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1 Numerical integration : Euler method

We consider three differential equations :

x′(t) = a

x′(t) = a t

x′(t) = a x(t)

with a a real number, and with the initial condition x(0) = 1.

1. What are the exact solutions of these equations ?
The exact solutions are respectively :

x(t) = a t+ 1

x(t) =
a t2

2
+ 1

x(t) = ea t

2. For each of these equations, compute the numerical solution at time t = 0.3 using the time step ∆t = 0.1,
with the Euler method.

First equation :

x0 = 1

x1 = x0 + ∆ta = 1 + ∆t a = 1 + 0.1× a
x2 = x1 + ∆ta = 1 + 2∆t a = 1 + 0.2× a
x3 = x2 + ∆ta = 1 + 3∆t a = 1 + 0.3× a

Second equation :

x0 = 1

x1 = x0 + ∆t a× 0 = 1

x2 = x1 + ∆t a×∆t = 1 + ∆t2 a = 1 + 0.01× a
x3 = x2 + ∆t a× (2∆t) = 1 + 3∆t2 a = 1 + 0.03× a

Third equation :

x0 = 1

x1 = x0 + ∆t ax0 = x0(1 + ∆ta) = 1 + ∆t a = 1 + 0.1× a
x2 = x1 + ∆t ax1 = x1(1 + ∆ta) = (1 + ∆t a)2 = (1 + 0.1× a)2

x3 = x2 + ∆t ax2 = x2(1 + ∆ta) = (1 + ∆t a)3 = (1 + 0.1× a)3
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2 Stability of Euler method

We consider the differential equation
y′ = λ y

with the initial condition y(0) = y0. We denote yk the sequence approximating with the explicit Euler method
the values of the exact solution y(tk) with tk = k dt, with k a positive integer and dt a (small) positive real.

1. Write the formula expressing yk+1 as a function of yk.

yk+1 = yk + dt× λ yk = yk(1 + dt λ)

2. Using the latter formula, express yk as a function of the initial condition y0.
By a recurrence, one can prove that

yk = y0(1 + dt λ)k

3. Under which condition is the Euler method stable ? (That is, under which condition the numerical
solution does not tend to infinity when k → +∞ ?)

The Euler method is stable is stable if (1+dt λ)k does not tend to infinity when k tends to infinity, that
is, if |1 + dt λ| is smaller than 1, which is equivalent to −1 < 1 + dt λ < 1 or to λ < 0 and |dt λ| < 2.

3 Non-explosion of a solution

We consider the differential equation
y′ = y2 − x

1. We denote Vx,y = y2 − x.

Vx,y = 0⇔ y2 = x⇔ x ≥ 0 and |y| =
√
x,

Vx,y ≤ 0⇔ y2 ≤ x⇔ x ≥ 0 and |y| ≤
√
x,

Vx,y ≥ 0⇔ y2 ≥ x⇔ (x ≥ 0 and |y| ≥
√
x) or x ≤ 0.

2. Let M0 = (x0, y0) be a point where the slope of the tangent field is negative, and u the solution satisfying
u(x0) = y0. Then following the tangent field, the graph of u will always remain in the part of the plane
where the tangent slope is negative, which is bounded for bounded values of x. Therefore, u can not
explode.

4 Barriers and limit of solutions when x tend to +∞

We consider the differential equation

y′ = −y − y

x
(1)

for x ∈]0,+∞[.

1. We denote f(x, y) = −y − y

x
.

f(x, g(x)) = −g(x)(1 +
1

x
) < −g(x) = g′(x) if g is positive.

2



2. Similarly

f(x, g(x)) = −g(x)(1 +
1

x
) > −g(x) = g′(x) if g is negative.

3. The solutions of the differential equation y′ = −y can all be written under the form y(x) = y0e
−(x−x0),

with y0 = y(x0).

4. We define by f the maximal solution of the differential equation (1), for the initial condition f(x0) = y0.

We consider y1(x) = −|y0|e−x and y2(x) = |y0|e−x. The function y1 are both barriers for the differential
equation (1) : y1 is a subsolution, and y2 a supersolution. We deduce that for all x on which f is defined,
y1(x) ≤ f(x) ≤ y2(x). Therefore, f does not explode on a finite interval. Consequently, f is defined on
]x0,+∞[. As y1 and y2 both tend to 0 when x tends to +∞, we conclude that f also tends to 0 when
x tends to +∞.
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