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Abstract The aim of this paper is to provide new models of cell electropermeabi-
lization involving only a few parameters. A static and a dynamical model, which
are based on the description of the electric potential in a biological cell, are derived.
Existence and uniqueness results are provided for each differential system, and an
accurate numerical method to compute the solution is described. We then present
numerical simulations that corroborate the experimental observations, providing the
consistency of the modeling. We emphasize that our new models involve very few
parameters, compared with the most achieved models of Neu and Krassowska (Phys
Rev E 53(3):3471–3482, 1999) and DeBruin and Krassowska (Biophys J 77:1225–
1233, 1999), but they provide the same qualitative results. Thus, these models will
facilitate drastically the forthcoming inverse problem solving, which will consist in
fitting them with the experiments.
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1 Introduction

The distribution of the electric potential in a biological cell is important for bio-
electromagnetic investigations. A sufficiently large magnitude of the difference of
transmembrane potential (denoted from now on byΔTMP), which is the difference of
the electric potentials between both sides of the cell membrane, leads to an increase of
the membrane permeability (Pucihar et al. 2006; Teissié et al. 2005). Molecules such
as bleomycin can then diffuse across the plasma membrane. This phenomenon, called
electropermeabilization, has already been used in oncology and holds promises in gene
therapy (Marty et al. 2006; Serša 2005), motivating precise assessments of theΔTMP.

In this paper, we aim at studying theoretically and numerically two non-linear
electrical models (a static and a dynamical model) of biological cells. These models
are inspired from the static model of Ivorra et al. (2010). They describe the behavior
of both electric potential and membrane conductivity when the cell is submitted to an
electric pulse through a few parameters that will be fitted with the experiments. The
inverse problem solving to calibrate the models, which is the main goal of this research,
is not tackled in the present paper. This article is a first step, in which we present, and
study theoretically and numerically new models with a few parameters, in order to
simplify the forthcoming inverse problem solving. We emphasize these models are
phenomenological in the sense that the membrane conductivity is described by an ad
hoc law, which does not come from an homogenization of the nanoscale phenomena.
Before stating the model we are going to study, we now detail the notation of the paper.

Notation 1 Throughout this article, we shall use the following conventions and
notation:

– We generically denote by n the normal to a closed smooth surface of R
3 (or a curve

of R
2) outwardly directed from the inside to the outside of the domain enclosed by

the surface.
– Let C be a surface embedded in R

3, and let u be a sufficiently smooth function (in
an appropriate sense) defined in a tubular neighborhood of C. We define u|C± by

∀x ∈ C, u|C± (x) = lim
τ→0+ u(x ± τn(x)).

The notation ∂nu|C± and ∂tu|C± stands for the normal and the tangential compo-
nents of ∇u:

∀x ∈ C, ∂nu|C± (x) = lim
τ→0+ ∇u(x ± τn(x)) · n(x),

∂tu|C± (x) = ∇u(x)− ∂nu(x)n(x),

where the dot “ · ” denotes the Euclidean scalar product of R
3. In the case of R

2,
the analogous notation is easily adapted.
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“Classical” Electropermeabilization Modeling 237

Fig. 1 Geometry of the
problem. The cell Oc is
imbedded in the bath Oe. The
whole domain Ω is defined by
Ω = Oe ∪ Oc

– The jump [u]C of a function u defined in a neighborhood of the surface C is defined
by

[u]C = u|C+ − u|C− .

1.1 Electric potential in a biological cell

A biological cell is a high contrast medium composed of a conducting cytoplasm Oc
surrounded by a thin and very insulating layer, embedded in a bath Oe (see Fig. 1).
The plasma membrane is a phospholipid bilayer, which is sprinkled over with pro-
teins. Due to its thickness and its electrical properties, the membrane can be modeled
as a surface electric material Γ with a capacity Cm and a surface conductivity Sm.
We refer to the seminal articles of Hodgkin et al. for the electric description of cell
membranes (Goldman 1943; Hodgkin and Katz 1949; Hodgkin and Huxley 1952;
Hodgkin and Horowicz 1959). Let σ be the conductivity of the medium, that is

σ =
{
σe, in the exterior domain Oe,

σc, inside the cell Oc.

As described by Neu and Krassowska (1999) and DeBruin and Krassowska (1999a)
the electric potential in the whole cell is the discontinuous solution U to the following
problem:

ΔU = 0, in Oe ∪ Oc, (1a)

U (0, ·) = 0, and for all t > 0, (1b)

U (t, x) = g(t, x), on ∂Ω, (1c)

with the transmission conditions across the membrane Γ :

[σ∂nU ]Γ = 0, (1d)
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Cm∂t [U ]Γ + Sm [U ]Γ = σc∂nU|Γ− . (1e)

Throughout, the paper we denote by Ω the Lipschitz domain

Ω = Oe ∪ Oc

and ∂Ω denotes its boundary. Moreover we define P H1(Ω) as

P H1(Ω) =
{

u ∈ L2(Ω) : u|Oe ∈ H1(Oe), u|Oc ∈ H1(Oc)
}
,

and

P H1
0 (Ω) =

{
u ∈ P H1(Ω) : u|∂Ω = 0

}
.

1.2 Electropermeabilization phenomenon

When submitted to a high electric pulse—i.e. if the magnitude of the pulse g reaches
a threshold value—the cell membrane permeability increases and large molecules
that usually cannot diffuse through the plasma membrane (for instance, plasmids or
bleomycin) enter inside the cytoplasm. This phenomenon is called electroporation
or electropermeabilization. For several years, different membrane models based on
hydrodynamic, elasticity, hydroelasticity, viscoelasticity, or aqueous pore formation
have been developed to describe the pore formation on the cell membrane [for more
details, see the review of Pavlin et al. (2008)]. They all highlight a threshold value of the
electric potential above which the electropermeabilization phenomenon occurs. How-
ever, the critical potential value changes with the models. Theoretical biophysicists
consider the aqueous pore formation model as the most convincing current expla-
nation. Nevertheless, the predictions of the model do not coincide with experiments
either quantitatively or phenomenologically since no pore has ever been observed.
In addition, the models based on the paper of Neu and Krassowska (1999), DeBruin
and Krassowska (1999a,b) are too complex to be parameterized to fit the experiments.
Roughly speaking, the current models provide a qualitative explanation of the elec-
tropermeabilization, but the problem of the quantitative description remains open.

Actually in vitro and in vivo experiments have never proved the electropore for-
mation, which theoretically could reach detectable size [since macropores could be
created according to Smith et al. (2004)]; and it seems unclear whether electropora-
tion results from holes punched in a lipid bilayer, as proposed in the current models
(Teissié et al. 2005; Teissié 2005). Moreover, the experimentally proved reversible
process of the membrane electroporation is not clearly explained by the current mod-
els. In addition, and this is probably one of the main features of the experiments, the
vectorization of large molecules requires both short time high-voltage pulses and long
time low-voltage pulses (André and Gehl 2008). Therefore, the presence of pores is
still controversial despite structural changes of the membrane. For all these reasons,
we prefer the term electropermeabilization to electroporation.
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“Classical” Electropermeabilization Modeling 239

1.3 Modeling principle

The probably most achieved electropermeabilization model has been proposed by
Neu and Krassowska (1999) and precisely described by DeBruin and Krassowska
(1999a,b). It consists in adding an electroporation current Iep in the right-hand side of
Eq. (1e):

Cm∂t [U ]Γ + Sm [U ]Γ = σc∂nU|Γ− + Iep.

The current Iep is given by a highly non-linear pore current iep multiplied by the
pore density Nep. The main drawback of such a model is its complexity since several
parameters, such as the pore radius or the relative entrance length of the pore, which
cannot be measured. Moreover, the mathematical well-posedness of the equations
cannot be clearly established. Therefore, the inverse problem, that consists in fitting
the parameters for each cell species, is hardly unsolvable numerically. In addition, the
“philosophy” of the modeling is based on the pore creation, while as hinted above
the very existence of these pores is controversial. For all these reasons, we choose
to present here a new phenomenological model of electropermeabilization that could
be fitted with the experiments. This model describes the membrane resealing and the
memory of the applied pulses.

Our electropermeabilization modeling consists in describing the membrane perme-
abilization by choosing an appropriate function for the surface conductivity Sm, instead
of adding an electroporation current based on the pore creation as Neu, Krassowska, et
al. did (see Neu and Krassowska 1999, 2006; DeBruin and Krassowska 1999a; Smith
et al. 2004). In addition, we propose two models: the first one is a “static” model
that describes the electropermeabilization as being an instantaneous phenomenon for
a single time-constant pulse. This can be seen as a preliminary model that describes
the cell potential during the pulse. The second model is the time-dependent model of
electropermeabilization. For each model, we present the theoretical results that ensure
existence and uniqueness of the solution to the new problems and then we present
the numerical methods that allow the computation of the equations. We conclude by
comparing our model with the model of Neu, Krassowska, et al.

2 The static equation

Based on the extensive review of Ivorra et al. (2010), the surface conductivity Sm
is a function of the absolute membrane voltage, which tends to the value SL (the
lipid surface conductivity) below a certain threshold Vrev (the reversible electroper-
meabilization voltage) and tends to Sir (the surface conductivity of the irreversibly
electropermeabilized region) above this threshold, with Sir being larger than SL. The
“speed of the switch” between these two values is given by a parameter kep. We may
choose the following sigmoid function for Sm:

∀λ ∈ R, Sm(λ) = SL + (Sir − SL)[1 + tanh(kep(|λ| − Vrev))]/2, (2)
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however other functions with similar monotonicity properties can be considered. More
precisely, in our model the function Sm will satisfy the following condition:

Sm ∈ C(R), λ �→ Sm(λ) is even on R,

0 < SL ≤ Sm(λ) ≤ Sir, Sm is non decreasing on [0,+∞),

lim
λ→+∞ Sm(λ) = Sir.

⎫⎪⎪⎬
⎪⎪⎭ (3)

In particular, note that the mapping λ �→ λSm(λ) is increasing on R.
Therefore, the static potential U satisfies the following problem:

ΔU = 0, in Oe ∪ Oc, (4a)

[σ∂nU ]Γ = 0, on Γ, (4b)

Sm([U ]Γ ) [U ]Γ = σc∂nU|Γ− , on Γ, (4c)

U = g on ∂Ω. (4d)

Remark 2 Model (4) can be seen as the limit of the model of Ivorra et al. (2010), when
the membrane thickness tends to zero [we refer to Perrussel and Poignard (2011) for
asymptotic expansion of the voltage potential in high contrast medium with resistive
thin layer].

In the following subsections, we study the non-linear problem (4). In particular,
we emphasize that due to the non-linearity of the membrane conductivity, increasing
numerically the thickness of the membrane (as performed in Ivorra et al. 2010) leads
to irrelevant results from the quantitative point of view. Therefore, we aim at providing
efficient numerical methods in order to solve the above problem.

2.1 Existence and uniqueness of the static potential

This subsection is devoted to the proof of the following result.

Theorem 3 Let g ∈ H1/2(∂Ω). There exists a unique U satisfying problem (4). This
solution satisfies

U|Oe
∈ H1(Oe), U|Oc

∈ H2(Oc).

In order to prove this theorem, we proceed as follows. Denote by Λc and Λe the
Dirichlet-to-Neumann operators on Γ (also called Steklov–Poincaré operators) for
the Laplacian respectively in Oc and in Oe. More precisely, denote by nc (resp. ne) the
unitary outward normal to Γ directed from the inside to the outside of Oc (resp. Oe).
We define the operators Λc and Λe from H1/2(Γ ) to H−1/2(Γ ) as:

123



“Classical” Electropermeabilization Modeling 241

∀ f ∈ H1/2(Γ ), Λc( f ) := nc · σc∇vc|
Γ− , where div(σc∇vc) = 0 in Oc,

and vc|Γ = f, (5a)

Λe( f ) := ne · σe∇ve|
Γ+ , where

div(σe∇ve)= 0 in Oe, ve|∂Ω = 0 and ve|Γ = f.

(5b)

Observe that using Wirtinger–Poincaré’s inequality in the case of Λc, or Poincaré’s
inequality in the case of Λe, together with the continuity of the mapping u �→ u|∂O
from H1(O) into H1/2(∂O), when O is sufficiently smooth, the following inequalities
hold:

〈Λc f, f 〉 =
∫
Oc

σc(x)∇v(x) · ∇v(x) dx ≥ Cc ‖ f − M( f )‖2
H1/2(Γ )

, (6)

〈Λe f, f 〉 =
∫
Oe

σe(x)∇ve(x) · ∇ve(x) dx ≥ Ce‖ f ‖2
H1/2(Γ )

, (7)

where M( f ) = |Γ |−1
∫
Γ

f (τ ) dτ is the mean value of f on Γ , and Ce and Cc
are constants depending only on Oe and Oc respectively. Moreover, for a function
g ∈ H1/2(∂Ω), we define Λ0(g) by:

Λ0(g) := ne · σe∇v|Γ+ , where

div(σe∇v) = 0 in Oe, v|∂Ω = g and v|Γ = 0. (8)

It is useful to recall that the operatorΛe is invertible, its inverse being given by another
Steklov–Poincaré operator (or what is sometimes called a Neumann-to-Dirichlet
operator). Namely, for any ψ ∈ H−1/2(Γ ) given, one has Λ−1

e (ψ) = v|Γ where
v ∈ H1(Oe) satisfies the equation

div(σe∇v) = 0 in Oe, v|∂Ω = 0 and ne · σe∇v|Γ + = ψ.

Consider the Hilbert space H defined by

H = H1/2(Γ )× H1/2(Γ ),

with the norm

∀ u = (ue, uc) ∈ H, ‖u‖2
H

= ‖ue‖2
H1/2(Γ )

+ ‖uc‖2
H1/2(Γ )

.

Problem (4) can be written on the manifold Γ with the help of the above Steklov–
Poincaré operators. More precisely, problem (4) is equivalent to finding (ue, uc) ∈ H

such that
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Λeue + Sm(ue − uc)(ue − uc) = −Λ0(g),

Λcuc − Sm(ue − uc)(ue − uc) = 0. (9)

Notation 4 Identifying the dual of L2(Γ )× L2(Γ ) with L2(Γ )× L2(Γ ), we denote
by H

′ the dual space of H and by 〈· , ·〉 the duality between H and H
′.

The proof of Theorem 3 is an obvious application of the following theorem.

Theorem 5 Let G = (Ge,Gc) ∈ H
′. There exists a unique u0 = (ue, uc) ∈ H such

that

Λeue + Sm(ue − uc)(ue − uc) = Ge,

Λcuc − Sm(ue − uc)(ue − uc) = Gc. (10)

Proof We define the operator Λσ from H into H
′ by

∀u ∈ H, �σ u =
(
Λeue
Λcuc

)
=

(
Λe 0
0 Λc

) (
ue
uc

)
. (11)

Thanks to (6) and (7), we have

∀u ∈ H, 〈�σ u,u〉 ≥ Ce ‖ue‖2
H1/2(Γ )

+ Cc ‖uc − M(uc)‖2
H1/2(Γ )

. (12)

Since the function Sm satisfies conditions (3), we introduce the function F defined by

∀ s ∈ R, F(s) =
s∫

0

Sm(z)z dz.

Note that F is even, that is F(−s) = F(s). Let J1 be the function defined on H by

∀u ∈ H, J1(u) = J1(ue, uc) =
∫
Γ

F(ue(τ )− uc(τ )) dτ.

One easily checks that J1 is a C1 function on H and

J1(u) ≥ 1

2
SL

∫
Γ

|ue(τ )− uc(τ )|2 dτ.

Observe that, for any u ∈ H, the derivative J′
1(u) of J1 at u is the linear map defined

by

∀ h ∈ H, J′
1(u) · h =

∫
Γ

Sm
(
ue(τ )− uc(τ )

)
(ue(τ )− uc(τ ))(he(τ )− hc(τ )) dτ.
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“Classical” Electropermeabilization Modeling 243

Let J be defined by

∀u ∈ H, J(u) = 1

2
〈�σ u〉 + J1(u)− 〈G,u〉.

J is of class C 1 on H and J′ is given by

∀ u ∈ H, J′(u) =
(
Λeue + Sm(ue − uc)(ue − uc)− Ge
Λcuc − Sm(ue − uc)(ue − uc)− Gc

)
. (13)

In order to show that J′ is a monotone operator, we define the nonlinear operator B
from H

2 into R by

∀(u, v) ∈ H
2, B(u, v) = Sm([u])[u]2

(
1 − [v]

[u]
) (

1 − Sm([v])
Sm([u])

[v]
[u]

)
, (14)

where for simplicity we denote by [u] = ue − uc for u = (ue, uc) ∈ H. Taking into
account the fact that Sm satisfies (3), one checks easily that B(u, v) ≥ 0. According
to (12) and (13), for (u, v) ∈ H

2 we have

〈J′(u)− J′(v),u − v〉 = 〈�σ (u − v),u − v〉 +
∫
Γ

B
(
u(s), v(s)

)
ds, (15)

from which we infer that J′ is a monotone operator. Therefore J is convex. In order
to see the strict convexity of J, that is the strict monotonicity of J′, we have to show
that if for a given u, v ∈ H we have 〈J′(u)− J′(v),u − v〉 = 0, then we have u = v.
Observe first that, since λ �→ λSm(λ) is increasing, we have that

B(u, v) = 0 �⇒ [u] = [v].

In particular, for these u, v, we have B(u, v) = 0, which implies [u] = [v], hence
ue − ve = uc − vc. On the other hand, since

〈Λe(ue − ve), ue − ve〉 = 〈Λc(uc − vc), uc − vc〉 = 0,

and since Λe is coercive, we conclude that ue − ve = 0, which in turn implies that
uc − vc = 0. Finally, this shows that

〈J′(u)− J′(v),u − v〉 = 0 �⇒ u = v.

Therefore, J′ is strictly monotone and J is strictly convex.
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In order to show the coerciveness of J, that is J(u) → +∞ when ‖u‖H → ∞, we
proceed as follows. Observe first that

|〈Gc,M(uc)〉| ≤ ‖Gc‖H−1/2(Γ ) ‖M(ue − uc)‖H1/2(Γ )

+‖Gc‖H−1/2(Γ ) ‖M(ue)‖H1/2(Γ ) ,

≤ ‖Gc‖H−1/2(Γ ) ‖M(ue − uc)‖H1/2(Γ )

+‖Gc‖H−1/2(Γ ) ‖ue‖H1/2(Γ ) ,

hence

|〈G,u〉| ≤ (‖Ge‖H−1/2(Γ ) + ‖Gc‖H−1/2(Γ )

) ‖ue‖H1/2(Γ )

+‖Gc‖H−1/2(Γ ) ‖uc − M(uc)‖H1/2(Γ )

+‖Gc‖H−1/2(Γ ) ‖M(ue − uc)‖H1/2(Γ ) .

Using Young’s inequality (ab ≤ εa2 + C(ε)b2, for ε > 0 and C(ε) := (4ε)−1) we
infer

|〈G,u〉| ≤ ε ‖ue‖2
H1/2(Γ )

+ ε ‖uc − M(uc)‖2
H1/2(Γ )

+ 2 C(ε)‖G‖2
H′

+ ‖Gc‖H−1/2(Γ ) ‖M(ue − uc)‖H1/2(Γ ) . (16)

On the other hand, using the fact that 2F(s) ≥ SLs2 for s ∈ R, we deduce that

J1(u) ≥ 1

2
SL

∫
Γ

|ue(τ )− uc(τ )|2dτ

≥ 1

2
SL

⎛
⎝∫
Γ

|(ue − uc)− M(ue − uc)|2dτ +
∫
Γ

|M(ue − uc)|2dτ

⎞
⎠ .

Using this inequality, together with (16), we obtain a lower bound for J(u) (here
a(ε),C(ε) are positive constants depending on the arbitrary ε > 0, and b > 0 is a
constant):

J(u) ≥ a(ε)
(
‖ue‖2

H1/2(Γ )
+ ‖uc − M(uc)‖2

H1/2(Γ )

)
+ b

∫
Γ

|M(ue − uc)|2dτ − ‖Gc‖H−1/2(Γ ) ‖M(ue − uc)‖H1/2(Γ )

− C(ε)‖G‖2
H′ .

(17)

Since M(ue − uc) is a constant, we observe that one has ‖M(ue − uc)‖H1/2(Γ ) =
c∗‖M(ue −uc)‖L2(Γ ) for some positive constant c∗ independent of u. Consequentely,
for any ε > 0 so that b − ε > 0, there exists a constant c(ε) such that
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b
∫
Γ

|M(ue − uc)|2dτ − ‖Gc‖H−1/2(Γ ) ‖M(ue − uc)‖H1/2(Γ )

≥ (b − ε)‖M(ue − uc)‖2
H1/2(Γ )

− c(ε)‖Gc‖2
H−1/2(Γ )

.

Using this inequality in the lower bound (17), we conclude that

lim‖u‖H→+∞ J(u) = +∞

hence J achieves its minimum at a unique point u0 ∈ H, which satisfies Eq. (10). ��

3 The dynamical model

In this section, we focus on the dynamical description of the electropermeabilization.
Our model is based on the description of two quantities: the time-dependent electric
potential and the ratio of the electropermeabilized region over the total membrane
area, which is also time-dependent. In Sect. 3.1, we present the main considerations
that lead to our model. We then study its solvability: existence and uniqueness results
are presented in Sect. 3.4.

3.1 Heuristics of the modeling

Experimental observations suggest that the permeabilization process at a certain loca-
tion depends on whether the membrane conductivity is above a certain threshold or
not. This leads us to define the surface membrane conductivity as an interpolation
between the two values Sir and SL, the interpolation parameter ξ(t, s) ∈ [0, 1] being
itself a function of time and of the point s on the membrane Γ . In our interpretation,
the parameter ξ(t, s) measures in some way the likelihood that a given infinitesi-
mal portion of the membrane is going to be electropermeabilized. More precisely,
when ξ(t, s) equals 0 at a given point s ∈ Γ , the membrane conductivity equals the
lipid conductivity at this point (thus there is no electropermeabilization), while for
ξ(t, s) = 1 it corresponds to the maximal value of the membrane surface conduc-
tivity above which electropermeabilization is irreversible. Thus the time-dependent
membrane conductivity, denoted by Sm writes

∀(t, s) ∈ (0,+∞)× Γ, Sm(t, s) = SL + ξ(t, s)(Sir − SL). (18)

On the other hand, the changes in the conductivity at a certain location s ∈ Γ depend
on the transmembrane voltage. Denoting by [u] := ue − uc the jump in the potential
between the outside and the inside of the cell for u := (ue, uc) ∈ H (as we did in the
previous sections), we therefore assume that

ξ(t, s) = X (t, [u(t, s)]), (19)

where the function (t, λ) �→ X (t, λ) will be defined below.
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The main idea of the modeling consists in writing a differential equation that
describes the dynamics of (t, λ) �→ X (t, λ) similarly to a sliding door model. Let
β be a function satisfying

β ∈ W 1,∞(R), λ �→ β(λ) is even on R,

λ �→ λβ ′(λ) belongs to L∞(R),
0 ≤ β(λ) ≤ 1, β is non decreasing on (0,+∞),

lim
λ→+∞β(λ) = 1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20)

An example of such a function would be

∀λ ∈ R, β(λ) := (1 + tanh(kep(|λ| − Vrev))/2.

Let us describe now the evolution of X . For λ0 ∈ R, which will stand for a given
ΔTMP, and for an initial value X0 ∈ [0, 1] of X, set β0 := β(λ0). Then we consider
the following two possibilities:

– Either β0 − X0 is positive, in which case the electric pulse is sufficiently high to
enlarge the electropermeabilized region, with a characteristic time of electroper-
meabilization of order τep.

– Or β0 − X0 is negative, in which case we consider that the pulse is not high enough
to increase the electropermeabilization. Therefore, the membrane tries to reseal
with a characteristic resealing time of order τvres. Since experimental observations
suggest that this phenomenon takes much more time than the electropermeabiliza-
tion process, we assume that τvres > τep.

Remark that when a cell is at rest, X0 equals zero, but if high voltage pulses have been
applied earlier than the initial time, X0 might not be equal to zero.

Based on these considerations, for any λ0 ∈ R, we assume that X (·, λ0) satisfies
the following differential equation:

{
∂X
∂t (t, λ0) = max

(
β(λ0)−X (t,λ0)

τep
; β(λ0)−X (t,λ0)

τres

)
, ∀t > 0,

X (0, λ0) = X0.
(21)

3.2 Statement of the mathematical problem

We first write the equation satisfied by the potential U defined on the domain Oe ∪
Oc. We assume that before the imposition of the electrical pulses g on the external
boundary ∂Ω , the cell potential is at rest and given by U0 ∈ H1(Ω). This resting
potential translates the ionic exchanges through the membrane. According to equalities
(18)–(19), the membrane conductivity S̃m is defined by:

S̃m(t, λ) := SL + (Sir − SL)X (t, λ). (22)
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We seek the solution (U, X) to the following system of equations: for (U0, X0) given,
the pair of functions (U, X) satisfy:

U |t=0 = U0, and for any t > 0,

ΔU = 0, in (0, T )× (Oe ∪ Oc) , U (t, ·)= g(t, ·) on (0,+∞)× ∂Ω, (23a)

[σ∂nU ]= 0, on (0, T )× Γ, (23b)

Cm∂t [U ](t, ·)+ S̃m(t, [U ])[U ] = σc∂nU (t, ·)|Γ− , on (0, T )× Γ, (23c)

where, writing λ = [U ](t, s), the function X appearing in (22) satisfies the differential
equation

∂X (t, λ)

∂t
= max

(
β(λ)− X (t, λ)

τep
; β(λ)− X (t, λ)

τvres

)
, t > 0, (24a)

X (0, λ) = X0. (24b)

Remark 6 Observe that if the source g does not depend on the time t , the stationary
point (U∗, X∗) of the system (23)–(24a) is the unique solution to

ΔU∗ = 0, in (Oe ∪ Oc) , U∗|∂Ω = g on ∂Ω,

[σ∂nU∗] = 0, on Γ,(
SL + (Sir − SL)X

∗) [U∗] = σc∂nU∗|Γ− , on Γ,

where

X∗ = β([U∗(s)]),

which coincides with the static model (2).

3.3 Properties of the function X

Let us state the following lemma regarding the solution to Eq. (24):

Lemma 7 Let T > 0 be fixed and let β satisfy condition (20). For T > 0 and any
λ ∈ R, the following differential equation

{
∂X (t,λ)
∂t = max

(
β(λ)−X (t,λ)

τep
; β(λ)−X (t,λ)

τvres

)
, ∀t ∈ (0, T ),

X (0, λ) = X0 ∈ [0, 1],
(25)

has a unique solution X (·, λ) ∈ C1([0, T ]). Moreover one has

0 ≤ X (t, λ) = X (t,−λ) = X (t, |λ|) ≤ 1, ∀t ∈ [0, T ], ∀λ ∈ R.
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In addition, there exists a constant K (T ) > 0 such that for any λ1, λ2 ∈ R we have

∀t ∈ [0, T ], |λ1 X (t, λ1)− λ2 X (t, λ2)| ≤ K (T ) |λ1 − λ2| . (26)

Proof The mapping X �→ max([β(λ) − X ]/τep, [β(λ) − X ]/τvres), defined from R

into itself, is clearly Lipschitz for all fixed λ. Therefore, the differential Eq. (25) has
a unique solution X ∈ C1([0, T ]), for any given X0 ∈ R.

Assuming now that 0 ≤ X0 ≤ 1, multiplying the Eq. (25) by X− := max(−X, 0),
and using the fact that β ≥ 0, one gets

1

2
∂t |X−|2 ≤ 0.

Thus X−(·, λ) ≡ 0 on [0, T ]. Similarly, using the fact that β−1 ≤ 0, and multiplying
the equation by (X − 1)+ = max(X − 1, 0), one sees that

∂t |(X − 1)+|2 ≤ 0,

and finally 0 ≤ X (t, λ) ≤ 1, for any t ∈ [0, T ].
In order to show the estimate (26), we proceed as follows. For λ ∈ R denote by

Y (t, λ) := λX (t, λ). Since for any (a, b) ∈ R, we have max(a, b) = a + (a − b)−,
assuming for instance that τep < τvres we observe that

max(a/τep, a/τvres) = a

τep
+

(
τ−1

ep − τ−1
vres

)
a−,

and using the equality a− = (|a| − a) /2 we get

max(a/τep, a/τvres) = a
(
τ−1

ep + τ−1
vres

)
/2 + |a|

(
τ−1

ep − τ−1
vres

)
/2.

From this we induce that Y satisfies the following O.D.E

{
∂Y (t,·)
∂t = H(λ,Y ), ∀t ∈ (0, T ),

Y (0, λ) = Y0 = λX0,
(27)

where the function H is defined by

H : (λ,Y ) �→ H(λ,Y ) = (λβ(λ)− Y )
(
τ−1

ep + τ−1
vres

)
/2 + λ |β(λ)− Y/λ|(
τ−1

ep − τ−1
vres

)
/2. (28)

In order to see that the mapping λ �→ H(λ,Y ) is globally Lipschitz on R, since by
our assumptions on the function β we know that λβ ′(λ) is uniformly bounded on R,
the function λ �→ λβ(λ) is Lipschitz on R, and thus we have only to verify that the
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function h : λ �→ h(λ,Y ) = λ |β(λ)− Y/λ| is Lipschitz on R. Indeed, this is the case
as one can see by a simple computation that

∂h

∂λ
= |β(λ)− Y/λ| + (λβ ′(λ)+ Y/λ)

β(λ)− Y/λ

|β(λ)− Y/λ| ,

= (
β(λ)+ λβ ′(λ)

) β(λ)− Y/λ

|β(λ)− Y/λ| ,

and therefore ∣∣∣∣∂h

∂λ
(λ,Y )

∣∣∣∣ ≤ ∣∣β(λ)+ λβ ′(λ)
∣∣ .

From this, one infers clearly that the mapping (λ,Y ) �→ H(λ,Y ) is globally Lipschitz
on R × R. Writing

Y (t, λ1)− Y (t, λ2) =
t∫

0

(H(λ1,Y1)− H(λ2,Y2)) (t)dt + (λ1 − λ2)X0;

we conclude that

∀t ∈ (0, T ), |Y (t, λ1)− Y (t, λ2)| ≤ K (T ) |λ1 − λ2| ,

thanks to an invocation of Gronwall lemma. ��

3.4 Existence and uniqueness of the dynamical potential

Since the non-linearity of problem (23) appears in the transmission condition (23c),
we are going to rewrite it on the surface Γ using the Steklov–Poincaré operators, in
the same manner as we did in the previous section for the static model. We first prove
the following property:

Lemma 8 The operatorΛe +Λc is positive, selfadjoint and invertible from H1/2(Γ )

into H−1/2(Γ ). The operator

B := Id +Λ−1
e Λc

is therefore invertible, from H1/2(Γ ) into itself.
Moreover, define the domain D(ΛcB−1) as

D(ΛcB−1) =
{
ϕ ∈ H1/2(Γ ) : ΛcB−1ϕ ∈ L2(Γ )

}
.

The operator
(
ΛcB−1, D(ΛcB−1)

)
is m–accretive (more precisely D(ΛcB−1) =

H1(Γ )).
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Proof That Λe +Λc is invertible is an easy consequence of the fact that the operator
Λe is a positive, selfadjoint and invertible operator while Λc is non-negative and
selfadjoint. Thus, Λe +Λc is also a positive selfadjoint invertible operator.

Let ϕ ∈ D(ΛcB−1). Then, by definition (and invertibility) of B (i.e. Id =(
Id +Λ−1

e Λc
)B−1) we have

〈ΛcB−1ϕ, ϕ〉 = 〈ΛcB−1ϕ, ϕ〉,
= 〈ΛcB−1ϕ,B−1ϕ〉 + 〈ΛcB−1ϕ,Λ−1

e ΛcB−1ϕ〉,
= 〈ΛcB−1ϕ,B−1ϕ〉 + 〈ΛeΛ

−1
e ΛcB−1ϕ,Λ−1

e ΛcB−1ϕ〉
≥ 0.

ΛcB−1 is therefore accretive. Let f ∈ L2(Γ ), let λ > 0 and let U be the unique
solution in P H1

0 (Ω) to the following problem:

−ΔU = 0, in Oe ∪ Oc, U|∂Ω = 0,

σe∂nU|Γ+ = σc∂nU|Γ− ,

λσc∂nU|Γ− + U|Γ− − U|Γ+ = f.

Therefore, setting v := U|Γ− − U|Γ+ , v satisfies

v + λΛcB−1v = f.

In addition, since ΛcB−1 is nonnegative , we have ‖v‖L2(Γ ) ≤ ‖ f ‖L2(Γ ). Therefore,
ΛcB−1 is m–accretive. ��
Lemma 9 Let U0 and X0 be two enough regular functions defined respectively in
Ω and on Γ , and recall that S̃m(t, λ) := SL + (Sir − SL)X (t, λ) is defined in (22).
Finding the solution (U, X) to problem (23)–(24), if it exists, is equivalent to finding
(ue, uc, X), with ue = U|Γ + and uc = U|Γ − satisfying:

ue = uc − v, (29)

uc = B−1
(
v −Λ−1

e Λ0g
)
, (30)

where v is the solution to

Cm∂tv +ΛcB−1v + S̃m(t, v)v = G,

v(0, ·) = ϕ, (31)

with ϕ and G being defined as

ϕ = U0|Γ+ − U0|Γ− , G := ΛcB−1Λ−1
e Λ0g,

123



“Classical” Electropermeabilization Modeling 251

and where, writing λ = v(t, s), a.e.(t, s) ∈ (0, T )× Γ , X satisfies

{
∂t X (t, λ) = max

(
β(λ)−X (t,λ)

τep
; β(λ)−X (t,λ)

τres

)
, ∀t > 0,

X (0, λ) = X0.
(32)

Proof The lemma is a straightforward consequence of the definition of the Steklov–
Poincaré operatorsΛc,Λe,Λ0, and of the invertibility ofΛe. Indeed, condition (23b),
that is the continuity of the flux across Γ , boils down to

Λeue +Λ0g +Λcuc = 0,

from which, thanks to the invertibility of Λe, we infer that

ue − uc = −
(
Buc +Λ−1

e Λ0g
)

= −v.

In addition, by definition of v, we have

Λcuc = ΛcB−1v −ΛcB−1Λ−1
e Λ0g = ΛcB−1v − G.

Then, the transmission condition (23c) [multiplied by (−1)] reads (31), provided we
recall that β is an even function and that S̃m is defined by (22). ��

We now show that the evolution equations appearing in Lemma 9 have a unique
solution.

Theorem 10 Assume that β satisfies (20), G ∈ L p((0, T ); L2(Γ )) for some p > 1,
and that ϕ ∈ L2(Γ ) is given. Let X0 ∈ L∞(Γ ) such that 0 ≤ X0 ≤ 1 on Γ , and let
S̃m be defined as in (22).

Then, there exists a unique function v ∈ C([0, T ]; L2(Γ )), mild solution to the
system

{
Cm∂tv +ΛcB−1v + S̃m(t, v)v = G, ∀t ∈ (0, T ),

v(0) = ϕ,
(33)

where S̃m is given by (22), and writing λ = v(t, s), a.e (t, s) ∈ (0, T )×Γ , one has

{
∂t X (t, λ) = max

(
β(λ)−X (t,λ)

τep
; β(λ)−X (t,λ)

τres

)
, ∀t ∈ (0, T ),

X (0, λ) = X0.
(34)

Moreover, if ϕ ∈ H1(Γ ) and G ∈ W 1,1((0, T ); L2(Γ )), the above mild solution is a
classical solution to (33), in the sense that

v ∈ C([0, T ]; H1(Γ )) ∩ C1([0, T ]; L2(Γ )).
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Proof To simplify the notations we denote by A the operator

A = 1

Cm
ΛcB−1.

In a first step, we are going to show existence and uniqueness of a mild solution to (33)
in C([0, T ]; L2(Γ )). Thanks to Lemma 7, we know that for any λ ∈ R, the solution
to {

∂t X (t, λ) = max
(
β(λ)−X (t,λ)

τep
; β(λ)−X (t,λ)

τvres

)
,∀t > 0,

X |t=0 = X0,

exists and belongs to C1([0, T ]). Moreover, 0 ≤ X ≤ 1, and the mappings λ �→ X
and λ �→ λX are Lipschitz. Now, upon setting

F(t, v) := −S̃m(t, v)v + G = − (SL + (Sir − SL)X (t, v)) v + G,

solving equations (33) is equivalent to finding v ∈ C([0, T ]; L2(Γ )) solution to the
following equation, which is the mild version of Eq. (33):

v = e−tAϕ + 1

Cm

t∫
0

exp (−(t − τ)A)F(τ, v)dτ. (35)

Thanks to inequality (26) of Lemma 7, it is clear that the mapping

v �→ F(·, v),

is Lipschitz from the space

E := C([0, T ]; L2(Γ ))

into itself. This means that there exists K1 > 0 such that for any v,w ∈
C([0, T ]; L2(Γ )) we have

‖F(·, v)− F(·, w)‖L∞((0,T );L2(Γ )) ≤ K1 ‖v − w‖L∞((0,T );L2(Γ )).

We shall endow the space E with the norm

‖ψ‖E := sup
t∈[0,T ]

e−αt‖ψ(t, ·)‖L2(Γ ),

for some α > 0, which will be chosen below. If we set

Φ(Uc)(t) := e−tAϕ + 1

Cm

t∫
0

exp (−(t − τ)A)F(τ,Uc(τ )) dτ,

123



“Classical” Electropermeabilization Modeling 253

then Φ : E −→ E is a continuous mapping. We shall check that, upon choosing α
appropriately, it is a strict contraction. Thus, it has a unique fixed point, providing the
unique solution of (35). Indeed

Φ(Uc)(t)−Φ(V )(t) =
t∫

0

exp

(
− t − τ

Cm
ΛcB−1

)
[F(τ,Uc)− F(τ, V )] dτ.

Since the operator ΛcB−1 is m–accretive, the operator A generates a contraction
semi-group and the following estimate holds

‖e−(t−τ)A [F(τ,Uc)− F(τ, V )] ‖L2(Γ ) ≤ ‖[F(τ,Uc)− F(τ, V )]‖L2(Γ ) .

Therefore, we infer

‖Φ(Uc)(t)−Φ(V )(t)‖L2(Γ ) ≤ ‖
t∫

0

‖F(τ,Uc)− F(τ, V )‖L2(Γ ) dτ,

≤ K1‖Uc − V ‖E

t∫
0

eατ dτ,

≤ C(p)K1 α
−1 eαt‖Uc − V ‖E,

from which we conclude that

‖Φ(Uc)−Φ(V )‖E ≤ α−1 C(p)K1 ‖Uc − V ‖E.

This implies that for α large enough, the mapping Φ is a strict contraction on E.
Equation (33) has thus a unique mild solution in C([0, T ]; L2(Γ )).

Suppose now that G belongs to W 1,1((0, T ); L2(Γ )) and that ϕ ∈ H1(Γ ). The
mild solution given by formula (35) belongs to C1([0, T ]; L2(Γ )) hence we infer

∂tv + S̃m(·, v)v ∈ C([0, T ]; L2(Γ )).

Therefore, setting Uc = U|Oc , we have

ΔUc(t, ·) = 0, in Oc, σc∂nUc(t, ·) ∈ L2(Γ ),

from which we infer that Uc(t, ·) ∈ H3/2(Oc). Hence we deduce that since the
domains are smooth Uc(t, ·)|Γ − belongs to H1(Γ ). Similar reasoning for Ue = U|Oe

implies that Ue(t, ·)|Γ + belongs to H1(Γ ), and therefore the jump v belongs to
C([0, T ]; H1(Γ )), which ends the proof. ��
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4 Numerical simulations

In this section, we provide some numerical results that show the consistency of our
models. In order to solve both static and dynamical problems, we first present the
finite-difference method on a cartesian grid adapted from the second-order scheme of
Cisternino and Weynans (2012). Note that it is not the scope of this paper to prove
rigorously that our scheme is of order two, however numerical simulations of Fig. 3b
seems to confirm this order. The rigorous numerical analysis of the method will be
performed in a forthcoming work. Since the long-term goal of this work is to fit the
models with the experimental data, and since experiments are performed with several
thousands of cells per cm2, parallel computing will be necessary to solve the inverse
problem. Therefore, we choose to use accurate schemes on cartesian grids, such as the
scheme of Cisternino and Weynans (2012), for which the accuracy has been shown
and the parallelization has be already performed, despite Galerkin formulations might
be more adapted to the single cell problem, since variational formulation holds.

4.1 Spatial discretization

We perform the discretization on a cartesian grid covering the domainΩ = Oe ∪ Oc,
which is a square domain of length L (L equals 200 µm for the computations, see
Table 1). The interface is described by a level-set function Osher and Sethian (1988),
which separates the extra- and intra-cellular domains by the use of a signed distance
function ϕ. The normal to the interface n(x) outwardly directed from the inner to the
outer of the cell is directly obtained by computing numerically ∇ϕ(x).

The grid spacing is denoted by h, and N is the number of points such as

N = L/h.

For any (i, j) ∈ N 2 we denote by Mi j the grid points defined by

Mi, j = (xi , y j ), where xi = ihx , y j = jhy, ∀(i, j) ∈ N 2.

The numerical approximation of the solution to the static or to the dynamical model
at the point (xi , y j ) is generically denoted by ui j .

Standard approximation of the Laplacian is used in the discretized domains Oe
and Oc far from the interface, which is the cell membrane Γ . However, due to the
jump conditions, a special treatment of the approximation of the Laplacian and of the
computation of the fluxes is needed at the points nearing the cell membrane.

If the intersection of the interface and [Mi j Mi+1 j ] exists, then we define the inter-
face point Ii+1/2, j = (x̃i+1/2 , j , y j ) as this intersection. We create two additional
unknowns at this interface point, called interface unknowns, and denoted by ũe

i+1/2 , j
and ũc

i+1/2 , j . The interface point Ii, j+1/2 = (xi , ỹi, j+1/2) is similarly defined as the
intersection of Γ and the segment [Mi j Mi j+1].

An example of the discretization method is given by Fig. 2. On regular grid points,
that are not neighboring the interface, the Laplacian is discretized with a standard
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(a) (b)

(c)

Fig. 2 Discretizations of the Laplacian and of the gradient of U at the interface. The first y–derivative
stencil on the right side is shifted to avoid an ill-conditioned discretization

centered second-order finite-difference scheme. A specific five points stencil including
the interface points is used for neighboring points, as shown in Fig. 2a.

Figure 2b provides an example of the discretization of ∇U on both sides of the
interface. The x-derivative of U can be computed with second-order accuracy using a
one-sided formula involving three grid points. For example we approximate the flux
on the left (for instance exterior) side of the interface with the points Mi−1 j , Mi j and
Ii+1/2 , j by:

∂U

∂x
(x̃, y j ) ≈ (ui−1 j −ũe

i+1/2 , j )(xi −x̃)

hx (xi−1−x̃) − (ui j −ũe
i+1/2 , j )(xi−1−x̃)

hx (xi −x̃) , (36)
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where for the sake of brevity, we have replaced x̃i+1/2 , j by x̃ . The y–derivative cannot
be obtained in the same way, since there are no grid points aligned with the inter-
face point in the y–direction. We therefore use a linear combination of (∂yu)i j and
(∂yu)i−1 j , defined respectively as second order approximations of the y–derivative on
Mi j and Mi−1 j . We obtain

∂U e

∂y
(x̃, y j ) ≈ x̃ − xi−1

hx
(∂yu)i j − x̃ − xi

hx
(∂yu)i−1 j . (37)

The formulas for (∂yu)i j and (∂yu)i−1 j depend on the local configuration on the
interface, but they are based on the same principle as for (36). The scheme is stabilized
by using a shifted y–stencil if two interface points are involved in the same flux
discretization, as illustrated by Fig. 2c.

4.2 Accuracy of the finite difference method

In order to show the accuracy of the numerical method, we compare both explicit and
numerical solutions to the linear static problem (4), i.e without electroporation. This
means that in (4c), Sm is constant equal to SL.

Consider a domain composed of two concentric disks. The cell is the disk of radius
R1, centered at 0. The domainΩ is the disk with the same center as the cell, and whose
radius R2 is stricly greater than R1. The boundary data g equals E R2 cos θ , such that
the cell is embbeded in a uniform electric field of magnitude E in the x–direction. The
exact solution Ũ to (4) is then explicitely given by

∀(r, θ) ∈ (R1, R2)× [0, 2π ], Ũe(r, θ) = (αer + βer−1) cos θ,

∀(r, θ) ∈ (0, R1)× [0, 2π ], Ũc(r, θ) = αcr cos θ, (38)

where αe, βe, and αc are given by

αc =
((

σc

SL R1
+ 1 + σc

σe

)
R2 +

(
σc

SL R1
+ 1 − σc

σe

)
R2

1

R2

)−1

g,

αe = 1

2

(
σc

SL R1
+ 1 + σc

σe

)
αc,

βe = 1

2

(
σc

SL R1
+ 1 − σc

σe

)
αc R2

1 .

This analytic solution is projected on the edges of the square QL centered at 0, and
whose characteristic length L satisfies R1 < L/2 < L

√
2/2 < R2 (see Fig. 3a).

In order to verify the accuracy of the space discretization, at least in this configura-
tion, we solve numerically problem (4) in the square QL , with the trace Ũ |∂QL of the
analytic solution Ũ on the edges of QL as Dirichlet boundary condition for different
grid spacings h. We set the parameters equal to

123



“Classical” Electropermeabilization Modeling 257

(a) (b)

Fig. 3 Numerical estimation of the order of accuracy of the method. The analytic solution to the linear
problem is calculated in concentric circular domains. The restriction of this solution to the boundary of the
computational domain (dashed line) provides the Dirichlet data for the numerical solution. Relative error
between the two solutions with respect to the grid spacing is plotted in b

R2 = 150 µm, R1 = 50 µm, L = 200 µm, E = 400 V/cm,

the electric parameters being given by Table 1. These parameters come from the values
given by DeBruin and Krassowska, see Table 1 of DeBruin and Krassowska (1999a).

We then compare the numerical solution Uh to Ũ . The relative error is computed
using both grid and interface points:

E(Ũ ,Uh) := ||Uh − Ũ ||L2(Ω) + |Uh − Ũ |L2(Γ )

||Ũ ||L2(Ω) + |Ũ |L2(Γ )

. (39)

We denote by hr the relative grid spacing defined by

hr = h/L .

Figure 3b shows the behavior of E(Ũ ,Uh)with respect to hr : the space discretization is
of order two for this specific case. Note Cisternino and Weynans (2012) have shown the
second order accuracy of their method, therefore despite we have adapted the scheme
to our problem, we are confident in the good accuracy of the numerical method.

4.3 Computation of the non-linear static model

When solving the static Eq. (4), if one uses the following naive iterative method:

Sm([U n])[U n+1] = σc∂nU n+1
c ,

one finds that the iterative scheme oscillates between two values. This might be a
consequence of the fact that the membrane conductivity takes its extreme values SL
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Table 1 Parameters set to fit to
the results given by Neu and
Krassowska (1999), DeBruin
and Krassowska (1999a)

EP electropermeabilization, EPd
electropermeabilized

Variable Symbol Value Unit

Biological parameters

Extracellular conductivity σe 5 S/m

Intracellular conductivity σc 0.455 S/m

Capacitance Cm 9.5 × 10−3 F/m2

Membrane surface conductivity SL 1.9 S/m2

Cell radius r 50 µm

Membrane thickness δ 5 nm

Specific parameters of the model

EP threshold Vrev 1,5 V

EP switch speed kep 40 V−1

EP characteristic time τep 1 × 10−6 s

Resealing characteristic time τvres 1 × 10−3 s

EPd membrane surface conductivity Sir 2.5 × 108 S/m2

Numerical parameters

Simulation box size L 200 µm

Grid points (each side) N 50

Time step Δt 20 ns

Pulse duration Tp 100 µs

Duration of simulation Tf 150 µs

Number of time steps NT 7500

and Sir instead of reaching an intermediate state. Another issue might be that the
mapping Lg defined by

Lg : v �→ u,

where u ∈ P H1(Ω) is solution to

{
Δu = 0, in Oe ∪ Oc, u|∂Ω = g,

[σ∂nu]Γ = 0, Sm
(
[v]Γ

)
[u]Γ = σc∂nu|Γ ,

is not a contraction, since the Lipschitz constant of Sm is of order kepSm � 1.
We use a modified mapping Lρ,g:

Lρ,g : v �→ u,

where u ∈ P H1(Ω) is solution to

{
Δu = 0, in Oe ∪ Oc, u|∂Ω = g,

[σ∂nu]Γ = 0, [u]Γ + ρSm
(
[v]Γ

)
[u]Γ − ρσc∂nu|Γ = [v]Γ ,
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Fig. 4 Membrane surface conductivity Sm at the pole of the cell (θ = 0) obtained by solving the static
equation with different values of Sir for pulse magnitudes from 10 to 50 kV/m (the numerical values of the
other parameters are given in Table 1)

where ρ is a small positive parameter chosen so as Lρ,g be a contractive operator. The
following iteration process is used:

U 0 given, and for any n ≥ 0 U n+1 = Lρ,g(U n).

For the simulations we set the stopping criterion of the scheme at γ = 10−12, meaning
that the numerical solution is obtained when the relative error E(U n+1,U n) is smaller
that γ .

4.3.1 Influence of the parameter Sir

The parameter Sir, which is the conductivity of the fully “electroporated” membrane
is hardly measurable by the experiments. It is therefore important to investigate its
influence on the model. Figure 4 shows that Sir has a little influence on the membrane
conductivity Sm, as the value of X counter-balance the variation of Sir. Therefore, the
numerical criterion to define the electroporation should involve the parameter Sm.

4.3.2 Comparison with the model of Ivorra, Mir and Villemejeane

We compare our results with the simulations of Ivorra et al. by studying the influence
of the extracellular medium conductivity on the membrane conductivity. In Fig. 5, we
show results similar to those presented in Fig. 7 of Ivorra et al. (2010). Note that to
perform their simulations, Ivorra et al. have multiplied by ten the membrane thickness.
This is the reason why their permeabilizing field is of order of magnitude of 2 MV/m,
which is much higher than the magnitude used in the experiments, typically (Mir 2001,
2005; Gowrishankar et al. 2006) to the range 20– 30 kV/m. In contrast, our model
provides more realistic conditions of electropermeabilization.
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(a) (b)

Fig. 5 Non-linear membrane conductivity of the static model for four different extracellular conductivity:
σe = 1 S/m (filled circle), σe = 0.1 S/m (open circle), σe = 0.01 S/m (filled square), σe = 0.001 S/m
(open square)

4.4 Computation of the dynamical problem

4.4.1 Time-discretization of the model

The time-derivative ∂t [U ] of (23) is discretized using the following scheme:

Cm
[U ]n+1 − [U ]n

dt
− σc∂nU n+1

c + S̃m(t
n, [U ]n)[U ]n = 0. (40)

The Runge-Kutta method of order 4 is used to compute the variable X , with time
steps dt .

Figure 6a and b show the numerical results at t = 100 µs using the parameters of
Table 1. In order to visualize the membrane electropermeabilization, we depict it with
boxes, which are colored and sized according to the values of S̃m at each point of Γ
and at t = 100 µs. We emphasize this is a visualization artefact: in our model, the cell
membrane is a surface without any thickness.

4.4.2 Main parameters influence

The key parameters of the model define the electropermeabilization coefficient S̃m,
that is kep, Vrev, Sir and the characteristic times τep and τvres. A numerical sensitivity
analysis was led to determine how the behavior of the solution with respect to a
variation of each specific parameter, as shown on Fig. 7. All the parameters defining the
function β have a very small influence on the average X of X over the cell membrane.
Even for small values of kep, the values of X are only modified by a factor 2 (Fig. 7a).
On the other hand, the “fully electroporated” membrane conductivity Sir, which was
first taken as (σc + σe)/(2δ), affects greatly the order of magnitude of X , changing
from 10−6 to 10−2 (Fig. 7d). Therefore, as for the static case the relevant quantity to
observe the phenomenon is S̃m.
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(a) (b)

Fig. 6 Solution to the dynamical problem at the time t = 100 µs for two different cell shapes: circular (a)
and irregular (b) shapes. It shows that the electropermeabilized regions depend on the cell shape and the
cell orientation with the electric field. The numerical parameters are given in Table 1

4.4.3 Comparison with the model of Neu, Krassowska, and Debruin

The main difference between the model of Neu, Krassowska, et al. and ours resides in
the addition of an electroporation current Iep = Nepiep, instead of a direct description
of the variations of the surface membrane conductivity S̃m.

The equation satisfied by the transmembrane voltage in the model of Neu, Kras-
sowska, et al. (DeBruin and Krassowska 1999a) reads

− σc∂nUc = Cm∂t [U ] + SL[U ] + Nepiep, (41)

where the ionic reversal currents have been neglected. Nep is the pore density, obeying
the ordinary differential equation (parameters are emphasized in bold):

dNep

dt
= αe([U ]/Vrev)

(
1 − Nep

N0
e−q([U ]/Vrev)

2
)
, (42)

and iep is the current flowing through a single pore:

iep(vm) = π r2
mσ RT

Fδ

vm(evm − 1)

w0ew0−nvm − nvm

w0 − nvm
evm − w0ew0+nvm + nvm

w0 + nvm

, (43)

with vm = [U ] × F/RT the adimensionalized transmembrane voltage.
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(a) (b)

(d)(c)

Fig. 7 Influence of each parameter on the mean value S̃m of S̃m (a, b, c), and on the mean value X of X
(d) at t = 100 µs. Three magnitudes of electric pulses are considered: 10, 25 and 40 kV/m

The numerical parameters for the model of Neu, Krassowska, et al. are those
of Table 1 page 1215 of DeBruin and Krassowska (1999a). Our model repro-
duces qualitatively the behavior of ΔTMP as shown in Fig. 8. In Fig. 9, we
show that the variation of the membrane current density S̃m[U ] of our modeling
is similar to the electroporation current density Nepiep of DeBruin and Krassowska
(1999a).

4.4.4 Long-time behavior of the numerical solution to the dynamical model

In this paragraph, we compare the long-time behavior of the solution Udyn to the
dynamic model for a constant pulse with the solution Ustat to the static model.

Simulations are done in order to reach the time scale of the resealing characteristic
time τvres (Fig. 10). A constant pulse g is applied until the steady state of the dynamical
system is reached. Observe that the stationary value of S̃m, which is reached after
about 500 µs is lower than the value of S̃m a few tens of microseconds after the
beginning of the pulse delivery. For pulses of short duration, it is therefore important
to simulate our new dynamical model instead of the steady model of Ivorra et al.
(2010).
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(a) (b)

Fig. 8 Comparison of theΔTMP obtained respectively with our model (solid lines) and with the model of
Neu, Krassowska, et al. (dashed), with parameters from Table 1

Fig. 9 Current density through the membrane of the model of Neu, Krassowska, et al., that is Jep = Nepiep
(in dashed line), compared with the membrane current density of our model (in solid line), Jep = S̃m [U ],
along the the cell membrane at 100 µs

Fig. 10 Averaged membrane
conductivity S̃m during
long-time simulations. Steady
state is reached after several
hundreds of microseconds,
which is larger than usual pulse
duration
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5 Conclusion

In this paper, we introduce two models describing the electropermeabilization of a
single cell. We first study the static model, which is inspired by Ivorra et al., and
we show existence and uniqueness results. We then derive a new dynamic model
of cell electropermeabilization, which takes the permeabilizing time into account.
We studied mathematical properties of this new model. We then provided an accurate
finite-difference method on cartesian grid to compute these models, and we eventually
presented numerical simulations for both static and dynamic models, that corroborate
the results of the most achieved model of Neu, Krassowska, et al.

The main feature of our models lies in the fact that without loss of accuracy it is
composed by a small number of parameters (mainly 4 parameters: Sir, Vrev, and τep,
and τvres for the dynamical system) compared with the sophisticated models with tens
of hardly measurable parameters of Neu, Krassowska, et al. Therefore, a forthcoming
fitting of our models with the experimental data seems feasible, which is hardly the
case for models with a large number of parameters.

From the biological point of view, we highlight the fact that the static model can be
used for very long pulses (around 1 ms) but, for short pulses around 10 µs and below,
the dynamics of the phenomenon have to be considered.
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