear action of GK,∆,
and let V = T [1/p]. Then DdR,∆(V ) and DHT,∆(V ) are finite S ⊗Qp K∆-modules.
Proof. — We follow the proof of [Bel15, Prop. 4.3.2]. We start by noticing that

DHT,∆(V ) = ⊕j∈Z∆(DSen,∆(V ) · tj∆)ΓK,∆ = ⊕j∈Z∆(DSen,∆(V ))ΓK,∆=χ−j
∆ ,

so that DHT,∆(V ) ⊂ DSen,∆(V ) which is a finite module over S⊗Qp K∆, which is Noethe-
rian since S is a Noetherian Qp-algebra and K∆ is of finite type over Qp. This means
that DHT,∆(V ) is a finite S ⊗Qp K∆-module.

For the proof regarding DdR,∆(V ) we can follow the proof of [Bel15, Prop. 4.3.2]
directly, as the arguments are the same.

Given a p-adic representation V of GK,∆, the authors of [BCM24] define in §5 of ibid
a module attached to V which we will denote by D+

Dif,∆(V ) as follows: D+
Dif,∆(V ) =

lim←−r((B
+
dR,∆ ⊗Qp V )HK,∆)/Filr)fin, which means that we’re taking the inverse limit with

respect to the filtration induced by B+
dR,∆ of the finite vectors of the quotients by this

filtration. Moreover, this is a K∞,∆[[tα]]α∈∆-module, and if (B+
dR,∆ ⊗Qp V )HK,∆ is free of

rank d over (B+
dR,∆)HK,∆ then it is free of rank d over K∞,∆[[tα]]α∈∆.

More generally, given a free B+
dR,∆-representation W of GK,∆, we can attach to W a

K∞,∆[[tα]]α∈∆-module
Wf := lim←−

r

(WHK,∆)/Filr)fin

which is free of rank d over K∞,∆[[tα]]α∈∆.
Theorem 5.11 of ibid shows that the functor W 7→ Wf is an equivalence of cate-

gories between free B+
dR,∆-representations of ΓK,∆ of finite rank and free K∞,∆[[tα]]α∈∆-

representations of ΓK,∆ of finite rank.
As in §4.3, we can recover those constructions using locally and pro-analytic vectors.

Lemma 5.5. — We have ((B+
dR,∆)HK,∆)ΓK,∆−pa = K∞,∆[[tα]]α∈∆.

Proof. — By proposition 5.2, lemma 1.4 and corollary 2.5, we have that

((B+
dR,∆)HK,∆)ΓK,∆−pa = (B+

dR) = ⊗̂α∈∆
Qp

(B+
dR)HKα )ΓKα −pa.

By [Por20, Prop. 2.6], we have that ((B+
dR)HK )ΓK−pa = K∞[[t]] which finishes the proof.
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Lemma 5.6. — If W is a free (B+
dR,∆)HK,∆-representation of ΓK,∆ of finite rank, then

Wf = W ΓK,∆−pa.
Proof. — Since B+

dR,∆ is a Fréchet space whose Fréchet topology is given by the Ba-
nach topology on each B+

dR,∆/FilrB+
dR,∆, we have that W ΓK,∆−pa = lim←−r(W/FilrW )la by

definition of pro-analytic vectors. By Proposition 4.12, each (W/FilrW )la is equal to
(W/FilrW )fin so that we recover the definition of Wf .

As a direct consequence of this lemma, we obtain the following corollary, which shows
that pro-analytic vectors recover Sen theory for B+

dR,∆-representations:
Corollary 5.7. — If V is a p-adic representation of GK,∆ then D+

Dif,∆(V ) = ((B+
dR,∆⊗Qp

V )HK,∆)ΓK,∆−pa.

6. Applications to crystalline and semistable representations

Let now A be an affinoid algebra over Qp and let OA be the valuation ring of A.
Let V be a free representation of GK,∆ over A, such that V contains an OA-lattice of
rank d, stable for the action of GK,∆. Then by Theorem 4.15 we can associate to V an
overconvergent (φ∆,ΓK,∆)-module over A⊗̂QpB†,r

K , for some r ∈ N[1/p]∆, that we will
call D†,r

∆ (V ). We define
D†

∆(V ) =
⋃

r∈N[1/p]δ
D†,r

∆ (V ).

We set
D†,r

rig,K,∆(V ) = (A⊗̂QpB†,r
rig,K,∆)⊗̂B†,r

K,∆
D†,r

∆ (V ),

D†
rig,K,∆(V ) =

⋃
r∈N[1/p]δ

D†,r
rig,K,∆(V )

D†,r
log,K,∆(V ) = (A⊗̂QpB†,r

log,K)⊗̂B†,r

K

D†,r
∆ (V ),

and
D†

log,K,∆(V ) =
⋃

r∈N[1/p]δ
D†,r

log,K,∆(V ).

In this section we will prove that

(3) Dcrys,∆(V ) = (D†
rig,∆(V )[1/t∆])ΓK,∆ ,

and

(4) Dst,∆(V ) = (D†
log,∆(V )[1/t∆])ΓK,∆ ,

This is a multivariable generalization of the classical work of [Ber02, Théorème 0.2] and
[Bel15, Theorem 4.2.9]. It is analogous to the result obtained in [BCM24, Theorem
5.23], that relates multivariable (φ,Γ)-modules and multivariable de Rham representa-
tions.
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To compare Dcrys,∆ and D†
rig,∆ we will pass from the module (V ⊗Qp (A⊗̂QpB̃†

rig,∆))GK,∆ .
To do so one can use the following
Proposition 6.1. — Let A be a Qp-Banach algebra, and let OA be its valuation ring.
Then ∩+∞

k=0p
−hk(OA⊗̂ZpÃ†,p−ks

rig ) ⊂ A⊗̂QpB̃+
rig.

Proof. — This is [Bel15, Coro. 4.2.12].

As in [Ber02, Prop. 3.2] and [Bel15, Prop. 4.2.13], the following “Frobenius regular-
ization” is a direct consequence from Proposition 6.1, though we cannot apply either of
[Ber02, Prop. 3.2] nor [Bel15, Prop. 4.2.13] directly.
Proposition 6.2. — Let d1 and d2 be two positive integers. Let A be a Qp-Banach
algebra. Let M ∈ Md2×d1(A⊗̂QpB̃†

log,∆) and suppose that for all i ∈ ∆, there exists hi ≥ 1
and Pi ∈ GLd1(A⊗Qp F∆) such that M = φ−hi

i (M)Pi. Then M ∈ Md2×d1(A⊗̂QpB̃+
log,∆).

Proof. — We use exactly the same strategy as in the proof of [Ber02, Prop. 3.2] but
since we are in the multivariable case we need to use it δ times.

Let us write Pδ = (pij), M = (mij), and mij = ∑
k≪∞ mij,kY

k. Let r = (r1, . . . , rδ)
be such that all the mij,k belong to A⊗̂QpB̃†,r

rig,∆. Let I1, . . . , Iδ−1 be respectively
compact subintervals of [ri,+∞[, with min(Ii) = ri, for i = 1, . . . , δ. We con-
sider the mij,k as elements of A⊗̂QpB̃I1⊗̂Qp . . . ⊗̂QpB̃Iδ−1⊗̂QpB̃†,rδ

rig . Note that Aδ :=
A⊗̂QpB̃I1⊗̂Qp . . . ⊗̂QpB̃Iδ−1 is a Qp-Banach algebra as every algebra considered in the
tensor product is a Banach algebra. We let OAδ

denote its valuation ring.
Let f0 ∈ Z be such that ph0P ∈ Md1(OAδ

⊗ZpOF∆
). Let sδ ∈ Z be such that the degree

of the mij in Yδ are bounded above by sδ, and let f = f0 + hδ · sδ. The relation between
M and Pδ translates into

φ−hδ
δ (mi1)p1j + . . .+ φ−hδ

δ (mid1)pd2j = mij

for all i ≤ d1, j ≤ d2. Since φ−hδ
δ (Yk) = p−hδ·kδYk, we obtain that if mij ∈

p−cOAδ
⊗̂ZpÃ†,rδ

rig , then we have pf0pij ∈ OAδ
⊗ZpOF∆

, and φ−hδ
δ (mij,k) ∈ p−cOAδ

⊗̂ZpÃ†,rδ/p
hδ

rig

so that mij,k ∈ p−f−cOAδ
⊗̂ZpÃ†,rδ/p

hδ

rig . By iterating, we find that the mij,k belong to
∩+∞
k=0p

−fk−cOAδ
⊗̂ZpÃ†,rδp

−hδk

rig . By proposition 6.1, this means that the mij,k actually be-
long to A⊗̂QpB̃I1⊗̂Qp . . . ⊗̂QpB̃Iδ−1⊗̂B̃+

rig. Since this is true for all Ii compact subintervals
of [ri,+∞[, with min(Ii) = ri, i = 1, . . . , δ, this means by [Eme04, Proposition 1.1.29]
that the mij,k belong to A⊗̂QpB̃†,r

rig,∆⊗̂QpB̃+
rig.

We apply then the same reasoning to each of the components, so that in the end the
mij,k belong to A⊗̂QpB̃+

rig,∆, and thus this concludes the proof.

One can then use Frobenius regularity to compare periods over A⊗̂QpB̃+
log,∆ to periods

over A⊗̂QpB̃†
log,∆.

Lemma 6.3. — Let A be a complete DVF over Qp, with perfect residue field. We have
an equality

((A⊗̂QpB̃+
log,∆)⊗̂AV )GK,∆ = ((A⊗̂QpB̃†

log,∆)⊗̂AV )GK,∆ .
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Proof. — Using Frobenius regularization (Proposition 6.2), the proof is the same as the
one of [Bel15, Proposition 4.2.16]

Using the lemma above one can prove the following lemma as in [Bel15, Corollary
4.2.18].
Proposition 6.4. — Let A be an affinoid algebra over Qp. We have an isomorphism

((A⊗̂QpB̃+
log,∆)⊗̂AV )GK,∆ = ((A⊗̂QpB̃†

log,∆)⊗̂AV )GK,∆ .

The following theorem explicates the relation between multivariable crystalline repre-
sentations and multivariable (φ,Γ)-modules. It is an analogue of [Bel15, Proposition
4.2.19].
Theorem 3. — In the situation above the natural map

(D†
log,K,∆(V )[1/t∆])ΓK,∆ → ((A⊗̂QpB̃†

log,∆)⊗̂AV [1/t∆])

is an isomorphism.
Proof. — Replacing Kα, for α ∈ ∆, with finite extensions we may assume that D†

log,K,∆
is free. After multiplying V by a suitable power of t∆ we may assume that

(D†
log,K,∆(V )[1/t∆])ΓK,∆ = (D†

log,K,∆(V ))ΓK,∆ .

Note moreover that

((A⊗̂QpB̃†
log,∆)⊗̂AV )HK,∆ = ((A⊗̂QpB̃†

log,∆)⊗̂A⊗̂Qp B†
log,K,∆

D†
log,K,∆(V ))

by overconvergence. If we pove that

((A⊗̂QpB̃†
log,∆)⊗̂A⊗̂Qp B†

log,K,∆
D†

log,K,∆(V ))ΓK,∆ = (D†
log,K,∆(V ))ΓK,∆

thus we get the claim. Taking ΓK,∆-pro-analytic vectors, and using Proposition 5.1 of
[Poy22] and Corollary 2.5, we get

((A⊗̂QpB̃†,r
log,∆)⊗̂

A⊗̂Qp B†,r

log,K,∆
D†

log,K,∆(V ))ΓK,∆

= (
⋃
n∈N

φ−n
∆ (A⊗̂QpB†,pnδr

log,K,∆)⊗̂
A⊗̂Qp B†,r

log,K,∆
D†,r

log,K,∆(V ))ΓK,∆ .

Since ((A⊗̂QpB̃†
log,∆)⊗̂A⊗̂Qp B†

log,K,∆
D†

log,K,∆(V ))ΓK,∆ is a finite A-module (as DdR(V ) is fi-
nite by Proposition 5.4), it will be contained in

(φ−n
∆ (A⊗̂QpB†,pnδs

log,K,∆)⊗̂
A⊗̂Qp B†,r

log,K,∆
D†,s

log,K,∆(V ))ΓK,∆

for some s ∈ N[1/p]δ. But φn∆ induces an isomorphism

(φ−n
∆ (A⊗̂QpB†,pnδs

log,K,∆)⊗̂
A⊗̂Qp B†,r

log,K,∆
D†,s

log,K,∆(V ))ΓK,∆

= (φ−n
∆ (A⊗̂QpB†,pnδs

log,K,∆)⊗̂
A⊗̂Qp B†,r

log,K,∆
D†,s

log,K,∆(V ))ΓK,∆ .

As ((A⊗̂QpB̃†
log,∆)⊗̂A⊗̂Qp B†

log,K,∆
D†

log,K,∆(V ))ΓK,∆ is stable by φ∆ we can conclude.
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Combining the theorem above with Propostition 6.4 we obtain what we wanted to
prove.
Corollary 4. — Let V be a representation of GK,∆ over A admitting an invariant OA-
lattice. Then

Dcrys,∆(V ) ∼= (D†
rig,∆(V )[1/t∆])ΓK,∆ ,

and
Dst,∆(V ) ∼= (D†

log,∆(V )[1/t∆])ΓK,∆ .

Proof. — The isomorphism for Dst,∆(V ) is clear. The one for Dcrys,∆(V ) follows taking
the elements annihilated by the monodromy operators induced variable by variable.

7. Multivariable rings of periods and admissibility

In this section we discuss the link between admissibility of representations of GK,∆ for
multivariable rings of periods, and admissibility for the restriction of the representations
of GK,∆ to GKα for classical rings of periods, and give some applications. Let V be a
p-adic representation of GK,∆ and let B be one of the period rings Bmax,Bst or BdR.
We use Bmax here instead of the ring Bcrys to treat crystalline representations as the
topology of Bcrys is “bad” (cfr. [Col98, p. 24]). Instead Bmax is a strict LF-space, so its
completed tensor product is “well-behaved”. We can call Bmax-admissible representations
crystalline as the notion of Bmax-admissibility and Bcrys-admissibility coincide (see ibid.).
We denote by B∆ the completed tensor product over Qp of δ copies of B. Moreover we
set Lα = BGKα , for α ∈ ∆. We say that V is admissible if the map

(V ⊗Qp B∆)GK,∆⊗̂K∆B∆ → V ⊗̂QpB∆,

induced by the inclusion
(V ⊗Qp B∆)GK,∆ ⊂ V ⊗̂QpB∆

is an isomorphism.
We recall the following result, which is [Ked23, Proposition 2.3]:

Theorem 7.1. — Let B be one of the rings Bmax,Bst or BdR. Let V be a p-adic
representation of GK,∆ such that, for each α ∈ ∆, the restriction of V to GKα is B-
admissible. Then V is B ⊗Qp · · · ⊗Qp B-admissible.

In the other direction, we can prove the following:
Proposition 7.2. — Let B be a classical ring of p-adic periods (either Bmax,Bst
or BdR), and let B∆ denote the completion (for the canonical topology on B) of
B⊗̂Qp · · · ⊗̂QpB. Let V be a p-adic representation of GK,∆, such that the (B∆)GK,∆-
module (V ⊗Qp B∆)GK,∆ is free of rank dimQp(V ). Then for each α ∈ ∆, the restriction
of V to GKα is B-admissible.
Proof. — Up to permutation of the factors in B∆ and GK,∆, we can assume α = 1. We
have that

(V ⊗Qp B∆)GK,∆ ≃ ((((V ⊗Qp B)GKα1 ⊗̂QpB)GKα2 . . . )⊗̂QpB)GKαδ .
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We know that if W is a GKα representation of rank n, for α ∈ ∆, we have that (W ⊗Qp

B)GKα is finite dimensional over Lα of rank less or equal than n, and the equality holds
if and only if W is B-admissible. This implies that

(V ⊗Qp B∆)GK,∆ ≃ ((((V ⊗Qp B)GKα1 ⊗Qp B)GKα2 . . . )⊗Qp B)GKαδ .

Suppose that the restriction of V to GKα1
is not B-admissible. This implies that (V ⊗Qp

B)GKα1 is a vector space over Kα1 of rank less than d. Thus ((V ⊗QpB)GKα1⊗QpB)GKα2 is a
Lα2-vector space of rank less than [Lα1 : Qp]d. Inductively we obtain that (V ⊗QpB∆)GK,∆

is a Qp-vector space of dimension less than d[Lα1 : Qp] . . . [Lαδ
: Qp]. But this contradicts

the hypothesis that (V ⊗Qp B∆)GK,∆ is free of rank d over Lα1 ⊗Qp . . .⊗Qp Lαδ
.

In particular, combining both results above with proposition 5.2, we deduce the fol-
lowing corollary, which in the case B = BdR answers the question asked at the end of
[BCM24, §4]:
Corollary 7.3. — Let V be a p-adic representation of GK,∆, such that the (B∆)GK,∆-
module (V ⊗Qp B∆)GK,∆ is free of rank dimQp(V ). Then V is B-admissible.

Note that, if V is a p-adic representation of GK,∆, then the F1 ⊗Qp · · · ⊗Qp Fδ-module
Dst,∆(V ) := (Bst,∆⊗Qp V )GK,∆ is equipped with a filtration indexed by Zδ induced by the
one on DdR,∆(V ) and which can be split into partial filtration (Filα)α∈∆ and with partial
Frobenii (φα)α∈∆ and partial monodromy operators (Nα)α∈∆.

In the classical setting, those objects are called filtered (φ,N)-modules, and one can
attach to them a Hodge polygon (coming from the filtration) and a Newton polygon
(coming from the Frobenius structure). A filtered (φ,N)-module D is said to be admis-
sible if there exists a semistable p-adic representation V such that D = Dst(V ), and is
said to be weakly admissible if some technical condition regarding the way the Frobenius
structure and the filtration is met (if for any submodule stable by φ and N , the Newton
polygon of the submodule lies above the Hodge polygon attached to the induced filtra-
tion). The main theorem of [CF00] shows that weakly admissibility and admissibility
are equivalent.

Here, we can define admissibility the same way: a filtered (φα, Nα)α∈∆-module D over
F1 ⊗Qp · · · ⊗Qp Fδ is admissible if and only if there exists a semistable representation V

of GK,∆ such that D = Dst,∆(V ). Because of our corollary, it then makes sense to define
weakly admissibility as follows: a filtered (φα, Nα)α∈∆-module D over F1 ⊗Qp · · · ⊗Qp Fδ
is weakly admissible if and only if for each submodule stable by the operators (φβ)β∈∆
and (Nβ)β∈∆, and for each α ∈ ∆, the Hodge polygon of index α induced by the global
filtration on this submodule lies below the Newton polygon of index α. In this setting
however, it does not seem clear wether or not admissibility and weakly admissibility are
still equivalent.
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