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Abstract: An Eulerian method to numerically solve incompressible bifluid problems with high density1

ratio is presented. This method can be considered as an improvement of the Ghost-Fluid method, with the2

specificity of a sharp second-order numerical scheme for the spatial resolution of the discontinuous elliptic3

problem for the pressure. The Navier-Stokes equations are integrated in time with a fractional step method4

based on the Chorin scheme and discretized in space on a Cartesian mesh. The bi-fluid interface is implicitly5

represented using a level set function. The advantage of this method is its simplicity to implement in a6

standard mono-fluid Navier-Stokes solver while being more accurate and conservative than other simple7

classical bi-fluid methods. The numerical tests highlight the improvements obtained with this sharp method8

compared to the reference standard first-order methods.9

Keywords: incompressible Navier-Stokes equations, projection method, finite differences, Cartesian grid,10

immersed interfaces, level-set, interface unknowns11

1. Introduction12

Bifluid problems are ubiquitous in nature and in many industrial applications like combustion13

in engines, water waves energy converters, and jet printers to only cite few. In such applications,14

the density ratio between the two fluids can be large, for instance the ratio is equal to 100015

between water and air. Accurate numerical modeling and numerical simulations of these kind of16

phenomena is then necessary, in particular to optimize such devices.17

In this paper we are thus concerned with the numerical modeling of incompressible bi-18

fluid flows with large density ratios, like air and water, and by the accurate description of the19

phenomena occurring at their interface. We present a sharp Cartesian method for the simulation20

of incompressible flows with high density and viscosity ratios. This method is an extension of the21

second-order Cartesian method for elliptic problems with immersed interfaces developed in [1].22

Cartesian grids are an attractive alternative to body fitted meshes. Indeed, they avoid23

complex mesh generation as well as mesh adaptation when unsteady interfaces are considered.24

Moreover, the numerical resolution of the governing equations can be simplified with an easy25

parallelization and the use of standard linear algebra libraries. Generally speaking, numerical26

schemes are easy to implement on a Cartesian mesh because a dimensional splitting is often27

possible. However, some numerical modeling is necessary near a complex interface that does not28

fit the background Cartesian grid. This is the case for fluid structure interface and moreover for29

bi-fluid interface where the properties of the flow are discontinuous. Indeed, applying naively a30

numerical scheme originally devised for a flow with constant or continuously varying density31

will lead to a a non-consistent treatment of the interface. Most of the time, it will result in severe32

stability issues if the density ratio is large as highlighted in [2] and references therein. Therefore,33

as already mentioned, one has to devise specific numerical schemes at the vicinity of the interface.34

This region is called narrow band and is the set of numerical points that have at least one neighbor35

on the other side of the interface.36
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Conservative or non-conservative approaches can both be used to face this issue. Among37

the non-conservative approaches, one solution is to regularize the properties of the fluids in38

the vicinity of the interface, so that the density, viscosity, and their derivatives are continuous39

in the whole computational domain. This idea leads to the well known "Continuous Surface40

Force" (CSF) method [3], where the discontinuous quantities are smoothed near the interface,41

and in case of a fluid with surface tension, this surface tension is taken into account as a smooth42

volume force instead of a surface force. This method is widely used (see for instance [4] and43

[5]) because it offers a straightforward way to implement the presence of two fluids in an already44

existing mono-fluid Navier-Stokes code. However, the exact way that the regularization should45

be performed is not always clear, and spurious oscillations at the bi-fluid interface can appear due46

to errors in the pressure gradient computations. Another non-conservative method introduced47

by Kang, Fedkiw and Liu [6] after the CSF is the Ghost Fluid Method (GFM). It is based on48

a first-order method developed in [7] to solve an immersed interface elliptic problem, with a49

dimensional splitting making the method easy to implement. The resulting linear system is50

symmetric and has the same structure as the usual matrix to discretize a Poisson equation with51

variable coefficient on a Cartesian grid. This method has been used successfully in a lot of works,52

for instance [8] and [9]. One drawback is that the method is only first-order accurate near the53

interface [2] and a loss of conservativity of the momentum of each fluid near the interface can54

occur leading to erroneous velocities.55

Non-conservative methods are often associated with a level-set representation of the inter-56

face [4] because the level-set method is itself intrinsically non-conservative at the discrete level,57

and convenient to use on a Cartesian grid.58

The other family of methods is based on the conservative form of the Navier-Stokes equa-59

tions, where mass and momentum fluxes of each fluid are explicitly computed, see for instance60

[10], [11], [12], [13] and [2]. An explicit interface representation is necessary even if the interface61

do not coincide with grid points. Conservative methods are generally more stable that non-62

conservative methods. The price for this increased stability is an additional amount of numerical63

developments due to the interface reconstruction, which can be performed from informations64

carried by Lagrangian markers or by cell quantities such as volume fractions.65

Another approach has been developed recently [14,15] to deal with large density ratio. In66

this approach, a fully second order method is obtained at the interface (for both velocity and67

pressure) with several physical boundary treatments, including velocity and traction boundary68

conditions.69

In this paper we aim to preserve as much as possible the simplicity of the Ghost-Fluid70

Method of [6], avoiding an explicit identification of the volume fractions near the interface, while71

improving the accuracy and stability of the pressure computation. We thus propose a method,72

mainly based on the improvement of the Ghost-Fluid method, where the discontinuities across73

the interface are taken into account in a sharp way with a second-order scheme inspired from74

[1]. This second-order treatment improves the conservativity of the method, as it will be proved75

numerically in the section devoted to numerical validations.76

After having described the governing equations for the incompressible bi-fluid flows that77

we consider (§2), the discretization of these equations in each fluid and at the interface are78

presented (§3-4). The second-order numerical resolution of the elliptic problem arising from79

the computation of the pressure is introduced (§5), and the overall is validated on several two-80

dimensional numerical test cases (§6).81

2. Governing equations82

2.1. Flow equations83

We consider a rectangular domain Ω filled with two viscous incompressible fluids with84

different densities and viscosities. The subdomains Ω− and Ω+ corresponding to the two fluids85

are separated by an interface Γ as depicted in Figure 1.86

In this work, these domains are implicitly defined with a scalar function φ , usually called87

the level-set function, see subsection 2.2, that takes different values in each subdomain with a88

fixed value on the interface. For instance we chose φ = 0 on Γ, φ > 0 in Ω+ and φ < 0 in Ω−.89
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Ω− (φ < 0)

ρ−, µ−

Ω+ (φ > 0)
ρ+, µ+

Γ (φ = 0)

~n

Figure 1. Sketch of the computational domain.

The unit normal to the interface is denoted n and the unit tangent vector is denoted η. The density90

is denoted91

ρ = ρ
−+H(φ )(ρ+−ρ

−), (1)

and the viscosity is denoted92

µ = µ
−+H(φ )(µ+−µ

−), (2)

where H is the Heavyside function, i.e. H(φ ) = 1 if φ > 0 and H(φ ) = 0 if φ < 0. Finally,93

the two-dimensional velocity vector is denoted u = (u,v).94

The flow is modeled in the whole domain with the incompressible Navier-Stokes equations:95

ρ(ut +(u ·∇)u) = −∇p+∇ · τ +ρg−σκ∇H,

∇ ·u = 0,

with g the gravitational acceleration vector, τ the viscous stress tensor:96

τ = µ(∇u+∇uT ), (3)

and the term σκ∇H accounting for the surface tension effects, with σ the surface tension97

itself and κ the local curvature of the interface between the fluids. This formulation of the bifluid98

incompressible Navier-Stokes equations contains a singular term which is not trivial to handle.99

Alternatively, the flow can also be modeled in each subdomain with the incompressible100

Navier-Stokes equations:101

ρ(ut +(u ·∇)u) = −∇p+∇ · τ +ρg,

∇ ·u = 0.

The above equations are completed by jump conditions at the interface Γ between the102

two fluids. In what follows jumps are defined by the notation [ψ ] = ψ+−ψ−. The first jump103

conditions describe the balance between the normal stresses at the interface and the surface104

tension σ , with κ the local curvature of the interface Γ,105
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[p−2µ(∇u ·n,∇v ·n) ·n] = σκ , (4)

[µ(∇u ·n,∇v ·n) ·η+(∇u ·η,∇v ·η) ·n] = 0. (5)

Others jump conditions can be derived from continuity properties across the interface. For106

instance, for a viscous fluid the velocity field is continuous across the interface107

[u] = 0, (6)

[v] = 0. (7)

Since the material derivative of (6)-(7) is zero, one can write108

0 =
∂ [u]
∂ t

+(u ·∇)[u] =
[
−∇p

ρ
+

∇ · τ
ρ

+ g
]

, (8)

which leads to109 [
∇p
ρ

]
=

[
∇ · τ

ρ

]
. (9)

The jump condition for the pressure p can be simplified. We differentiate the jump on the110

velocity in the tangential direction:111

[
∂u
∂η

]
= 0,[

∂v
∂η

]
= 0.

Moreover, because the velocity is divergent-free on each side of the interface,112

0 = [∇ ·u] = [(∇u ·n,∇v ·n) ·n+(∇u ·η,∇v ·η) ·η]. (10)

Combining the two last relationships, we obtain113

[(∇u ·n,∇v ·n) ·n] = 0. (11)

Consequently114

[p] = 2[µ ](∇u ·n,∇v ·n) ·n+σκ . (12)

Finally, we will use equations (9) and (12) to compute the pressure jump at the interface.115

2.2. Interface description116

The interface between the two fluid subdomains is implicitly defined by a scalar function φ .117

Local geometrical information on the function φ is needed to obtain an accurate discretization of118

the interface. To this purpose we use the level set method, introduced by Osher and Sethian [16]119

and described in [17], [18] and [19]. A common choice for the level-set function φ is the signed120

distance function to the interface:121

φ (x) =


distΓ(x) if x ∈Ω+,
−distΓ(x) if x ∈Ω−,

0 if x ∈ Γ.
(13)

The zero isoline of φ thus represents implicitly the interface Γ immersed in the computational122

domain.123
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We assume that the interface is smooth enough, so that the derivatives of the level-set124

function in the vicinity of the interface are well-defined. A useful property of the level-set125

function is a straightforward computation of its normal with the formula126

n(x) =
∇φ (x)
|∇φ (x)|

. (14)

In the same way, the curvature of the interface can be computed with the formula127

κ = ∇ ·n. (15)

We impose a curvature threshold 1/h, with h the grid spacing, corresponding to the minimum128

size of a bubble for a given spatial discretization.129

For a moving interface as it is usually the case for bi-fluid problems, the flow density and130

viscosity are updated with φ tracking the interface thanks to the transport equation131

φt + û ·∇φ = 0, (16)

where the velocity fields û coincides with the flow velocity field u on the interface Γ.132

Different choices for the value of û in Ω+ and Ω− can be a priori used. A natural choice we133

have considered is û = u in the whole domain:134

φt +u ·∇φ = 0. (17)

Another possible choice is the extension velocity introduced in [20].135

3. Navier-Stokes monofluid solver and numerical method for interface evolution136

The computational domain is discretized on a two-dimensional uniform Cartesian grid with137

a grid spacing ∆x = ∆y = h. However, the following approach stands for non uniform Cartesian138

meshes. The points on the Cartesian grid are defined as Mi, j = (xi,y j). Similarly, we denote by139

ui j the approximation of u at the point (xi,y j). In what follows, all the unknowns are collocated140

in space on Cartesian meshes. An odd-even coupling can sometimes be observed when one uses141

collocated unknowns on a Cartesian grid. This problem can be fixed using some corrections such142

as [21,22]. However, in all the applications considered in this paper we have not observed any143

odd-even coupling.144

In this section we present the numerical solver devised for monofluid incompressible Navier-145

Stokes equations that is used in each fluid when the interface is not taken into account. We also146

provide informations about the numerical methods used to compute the evolution of the level-set147

function.148

3.1. Flow computation149

We use a classical projection method [23,24] to solve the Navier-Stokes equations in each150

fluid outside the narrow band. In what follows, a non-incremental projection method is used, i.e.151

the guess value for the pressure in the prediction step is zero.152

We thus compute successively:153

u∗−un

∆t
= −(un ·∇)un +

1
ρ
(∇ · τ)n + g (prediction step), (18)

un+1−u∗

∆t
= −∇p

ρ
(correction step). (19)

The convective terms are computed with a fifth-order WENO scheme, and the viscous terms154

with an explicit second-order centered finite-difference scheme. The time integration is performed155

with a first-order explicit Euler scheme, which is consistant with the use of a non-incremental156

version of the projection scheme.157
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The pressure appearing in equation (19) is computed through the resolution of a Poisson158

equation in order to enforce the divergence-free condition. At each point in one subdomain, the159

following relationship is satisfied:160

∇ ·
(

1
ρ

∇p
)
=

∇ ·u∗

∆t
. (20)

We will provide additional details about the jump conditions that have to be satisfied across161

the interface for this problem in section 4. On the exterior boundary of the domain Ω, Neumann162

boundary conditions are satisfied:163

∇p
ρ

=
ub−u∗

∆t
, (21)

where ub is the value of the velocity to be imposed on the external boundaries.164

We compute at each iteration an adaptive time step taking into account the restrictions due165

to convection, viscosity and surface tension. The convective time step restriction is given by166

∆t
(
|u|max

∆x
+
|v|max

∆y

)
≤ 1. (22)

with |u|max and |v|max the maximum magnitudes of the horizontal and vertical velocities.167

The viscous time step restriction is given by168

∆t
(

max
(

µ−

ρ−
,

µ+

ρ+

)(
2

∆x2 +
2

∆y2

))
≤ 1 (23)

We also apply a time step restriction associated with the surface tension evaluated only in169

the narrow band. This time step restriction is similar to the one in [6] and in [8], and is in this170

context usually the most restrictive:171

∆t

√
σ |κ|

min(ρ+,ρ−)min(∆x2,∆y2)
≤ 1. (24)

Finally, at each time step, the overall algorithm is the following:172

• Prediction: evaluate convective and diffusive fluxes and compute u∗,173

• Interface evolution: convect the level-set with velocity u and re-initialize if necessary,174

• Construction and resolution of the linear system for the pressure,175

• Correction step: update velocity with pressure gradient.176

3.2. Numerical method for the level-set evolution177

The computation of the level-set function should be performed very accurately when one178

deals with moving interfaces. Indeed, as the level-set method is not intrinsically conservative, a179

lack of accuracy in the computation of the level set evolution results often in a substantial loss of180

mass for one of the fluids. It can also increase the problem of transfer of momentum between181

both fluids and generate spurious velocity oscillations. Moreover, if one wants to compute the182

curvature of the interface from (15), the level-set function needs to be accurate enough (at least183

third-order) so that the finite difference formulas used to discretize (15) are consistent.184

Unfortunately, the property of the signed distance function is usually lost when the interface185

evolves with the flow velocity. The norm of the level set gradient can be far from unity. These186

gradients variations of the level-set are harmful to the accuracy of the numerical evaluation187

of the normal to the interface and the curvature. To circumvent the problem, Sussman et al.188

[4] introduced a reinitialization algorithm to recover the signed distance function through the189

resolution of the eikonal equation190

|∇φ |= 1. (25)
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Several methods have been developed over the years to perform this reinitialization step,191

either by using a relaxation method and searching a stationary solution to a time dependent192

Hamilton-Jacobi equation [4] or using a Gauss-Seidel based method as in fast marching methods193

[25,26] or fast sweeping methods [27].194

The usual level set strategy for an evolving interface is thus the following:195

• Use a transport equation to update φ .196

• From time to time, reinitialize φ with the signed distance function.197

One of the most widespread option in the literature is to combine a fifth-order WENO198

scheme [28] with a RK3 scheme, for the transport and for the reinitialization through a relaxation199

equation. It provides a high-order yet stable resolution. But, although the reinitialization procedure200

performed with such a numerical scheme may improve mass conservation, it also introduces some201

error by slightly moving the interface as shown in [29]. For this reason, Russo and Smereka [29]202

introduced a subcell fix taking into account the interface location in the reinitialization procedure.203

This technique was extended to a higher order accuracy in [30] through the use of third-order204

ENO schemes near the interface.205

Usually, this reinitialization steps are performed uniformly every each n iterations. A recent206

study [31] proposes a strategy to sample the reinitialization steps based on interface deformation207

criteria. This should also be coupled with the high-order decentered reinitialization scheme of208

[30] near the interface.209

In what follows, we will use the classical option of the fifth-order WENO scheme for the210

spatial discretization. Since it is the most commonly used technique in the literature, it will allow211

to distinguish the effects of the new scheme for the pressure computation from the effects of the212

reinitialization technique.213

4. Navier-Stokes solver near the interface214

4.1. Notations215

Let us introduce some definitions and notations. A grid point is defined to be irregular if at216

least one of its neighbors is on the other side of the interface, i.e. if the sign of φ changes between217

this point and at least one of its neighbors, see Figure 2. The set of irregular points is called the218

narrow band. All the other points are called regular grid points.219

We define the interface point Ii, j,E = (x̃i, j,E ,y j) as the intersection of the interface Γ and220

the East segment [Mi jMi+1 j], if it exists. Similarly, the interface points Ii, j,W = (x̃i, j,W ,y j),221

Ii, j,N = (xi, ỹi, j,N) and Ii, j,S = (xi, ỹi, j,S) are respectively defined as the intersection of the interface222

and the West [Mi−1 jMi j], North [Mi jMi j+1] and South [Mi j−1Mi j] segments . With this notation223

the same interface point can be described in two different ways224

Ii, j,S = Ii, j−1,N or Ii, j,E = Ii+1, j,W . (26)

The set of interface points is denoted Γh, see Figure 2 for an illustration.225

4.2. Modelling choices for the discontinuities across the interface226

In this study, the values of the viscosity and the densities are discontinuous across the227

interface. Therefore, if the numerical scheme for solving incompressible Navier-Stokes equations228

described previously in subsection 3.1 was applied on the irregular grid points of the narrow band,229

the approximations of the following terms would not be consistent:230

• prediction step: viscous terms,231

• correction step: divergence of the predicted velocity, elliptic operator, gradient of the232

pressure.233

This lack of consistency could eventually leads to stability problems.234

The computation of the convective terms is not mentioned in the above enumeration because235

it is performed with a fifth-order WENO scheme, which provides automatically spatial adaptivity.236

Therefore, we assume that the gradients computed with the WENO scheme are decentered near237

the interface, and consequently, consistent. Moreover, the level-set function is classically evolved238

with such a scheme, because it is crucial to have a good accuracy in the computation of the239
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Figure 2. Example of geometrical configuration, with regular grid points (white circles), irregular points
(black circles), and interface points (diamonds) with the two possible notations.

interface evolution. Therefore, it seems coherent to have the same numerical scheme for the240

convection of the interface and the convection of the fluids.241

In this work, we use two different strategies to handle the lack of consistency near the242

interface, one for the viscous terms and another for the pressure computation. For the viscous243

term in the prediction step, we follow a continuous approach and regularize the quantities used244

for the computation of the viscous terms. It has been proven in [32] and [33] that this continuous245

approach provides correct accuracy for high Reynolds numbers flows. It has also been used246

successfully in [2] and [3]. A sharp approach for the viscous terms could probably improve the247

accuracy of the simulations. However, the complexity of the computations would be increased248

due to the treatment of the jump conditions for the viscous terms (5) implying derivatives of the249

velocity components in both normal and tangential directions. Moreover, if one needs to use an250

implicit treatment of the viscous terms, such a sharp treatment would become more complex to251

handle.252

The discretization of the prediction step becomes:253

u∗−un

∆t
= −(un ·∇)un +

1
ρ̃

(
∇ · µ̃(∇u+∇uT )

)n
+ g. (27)

In practice the viscosity and the inverse of the density were regularized by a discrete254

convolution [2]:255

16 µ̃i, j = 4 µi, j + 2 µi+1, j + 2 µi−1, j + 2 µi, j+1 + 2 µi, j−1

+µi+1, j+1 + µi+1, j−1 + µi−1, j+1 + µi−1, j−1,
16
ρ̃i, j

=
4

ρi, j
+

2
ρi+1, j

+
2

ρi−1, j
+

2
ρi, j+1

+
2

ρi, j−1

+
1

ρi+1, j+1
+

1
ρi+1, j−1

+
1

ρi−1, j+1
+

1
ρi−1, j−1

.

Then we discretize the viscous terms with a classical second-order centered scheme as in256

subsection 3.1.257

In the correction step, according to the jump conditions (4) - (12) presented in section 2, the258

pressure satisfies an elliptic problem with discontinuous values of the solution and its derivative259

across the interface:260
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∇ ·
(

1
ρ

∇p
)

=
∇ ·u∗

∆t
in Ω+∪Ω−,

[p] = σ κ + 2[µ ] (un,vn) ·n on Γ,[
∇p
ρ

]
=

[
∇ · τ

ρ

]
on Γ.

Because the viscous terms in the prediction step are handled with a regularization approach,261

we have [µ ] = 0 and
[

∇·τ
ρ

]
= 0. Therefore, the pressure computed for the correction step satisfies262

rather:263

∇ ·
(

1
ρ

∇p
)

=
∇ ·u∗

∆t
in Ω+∪Ω−, (28)

[p] = σ κ on Γ, (29)[
∇p
ρ

]
= 0 on Γ. (30)

The details of the resolution of this elliptic problem will be provided in section 5. Let us264

remark however that as the values of p are discontinuous across the interface, two values of p265

will be created at each point of the interface considered in the numerical scheme.266

4.3. Gradient and divergence for correction step267

The predicted velocity u∗ obtained after the prediction step (18) is defined only on grid268

points. We need to compute the divergence of this predicted velocity in order to solve the elliptic269

equation (20). However, since the two fluids have different properties across the interface and the270

derivatives of the velocity are not necessarily continuous, we need to use a decentered stencil on271

each side of the interface. Consequently, we have to compute two values for u∗ on each interface272

point, one for each side of the interface. In practice, as jump conditions for u∗ are not available,273

we perform simply linear extrapolations from the grid values on the interface points. Then, to274

compute the divergence of u∗ on an irregular grid point Mi, j, we use a standard five point stencil,275

see Figure 3. Formally this is equivalent to a standard first-order decentered scheme.276

More precisely, we denote u∗S the value of the predicted velocity u∗ on the nearest point277

to Mi, j in the south direction (possibly an interface point), with coordinates (xS,yS). Similarly,278

we define u∗N , u∗W and u∗E and the associated coordinates (xN ,yN), (xW ,yW ) and (xE ,yE). The279

discretization reads280

(
∇ ·u∗

)
i, j

=
u∗E −u∗W
xE − xW

+
v∗N− v∗S
yN− yS

.

Similarly, in order to keep a consistent discretization, the gradient of the pressure p appearing281

in equation (19) is also computed with an adapted decentered stencil near the interface, see Figure282

3. More precisely, with the same notations S, N, W and E, as before, the discretization reads283

(∇p)i, j =


pE − pW

xE − xWpN− pS

yN− yS

. (31)

If one of the discretization point is an interface point, we consider the value of the pressure284

on this point corresponding to the same subdomain than point Mi, j. Indeed we recall that, since the285

pressure is discontinuous across the interface, two pressure unknowns (one for each subdomain)286

are computed at an interface point. If no interface point is involved, the numerical scheme reduces287

to the classical second-order central finite differences scheme.288
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Figure 3. Example of geometrical configuration, with points involved in the discretization of the divergence
of the predicted velocity and pressure gradient at grid points Mi, j and Mi+2, j+2 in black.

5. Numerical resolution of elliptic problems with immersed interfaces289

The elliptic problem with discontinuous values across an interface (28) - (30) is solved with290

the second-order method developed in [1]. The interface points are used to impose the jump291

conditions across the interface in the numerical scheme. Since the pressure is discontinuous292

across the interface, two unknowns are created, one for each side of the interface. The accuracy293

of this method is based on the use of unknowns located at the interface. The size of this linear294

system is thus augmented with two unknowns for each interface point. These interface unknowns295

are used to discretize the flux jump conditions and the elliptic operator accurately enough to296

get a second-order convergence in maximum norm. Actually, to this purpose, near the interface297

the elliptic operator needs to be discretized with a first-order truncation error, and the fluxes298

with a second-order truncation error. For a visual explanation of the discretization we refer to299

Figure 4. The advantage of using this method, compared to the reference work of [6] is that300

the jump conditions in the correction step are solved with second-order accuracy instead of301

first-order. The drawback is that the linear system is not symmetric anymore and it is solved with302

the preconditioned GMRES method.303

5.1. Discrete elliptic operator304

We use a standard five-point stencil including the grid point Mi, j and its nearest neighbors in305

each direction: interface or grid points. More precisely, we denote pS the value of the solution306

on the nearest point in the south direction, with coordinates (xS,yS). Similarly, we define pN ,307

pW and pE and the associated coordinates (xN ,yN), (xW ,yW ) and (xE ,yE). Since the density is308

piecewise constant, the discretization reads309

(
∇.(

1
ρ±

∇p)
)

i, j
=

1
ρ±

∆p =
1

ρ±

pE − pi j

xE − xi
−

pi j− pW

xi− xW
xE − xW

2

+
1

ρ±

pN− pi j

yN− y j
−

pi j− pS

y j− yS
yN− yS

2

, (32)

where ρ± stands for ρ+ or ρ−.310

5.2. Discrete flux transmission conditions311

As written before, at each interface point we create two additional unknowns, called interface312

unknowns. We denote them by p±i, j,γ with γ = E,W ,N or S. The interface unknowns carry the313

values of pressure on each side of the interface.314

Contrarily to [1], we do not have a jump condition on the normal derivative, but on the315

whole gradient, as expressed in formula (30). To obtain the same number of equations and316

unknowns we have to chose in which direction we want to project this gradient equality. As we317

use a Cartesian grid, it is easier to discretize the x− and y−derivatives than derivatives in other318
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j
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Figure 4. Left: points involved in the discretization of the elliptic operator at grid nodes Mi+2, j+2 and
Mi+3, j in black, right: Example of stencils for the discretization of jump conditions. Points involved in
the discretization of the x-derivative of the pressure at interface point Ii, j−1,E and of the y-derivative of the
pressure at interface point Ii+1, j+1,N in black. For Ii, j−1,E both derivatives are expressed with second-order
accuracy while for Ii+1, j+1,N the left derivative is expressed with second-order and the right derivative with
first-order accuracy.

directions. Consequently, we discretize the following jump conditions at each interface point Ii, j,γ ,319

with γ = N,S,W ,E.320

p+i, j,γ − p−i, j,γ = σ κi, j,γ , (33)

1
ρ+

(∂x p+)i, j,γ −
1

ρ−
(∂x p−)i, j,γ = 0 if γ = E,W . (34)

1
ρ+

(∂y p+)i, j,γ −
1

ρ−
(∂y p−)i, j,γ = 0 if γ = N,S. (35)

We want the truncation error of the discretization of flux equality (34-35) to be second-order321

accurate in order to solve the problem with a second-order accuracy. A possible configuration322

of the interface is illustrated in Figure 4. In the x-direction, it is straightforward to compute a323

second-order approximation of the x-derivative with three a priori non equidistant points. For324

example we approximate the flux on the left side of interface point Ii, j,E , if it exists, with the325

values of p on the points Mi−1, j, Mi, j and Ii, j,E with the formula:326

(∂x p±)i, j,E ≈
(pi−1, j− p±i, j,E)(xi− x̃i, j,E)

∆x(xi−1− x̃i, j,E)
−

(pi, j− p±i,,E j)(xi−1− x̃i, j,E)

∆x(xi− x̃i, j,E)
. (36)

The right x-derivative is approximated in the same way.327

(∂x p±)i, j,E ≈−
(pi+2, j− p±i, j,E)(xi+1− x̃i, j,E)

∆x(xi+2− x̃i, j,E)
+

(pi+1, j− p±i,,E j)(xi+2− x̃i, j,E)

∆x(xi+1− x̃i, j,E)
. (37)

The same discretization holds for the y-derivative. The formulas (36) and (37) are consistent328

if both grid points involved in the formula, for instance Mi−1, j and Mi, j, belong to the same329

domain. If on one side of the interface the two closest grid points aligned with the intersection330

point do not belong to the same subdomain, then the second-order discretization is not possible331

anymore. In this case, we use a first-order discretization involving only two points: the interface332

point and the closest grid point on the same side of the interface. Such a case is illustrated on333

Figure 4. In fact, this first-order discretization is equivalent to the ghost-fluid method [6].334
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Let us notice that, because we use a dimensional splitting for the jump conditions across the335

interface, it is quite straightforward to eliminate the interface unknowns from the linear system.336

We simply inject expressions (36) and (37) in the jump condition (34), and use the resulting337

equality to express p±i, j,E as a function of pi−1, j, pi, j, pi+1, j and pi+2, j. This expression for p±i, j,E338

can then be used in the discretization of the elliptic operator (32).339

The local curvature κi, j,γ at the interface point Ii, j,γ is computed in the following way. We340

first compute on all irregular grid points the value341

κ =
φ 2

x φyy +φ 2
y φxx−2φxφyφxy

(φ 2
x +φ 2

y )
3/2 (38)

with centered second-order finite-difference formulas. Then we perform a one-dimensional342

linear interpolation of these values on the interface points.343

6. Numerical results and validations344

This section is devoted to the numerical simulations and validations.345

After having studied the well balanced behaviour of the proposed approach, i.e. the capacity346

of the method to preserve equilibria state for a bubble, in §6.1, we will perform a quantitative347

validation for the well known dam break problem §6.2. We then present other numerical simula-348

tions for the rising of bubbles with different sizes that can qualitatively been compared to some349

reference results §6.3.350

6.1. Equilibria preservation for a bubble: the parasitic oscillations351

This first test case aims to assess the influence of the interface curvature error on the stability352

of the numerical scheme. A bubble is located at the center of the computational domain in §6.1.1353

and §6.1.2. Due to Laplace law and the concavity of the interface, the pressure inside the bubble354

is larger than the pressure outside. If the curvature of the interface is computed numerically, the355

errors due to the numerical approximation in the right-hand side of equation (33) cause small356

errors in the resolution of the pressure equation and the system is thus not well balanced. These357

errors create artificial values of the velocity near the interface which should theoretically be358

zero. These artificial velocities are often called parasitic currents. The amplitude of the parasitic359

currents is an indication of the stability and the accuracy of the numerical method, and especially360

of the pressure computational step. Indeed, they are the only source of numerical errors.361

In what follows several comparisons with other references methods, the Ghost Fluid and362

the CSF methods in §6.1.1 and the Volume Of Fluid method in §6.1.2, are presented on slightly363

different test cases.364

6.1.1. Comparison with the Ghost Fluid and the CSF methods365

We use the same parameters as in [8], where a Ghost-Fluid and a CSF method were366

implemented. The amplitude of the parasitic currents, compared to the results in [8], are reported367

in Table 1. The L∞ and L2 norms are computed over the whole domain Ω. The initial configuration368

is described in Figure 5. As it can be observed, the amplitude of the parasitic currents generated by369

our method is several orders of magnitude smaller than those of the CSF method, and significantly370

lower than those of the Ghost-Fluid method when the grid is refined.371 

L = 2 cm,
R = 1 cm,

ρint = 1000 kg.m−3,
µint = 10−3 Pa.s,
ρext = 1 kg.m−3,
µext = 10−5 Pa.s,
σ = 0.1 N.m−1

(39)
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2 L

int

ext

R

Figure 5. Test case of the static bubble with parasitic oscillations.

Table 1. Comparison between the new method and the numerical results obtained in [8] for the ghost-fluid
method and the CSF method for parasitic oscillations, at time t = 1.

Ghost Fluid method CSF New method
N L∞ error L2 error L∞ error L2 error L∞ error L2 error

16 8.08 ×10−3 1.88 ×10−3 3.55 ×10−2 1.94 ×10−2 5.21 ×10−3 7.31 ×10−5

32 3.42 ×10−4 7.50 ×10−5 3.12 ×10−2 1.18 ×10−2 9.26 ×10−5 1.42 ×10−6

64 5.13 ×10−5 7.97×10−6 2.12 ×10−2 5.44 ×10−3 1.36 ×10−5 1.47 ×10−7

128 2.79 ×10−5 4.74 ×10−6 6.44 ×10−3 1.38 ×10−3 2.22 ×10−6 1.92 ×10−8

6.1.2. Comparison with a Volume of Fluid method372

We now compare the behavior of our method to the Volume of Fluid method developed in373

[12]. The density and viscosity ratio are both chosen to be one for this test-case. The coefficient374

σ is chosen so as to obtain an Ohnesorge number Oh =
µ√

σρD
satisfying Oh2 =

1
12000

. The375

maximum velocity is computed for varying grids at non-dimensional time t∗ =
t
T
= 250, with376

T =
Dµ

σ
.377 

L = 1.25 m,
R = 1 m,

ρint = 1 kg.m−3,
µint = 10−3 Pa.s,
ρext = 1 kg.m−3,
µext = 10−3 Pa.s,

σ = 0.00012 N.m−1

(40)

A comparison between our method and the Volume of Fluid method is presented in Table378

2. The new method provides a better accuracy than the Volume of Fluid method for the coarsest379

grid. As expected, the Volume of Fluid method outperforms our new approach for finer meshes380

due to more sophisticated schemes near the interface. Nonetheless, Table 2 show a second-order381

accuracy for our new method.382

Table 2. Numerical results for parasitic oscillations at non-dimensional time t∗ = 250 for [12] and our
method.

∆x error L∞ for [12] error L∞ for our method

2.5/16 7.3 ×10−4 7.48 ×10−5

2.5/32 4.5 ×10−6 4.7 ×10−6

2.5/64 5.5 ×10−8 1.26 ×10−6
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6.2. Collapse of a water column: the dam break problem383

This test case is studied in [2] and [34], and based on experiments conducted in [35]. The384

initial configuration is a water column at rest in air. The initial height and width of the column385

are both 5.715 cm. The domain size is 40 cm×10 cm. The physical constants are the same than386

for the rising bubble (§6.1.1). For more details, we refer the reader to [2]. We present in Figure387

6 the interface evolution at non-dimensional times T = t
√

g/H = 0,1,2,3,4, with H the initial388

height of the water column. The computations are performed with 256×64 points.

Figure 6. Evolution of the interface for the dam break problem at non-dimensional times T = t
√

g/H =

0,1,2,3,4.
389

Figure 7 present the temporal evolution of the water front, compared to the experimental390

results [35], to results with the Ghost-Fluid method used for pressure resolution, and to the391

conservative method of Raessi and Pitsch [2]. We observe that the front propagation is in392

agreements with the experimental results and the results of the conservative method [2]. It means393

that, though the method is not strictly conservative, the numerical errors due to momentum394

transfer across the interface are not large enough to slow down the propagation of the front. It is395

not the case for instance for the Ghost-Fluid method, as it can be noticed in Figure 7 and has been396

reported in [2].397

6.3. Rising of air bubble in water398

We study the evolution of fluid bubbles rising in an heavier fluid, and compare our results to399

several methods in the literature. The initial configuration is described in Figure 8.400

6.3.1. Comparison with the Ghost-Fluid method401

We consider air bubbles rising in water, as in the test case proposed for the Ghost-Fluid402

method in [6]. The value of the physical parameters are403
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Figure 7. Evolution of the front of propagation: comparison between experimental data and several
numerical methods: the Ghost Fluid method (non-conservative method), the conservative method of Raessi
and Pitsch and our new method, The dimensionless location of the front z

a is plotted as a function of the
dimensionless time T = t

√
g/H.

6 R

9 R in [6]
or 10 R in [36]

2 R in [36]
3 R in [6]

gaz

liquid

R

Figure 8. Initial fluid domain for the test case of the rising bubble in water in the references [6] and [36]



R = 1/300 m (small bubble)
R = 1/3m (large bubble)

ρwater = 1000 kg/m3,
µwater = 1.137×10−3 kg/ms,

ρair = 1.226 kg/m3,
µair = 1.78×10−5 kg/ms,

σ = 0.0728 kg/s2,
g = −9.8m/s2.

(41)

We consider two cases: a small bubble with R = 1/300m and a large one R = 1/3m. In404

the first case, the surface tension plays an important role in the evolution of the interface because405

of the high bubble curvature. In the second case, the surface tension has less influence, and larger406

deformations occur. The interface of the small bubble and the vorticity values are plotted at times407

t= 0.,0.02,0.035, 0.05 in Figure 9. The interface of the large bubble and the vorticity values are408

plotted at times t= 0.,0.2,0.35, 0.5 in Figure 10. Our numerical results are in good agreements409

with [6].410
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Figure 9. Evolution of the interface and vorticity values for the small bubble test case, at times 0.,0.02,0.035,
0.05, resolution 40 × 60 (left), 80 × 120 (middle) and 160 × 240 (right).
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Figure 10. Evolution of the interface and vorticity values for the large bubble test case, at times 0.,0.2,0.35,
0.5, resolution 40 × 60 (left), 80 × 120 (middle) and 160 × 240 (right).

6.3.2. Comparison with SPH and the level-set method411

This test case is taken from [36], and inspired from a test case presented in [4]. It gives us the412

opportunity to compare our method to another class of methods, based on the SPH formulation.413

The initial configuration is described on Figure 8. The values of the physical parameters are414
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Figure 11. Evolution of the interface and vorticity values for the bubble test case from [36] at non-
dimensional times t ∗

√
−g/0.025 = 0.,2.8,6,4.,4.4,4.8,5.2,5.6,6., resolution 120 × 200.
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R
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3 R

gaz

liquid
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Figure 12. Initial fluid domain for the test case of the two rising bubbles in water



R = 0.025 m,
ρwater = 1000 kg/m3,

µwater = 1.137×10−3 kg/ms,
ρair = 1.226 kg/m3,

µair = 1.78×10−5 kg/ms,
σ = 0.0728 kg/s2,

g = −9.8m/s2.

(42)

The evolution of the interface and the vorticity values are plotted on Figure 11, for 120 ×415

200 grid points. We observe that the interface deforms in a way similar to the results in [36].416

6.4. Two air bubbles in water417

Two air bubble are initially at rest in water, see Figure 12. In the same time that they are418

rising, their interaction produces larger deformations than for a single bubble. This test case is419

meant to assessing the conservativity of the new method, as the increase in pression resolution is420

meant to increase this conservativity.421

The value of the physical parameters are422 

R = 1/30 m,
center of first bubble = (0,0),

center of second bubble = (−0.04,0.08),
final time Tf = 0.12,

ρwater = 1000 kg/m3,
µwater = 1.137×10−3 kg/ms,

ρair = 1.226 kg/m3,
µair = 1.78×10−5 kg/ms,

σ = 0.0728 kg/s2,
g = −9.8m/s2.

(43)

On Figure (13) are plotted the interface evolution and the vorticity values for the Ghost-Fluid423

method (used for the pressure computation) and the new method. One observes small oscillations424

of the vorticity near the interface between two fluids for the Ghost Fluid method, but not for the425

new method. The conservation of the partial mass of air and momentum of air in each dimension426

for the new method, and the Ghost-Fluid method are depicted respectively in Figure (14), Figure (427

15) and Figure (16). Air being the less dense fluid, it is more prone to big oscillations if erroneous428
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mass and momentum transfers between the two fluids occur. One can observe that with the new429

method and its second-order pressure resolution, the oscillations of these quantities are notably430

less present than for the Ghost-Fluid. The partial mass is better conserved too.431

7. Conclusions432

We have developed a new method on Cartesian grids for the simulation of incompressible433

flows with large density ratios. This method relies on a sharp resolution of the pressure term434

across the interface defined by a level set function. The advantage of the proposed approach is its435

simplicity to implement in an existing Cartesian mono-fluid Navier-Stokes solver as for instance436

the Ghost-Fluid or CSF methods. It is only necessary to modify the stencil for the pressure437

equation at some irregular grid points by adding one additional point. This Cartesian scheme uses438

thus additional unknowns located on the interface to discretize with second-order accuracy the439

jump conditions across the interface. The viscous term is treated with a regularizing approach440

which allows to eliminate terms in the jump conditions. Indeed, it has been shown [32,33] that441

the regularization has no significant impact on the accuracy of the results. Numerical results show442

that this method leads to more accurate and stable results than some reference methods as for443

instance the well known Ghost-Fluid or CSF methods. The conservation of volume of each phase444

is also better conserved. We thus take advantage of both the regularity of the interface defined by445

the level set function (curvature is numerically consistent), and the mass conservation of each446

phase. The CLSVOF [11] can also provide good mass conservation and precision of the interface447

but with a more complex numerical implementation.448

Future works include an extension of the method to three-dimensional problems with449

interactions with solids including the numerical simulation of wave energy converters [37,38].450

We also aim to study the sensibility of the reinitialization procedure of the level set function451

defining the bi-fluid interface, as for instance the one developped in [31].452

Funding: This study has been carried out with financial support from the French State, managed by the453

French National Research Agency (ANR) in the frame of the Investments for the future Programme IdEx454

Bordeaux (ANR-10-IDEX-03-02)455



21 of 24

Figure 13. Evolution of the interface and vorticity values for the two bubbles test case at times t =
0.,0.04,0.08,0.12, resolution 120 × 180, left: new method for pressure, right: Ghost-Fluid method for
pressure.
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Figure 14. Evolution in time of partial mass of air with N = 60, 90, 120 points in x-direction with a) Ghost
Fluid method, b) New method.

Figure 15. Evolution in time of partial x-momentum of air N = 60, 90, 120 points in x-direction with a)
Ghost Fluid method, b) New method.

Figure 16. Evolution in time of partial y-momentum of air N = 60, 90, 120 points in x-direction with a)
Ghost Fluid method, b) New method.
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