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A multilevel adaptive particle-grid
method for gas dynamics

Georges-Henri Cottet (1), Bernard Rebourcet(2) and Lisl 
Weynans(3)

Abstract:  We  present  a  multilevel  adaptive  grid-based  particle 
method, inspired by the adaptive mesh refinement (AMR) technique, 
applied  to  the  compressible  Euler  equations.  We  show  numerical 
results in two dimensions for the cylindrical Noh's infinite strength 
shock problem. 

1 Introduction

Bergdorf,  Cottet  and  Koumoutsakos,  inspired  by  finite-difference 
Adaptive Mesh Refinement (AMR) methods first proposed by Berger 
and Oliger ([2]),  introduced in [1] a class of techniques for particle 
methods that allow to refine dynamically the computational domain 
and adapt accordingly its  particle discretization. These techniques 
use particle regridding as a key element. We have applied them to a 
grid-based  point  particle  method  for  the  Euler  compressible 
equations. 
In section 2, we first present the particle method, then recall  the 
principles of the adaptive mesh refinement for particle methods. In 
section 3 we show numerical results obtained by computing the two-
dimensional cylindrical Noh problem.

2 Presentation of the method

2.1 Grid-based particle method for the compressible Euler 
equations.

The  method  is  in  the  spirit  of  the  Particle-in-Cell  (PIC)  method 
pioneered by  Harlow [4]:   the  general  idea  is  to  use particles  to 
transport conservative quantities – so that the advection part of the 
equations  is  split  apart  in  a  Lagrangian  fashion  -  and  grid-based 
formulas to compute fields. 
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We start from the compressible Euler equations written in a mixed 
Eulerian-Lagrangian formulation:
 
                                               d( ρ J )/dt  =  0

                                               d( ρ Ju )/dt  =  -J ∇  p

                                               d( ρ JE )/dt  =  -J ∇. (pu)

                                               dJ/dt = J ∇. u

                                               dx/dt = u

 J is the Jacobian  of the matrix (δ xi  /δ ξ j  )i,j ,where the xi   are the 
Eulerian coordinates and the ξ j the Lagrangian coordinates. 
d/dt is the Lagrangian derivative. 
The operator ∇   represents spatial derivatives with respect to x.

 Once  the  equations  have  been  discretized  on  the  particles,  we 
obtain the following set of ODEs:

                                               d( ρ pV p )/dt  =  0

                                               d( ρ pV pu p )/dt  =  -Vp (∇ p)p

                                               d( ρ pV pE p )/dt  =  -Vp ( ∇.(pu) )p

                                               dVp/dt  =  Vp (∇.u)p 

                                               dxp/dt  =  up

where ρ p is the density, up the fluid velocity, Ep the total energy, xp the 
particle location and Vp   the volume of the particle p.

The  Lagrangian  form  of  particle  methods  avoids  the  explicit 
discretization of  the convective  terms and the associated  stability 
constraints. 

Particle  methods  enable  an  automatic  adaptivity,  because  particle 
positions are modified according to the local  flow map.  The local 
accumulation of particles near large velocity gradients results in a 
lack of particles in the rest of the domain. Then, it can damage  the 
theoretical convergence rates. Thus, a critical issue for the accuracy 
of particle methods is the regularity of the particles distribution, and 
frequent regridding on regular locations is necessary to preserve it.
In this work, regridding is basically a way to define new particles 
with uniform volume, equal to the size of a grid cell. Thus, there is a 
strong relationship between the particles and the grid cells: at the 
beginning of each time step, one particle is located at the center of 
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each  grid  cell,  and  the  values  of  the  quantities  carried  by  this 
particle  are  equal  to  those  allocated  to  the  cell.  Consequently, 
regridding  at  every  time  step  allows  also  to  compute  the  spatial 
derivatives on a regular grid.

In order to perform regridding we use the interpolation formula M'4 

first suggested by Monaghan [5] . This formula preserves the first 
three  momentums  of  the  interpolated  quantities,  is  continuously 
derivable,  and  requires  the  contributions  of  the  4  neighbouring 
particles. It represents a good compromise between smoothness and 
accuracy,  at  a  reasonable  computational  cost.  Let  us  recall  the 
definition of  M'4 :

                      M'4  =  1 – 5/2 |x|2 + 3/2 |x|3    if  |x| ≤ 1
                              =  1/2 ( 2 - |x|)2 ( 1- |x|)   if  1 ≤ |x|≤ 2
                              =  0                                   if  2 ≤  |x|

This  interpolation  procedure  needs  the  grid  to  be  cartesian  and 
uniform.  Consequently,  if  the  “physical”  grid  associated  with  the 
particles is not cartesian and uniform, as it is the case for the Noh 
problem,  we use an explicit mapping that changes the “physical” 
grid  into  a  uniform grid.  Applying this  mapping  to  the “physical” 
particles allows us to perform the interpolation on a uniform grid. We 
obtain the new “physical” particles by applying the inverse mapping 
to the particles resulting from this interpolation. 

Each step of the algorithm consists of the following sequence:

•  compute spatial derivatives on the grid by standart centered 
finite differences,

•   update particles quantities ρp  Jp,   ρ p  Jp up,  ρ p  Jp E p  and Jp on 
the  grid  (generally  with  a  2  or  4  order  Runge  Kutta  time 
stepping),

•   update particle locations xp   thanks to the new velocities 
obtained from the ratio of the updated quantities ρp Jp  and ρp Jp 

up ,

          
•   remesh particles on the fixed grid,

•   possibly apply an artificial viscosity to treat shocks. 

2.2 Adaptive mesh refinement for particle methods

Due  to  the  regridding,  the  volume  of  the  particles  and  thus  the 
accuracy of the computation are strongly related to the size of the 
grid cells.  To improve the adaptivity of the method to the physics of 
the flow, and consequently obtain a better  accuracy of the numerical 
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solution, a new class of techniques with variable grid-sizes has been 
introduced by Bergdorf, Cottet and Koumoutsakos in [1]. Following 
the pioneering work of Berger and Oliger on AMR, the idea was to 
define  blocks  of  piecewise  constant  grid-sizes  that  can  ajust 
dynamically, based for instance on a posteriori error estimates. As in 
[3],  the method is heavily based on overlappings of the subdomains, 
that  allow  particles  around  the  block-interfaces  to  exchange 
informations  during  the  interpolation  in  order  to  maintain  a 
consistent approximation at the desired resolution everywhere.

To  understand  how  blocks  communicate,  we  consider  two  blocks 
with different grid sizes: a coarse one and a finer one. We assume 
that at the beginning of the algorithm step all  particles provide a 
consistent  approximation  of  the  solution.  In  each  block  we 
distinguish two parts:

•the zone 1, where we are sure this assumption is still valid after 
one algorithm step (with possible motion of the grid), 
•and the zone 2 : the rest of the block.

In zone 1 we distinguish again two domains: the first one, where the 
interpolation  process  only  needs  particles  from  zone  1,  and  the 
second one, where this process needs particles from zone 2 too, that 
are not “reliable”.  In the first domain, the interpolation is done in 
the usual manner, with contributions of the particles from the block 
that  we are considering,  for  instance the fine one.  In  the second 
domain,  as  in  zone  2,  the  new  particles  are  created  with  an 
interpolation performed on particles from the other block, that is, the 
coarse one. This leads to overlapping conditions between the blocks 
to ensure that these coarse particles are located in zone 1 of the 
coarse block.

                                                 

3  Numerical  illustration:  the  2D  cylindrical  Noh 
Problem

The  Noh  problem  is  an  implosion  problem,  difficult  to  solve 
numerically, and thus, a challenging test for hydrodynamics codes. 
The initial density is uniform, the specific internal energy negligible, 
and the velocity uniform and directed toward the origin. The gas is 
supposed  to  be  polytropic,  with  adiabatic  index  γ =  5/3.  This 
configuration leads to an infinite strength shock instantly reflecting 
from the origin and propagating outwards (see [6],[7]). 

        3.1 Initial conditions
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 Physical 
properties

          Values

Density                1.

Pressure            0,001

Radial velocity                1.

Tangential velocity                0.

                  
The computational domain is: ( r, θ ) ∈ [0, 1] × [0, 360]. 
We used a fine grid (∆ r = 1/400, ∆ θ  = 6°) near the origin, to solve 
the shock with a good accuracy, and a coarse one (∆ r = 1/50, ∆ θ = 
6°) everywhere else, with  ∆ t = 0.0005 for the fine grid, and  ∆ t = 
0.004 for the coarse grid. 

3.2  Results

Figure  1  shows  the  results  obtained  with  the  multilevel  particle 
method compared to the analytical solution, at t = 0,6 s. 
The  results  are  in  good  agreement  with  the  analytical  solution. 
Concerning the multilevel aspect of the simulation, we remark that 
the transition between the fine and the coarse grids, located at this 
time  around  0.2,  is  unnoticeable,  which  means  that  the 
communication  procedures  between  the  grids  work  well.  On  the 
other hand, we recognize a wall-heating effect, typical of Lagrangian 
methods  for  this  problem,  near  the  origin:  the  density  is  under-
evaluated, while the specific internal energy is too high. We hope to 
reduce this phenomenon in the future by giving a special care to the 
treatment of the artificial viscosity for the particles in contact with 
the origin.
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Figure 1: the Noh Problem

4   Conclusion

We  have  presented  a  two-dimensional  application  of  an  adaptive 
mesh  refinement  technique  for  grid-based  particle  methods. 
Numerical  results  performed  on  the  Noh  problem  on  one  hand 
validate the communication procedure between the grids, which is 
heavily  based  on  the  existence  of  overlapping  zones  and  on  the 
regridding technique,  and  on  the  other  hand  show that  the  grid-
based  particle  method  itself  is  well-suited  for  the  simulation  of 
compressible gas dynamics.
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