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Abstract: We prove in this paper the second-order super-convergence of the gradient for the
Shortley-Weller method. Indeed, with this method the discrete gradient is known to converge with
second-order accuracy even if the solution itself only converges with second-order. We present a
proof in the finite-difference spirit, inspired by the paper of Ciarlet [2] and taking advantage of
a discrete maximum principle to obtain estimates on the coefficients of the inverse matrix. This
reasoning leads us to prove third-order convergence for the numerical solution near the boundary
of the domain, and then second-order convergence for the discrete gradient in the whole domain.
The advantage of this finite-difference approach is that it can provide locally pointwise convergence
results depending on the local truncation error and the location on the computational domain, as
well as convergence results in maximum norm.

Key-words: Finite-difference, Poisson equation, super-convergence, discrete Green’s function,
Shortley-Weller method

∗ Corresponding author: lisl.weynans@inria.fr



Une preuve par différences finies de la superconvergence du
gradient avec la méthode de Shortley-Weller.

Résumé : Nous présentons dans ce rapport une preuve de la super-convergence à l’ordre deux
du gradient pour la méthode de Shortley-Weller. En effet, avec cette méthode le gradient discret
converge à l’ordre deux même si la solution elle-même converge aussi à l’ordre deux seulement.
La preuve est réalisée avec des techniques de différences finies, inspirées par l’article de Ciarlet
[2], et utilisant un principe du maximum discret pour obtenir des estimations des coefficients de
la matrice inverse. Ce raisonnement nous permet de prouver que la solution numérique converge
à l’ordre trois près du bord du domaine, puis que le gradient discret converge à l’ordre deux
dans tout le domaine. Cette approche par différences finies permet d’obtenir des résultats de
convergence locaux, en fonction des différentes valeurs de l’erreur de troncature et de la position
du point considéré sur le domaine de calcul. Elle permet aussi d’obtenir des résultats en norme
du maximum.

Mots-clés : Différences finies, super-convergence, fonction de Green discrète, méthode de
Shortley-Weller
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4 L. Weynans

1 Introduction

The Shortley-Weller method is a classical finite-difference method to solve the Poisson equation
with Dirichlet boundary conditions in irregular domains. It is known to converge with second-
order accuracy, although the truncation error of the numerical scheme is only first-order near
the boundary. Furthermore, it has been numerically observed that the gradient of the numerical
solution also converges with second-order accuracy. Recently, Yoon and Min raised in [8] the issue
that mathematical justifications of this super-convergence phenomenon were lacking. Indeed, to
our knowledge, only finite-element analyses of this phenomenon are available in the literature,
as we will discuss in §6.

Here we prove the super-convergence of the gradient with a finite-difference technique. We
propose a variant of the method introduced by Ciarlet in [2].This method is based on the use
of the discrete maximum principle, for monotone matrices, leading us to obtain bounds on the
coefficients of the inverse matrix. We first provide some notations, recall the Shortley-Weller
method and present our results in §2. Then we present the technique of Ciarlet [2] adapted to
our case in §3. We prove with this technique that the numerical solution converges with second-
order accuracy in the whole domain, and with third-order accuracy near the boundary in §4.
This intermediate result leads us to formulate in §5 a discrete Poisson equation for the discrete
gradient, with Dirichlet boundary conditions that are second-order accurate, and finally to prove
the second-order convergence of the gradient. We compare our approach to the literature in §6.

2 Notations and statement of results

The Shortley-Weller method is aimed to solve the Poisson equation in a domain Ω with an
arbitrary shape, satisfying Dirichlet conditions on the boundary Γ:{

−4u = f on Ω,
u = g on Γ.

(1)

In the whole paper, we assume that the source term f is such that the solution u exists and is
smooth enough so that our truncation error analyses are valid. For instance, f belongs to C2(Ω̄)
and u belongs to C3(Ω̄).

The problem (1) is discretized on a uniform cartesian grid, see Fig. 1. The grid spacing is
denoted h, and the coordinates of the points on the grid are defined by (xi, yj) = (i h, j h). The
points on the cartesian grid are named either with letters such as P or Q, or with letters and
indices such as Mi,j = (xi, yj) if one wants to have informations about the location of the point.

The set of grid points located inside the domain Ω is denoted Ωh. The set of points located at
the intersection of the axes of the grid and the boundary Γ is denoted Γh. These points are used
for imposing the boundary conditions in the numerical scheme. See Fig. 1 for an illustration.
We say that a grid node is regular if none of its direct neighbors is on the boundary Γh, and
that it is near the boundary if at least one of its neighbors belongs to Γh. The set of regular grid
nodes is denoted Ω∗∗h , and the set of grid nodes near the boundary is denoted Ω∗h. See Fig. 2 for
an illustration.

The Shortley-Weller scheme for solving the Poisson equation with Dirichlet boundary condi-
tions is based on a dimension by dimension approach. In the following, for the sake of clarity we
use the same notations as in the paper of Min [8].

Let the four neighboring nodes of a grid node P inside the domain be named as P1,P2,P3,P4,
and the distances to the neighbors as h1,h2, h3 and h4. Some of the neighboring nodes may be
the points on the boundary, thus the distances may be different to each other near the interface

Inria



Superconvergence of Shortley-Weller method 5
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Figure 1: Left: nodes belonging to Ωh, right: nodes belonging to Γh.
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Figure 2: Left: nodes belonging to Ω∗∗h , right: nodes belonging to Ω∗h.
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6 L. Weynans

while they are all equal to h away from the boundary. The discretization of the Laplace operator
with the Shortley-Weller method reads:

−4huh(P ) =(
2

h1h3
+

2

h2h4
)uh(P )− 2

h1(h1 + h3)
uh(P1)− 2

h3(h1 + h3)
uh(P3)

− 2

h2(h2 + h4)
uh(P2)− 2

h4(h2 + h4)
uh(P4).

The matrix associated with this linear system has all diagonal terms strictly positive, all extra-
diagonal terms negative and is irreductibly diagonally dominant. Consequently it is a monotone
matrix. Therefore, all coefficients of the inverse matrix are positive. This property will allow us
to apply a discrete maximum principle useful to bound the coefficients of the inverse matrix.

In the paper of Min, the second-order convergence of the solution itself was adressed. Here
we propose another version of the convergence proof, leading notably to third order estimates
for the convergence on points belonging to Ω∗h. This third-order convergence will be useful in the
convergence proof of the discrete gradient of the solution, because it will provide second-order
boundary conditions for an Laplace operator applied to the components of the gradient.

We note uh the numerical solution of problem (1) with the Shortley-Weller method. The
local error on a node P is defined by eh(P ) = u(P )− uh(P ).

Theorem 1. For the Shortley-Weller method, the local error eh(P ) satisfies

|eh(P )| ≤ O(h2) ∀P ∈ Ωh.

Theorem 2. For the Shortley-Weller method, the local error eh(P ) satisfies

|eh(P )| ≤ O(h3) ∀P ∈ Ω∗h.

This result is still valid for points P such that φ(P ) the distance to the interface is lower than
2h.

Note in passing that this result had already been presented, with a different proof, in [6] and
in [1].

Concerning the convergence of the gradient, in practise, we will only study the convergence
of the discrete version of ∂xu, because the x− and y− directions have symmetric behaviours. Let
us define where and how the discrete version of ∂xu is defined. We consider two adjacent points
belonging to Ωh: Mi,j = (xi, yj) and Mi+1,j = (xi+1, yj). We note Mi+1/2,j the middle of the
segment [Mi,j ,Mi+1,j ]:

Mi+1/2,j =
Mi,j +Mi+1,j

2
.

For the sake of clarity we also denote Mi+1/2,j the middle of the segment [Mi,j , Q], if Q, the
nearest point on the right side of Mi,j belongs to Γh. Similarly, we also denote Mi+1/2,j the
middle of the segment [Q,Mi+1,j ], if Q the nearest point on the left side of Mi+1,j belongs to
Γh, see Figure 3 for an illustration.

We define the discrete x-derivative Dxu(Mi+1/2,j) on the point Mi+1/2,j as

Dxu(Mi+1/2,j) =
uh(M)− uh(N)

xM − xN
,

where M and N are the points belonging to Ωh ∪Γh such that Mi+1/2,j is defined as the middle
of [MN ].

Inria



Superconvergence of Shortley-Weller method 7
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Figure 3: Example of geometrical configuration and numerotation. Nodes belonging to Ω̃h are
plotted with •, nodes belonging to Γ̃h with ×.
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Figure 4: Left: nodes belonging to Ω̃h , right: nodes belonging to Γ̃h
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8 L. Weynans

We consider the set S of all points Mi+1/2,j located inside the domain Ω. We define Ω̃h the
subset containing all points of S where we can define the discrete Laplace operator (−4h) with
all points of the five-point stencil belonging to S. The subset Γ̃h contains all other points of S
and satisfies by construction the property (see an illustration on Fig. 3)

φ(P ) ≤ 2h ∀P ∈ Γ̃h. (2)

The subset Ω̃h is divided into two subsets of points: we say that a grid node in Ω̃h is regular
if none of its direct neighbors is on the boundary Γ̃h, and that it is near the boundary if at least
one if its neighbors belongs to Γ̃h. The set of regular grid nodes is denoted Ω̃∗∗h , and the set of
grid nodes near the boundary is denoted Ω̃∗h.

Theorem 3. For the Shortley-Weller method, the local error on the discrete x-derivative is
second-order accurate

|∂xu(Mi+1/2,j)−Dxu(Mi+1/2,j)| ≤ O(h2) ∀Mi+1/2,j ∈ S.

3 Estimating convergence with Ciarlet’s technique
Here we review the principle of the method presented in [2] to prove high-order convergence
for finite-differences operators with the help of the discrete maximum principle. We do not use
exactly the same type of discretization matrix as in [2], due to the different way to account for
boundary conditions, so here we present the reasoning in the case of our discretization matrix.

3.1 Discrete Green’s function
For each Q ∈ Ωh, define the discrete Green’s function Gh(P,Q), P ∈ Ωh as the solution of the
discrete problem:  −4huh(P ) =

{
0, P 6= Q
1, P = Q

P ∈ Ωh,

uh(P ) = 0, P ∈ Γh.
(3)

In fact, each array (Gh(P,Q)P∈Ωh
represents a column of the inverse matrix of the discrete

operator (−4h). For the sake of brevity we note Gh(:, Q) the column corresponding to the grid
node Q. The matrix of (−4h) being monotone, as we noticed in §2, it means that all values of
Gh(P,Q) are positive.

With this definition of Gh(P,Q) we can write the solution of the numerical problem as a sum
of the source terms multiplied by the local values of the discrete Green function:

uh(P ) =
∑
Q∈Ωh

Gh(P,Q) (−4huh)(Q), ∀P ∈ Ωh.

3.2 Estimating the coefficients of the discrete Green’s function
The following is an adaptation of the proof presented in [2].

Theorem 4. Let S be a subset of grid nodes (thus corresponding also to a subset of the indices
of the matrix), and W an array such that: W (P ) ≥ 0 ∀P ∈ Ωh,

(−4hW )(P ) ≥ 0 ∀P ∈ Ωh,
(−4hW )(P ) ≥ h−i for all P ∈ S.

Inria



Superconvergence of Shortley-Weller method 9

Then ∑
Q∈S

Gh(P,Q) ≤ hiW (P ).

Proof. Using the definition of the discrete Green function, we can write

(−4h
∑
Q∈S

Gh(:, Q))(P ) =

{
1 if P 6∈ S,
0 if P ∈ S.

Therefore,

−4h(W − h−i
∑
Q∈S

Gh(:, Q))(P ) ≥ 0 ∀P ∈ Ωh.

As all coefficients of the inverse of −4h are positive, it leads to

W (P )− h−i
∑
Q∈S

Gh(P,Q) ≥ 0 ∀P ∈ Ωh,

and finally we obtain an estimate of the coefficients of
∑
Q∈S Gh(:, Q) in terms of the coefficients

of W : ∑
Q∈S

Gh(P,Q) ≤ hiW (P ).

4 Convergence study of the solution

In this section we look for adequate subsets S and functions W in order to prove convergence.
We first prove that the numerical solution converges with second-order accuracy in §4.1, then
that the convergence is in fact third-order for the grid nodes near the boundary in §4.2. This
third-order convergence will be used to obtain second-order boundary conditions for a similar
problem involving the discrete gradient of the numerical solution in §5.

4.1 Second-order convergence of the solution in the whole domain

Proof. We denote by τ(P ) the truncation error of the Shortley-Weller method on a point P
belonging to Ωh. With a classical Taylor expansion one can show that τ(P ) = O(h2) if P
belongs to Ω∗∗h , and τ(P ) = O(h) only a priori if P belongs to Ω∗h. The local error satisfies the
same linear system as the numerical solution uh(P ), but with the truncation error as a source
term:

−4heh(P ) = τ(P ) ∀P ∈ Ωh.

We want to obtain some bounds on
∑

Q∈Ω∗∗h

G(P,Q) and
∑
Q∈Ω∗h

G(P,Q) with the method described

in §3. We handle these two subsets of Ωh separately because they do not have the same truncation
error.

We consider a point M = (xM , yM ) inside Ω. We define the discrete function:

W (Q) =
C − (xQ − xM )2 + (yQ − yM )2

4
,

RR n° 8757



10 L. Weynans

with (xQ, yQ) the coordinates of the point Q, and C such that W (Q) ≥ 0 for all Q ∈ Ωh. For
instance we take C = 2 (diam(Ω))2. On every grid node P belonging to Ωh,

(−4hW )(P ) = 1.

Thus ∑
Q∈Ωh

(−4hG(:, Q))(P )− (−4hW (P )) ≤ 0 ∀P ∈ Ωh.

Therefore, we can directly write, using the fact that the matrix is monotone:∑
Q∈Ωh

G(P,Q) ≤ W (P ) ≤ (diam(Ω))2

2
, ∀P ∈ Ωh. (4)

To prove the second-order convergence of the solution, it remains to prove an appropriate
estimate for Q ∈ Ω∗h. We define the discrete function

W̃ (Q) =

{
0 if Q ∈ Ω∗h,
1 otherwise.

This function satisfies {
−4h(W̃ )(Q) ≥ 1

h2 if Q ∈ Ω∗h,

−4h(W̃ )(Q) = 0 otherwise.

Therefore, ∑
Q∈Ω∗h

(−4hG(:, Q))(P )− h2(−4hW̃ )(P ) ≤ 0,

and we can directly write, using the fact that the matrix is monotone∑
Q∈Ω∗h

G(P,Q) ≤ h2W̃ (P ) ≤ h2. (5)

Finally, combining (4) and (5), we obtain an estimate of the local error on every point P ∈ Ωh

|u(P )− uh(P )| = |
∑
Q∈Ωh

Gh(P,Q)τ(Q)|,

≤ |
∑

Q∈Ω∗∗h

Gh(P,Q)τ(Q)|+ |
∑
Q∈Ω∗h

Gh(P,Q)τ(Q)|,

≤
∑

Q∈Ω∗∗h

Gh(P,Q)O(h2) +
∑
Q∈Ω∗h

Gh(P,Q)O(h),

≤ diam(Ω)

4
O(h2) + h2O(h) = O(h2).

which proves that the numerical solution converges with second-order accuracy to the exact
solution.

4.2 Third-order convergence near the boundary

Proof. In order to prove that the numerical solution converges with third order accuracy on
nodes in Ω∗h, we aim to obtain a bound within O(h) for the sum of the coefficients on the rows

Inria



Superconvergence of Shortley-Weller method 11

of the inverse matrix used for the solution on nodes belonging to Ω∗h. That is, we want to prove
that: ∑

Q∈Ωh

G(P,Q) ≤ O(h),∀P ∈ Ω∗h.

We use the function
W̃ (x, y) = 1− e−Aφ(x,y),

where φ(x, y) is the (positive) distance of the point (x, y) to the boundary. This function satisfies

−4W̃ (x, y) = e−Aφ(x,y)
(
A2((∂xφ(x, y))2 + (∂yφ(x, y))2)−A4φ(x, y)

)
,

= e−Aφ(x,y)
(
A2 −A4φ(x, y)

)
,

because the function distance φ satisfies (∂xφ(x, y))2 + (∂yφ(x, y))2 = 1. We choose A large
enough so that

(
A2 − A4φ(x, y)

)
≥ 1 for all (x, y) ∈ Ω. Such a value of A depends only

of 4φ(x, y) and thus, of the geometry of the domain Ω. As the discretization of the Laplace
operator is consistent on every grid node, for h small enough we can write

−4hW̃ (P ) ≥ e−Aφ(P )

2
, ∀P ∈ Ωh.

Therefore, ∑
Q∈Ωh

(−4hG(:, Q))(P ) ≤ 2

e−A||φ||∞
(−4hW̃ )(P ), ∀P ∈ Ωh,

where ||φ||∞ = sup
x,y∈Ω

φ(x, y). Then, because the matrix is monotone,

∑
Q∈Ωh

G(P,Q) ≤ 2

e−A||φ||∞
W̃ (P ) ≤ 2

e−A||φ||∞
Aφ(P ), ∀P ∈ Ωh.

Moreover, if the point P belongs to Ω∗h, then φ(P ) ≤ h. As a consequence, for P ∈ Ω∗h∑
Q∈Ωh

G(P,Q) ≤ 2

e−A||φ||∞
Ah = O(h), (6)

thus, restricting ourselves to the columns belonging to Ω∗∗h ,∑
Q∈Ω∗∗h

G(P,Q) ≤ O(h), ∀P ∈ Ω∗h. (7)

Finally, combining (5) and (7) we can write for all P ∈ Ω∗h

|u(P )− uh(P )| = |
∑
Q∈Ωh

Gh(P,Q)τ(Q)|,

≤ |
∑

Q∈Ω∗∗h

Gh(P,Q)τ(Q)|+ |
∑
Q∈Ω∗h

Gh(P,Q)τ(Q)|,

≤ |
∑

Q∈Ω∗∗h

Gh(P,Q)O(h2)|+ |
∑
Q∈Ω∗h

Gh(P,Q)O(h)|,

≤ O(h)O(h2) + h2O(h) = O(h3),

RR n° 8757



12 L. Weynans

which means that the numerical solution converges with third-order accuracy to the exact solution
on grid nodes belonging to Ω∗h.

Similarly, we could prove that for grid points P such that φ(P ) ≤ 2h, the numerical solution
is also third-order accurate: the only change in the proof would be to replace at (6) h by 2h.

5 Second-order convergence for the discrete gradient

Proof. We assume that we know the values of uh, as it is the numerical solution of the linear
system (1). We have proven in §4.2 that uh converges with third-order accuracy for points P such
that φ(P ) ≤ 2h. Therefore, if Mi+1/2,j belongs to Γ̃h, then the numerical solution on Mi+1/2,j

is a third-order approximation of the exact solution. As a consequence, if Mi+1/2,j belongs to
Γ̃h, then Dxu(Mi+1/2,j) is an approximation with second-order accuracy of the x-derivative on
point Mi+1/2,j .

Now we notice that we can build on points belonging to Ω̃h a discretization −4̃h of the
Laplace operator with the Shortley-Weller method for the discrete x-derivative, with the discrete
x-derivative of the function f as a source term, and the values of Dxu on Γ̃h used as boundary
conditions: {

(−4̃hv)(P ) = Dxf(P ) ∀P on Ω̃h,

v(P ) = Dxu(P ) ∀P on Γ̃h.

This discretization has the truncation errors:

• O(h2) for the nodes belonging to Ω̃∗∗h ,

• O(1) for the nodes belonging to Ω̃∗h.

If the exact gradient was known on Γ̃h, then the truncation error would be also O(1) due to the
fact that the Shortley-Weller operator does not commute with the discrete gradient Dx. The
boundary conditions are defined with second-order accuracy, and thus lead to an additionnal O(1)
term in the truncation error. If the numerical solution only converged with second order accuracy
near the boundary, then the discrete gradient would be only first-order near the boundary, and

the truncation error would be O(
1

h
).

Now, similar estimates as in §4.1 can be obtained for the coefficients of the inverse matrix,
because the matrix of the current linear system, being also a discretization with the Shortley-
Weller method, has the same structure as the matrix of the linear system for uh. If we denote
G̃h(P,Q) the discrete Green’s function corresponding to −4̃h, then it satisfies

∑
Q∈Ω̃h

G̃(P,Q) ≤ (diam(Ω))2

2
, ∀P ∈ Ω̃h, (8)

∑
Q∈Ω̃∗h

G̃(P,Q) ≤ h2, ∀P ∈ Ω̃h. (9)

Inria



Superconvergence of Shortley-Weller method 13

Therefore, the expression on the local error on point P belonging to Ω̃h reads

|∂xu(Mi+1/2,j)−Dxu(Mi+1/2,j)| = |
∑
Q∈Ω̃h

G̃h(P,Q)τ̃(Q)|,

≤ |
∑

Q∈Ω̃∗∗h

G̃h(P,Q)τ̃(Q)|+ |
∑
Q∈Ω̃∗h

G̃h(P,Q)τ̃(Q)|,

≤ |
∑

Q∈Ω̃∗∗h

G̃h(P,Q)O(h2)|+ |
∑
Q∈Ω̃∗h

G̃h(P,Q)O(1)|,

≤ O(1)O(h2) +O(h2)O(1) = O(h2).

6 Discussion

This work was motivated by the remark in the recent paper of Yoon and Min [7] about the lack
of mathematical analysis about the super-convergence of the Shortley-Weller method. To our
knowledge, few works in the literature have studied the supraconvergence of the gradient for
elliptic finite-difference schemes, among them [3], [5] and [4].

In [3] Ferreira and Grigorieff deal with more general elliptic operators, with variable coeffi-
cients and mixed derivatives, and prove second-order convergence in H1 norm.The proof uses
negative norms and is based on the fact that the finite difference scheme is a certain non-standart
finite element scheme on triangular grids combined with a special form of quadrature.

In [5] Li et al. study the super-convergence of solution derivatives for the Shortley-Weller
method for Poisson’s equation, considering also this method as a special kind of finite element
method. The work in [4] adresses the case of unbounded derivatives near the boundary Γ, on
polygonal domains.

Our approach differs from the latter because we do not use a finite-element approach. Instead
we propose a proof based on a finite-difference analysis, which is a variant of the method of Ciarlet
[2]. As in this seminal paper, we use a discrete maximum principle to obtain estimates on the
coefficients of the inverse matrix, but in our case the bound on the coefficients can also vary
with the rows of the inverse matrix. This variant is useful to obtain a specific bound for points
located near the interface and obtain the third-order convergence of the solution at these points.

The approach developed in this paper has the advantage to be simple to carry out, and to be
able to provide locally pointwise estimates, instead of the usual convergence results in the L2 or
H1 norms. This can especially be useful when one deals with methods where the amplitude of
the truncation error varies with space, because these norms can not provide easily details about
the effects of the variation of the truncation error on the local convergence.

7 Conclusion

We have proven that the discrete gradient obtained by the Shortley-Weller method for the Poisson
equation converges with second-order accuracy. This is a super-convergence property because the
numerical solution itself also converges with second order accuracy. This property is proven with
a variant of Ciarlet’s technique to obtain high-order convergence estimates for monotone finite-
differences matrices. With carefuly chosen test functions we are able to bound the coefficients of
the discrete Green function associated with the matrix of the Shortley-Weller method. One key
ingredient is to prove that the solution converges with third-order accuracy near the boundary,
so that the discrete gradient can be considered as the solution of another Poisson equation with
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Dirichlet boundary conditions that have a second-order accuracy. A further development would
be to extend this work to the case of more general elliptic operators.
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