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Abstract : We present a suite of methods to achieve “drag and drop” simulation, i.e., to fully
automatize the process to perform three-dimensional flow simulations around a body defined by
actual images of moving objects. The overall approach requires a skeleton graph generation to
get a level-set function from pictures, optimal transportation to get body velocity on the surface
and then flow simulations thanks to a cartesian method based on penalization. We illustrate this
paradigm by simulating the swimming of a mackerel fish.
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1 Introduction

The aim of this study is to devise a methodology for drag and drop simulations. The idea is to perform full
three dimensional fluid flow simulations around deforming bodies defined by some images (here, a mackerel
fish). The flow solver is based on cartesian grids, the body is defined by the zero of a level set function [1] and
it is modeled thanks to a second order penalization method [2, 3] with the body velocity. Several numerical
simulations of deforming bodies where the geometry is analytically prescribed has been done ([3, 4]). As
we will explain in what follows, it is necessary to know the body level set function and surface deforming
velocity at each simulation time step.

2 Modeling and numerical method

The flow configuration is given in figure 1 where Ωi is domaine defined by body i, Ωf is the domain filled
by the fluid, and Ω = Ωf ∪ Ωi

s is the whole domain. In what follows, we will simplify the problem by only
considering one body.

The flow can be modeled using the incompressible Navier-Stokes equations written in the fluid domain

Ωf , where D(u) = ∇u+∇
T
u

2 :

ρ

Å

∂u

∂t
+ (u ·∇)u

ã

= −∇p+∇ · 2µD(u) + ρg in Ωf , (1a)

∇ · u = 0 in Ωf , (1b)
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Figure 1 – Sketch of the general flow configuration.

with boundary conditions on the body boundary

u(x, t) = û(x, t) on Γs. (1c)

with initial condition in Ωf and boundary conditions on ∂Ω. Imposing the unsteady boundary condition on
the body boundary is not straightforward. On the other hand, it is simple if the equations are discretized in
space using a body fitted mesh. However, these kind of meshes are difficult to generate on complex geometries
and mesh adaptation is required when the body moves. In this study we will consider the penalized Navier-
Stokes equations in the whole domain Ω (fluid and body)

∂u

∂t
+ (u ·∇)u = −

1

ρ
∇p+

1

ρ
∇ · 2µD(u) + g + χλ(û− u) in Ω, (2a)

∇ · u = 0 in Ω, (2b)

Since the boundary conditions on the body boundary are not explicitely imposed, a fixed mesh can been
used and we chose to use an uniform cartesian mesh. The boundary conditions on the body boundary are
implicitely imposed through the penalty term χλ(û − u), where χ is a characteristic fonction (χ(x) = 1
if x ∈ Ωs and χ(x) = 0 elsewhere), λ is a large penalty parameter (we chose λ = 108). In what follows,
the characteristic fonction will be computed from the sign distance fonction ψ, so that χ = H(ψ) where H
denotes the Heaviside function.

It has been proven the solution of the system (2) tends to the solution of the system (1) with respect to
the parameter 1/λ.

The resolution of system (2) requires knowledge of both the unsteady characteristic function χ and the
moving velocity û. The following section will explain how to compute these quantities from a series of images.

The system (2) is solved in time using a projection method ([5, 6]) and is discretized in space on a uniform
cartesian mesh using second order centered finite differences up the third-order upwind finite differences for
the convective term.

3 Methodology to get the level set and the deforming velocity

The aim of this section is to present the methodology to perform numerical simulations from body
geometry snapshots. Here snapshots are given by some pictures of a real fish. The path to perform fully
three-dimensional simulations form two-dimensional images (photographies) is the following. Firstly, we will
generate a 3D profile from 2D images. To do this we use the skeleton approach. From the skeleton (that
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we can deform using a swimming law) we can build a level set function using some realistic assumptions.
We can obtain several 3D level set functions corresponding to a swimming profile deforming the skeleton
(backbone) with a swimming law. Secondly, the velocity transformation form a level-set function to the next
one is also required for penalization. In general, we only have a limited number of level-set snapshot and it is
thus necessary to build intermediate ones. To summarize this step we need the transformation velocity and
intermediate level set functions. Optimal transport is an adapted method to get this.

A full three-dimensional numerical simulation can be achieved knowing the level set function and the
penalization velocity. Once we will get the level-set function and the penalization velocity we will be able to
perform a full three dimensional numerical simulation.

3.1 Skeleton technics to build 3D level set functions

The skeleton method used here is described in detail in ([7]). We only present the main steps. We start
from pictures (front, top and sides views) for a mackerel fish (see figure 2). We then perform a segmentation
to extract the contour of each image. From these contours we can build level set functions.
If necessary, top and face views can be recentered as illustrated in figure 3. Skeleton method requires

Figure 2 – Skeleton steps : photographies (left), segmentation and contours extraction (center), and asso-
ciated level set (right).

a symmetry for top and front views, and the lateral tails are then removed. The undeformed profile is

Figure 3 – Contour recentering (top view).

represented as beeing the isocontour zero of the level set function (see figure 4). The swimming profile is
obtained deforming the backbone (median skeleton, see figure 3) using the swimming law (3) :

y(x, t) = a(x) sin(2π(x/λ+ ft)), (3a)

with
a(x) = c0 + c1x+ c2x

2. (3b)
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We chose the same swimming parameters as in [8]. Several level set functions corresponding to different time

Figure 4 – Examples of the 3D profils. Undeformed (left) and deformed (right).

t can be generated using (3). In what follows we generate 20 snapshots for the level set function uniformly
taken over une swimming stroke. We took care to remove the artificial deplacement of the center of mass
due to deformation.

3.2 Optimal tranport

We get thus 20 snapshots of the level set function
{
ψk

}
k=0,...,19

. Without loss of generality, the method

is illustrated with ψ0 and ψ1. We look for the transformation (velocity field) from ψ0 to ψ1. This field will
also allow to build some intermediate level set functions ψℓ for 0 < ℓ < 1 corresponding to the temporal
discretization of the Navier-Stokes equations. This problem had initially been introduced by Monge [9]. The
numerical resolution of that kind of problem is difficult and we chose the lagrangian method introduced
in [10].

We study the L2 solution of the Monge-Kantorovich Problem (MKP). Let ρ0(ξ), ρ1(x) two positive
function with compact supports Ω0 and Ω1, where ξ, x ∈ R

d and d is the dimension of the physical problem
(d = 3 in this study). We suppose that

∫

Ω0

ρ0(ξ)dξ =

∫

Ω1

ρ1(x)dx.

Let X : Ω0 → Ω1 be a regular transform such that X(ξ) is a transfert between ρ0 and ρ1. We then obtain
the Jacobian equation :

ρ0(ξ) = det(∇X(ξ))ρ1(X(ξ)).

This equation is under determined with respect to X(ξ) and we chose the transformation inducing the
Kantorovich-Wasserstein L2 distance :

inf
X

∫

Ω0

ρ0(ξ)|X(ξ) − ξ|2dξ. (4)

This L2 MKP corresponds to determine the transformationX∗ satisfying (4). It has been proven ([11, 12, 13])
that this problem has a unique solution that is the gradient of a convexe function Ψ : Ω0 → R :

X∗(ξ) = ∇Ψ(ξ).

The first class of methods to solve this kind of problem is based on the solution of the Monge-Ampere
Equation (MAE) :

ρ0(ξ) = det(∇2Ψ(x))ρ1(∇Ψ(x)).

The problem of the equation is that the boundary conditions are still unknown.

4



The second class of methods is based on arguments form continuous mechanics ([14]). A ficticious time 1 is
introduced and we have Π : [0, 1]×Ω0 → R

d, with Π(0, ξ) = ξ, Π(1, ξ) = X(ξ), x = Π(t, ξ) and ∂tΠ = v(t, x),
and MKP is solution of

inf
ρ,v

∫

Rd

ρ(t, x)|v(t, x)|2 dx,

where the minimum is look over all densities ρ(t, x) ≥ 0 and velocity filedsv(t, x) ∈ R
d satisfying the

continuity equation
∂tρ+∇ · (ρv) = 0, (5)

with initial and final conditions :
ρ(0, ·) = ρ0, ρ1(1, ·) = ρ1.

The resolution of this minimization problem can be expensive in the numerical point of vue. We then chose
a lagrangian method [10] based on Picard iterations. We can start from a transformation fields that is a
perturbation of the optimal one, and then linearize and iterate near the field. If the two images are quite
close one to each other, we observed that the field zero is acceptable. We thus initially chose Ψ0 = 0 and
X0(ξ) = ξ, where ξ is the coordinates of the fixed mesh where the images are defined. The algorithm is the
following :

Algorithm : for a given iteration n, we compute the image ρn0 (ξ) of the quantity ρ1(X
n(ξ)) via the

transformation Xn(ξ)
ρn0 (ξ) = ρ1(X

n(ξ)) det∇ξX
n(ξ).

We should obtain ρn0 (ξ) = ρ0(ξ) for n → ∞. At the first iteration n = 0, we have ρn0 (ξ) = ρ1(X
n(ξ)). We

defined a convergence criterion with a given norm |ρn0 (ξ) − ρ0(ξ)| ≤ ǫ. If this criterion is not satisfied we
computed a correction Ψn solving :

ρn0 (ξ)− ρ0(ξ) = ∇ξ · (ρ1(X
n(ξ))∇ξΨ

n) , (6)

and then we update the transformation

Xn+1 = Xn − α∇Ψn.

The parameter 0 ≤ α ≤ 1 depends on the images. If two images are quite close from each other we can chose
α = 1. In our case we chose α = 0.5. We let n = n+ 1 and the algorithm is stopped when the convergence
criterion is satisfied. To get a well posed problem (6) we regularize the densities ρ0 and ρ1 adding a small
value ε to avoid a zero value.

Choice of the densities : Since the level set functions (sign distance functions) are not strictly positive
they are not adapted for optimal transport. We have also tested a mask function. However this choice is not
adapted as well since the caudal take is almost not taken into account. We then consider a gaussian functions
near the interface and we regularize these functions with ε = 10−4.

Deformation velocity : Let ∆ts by the time step between two successive images. The deformation velocity
from image ρ0 to image ρ1 is ũ0 = Xopt/∆ts. The exponent 0 highlights the fact that the center of mass do
not move during the deformation.

Construction of intermediate images : For X = Xopt + ξ we have ρ0 and for X = ξ we have ρ1. Let τ
be a parameter defining the transfert form ρ0 to ρ1. The transformation for a fixed τ is Xτ = ξ+(1−τ)Xopt.
The image is then ρτ computed with

ρτ (ξ) = ρ1(Xβ(ξ)) det∇ξXβ(ξ).

1. This time will not be ficticious ion our study and it will correspond to the time between two successive images..
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Figure 5 – Choice of the density. The profile is defined by the external blank lign. 2D visualization in the
plan z = 0.

Figure 6 – Reconstruction of an intermediate image for τ = 0.5∆ts (red) between ρ0 (green) et ρ1 (blue).
2D visualization in the plan z = 0.

Generalization : We show how to compute the deformation velocity form density ρ0 to density ρ1, and
then to build intermediate densities ρτ . This can be generalized to a series of densities {ρi}

Ni
i=0 computing

the deformation velocities from ρi to ρi+1. From the density ρτ (ξ, t) we can compute a mask and a level set
function (by redistanciation). In what follows we note ψ0(ξ, t) the level set functions of the deformed profile
and we note ũ0(ξ, t) the deformation velocity.

4 Numerical simulation of swimming

Computation of the position : The position of the self-propelled fish is characterized by the level-set
function ψ(ξ, t) that is the image of the level set function ψ0(ξ, t) using the transformation of the rigid
motion (translation plus rotation) noted Xr(ξ, t). We thus have :

ψ(ξ, t) = ψ0(Xr(ξ, t)).

In the same way the velocity of the body is u0(ξ, t) = u(ξ, t) + uθ(ξ, t) + ũ0(ξ, t). Since the position
has been modified, this velocity has to act on the modified position and we have :

û(ξ, t) = u0(Xr(ξ, t)).

The transformation Xr(ξ), and the translation u(t) and rotation uθ(ξ, t) velocities are computed from
Newton’s laws computing the forces and the torques exerted by the flow on the body.
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Computation of forces and torques We consider an arbitrarily domain Ωfi containing the obstacle Ωs

(see figure 7) such that :

Fi = −
d

dt

∫

Ωfi
(t)

u dV +

∫

∂Ωfi
(t)

(T+ (u− ui)⊗ u)ni dS

−

∫

∂Ωi(t)

((u− ui)⊗ u)ni dS.

(7a)

Mi = −
d

dt

∫

Ωfi
(t)

ri ∧ u dV +

∫

∂Ωfi
(t)

ri ∧ (T+ (u − ui)⊗ u)ni dS

−

∫

∂Ωi(t)

ri ∧ ((u− ui)⊗ u)ni dS.

(7b)

The integrals over ∂Ωi in (7a) and (7b) vanish in most of applications (u = ui), except if blowing and/or
suction is applied on that boundary.

Ω1

uf1

Ω2

uf2

∂Ωf1

∂Ωf2

Ωf1

Ωf2

Figure 7 – Sketch of the domain used to compute the forces and the torques.

Validation : we compare two numerical simulations where the geometry of the fish is known at each time
step. :

– Case I ("Lagrangian") : the level set function and the deformation velocities are given at each time
step

– Case II ("Eulerian") : we suppose that we only have 20 snapshots of the geometry over one swimming
stroke. We thus have to compute the transformation velocity (from one image to the following one)
and the missing geometries using optimal transport.

In both cases the fish length is ℓ = 10 cm and we chose the swimming law (3) with f = 4Hz, c0 = −0.002,
c1 = −0.12, c2 = 2 and λ = ℓ.

A comparison of deformation velocity fields in case I (lagrangian) and case II (optimal transport) in
presented in figure 8. Velocity componants U (in the swimming direction) and V (direction normal to the
swimming) are presented for a 2D section in the plan z = 0. A good agreement is observed for the normal
velocity V . The agreement is not so clear for the the component U . Due to the geometry of the profil, we can
consider that the component U is approximatively tangential to the profil. Indded, optimal transport is not
able to model the rotation (since deformation is potential). Other informations can helped the situation, as
for instance repartition of the non constant density on the profil. Another solution could be to add constraints
directly in the problem formulation. The swimming velocities obtained in both cases I and II are compared
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(a) Velocity in the swimming direction U (b) Velocity normal to the swimming direction V

Figure 8 – comparison of deformation velocity fields in case I (lagrangian, inside the profil) and case II
(optimal transport, outside the profil).

in figure 9. The normal velocity V shows good agreements in both cases. The velocity U is influenced by the
differences observed in figure 8. However, these differences are quite small. After this validation we present

1 2 3 4
-0.15

-0.1

-0.05

0

U (Case I, Lagrange)

V (Case I, Lagrange)

U (Case II, Images)

V (Case II, Images)(U
,
W

)

t

Figure 9 – Comparison of the swimming velocities obtained in lagrangian and eulerian ways.

a numerical simulation for a mackerel fish obtained from photographies.

Numerical results for a real mackerel fish Fgure 10 present the wake generated by a mackerel fish.
The parameters are the same as those used in the previous section, the length is 10 cm and the swimming
frequency is f = 4Hz. The velocity of the mackerel is higher than those obtained in the previous section
(U ≈ -0.15). This increase can be explained by a different profile and by the lunate tail. Further analysis are
still necessary.

5 Conclusions and future work

The numerical simulations we show need to be improved when higher Reynolds numbers are considered.
The next step is to perform mesh refinement and adaptation (patches or octrees).
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Figure 10 – Numerical simulation of a mackerel built from images. Iso contour of the norm of vorticity.
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