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TPT7 : Exercices sur les EDOs

1 Numerical integration : Euler method

We consider three differential equations :

2(t) = a
2(t) = at
() = ax(t)

)
with a a real number, and with the initial condition x(0) = 1.

1. What are the exact solutions of these equations ?
The exact solutions are respectively :

z(t) = at+1
at?
t) = —+1
x(t) 5 T
z(t) = et

2. For each of these equations, compute the numerical solution at time t = 0.3 using the time step At = 0.1,
with the Fuler method.
First equation :
Tg = 1
T ro+Ata=14+Ata=1+0.1%a
T9 = 1 +Ata=1+2Ata=1+02xa
T3 = T+ Ata=1+3Ata=1+03x%xa

Second equation :
Tg = 1
1 = zo+Atax0=1
e = 21+ AtaxAt=14+At?a=1+0.01xa
r3 = a9+ Atax (2At) =1+3At2a=1+0.03xa
Third equation :
Tg = 1
1 = wmo+Atarg=x0(1+Ata)=14+Ata=14+0.1x%xa
Ty = w1+ Ataxy =21(1+ Ata) = (1 + At a)*> = (14 0.1 x a)?
3 = o+ Ataxe = 29(1+ Ata) = (1 4+ At a)® = (14 0.1 x a)?



2  Stability of Euler method

We consider the differential equation

y' =y
with the initial condition y(0) = yo. We denote yi. the sequence approximating with the explicit Euler method
the values of the exact solution y(tx) with ty = kdt, with k a positive integer and dt a (small) positive real.

1. Write the formula expressing yx+1 as a function of yy.

Ykl = Y + dt X XAy = yp(1 + dt A)

2. Using the latter formula, express yi as a function of the initial condition yq.
By a recurrence, one can prove that
yr = yo(1 4 dt \)F
3. Under which condition is the Euler method stable ? (That is, under which condition the numerical
solution does not tend to infinity when k — 400 ?)
The Euler method is stable is stable if (14 dt A\)¥ does not tend to infinity when & tends to infinity, that
is, if |1 + dt A| is smaller than 1, which is equivalent to —1 < 1+ dt A < 1 or to A < 0 and |dt \| < 2.

3 Non-explosion of a solution

We consider the differential equation

y/=y2—$
1. We denote V., = y* — z.
Veoy = 0&yP=zs2>0and |yl = /7,
Vey < 0&y*<aea>0andlyl <o,
Vey > 0&y?>2e (z>0and |yl > z)orz <0.

2. Let My = (x0,yo) be a point where the slope of the tangent field is negative, and u the solution satisfying
u(xo) = yo. Then following the tangent field, the graph of u will always remain in the part of the plane
where the tangent slope is negative, which is bounded for bounded values of x. Therefore, u can not

explode.

4 Barriers and limit of solutions when z tend to 400

We consider the differential equation

for x €]0, +ool.

1. We denote f(z,y) = —y — L
x

flz,g(x)) = —g(z)(1 + %) < —g(z) = ¢'() if g is positive.



2.

3.

4.

Similarly .
f(z,9(x)) = —g(@)(L+ ) > —g(2) = ¢'(2) if ¢ Is negative.

The solutions of the differential equation ¢y’ = —y can all be written under the form y(z) = yoe~ (@=wo)
We define by f the maximal solution of the differential equation , for the initial condition f(xg) = yo.
We consider y1(x) = —|yole™® and ya2(x) = |yole ™. The function y; are both barriers for the differential
equation : 91 is a subsolution, and y» a supersolution. We deduce that for all x on which f is defined,
y1(z) < f(x) < ya(x). Therefore, f does not explode on a finite interval. Consequently, f is defined on
Jxo, +o0[. As y1 and ys both tend to 0 when x tends to +oo, we conclude that f also tends to 0 when
x tends to +oco0.



	Numerical integration: Euler method
	 Stability of Euler method
	Non-explosion of a solution
	 Barriers and limit of solutions when x tend to + 

