
Noname manuscript No.
(will be inserted by the editor)

Super-convergence in maximum norm of the gradient for the
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Abstract We prove in this paper the second-order super-convergence in L∞-norm of the
gradient for the Shortley-Weller method. Indeed, this method is known to be second-order
accurate for the solution itself and for the discrete gradient, although its consistency error
near the boundary is only first-order. We present a proof in the finite-difference spirit, using
a discrete maximum principle to obtain estimates on the coefficients of the inverse matrix.
The proof is based on a discrete Poisson equation for the discrete gradient, with second-order
accurate Dirichlet boundary conditions. The advantage of this finite-difference approach is
that it can provide pointwise convergence results depending on the local consistency error
and the location on the computational domain.

Keywords Finite-difference · Poisson equation · super-convergence · discrete Green’s
function · Shortley-Weller method

1 Introduction

The Shortley-Weller method is a classical finite-difference method to solve the Poisson
equation with Dirichlet boundary conditions in irregular domains. It is known to converge
with second-order accuracy, although the consistency error of the numerical scheme is only
first-order near the boundary. Furthermore, it has been numerically observed that the gra-
dient of the numerical solution also converges with second-order accuracy. Recently, Yoon
and Min raised in [7] the issue that mathematical justifications of this super-convergence
phenomenon were lacking. Then they provided in [8] a proof of this super-convergence in a
discrete L2-norm.

Here we present a proof of the super-convergence of the gradient in a discrete L∞-norm,
with a finite-difference technique. To our knowledge, all proofs of the super-convergence
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of the gradient for the Shortley-Weller method, either using finite-differences as in [8], or
a finite-element formalism as in [4] and [3], have been established for discrete L2-norms as
we will discuss in §6.

Our proof is based on the use of the discrete maximum principle, for monotone matrices,
following the method presented by Ciarlet in [1]. This discrete maximum principle, applied
to ad-hoc functions, leads us to obtain bounds on the coefficients of the inverse matrix. We
first provide some notations, recall the Shortley-Weller method and present our results in §2.
Then we present the technique of Ciarlet [1] adapted to our case in §3. In §4 we recall the
second-order convergence of the numerical solution in the whole domain, and the third-order
convergence near the boundary. We use this property in §5 to formulate a discrete Poisson
equation for the discrete gradient, with Dirichlet boundary conditions that are second-order
accurate, and we finally prove the second-order convergence of the gradient. We compare
our approach to the literature in §6.

2 Notations and statement of results

In the following, we consider a domain Ω belonging to R2 or R3, with a boundary Γ .
The Shortley-Weller method is aimed to solve the Poisson equation in the domain Ω with
Dirichlet conditions on Γ : {

−4u = f in Ω ,
u = g on Γ .

(1)

For our analysis, which is based on a finite-differences formulation, we need:

a) that a unique solution u of (1) exists and is smooth enough for our consistency error
analyses to be valid.

b) that the solution of problem (1) with f = 1 and g = 0 is C1 near the boundary, because
this property provides us estimates of the discrete Green functions in §4.

Consequently, for the sake of simplicity, we assume in the whole paper that the source
term f , the boundary Γ , and the boundary condition g are such that these two properties
are satisfied. In this context, the boundary Γ may not necessarily be smooth. For instance,
it may be only piecewise smooth and have corners, as soon as conditions a) and b) are
satisfied. However it is known that if the boundary has corners with angles greater than a
limit value, then the solution may lose its regularity near these corners. In this case, our
analysis is not valid anymore. This behavior is illustrated in the appendix. Let us notice that
the case of convergence when singularities occur near the interface has been handled in [3]
with a finite-element approach, obtaining a O(h1.5) convergence in a discrete H1- norm.

The problem (1) is discretized on a uniform cartesian grid, see Figure 1. For the sake
of clarity, the figures will represent the discretization points in two dimensions only, but
the formulation of the problem and the proofs of convergence will be presented in three
dimensions. The grid spacing is denoted by h, and the coordinates of the points on the grid
are defined by (xi,y j,zk) = (ih, j h,k h). The points on the cartesian grid are named either
with letters such as P or Q, or with letters and indices such as Mi, j,k = (xi,y j,zk) if we need
to have informations about the location of the point.

The set of grid points located inside the domain Ω is denoted by Ωh. These points are
called interior nodes. The set of points located at the intersection of the axes of the grid and
the boundary Γ is denoted by Γh. These points are called boundary nodes and are used for
imposing the boundary conditions in the numerical scheme, see Figure 1 for an illustration.
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Fig. 1 Left: interior nodes, belonging to Ωh, right: boundary nodes, belonging to Γh.
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Fig. 2 Left: regular nodes, i.e. belonging to Ω ∗∗h , right: irregular nodes, i.e. belonging to Ω ∗h .

We say that a grid node is regular if none of its direct neighbors is on the boundary
Γh, and that it is irregular if at least one of its neighbors belongs to Γh. The set of regular
grid nodes is denoted by Ω ∗∗h , and the set of irregular grid nodes is denoted by Ω ∗h . See
Figure 2 for an illustration. The Shortley-Weller scheme for solving the Poisson equation
with Dirichlet boundary conditions is based on a dimension by dimension approach. In the
following, for the sake of clarity we use the same notations as in the paper of Yoon and Min
[7].

Let the six neighboring nodes of a grid node P inside the domain be named as Pi, 1 ≤
i ≤ 6 and the distances between P and these nodes as hi, 1 ≤ i ≤ 6. If P is a regular node
then hi = h for all 1 ≤ i ≤ 6. If P is an irregular node then at least one of the hi is different
from h.
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The discretization of the Laplace operator with the Shortley-Weller method reads:

−4huh(P) =(
2

h1h2
+

2
h3h4

+
2

h5h6
)uh(P)−

2
h1(h1 +h2)

uh(P1)

− 2
h2(h1 +h2)

uh(P2)−
2

h3(h3 +h4)
uh(P3)−

2
h4(h3 +h4)

uh(P4)

− 2
h5(h5 +h6)

uh(P5)−
2

h6(h5 +h6)
uh(P6).

The matrix associated with this linear system has all its diagonal entries strictly positive, all
off-diagonal entries nonpositive (or negative or zero) and is irreducibly diagonally dominant.
Consequently it is a monotone matrix. Therefore, all coefficients of the inverse matrix are
positive. This property will allow us to apply a discrete maximum principle useful to bound
the coefficients of the inverse matrix.

We denote by uh the numerical solution of problem (1) with the Shortley-Weller method.
The local error on a node P is defined by eh(P) = u(P)− uh(P). We denote by φ(P) the
distance between a node P and the boundary Γ . The following result, presented in [5] and
in [8], will be useful for our purpose, because it provides second-order boundary conditions
for a discrete Laplace operator applied to the components of the gradient.

Theorem 1 For the Shortley-Weller method, the local error eh(P) at node P satisfies

|eh(P)| ≤ O(h2) ∀P ∈Ωh,

|eh(P)| ≤ O(h2)
(

φ(P)+min(hi)
)
, ∀P such that φ(P) = O(h),

with hi, 1 ≤ i ≤ 6 defined as above. We will briefly recall in §4 the proof of this theorem
in the formalism of discrete Green functions, in spite of its redundancy with the references
above, because it will help us to introduce our notations and to present the proof of conver-
gence of the discrete gradient.

Concerning the convergence of the gradient, in practice, we will only study the conver-
gence of the discrete version of ∂xu, because the x−, y− and z−directions have symmetric
behaviors.

We define Sh as:

Sh = {P, P middle of [MN],M,N ∈Ωh∪Γh,M and N adjacent in the x-direction.} (2)

We define the discrete x-derivative Dxuh(P) at every point P in Sh as

Dxuh(P) =
uh(M)−uh(N)

xM− xN
, (3)

where M and N are the points belonging to Ωh ∪Γh such that P is defined as the middle of
[MN].

We divide Sh into two new subsets of points (see Figure 3):

Ω̃h = {P ∈ Sh, all direct neigbors of P in Sh are at distance h from P},
Γ̃h = Sh \ Ω̃h.

By construction, it is possible to apply the classical second-order seven points stencil
for the Laplacian to all points belonging to Ω̃h. Remark also that the points in Γ̃h satisfy by
construction the property

φ(P)≤ 3h ∀P ∈ Γ̃h. (4)
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Fig. 3 Left: nodes belonging to Ω̃h , right: nodes belonging to Γ̃h

Theorem 2 For the Shortley-Weller method, the local error on the discrete x-derivative is
second-order accurate:

|∂xu(P)−Dxuh(P)| ≤ O(h2), ∀P ∈ Sh.

3 Discrete maximum principle to prove convergence

Here we recall the principle of the method presented in [1] to prove high-order convergence
for finite-differences operators with the help of the discrete maximum principle. As we do
not use exactly the same discretization matrix as in [1], due to the different way to account
for boundary conditions, we present the reasoning in our case.

3.1 Discrete Green’s function

For each Q ∈Ωh, define the discrete Green’s function Gh(:,Q) =
(

Gh(P,Q)
)

P∈Ωh∪Γh
as the

solution of the discrete problem:−4hGh(:,Q)(P) =
{

0, P 6= Q
1, P = Q

P ∈Ωh,

Gh(P,Q) = 0, P ∈ Γh.
(5)

In fact, each discrete Green function Gh(:,Q) represents a column of the inverse matrix of
the discrete operator (−4h). The matrix of (−4h) being monotone, as we noticed in §2, it
means that all values of Gh(:,Q) are positive.

With this definition we can write the solution of the numerical problem as a sum of the
source terms multiplied by the local values of the discrete Green function:

uh(P) = ∑
Q∈Ωh

Gh(P,Q)(−4huh)(Q), ∀P ∈Ωh.

In this formula we assume that uh≡ 0 on Γh. However, if one wants to impose non-homogeneous
Dirichlet boundary conditions, it is possible to take them into account by modifying the
source terms for the nodes belonging to Ω ∗h .



6 Lisl Weynans

3.2 Estimating the coefficients of the discrete Green’s function

Lemma 1 Let S be a subset of grid nodes (thus corresponding also to a subset of the indices
of the matrix), W a discrete function with W ≡ 0 on Γh, and α > 0 such that:{

(−4hW )(P)≥ 0 ∀P ∈Ωh,
(−4hW )(P)≥ α−i for all P ∈ S.

Then

∑
Q∈S

Gh(P,Q)≤ α
iW (P).

Proof of Lemma 1:

Using the definition of the discrete Green function, we can write

−4h

(
∑

Q∈S
Gh(:,Q)

)
(P) =

{
1 if P ∈ S,
0 if P 6∈ S.

Therefore,

−4h

(
W −α

−i
∑

Q∈S
Gh(:,Q)

)
(P)≥ 0 ∀P ∈Ωh.

As all coefficients of the inverse of−4h are positive, and W −α−i
∑Q∈S Gh(:,Q) is positive

on Γh, it leads to

W (P)−α
−i

∑
Q∈S

Gh(P,Q)≥ 0 ∀P ∈Ωh,

and finally we obtain an estimate of the coefficients of ∑
Q∈S

Gh(:,Q) in terms of the coeffi-

cients of W :

∑
Q∈S

Gh(P,Q)≤ α
iW (P).

4 Reminder of the proof of high-order convergence of the solution

This section is devoted to a short reminder of the proof of Theorem 1. Adequate subsets
S and functions W are used to prove second-order convergence in L∞-norm in the whole
numerical domain, and third-order convergence for the grid nodes whose distance to the
boundary is O(h).

Proof of Theorem 1:

We denote by τ(P) the consistency error of the Shortley-Weller method on a point P be-
longing to Ωh. With a classical Taylor expansion one can prove that

τ(P) =
{

O(h2) if P ∈Ω ∗∗h ,
O(h) if P ∈Ω ∗h .
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The local error satisfies the same linear system as the numerical solution uh(P), but with
the consistency error as a source term:

−4heh(P) = τ(P) ∀P ∈Ωh.

We consider a point M = (xM,yM,zM) inside Ω . We define the discrete function:

W (Q) =
C− (xQ− xM)2− (yQ− yM)2− (zQ− zM)2

6
,

with (xQ,yQ,zQ) the coordinates of the point Q, and C such that W (Q) ≥ 0 for all Q ∈ Ωh.
For instance we take C = 2(diam(Ω))2. We can write

−4hW (P) = 1, ∀P ∈Ωh.

Therefore, using Lemma 1:

∑
Q∈Ω∗∗h

Gh(P,Q)≤ ∑
Q∈Ωh

Gh(P,Q) ≤ W (P)≤ (diam(Ω))2

6
, ∀P ∈Ωh. (6)

Now we define the discrete function

W̃ (Q) =

{
0 if Q ∈ Γh,

1 otherwise.

This function satisfies {
−4hW̃ (Q)≥ 1

h2 if Q ∈Ω ∗h ,

−4hW̃ (Q) = 0 otherwise.

and we can directly write, using Lemma 1,

∑
Q∈Ω∗h

Gh(P,Q) ≤ h2W̃ (P)≤ h2, ∀P ∈Ωh. (7)

Combining (6) and (7), we obtain a second-order estimate of the local error on every
point P ∈Ωh:

|e(P)| = | ∑
Q∈Ωh

Gh(P,Q)τ(Q)| ≤ ∑
Q∈Ω∗∗h

Gh(P,Q)O(h2)+ ∑
Q∈Ω∗h

Gh(P,Q)O(h)≤ O(h2).

We define Vh = ∑
Q∈Ω∗h

Gh(:,Q). Let us consider a point P in Ω ∗h . The discretization of the

Laplace operator with the Shortley-Weller method reads:

−4hVh(P) =(
2

h1h2
+

2
h3h4

+
2

h5h6
)Vh(P)−

2
h1(h1 +h2)

Vh(P1)−
2

h2(h1 +h2)
Vh(P2)

− 2
h3(h3 +h4)

Vh(P3)−
2

h4(h3 +h4)
Vh(P4)−

2
h5(h5 +h6)

Vh(P5)−
2

h6(h5 +h6)
Vh(P6).

We assume for instance that only P1 belongs to Γh. Consequently, h1 < h, hi = h for 2≤ i≤ 6
and Vh(P1) = 0. We can write

(
2

h1h
+

4
h2 )Vh(P) =

2Vh(P2)

(h1 +h)h
+

Vh(P3)

h2 +
Vh(P4)

h2 +
Vh(P5)

h2 +
Vh(P6)

h2 +1.
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Using (7) we obtain

2
h1h

Vh(P)≤ (
2

h1h
+

4
h2 )Vh(P)≤ 7.

We can rewrite this formula as

∑
Q∈Ω∗h

Gh(P,Q)≤ 7
2

min(hi)h. (8)

Similar inequalities can be obtained if more than one point of the stencil for P belongs to Γh.

Now we consider the elliptic problem{
−4u = 1 in Ω ,

u = 0 on Γ .
(9)

We denote v the solution of this problem. We have assumed in the introduction that v was C1

near the boundary. Therefore, it satisfies v(P)=O(φ(P)) for points P such that φ(P)=O(h).
The operator −∆h is consistent on every grid node, consequently for h small enough

−4hv(P)≥ 1
2
, ∀P ∈Ωh.

Therefore, using Lemma 1 and restricting ourselves to Ω ∗∗h ,

∑
Q∈Ω∗∗h

Gh(P,Q)≤ ∑
Q∈Ωh

Gh(P,Q)≤ 2v(P)≤ O(φ(P)), ∀P such that φ(P) = O(h). (10)

Finally, combining (10) and (8) we can write for all points P such that φ(P) = O(h)

|eh(P)| = | ∑
Q∈Ωh

Gh(P,Q)τ(Q)| ≤ | ∑
Q∈Ω∗∗h

Gh(P,Q)O(h2)|+ | ∑
Q∈Ω∗h

Gh(P,Q)O(h)|,

≤ O(h2)(φ(P)+min(hi)). (11)

5 Second-order convergence for the discrete gradient

This section is devoted to the proof of Theorem 2. We aim to prove that the numerical gra-
dient defined by (3) converges with second-order accuracy in L∞-norm.

Proof of Theorem 2:

The proof is divided into two parts:

• First we prove that the discrete gradient is second-order accurate for every point P in Γ̃h,
• then we prove that the discrete gradient is second-order accurate for all points P in Sh

by means of a discrete Laplace equation applied to it.
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We know from §4 that eh, error for the numerical solution computed with the Shortley-
Weller method, satisfies

|eh(Q)| ≤ O(h2)
(

φ(Q)+min(hi)
)
, ∀Q ∈Ωh such that φ(Q)≤ 4h,

with hi, 1 ≤ i ≤ 6, the distances between the node Q and its direct neighbors in each direc-
tion. Because of (4), all points involved in the definition of the discrete gradient for points
belonging to Γ̃h are at a distance to the boundary smaller than 4h.

Let us consider a point P belonging to Γ̃h. We denote by M and N the points such that P
is their middle. To get estimates on the discrete x-derivative on P, one has to consider two
possibilities:

• One of them belongs to Γh:
Let us assume for instance that M belongs to Γh and N belongs to Ωh. In this case, we
can write that φ(N)≤ |xM− xN |. It means that

eh(M) = 0,

|eh(N)| ≤ O(h2)
(

φ(N)+min(hi)
)
≤ O(h2)

(
|xM− xN |+min(hi)

)
.

We use these estimates to bound the discrete x-derivative Dxuh(P):

|∂xu(P)−Dxuh(P)|=
∣∣∣u(M)−u(N)

xM− xN
+O(xM− xN)

2− uh(M)−uh(N)

xM− xN

∣∣∣,
≤
∣∣∣eh(M)− eh(N)

xM− xN

∣∣∣+O(xM− xN)
2,

≤
∣∣∣O(h2)

(
|xM− xN |+min(hi)

)
xM− xN

∣∣∣+O(xM− xN)
2.

Moreover, because hi ≤ |xM−xN | ≤ h for all i = 1, . . . ,6, for the hi corresponding to the
node N, we conclude that

|∂xu(P)−Dxuh(P)| ≤ O(h2).

• Both of them belong to Ωh:
In this case, xM− xN = h and we have

|eh(M)| ≤ O(h3),

|eh(N)| ≤ O(h3).

We can again write

|∂xu(P)−Dxuh(P)| ≤
∣∣∣eh(M)− eh(N)

xM− xN

∣∣∣+O(xM− xN)
2,

≤
∣∣∣O(h3)

h

∣∣∣+O(h2),

≤ O(h2).
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Therefore, if P belongs to Γ̃h, then the discrete x-derivative Dxuh(P) is a second-order accu-
rate approximation of the x-derivative of u at point P:

|∂xu(P)−Dxuh(P)| ≤ O(h2), ∀P ∈ Γ̃h. (12)

Now we consider a point P belonging to Ω̃h. Let M and N be the points such that P
is their middle. We apply the discrete x-derivative to the formula of the discrete elliptic
operator on the points M and N:

Dx(−4huh)(P) =
(−4huh)(M)− (−4huh)(N)

xM− xN
.

Because uh is the numerical solution of the linear system (1), we know that

Dx(−4huh)(P) = Dx f (P), ∀P in Ω̃h.

The node P belongs to Ω̃h, which means that in each direction the direct neighbors of
P in Sh are at the same distance h from P. The discrete operator −4h applied to points be-
longing to Ω̃h thus reduces to the classical second-order seven-point stencil. Consequently,
on this point, the discrete operators −4h and Dx commute, and we can write

Dx(−4huh)(P) =−4h(Dxuh)(P), ∀P ∈ Ω̃h.

Consequently, the array vh = (Dxuh(P))P∈Sh satisfies the linear system

−4hvh(P) = Dx f (P) ∀P ∈ Ω̃h, (13)

vh(P) = Dxuh(P) ∀P ∈ Γ̃h, (14)

which is a discrete version of the Laplace operator applied to the x− derivative of u solution
of (1). The consistency errors for this linear system are the following:

• The discretization of the Laplace operator (13) has the consistency error τ(P) = O(h2)
for all nodes belonging to Ω̃h, because the Shortley-Weller scheme reduces for these
nodes to the classical centered seven-points formula, and because Dx f (P) is a second-
order approximation of the x−derivative of f at point P.

• The formula (14) has the consistency error τ(P) = O(h2) because we know from (12)
that Dxuh(P) is a second-order accurate approximation of the x-derivative of u at a point
P in Γ̃h.

The rows of the matrix associated with this linear system correspond either to the dis-
cretization of the Laplacian operator (13), or the identity (14). This matrix has therefore all
its diagonal terms strictly positive, all off-diagonal entries nonpositive (or negative or zero)
and is irreducibly diagonally dominant. Consequently it is a monotone matrix.

We apply the same reasoning as in §3 to obtain estimates on the coefficients of the
inverse matrix. As in the previous subsection, we denote by Gh(:,Q) =

(
Gh(P,Q)

)
P∈Ω̃h∪Γ̃h

the column of the inverse matrix of the linear system (13)-(14) corresponding to a point Q
belonging to Ω̃h∪ Γ̃h.

We consider a point M = (xM,yM,zM) inside Ω . We define the discrete function on all
points P in Sh:

W (P) =
C− (xP− xM)2− (yP− yM)2− (zP− zM)2

6
,
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with (xP,yP,zP) the coordinates of the point P, and C such that W (Q) ≥ 1 for all Q ∈ Ωh.
For instance we take C = 2(diam(Ω))2 +6. We can write

−4hW (P) = 1, ∀P ∈ Ω̃h,

W (P)≥ 1, ∀P ∈ Γ̃h.

Therefore, using Lemma 1:

∑
Q∈Ω̃h∪Γ̃h

Gh(P,Q) ≤ W (P)≤ (2diam(Ω))2 +6
6

, ∀P ∈ Sh. (15)

Therefore, the expression on the local error for the discrete x-derivative on a node P belong-
ing to Sh reads

|∂xu(P)−Dxuh(P)| = | ∑
Q∈Ω̃h∪Γ̃h

Gh(P,Q)τ(Q)| ≤ (2diam(Ω))2 +6
6

O(h2), ∀P ∈ Sh.

Consequently

|∂xu(P)−Dxuh(P)| ≤ O(h2), ∀P ∈ Sh, (16)

which proves that the numerical gradient converges with second-order accuracy in L∞-norm.

6 Discussion

This work was originally motivated by the remark in the paper of Yoon and Min [6] about the
lack of mathematical analysis about the super-convergence of the Shortley-Weller method.
This paper was followed by [8] where the autors provided a proof of this super-convergence
in a discrete L2-norm, using a discrete divergence theorem.

To our knowledge, few other works in the literature have studied the super-convergence
of the gradient for elliptic finite-difference schemes, among them [2], [4] and [3].

In [2] Ferreira and Grigorieff deal with more general elliptic operators, with variable
coefficients and mixed derivatives, and prove second-order convergence in H1 norm.The
proof uses negative norms and is based on the fact that the finite difference scheme is a
certain non-standard finite element scheme on triangular grids combined with a special form
of quadrature.

In [4] Li et al. study the super-convergence of solution derivatives for the Shortley-
Weller method for Poisson’s equation, considering also this method as a special kind of
finite element method. They obtained second-order convergence in H1 norm for rectangular
domains, and an order 1.5 for polygonal domains. The work in [3] adresses the case of
unbounded derivatives near the boundary Γ , on polygonal domains.

Our approach differs from the latter because we do not use a finite-element approach.
Instead we propose a proof based on a finite-difference analysis, which is a variant of the
method presented in [1]: we use a discrete maximum principle to obtain estimates on the
coefficients of the inverse matrix, but in our case the bound on the coefficients can also vary
with the rows of the inverse matrix. This variant is useful to obtain a specific bound for points
located near the boundary and obtain the third-order convergence of the solution at these
points, already presented in [5] and in [8]. This intermediate result leads us to formulate a
discrete Poisson equation for the discrete gradient, with Dirichlet boundary conditions that
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are second-order accurate. Then the same maximum-principle methodology is applied to the
discrete gradient, leading to second-order accuracy.

The approach developed in this paper has the advantage to be simple to carry out, and
to be able to provide locally pointwise estimates, instead of the usual convergence results in
the discrete L2- or H1-norms.

7 Conclusion

We have proven that the discrete gradient obtained by the Shortley-Weller method for the
Poisson equation converges with second-order accuracy in L∞-norm. This is a super-convergence
property because the numerical solution itself converges only with second order accuracy in
L∞-norm. This property is proven with a variant of Ciarlet’s technique to obtain high-order
convergence estimates for monotone finite-differences matrices. With carefully chosen test
functions we are able to bound the coefficients of the discrete Green functions associated
with the matrix of the Shortley-Weller method. One key ingredient is the discrete gradient
as the solution of another Poisson equation with Dirichlet boundary conditions that have a
second-order accuracy. A further development would be to extend this work to the case of
more general elliptic operators.

A Numerical illustration: corners and regularity of the solution

We illustrate here the possible loss of regularity of the solution in the case of corners, that was evocated in
§2. Depending on the angles of this corners, the solution can indeed be less than C1 near the boundary, even
if the source term and the boundary conditions are very smooth.

Fig. 4 Exemple of domains with corners

On figure 4, we consider two domains that are only piecewise smooth: the diamond-shaped one, denoted
by Ω1, and its complementary, denoted by Ω2. The angles of the first one do not exceed the value π , while
some of the second one do actually.
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We solve numerically the following problem{
−4u = 1 on Ω ,

u = 0 on Γ .
(17)

in these two domains: Ω = Ω1 and Ω = Ω2, with the Shortley-Weller method. The numerical solution is
in fact the sum of all the discrete Green functions associated to grid points in the numerical domain. In this
paper, to obtain the estimate (10) on the discrete Green function, we make the assumption that the solution u
of problem (17) is at least C1 near the boundary, so that it satisfies u(x) = O(h) for points located at a distance
O(h) of the domain boundary.

We compute in both cases, the L∞-norm of the numerical solution on grid points in Ω ∗h (that is, irregular
grid points). The Tables 1 and 2 present these results. We observe that for domain Ω1, the numerical solution
on Ω ∗h converges to zero at order one. For domain Ω2, the convergence order is strictly smaller than one,
which means that the discrete Green functions do not satisfy the property that we need for our convergence
estimates.

N L∞ norm Convergence order
100 4.80E-003 -
200 2.45E-003 0.970
400 1.26E-003 0.965
600 8.43E-004 0.971
800 6.34E-004 0.97 3
1000 5.077E-004 0.976

Table 1 Convergence to zero for irregular grid points for problem (17) in domain Ω1.

N L∞ norm Convergence order
100 1.462E-002 -
200 8.104E-003 0.856
400 4.503E-003 0.853
600 3.195E-003 0.851
800 2.506E-003 0.850
1000 2.075E-003 0.850

Table 2 Convergence to zero for irregular grid points for problem (17) in domain Ω2.
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