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A Simple Second Order Cartesian Scheme for
Compressible Flows

Y. Gorsse, A. lollo and L. Weynans

Abstract A simple second order scheme for compressible inviscid flowsarte-
sian meshes is presented. An appropriate Rieman solvexddagmpose the imper-
meability condition. The level set function defines the innseel body and provides
some useful geometrical data to increase the scheme agcéracodification of
the convective fluxes computation for the cells near thelsatisures the boundary
condition at second order accuracy. The same proceduré@iped in each direc-
tion independently. An application to the simulation of aleb flow is presented
to demonstrate the accuracy of the method.
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1 Introduction

The computation of flows in complex unsteady geometries isieia issue to per-
form realistic simulations of physical or biological apgtions like for instance
biolocomotion (fish swimming or insect flight), turbomackénwindmills... To this
end several class of methods exist. Here we are concernledmvitersed boundary
methods, i.e., integration schemes where the grid doestrtbefgeometry. These
methods have been widely developed in the last 15 yearsgkhthe first meth-
ods were designed earlier (see for example [10], [2], [3he General idea behind
immersed boundary methods is to take into account the boymdaditions by a
modification of the equations to solve, either at the cortirelevel or at the discrete
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one, rather than by the use of an adapted mesh. The main adeardf using these
approaches, compared to methods using body-conformidg,gare that they are
easily parallelizable and allow the use of powerful linerditive techniques. They
also avoid to deal with grid generation and grid adaptatgpr,ohibitive task when
the boundaries are moving. A recent through review of imegtundary methods
is provided by Mittal and laccarino [6].

In this paper we present a simple globally second order selirgpired by ghost
cell approaches to solve compressible inviscid flows. Irflthé domain, away from
the boundary, we use a classical finite-volume method basad epproximate Rie-
mann solver for the convective fluxes and a centered schentleefaliffusive term.
At the cells located on the boundary, we solveadrhoc Riemann problem taking
into account the relevant boundary condition for the cotivedluxes by an appro-
priate definition of the contact discontinuity speed. Thieeas can be adapted to
reach higher order accuracy. However, here our objectiteedevice a method that
can easily be implemented in existing codes and that istdaifar massive paral-
lelization.

In section 2 we describe the finite volume scheme used to siedvBow equations
in the fluid domain, away from the interface. In section 3 wedduce our method
to impose impermeability condition. Finally, in section £ \present a numerical
test in two dimensions to validate the expected order of em@nce and to discuss
performance compared to others immersed boundary or baely fitethods.

2 Resolution in the fluid domain

We briefly describe how we solve the Euler equations in the fii@main.

2.1 Governing equations

The compressible Euler equations are:

Jp
ot +0-pu=0 (2)
Jpu
%+D-(pu®u+pn):0 @)
JE
E+D~((E+p)u):0 3)
(4)
whereE denotes the total energy per unit volume. For a perfect gas
E= L—Flpu2 andp = pRT (5)

y—1 2
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2.2 Discretization

We focus on a two-dimensional setting. lLeindj be integers and consider the rect-
angular lattice generated Ibyand j, with spacinghy andhy in thex andy direction,
respectively.

LetW be the conservative variableg* (W), Y (W)) the convective flux vectors
in the x andy directions, respectively. By averaging the governing ¢éiqua over
any cell of the rectangular lattice we have

% + h—lx(ﬁxiﬂ/zj' — 7% 125) + %(ﬁyi i+12—Fij—12) =0  (6)
whereW j is the average value of the conservative variables on theaesidered,
ﬁixﬂ/zj the average flux in the direction taken on the right cell side, and similarly
for the other sides.

The average convective fluxes at cell interfaces are appiaeid using the Osher
numerical flux function [9].

A second order Runge-Kutta scheme is used for the time iatiegr

3 A second order impermeability condition

For Euler equations, the boundary condition on the interiacthe impermeabil-
ity assumption, i.e., given normal velocity to the bound@msro for a static wall,
but non-zero for a moving solid). We are concerned with reciog second order
accuracy on the impermeability condition.

3.1 Level set method

In order to improve accuracy at the solid walls crossing the cells we need ad-
ditional geometric information. This information, mairitye distance from the wall
and the wall normal, is provided by the distance functione Tével set method,
introduced by Osher and Sethian [8], is used to implicitlgresent the interface
of solid in the computational domain. We refer the interéseader to [11], [12]
and [7] for recent reviews of this method. The zero isolinéheflevel set function
represents the boundakyof the immersed body. The level set function is defined
by:
_ [ digtz(x) outside of the solid
909 = { _digts(x) _inside of the solid (7)

A useful property of the level set function is:

n(x) = 0¢(x) (8)
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wheren(x) is the outward normal vector of the isoline ¢fpassing orx. In partic-
ular, this allows to compute the values of the normal to tierface, represented by
the isoline¢ = 0.

3.2 Theimpermeability condition in one dimension

To make the ideas clear, let us start from a simple case. Tdiealysituation for a
grid that does not fit the body is shown in Fig. 1. The plan is talify the flux at the
cell interface nearest to the boundary of the solid, in otdémpose the boundary
condition at the actual fluid-solid interface location. Fofixed body, we want to
imposeu, = u(xp) = 0 at the boundary poing, where¢ (x,) = 0.

Fig. 1 Mesh near the solid.
The interface lies between the
center of celi (fluid) and the
center of celli+ 1 (solid).

The flux ini +1/2 has to be Nﬂ
modified in order to account , ; ; .

for the boundary conditions. -1 Py

Let u* be the contact discontinuity speed resulting from the smiubf the Rie-
mann problem defined at the interface betweenicatfid celli + 1. The plan is to
define afictitious fluid state in+- 1 such that the resulting velocity at the interface
takes into account, at the desired degree of accuracy, tivedaoy conditioru, = 0
in X,. In particular, taking a second order Taylor expansion efublocity atx,, we

have h 5
*_ M%) U
u _ub+<2 ¢') ox

The boundary can be located anywhere betwgeandx; .1, SO to ensure a well

+0(hd) 9)

Xp

. o Up— Ui . . )
defined derivative (ik, — X;, xb x-l is not numerically well defined), we uge 1

b— A
instead ofx; to compute the first order derivative at the interface:

au

ou Up—Ui_g
ox

L htd (10)

To obtainu* as the contact discontinuity speed of the Riemann problew, h
ing computed the left state of the Riemann problem with theS@U recon-
struction and slope limiterd)_ = (u_,p_,c_), we create the right statd, =
(—u_+2u*, p_,c_), wherec is the speed of sound. The left and right state of the
variablesp andc are chosen identical to express the continuity of theselbas on
the interface.
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3.3 Theimpermeability condition in two dimensions

In two dimensions the flow equations are solved by computinigpendently the
flux in each direction, so we want to apply in each directiamshme kind of ideas
as in one dimension in order to accurately enforce the bayrmtaditions. When
the level set function changes sign between two cells, wd temodify the fluxes
at the interface between these cells.

The interface pointis the intersection between the interf@d = 0) and the segment
connecting the two cell centers concerned by the sign ch@oaigexample the points
A, B andC on Fig. 2). For the flux computation, a fictitious state is tedafor
instance between the cells j) and (i + 1, j) on Fig. 2. The boundary condition
that we have to impose now ig,.n, = 0, whereuy, is the speed of the fluid at the
boundary, anah, the outward normal vector of the body.

Fig. 2 Example of geometric
configuration at the interface.
Bis the interface point located
between(i, j) and (i +1, j).
The flux on cell interfacéi +
1/2, j) is modified to enforce
the boundary condition oB.

With reference to Fig. 2, the level set function changes &igtweenx; j and
Xi+1,j at pointB. Let the normal vector point to the fluid side. If we assume the
boundaryg = 0 is locally rectilinear, using the side splitter theorehe distance
betweerx; ; andB is

hyl i,
d=—->"0 11
CNECE -
and the normal vectar, is computed by
d
nb=ni,j+h—(ni+1,j —nij) (12)
X

wheren; j is a second order centered finite-difference approximatiang at point
(i,]). To impose the boundary condition at the interface p8intve determine a
value of the contact discontinuity speed relative to a Riemann problem defined
in the direction normal to the cell side through, ;, consistent at second order
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accuracy withup - npy = 0 in B. Figure 3 illustrates graphically the following steps
Let the normal component af beuj, = u* - np.

u;, is computed with a second order Taylor expansion of the nbveiacity at the
interface point, that is:

x hx ubn—U|7]_n 2
Uj = Up n+<2 d) e d +0O(hy). (13)

Then, let determine; the tangential component af by u; = u*- 1, Ty being
the vector tangential to the interface at pdttWe use the continuity property of
the tangential component of the velocity to defirjeaccording to

Up=u_-T (14)

=0
U, oy 7 S funn=u

(i+1, j)
> EEEETT .

(i1,) %

Fig. 3 Graphical illustration
of the construction of the*
vector.

Finally we decompose* in the canonical basis by its horizontal and vertical
components’* andv*, that is

U = Ujng + U; Tx (15)

V' = Upny + U Ty (16)

To obtainu* as the contact discontinuity speed of the Riemann probleen|eft
state resulting from the MUSCL reconstruction with slopaiters beingU_ =
(u_,v*, p_,c_), we choose the right state to be = (—u_ +2u*,v*, p_,c_).

4 Numerical illustration: The Ringleb flow

The objective is to ascertain the actual accuracy obtaiht#wbasolid interface.

The Ringleb flow refers to an exact solution of Euler equatidrhe solution is
obtained with the hodograph method, see [13]. The streas\limd iso-Mach lines
are shown on Fig. 4.

The exact solution is formulated {i®,V) variables withu =V cos@, v=V sin@

andV = v/ u2+\2,
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Fig. 4 Streamlines (black) 0 \ \\ \\ \\
and iso-Mach lines (grey) of L
the Ringleb flow.

The stream function is given By = S8,
The streamlines equations are:

1 1 L sin6 cosO
— — (= _oy? — == 17
=55 (g2 -2%) 43 . y=T00 a7
with :
1 1+c 1 1 1 > y—1,2 5
<2 1-c ¢ 3 505> ’ P (18)

In our test case, the computational domain-9.5; —0.1] x [—0.6; 0 and we
numerically solve the flow between the streamlilgs= 0.8 and¥, = 0.9. The inlet
and outlet boundary condition are supersonicyfer —0.6 andy = 0 respectively.
The convergence orders are calculated for each variahlg lrp, L. norms on four
different grids 32< 48, 64x 96, 128x 192 and 256« 384 and presented on table 1.

Table 1 Global orders of convergence for each variable.

Variables L1 norm L, norm Lo norm
x-velocity 2.04 1.68 1.28
y-velocity 1.97 1.6 1.13
pressure 2.0 2.02 1.97
sound velocity 1.95 1.58 1.03
entropy 1.9 1.49 1.08

The error for several variables is order 1 for thgsyy norm. Colella et al. [5]
obtain the same kind of results on other test cases. One argutaveloped in [5]
to explain this order degradation is that the solid wall iareteteristic for entropy,
and hence the error on this variable accumulates from ialettlet. For the same
test case, Coirier and Powell [4] observed also a convemerder between one
and two in the case of their own cartesian method. In [1], Abgt al. obtain d.2
numerical order of convergence for the density equal to 1t/ tlveir second order
residual distribution scheme.
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5 Conclusions

In this paper we have presented a new second order cartesthoarto solve com-
pressible flows in complex domains. This method is based dasaical finite vol-
ume approach, but the values used to compute the fluxes a¢lifinterfaces near
the solid boundary are determined so to satisfy the bournztargitions with a sec-
ond order accuracy. A test case for inviscid flows was preskthe order of con-
vergence of the method is similar to those observed in thilitire. This method is
particularly simple to implement, as it doesn’t require apgcial cell reconstruc-
tion at the solid-wall interface. The extension to thremelsional cases is natural
as the same procedure at the boundary is repeated in eactiatird-orthcoming
work will concern the extension of the present approach ttiifphysics problems.
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