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Incompressible flows with high density ratios ?

Air-water interfaces



Context

• NaSCar : 3D parallel incompressible code with fluid-structure
interaction
(Michel Bergmann, INRIA Bordeaux)
• Discretization on cartesian grids, level-set method
• Second-order for velocity near solid boundary : use of ghost cells

( Mittal et al 2008, Bergmann et al 2014)



Goal : Fluid-structure interaction with waves



Goal : Fluid-structure interaction with waves



Regularized method for interface treatment : CSF

• Loss of accuracy + stability issues
• How to improve the accuracy near the interface ?

⇒ Use a sharp cartesian method to solve the pressure at the interface



Methodology

We work with :
• a discretization on cartesian grids,
• finite differences,
• a level-set function to represent the interface.

We want
• a second-order accuracy for the pressure
• a scheme easy to implement (and to parallelize)



Interface description
• The level-set function φ is advected with fluid velocity,
• Straightforward treatment of complex geometries and topological

changes (fragmentation, coalescence)
• Convenient for discretization on cartesian grids
• Formulas for geometric quantities :

n = ∇φ, κ = ∇·
(
∇φ
|∇φ|

)
,

• In pratice, φ is the signed distance to the interface
(⇒ |∇φ| = 1, κ = ∆φ).



Outline

1 Second-order cartesian method for elliptic problems with immersed
interfaces

2 Application to incompressible bifluid flows
3 How to preserve high-order level-set along time ?



Elliptic problem with immersed interface

∇.(k∇u) = f on Ω = Ω1 ∪ Ω2

JuK = α on Σ

Jk
∂u

∂n
K = β on Σ

u = g on δΩ
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Discretization strategy

j

j+1

j-1

ii-1 i+1 i+2

• Creation of additionnal unknowns on the interface
• used to discretize the elliptic operator on each side of the interface
• obtained by a discretization of jump conditions across the interface

*A method related to the large family of methods inspired by IIM*
• Cons : additional unknowns...
• Pros : additional unknowns !



Which accuracy near the interface ?

To obtain second-order convergence ( L∞ norm), it is enough to have :
• a first-order truncation error for the elliptic operator near the interface
⇒ avoid linear extrapolations

• a second-order truncation error for the flux discretization
⇒ use of a larger stencil
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Theoretical convergence

• Ah matrix of linear system, Uh solution, fh source term

AhUh = fh

• Local error eh and truncation error τh linked by

Aheh = τh

• Naive estimate :
||eh||∞ ≤ ||A−1

h ||∞||τh||∞

• Not accurate enough here because ||τh||∞ = O(h)

⇒ we need bounds on A−1
h coefficients, summed by blocks



Theoretical convergence

• For each discretization point Q, define the discrete Green function
Gh(P,Q) as :  AhGh(P,Q) =

{
0, P 6= Q
1, P = Q

Gh(P,Q) = 0, P on the boundary .

• Each array Gh(:, Q) is a column of A−1
h

uh(P ) =
∑
Q

Gh(P,Q) (AhUh)(Q) ∀P

Figure: Examples of discrete Green functions



Theoretical convergence

Theorem (Ciarlet, 71) :

S is a subset of Ωh and W an array such that :
W (P ) ≥ 0 ∀P ∈ Ωh,

(AhW )(P ) ≥ 0 ∀P ∈ Ωh,
(AhW )(P ) ≥ h−ifor each P ∈ S.

If Ah is monotonic then ∑
Q∈S

Gh(P,Q) ≤ hiW (P ).



Theoretical convergence

• Prove that the matrix is monotonic, that is (AhUh ≥ 0⇒ Uh ≥ 0) :

requires to prove that if the minimum of Uh is located on the interface,
then the discrete flux on this point is negative

• Use discrete maximum principle and ad hoc test functions to obtain
bound on the coefficients of A−1

h = Gh :∑
Q∈Ω∗

h
∪Σh

Gh(P,Q) ≤ O(1),

∑
Q∈Ω∗∗

h

Gh(P,Q) ≤ O(h2).



Theoretical convergence
• Multiply the truncation error array by A−1

h , block by block :

|eh(P )| ≤
∑

Q∈Ω∗∗
h

|Gh(P,Q)τh(Q)|+
∑

Q∈Ω∗
h
∪Σh

|Gh(P,Q)τh(Q)|,

≤ O(h2)O(1) +O(1)O(h2) = O(h2)

• In our case :

• Proof ok in 1D, 2D order 1

• 2D order 2 : the monotonicity of the matrix depends on the direction of
the normal to the interface compared to the direction of the normal to
the cartesian cell

• But monotonicity ensured if normal aligned with the axis of the grid
⇒ useful in the bifluid case !



2D convergence test

Interface Σ :
(

x

18/27
)2 + (

y

10/27
)2 = 1.

Exact solution :

u(x, y) =

 excos(y), inside Σ

5e−x
2− y2

2 , outside.

k = 1 outside Σ and 10 or 1000 inside.

Figure: Left : k = 10, right : k = 1000, convergence in L∞ norm



Parallel 2D convergence test

k =

{
k− inside Σ

1 outside

u =

 excos(y), inside Σ

5e−x
2− y2

2 , outside.
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Figure: Convergence tests with ω = 5, r0 = 0.5, k− = 1000 (left), and ω = 12,
r0 = 0.4, k− = 100 (right).
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Notations

Ω+ (φ > 0)

ρ+, µ+

Ω− (φ < 0)
ρ−, µ−

Γ (φ = 0)

~n



Fluid model

• Incompressible Navier-Stokes equations in each fluid :

ρ(ut + (u · ∇)u) = −∇p+ (∇.τ)T + ρg,

∇ · u = 0

• Jump conditions on Γ :
? Continuity of velocity and divergence of velocity

[u] = [v] = 0,

[(un, vn).n] = 0.

? Balance between normal stresses and surface tension

[µ(un, vn).η + µ(uη, vη).n] = 0,

[p] = σκ+ 2[µ](un, vn).n.

? Material derivative of velocity continuity

[
∇p
ρ

] = [
(∇.τ)T

ρ
].

* How to use them? *



Numerical scheme in the fluid

Predictor-corrector scheme (Chorin-Temam) :

• Prediction (we take p = 0)

u∗ − un

∆t
= −[(u · ∇)u]n︸ ︷︷ ︸

WENO 5

+
(∇.τn)T

ρ︸ ︷︷ ︸
centered second-order

−g

• Resolution of an elliptic equation :

∇ · ( 1

ρ
∇pn+1) =

∇ · u∗

∆t︸ ︷︷ ︸
centered second-order

• Correction

un+1 = u∗ − ∆t

ρ
∇pn+1︸ ︷︷ ︸

centered second-order



Numerical scheme in the fluid

• Prediction

u∗ − un

∆t
= −[(u · ∇)u]n +

(∇.τn)T

ρ
− g

• Elliptic equation :

∇ · ( 1

ρ
∇pn+1) =

∇ · u∗

∆t

• Correction :

un+1 = u∗ − ∆t

ρ
∇pn+1

∇․τ 
∇․u ⋆
∇ψ 

[(u․∇)u] 

WENO 5

centered order 2

n+1

n

n+1/2



Discretization near the interface

Prediction :

u∗ − un

∆t
= −[(u · ∇)u]n +

(∇.τn)T

ρ
− g

• Diffusion :
discontinuous velocity derivatives
⇒ lack of consistency

• Convection :
WENO 5 naturally adaptative
continuous velocity
⇒ less worrying, to a certain extent

WENO 5: ok because adaptive stencil

centered order 2: consistency problem



Discretization near the interface

• Elliptic equation :

∇ · ( 1

ρ
∇pn+1) =

∇ · u∗

∆t

Discontinuity for ρ, jump conditions
⇒ lack of consistency

• Correction :

un+1 = u∗ − ∆t

ρ
∇pn+1

Discontinuity of ρ and φ
⇒ lack of consistency

WENO 5: ok because adaptive stencil

centered order 2: consistency problem



State of the art for methods on cartesian grids

CSF method (Brackbill et al. 91) :
the classical one
regularization of values near the interface, surface tension effect
re-formulated as the limit of a volumic force

Methods without regularization :
• VOF methods : Sussman et al, Luo et al., Le Chenadec and Pitsch ...
• Kang, Fedkiw and Liu 2000 : application of Ghost Fluid method
• Raessi and Pitsch 2012 : cut-cell type method



Ghost fluid method

Turbulent atomization of a liquid
Diesel jet (Desjardins et al. )

Dam break test case : propagation
of interface

⇒ Easy to implement, nice results, but stability issues due to erroneous
momentum transfers between fluids



Raessi and Pitsch method

Use of conservative equations for mass and momentum near the interface,
solved consistently with the same flux density

Figure: Left : geometrical reconstruction near the interface, right : dam break,
comparison between Ghost-Fluid method and conservative methode of Raessi and
Pitsch



New method : discretization near the interface

To solve accurately the pressure :

• Creation of interface unknowns for u∗

and p on the interface

• Regularization of µ and ρ only to take
into account viscous effects
⇒ no more discontinuity for viscous
terms



Discretization near the interface

Elliptic problem

• In the fluid :

∇ · ( 1

ρ
∇p) =

∇ · u∗

∆t
.

(u∗ extrapolated on interface)

• On interface :

[p] = σ κ,

[
∇p
ρ

] = 0.



Discretization near the interface

Elliptic problem

• In the fluid :

∇ · ( 1

ρ
∇p) =

∇ · u∗

∆t
.

• On interface :

[p] = σ κ,

either [
px
ρ

] = 0,

or [
py
ρ

] = 0.

•
•
••
•

• •• •

i-1 i i+1i+2i+3

j-1

j

j+1

j+2

•
•
•
•

• •

• • •
•

•
i-1 i i+1i+2i+3

j-1

j

j+1

j+2

∗ Elimination of interface variables
∗ Convergence analysis valid since the derivatives across the interface are

aligned with the axis of the grid



Bubble at rest : parasitic oscillations

• Parasitic oscillations caused by approximated values of the curvature
• More or less amplified by the numerical scheme for the pressure

N Ghost Fluid method CSF new method
16 8.08 ×10−3 3.55 ×10−2 5.21 ×10−3

32 3.42 ×10−4 3.12 ×10−2 9.26 ×10−5

64 5.13 ×10−5 2.12 ×10−2 1.36 ×10−5

128 2.79 ×10−5 6.44 ×10−3 2.22 ×10−6

Table: Error in L∞ norm at time t = 1.



Bubble at rest : parasitic oscillations

Figure: Left : 32* 32 grid, horizontal velocity after 1 iteration, right : horizontal
velocity after 1s.

∆x error L∞ for VOF (Sussman et al) error L∞ for new method
2.5/16 7.3 4×10−4 7.48 ×10−5

2.5/ 32 4.5 ×10−6 4.7 ×10−6

2.5/64 5.5 ×10−8 1.26 ×10−6

Error at non-dimensional time t = 250 for the VOF method of Sussman et al. and
new method



Small air bubble into water

Figure: Water : ρ = 1000 kg/m3, µ = 1, 137.10−3 kg/ms, air : ρ = 1kg/m3,
µ = 1, 78.10−5 kg/ms, σ = 0.0728 kg/s2, bubble radius 1/300 m, Tf = 0.05s.



Small air bubble into water

Figure: Comparison between CSF method (left) and new method (right)



Larger air bubble into water

\

Figure: Water : ρ = 1000 kg/m3, µ = 1, 137.10−3 kg/ms, air : ρ = 1kg/m3,
µ = 1, 78.10−5 kg/ms, σ = 0.0728 kg/s2, bubble radius 0.025 m



Small water droplet in air

Figure: Water : ρ = 1000 kg/m3, µ = 1, 137.10−3 kg/ms, air : ρ = 1kg/m3,
µ = 1, 78.10−5 kg/ms, σ = 0.0728 kg/s2, bubble radius 1/300 m, Tf = 0.05s.



Dam break

Water : ρ = 1000 kg/m3, µ = 1, 137.10−3 kg/ms,
Air : ρ = 1, 226kg/m3, µ = 1, 78.10−5 kg/ms,

σ = 0.0728 kg/s2, water column h = 5.715 cm, domain 40× 10 cm



Dam break

Propagation of front : comparison between the conservative method of Raessi and
Pitsch, the Ghost-Fluid method and our new method



Outline

1 Second-order cartesian method for elliptic problems with immersed
interfaces

2 Application to incompressible bifluid flows
3 How to preserve high-order level-set along time ? (with F. Luddens and
M. Bergmann)



Motivations for a high order level-set

• Better description of the interface
• Mass conservation
• Need of a consistent κ to compute surface tension effects :

[pn+1] = σ κ

Third-order accuracy needed to compute consistently κ from
derivatives of the level-set !



Standard approach

• Transport of φ with u (or with an extension velocity) :

φ∗ = φn −∆t un∇φn,

• Every few time steps, re-initialize φ∗ with :
• a Fast-Marching algorithm
• a Fast-Sweeping algorithm
• a relaxation method

∂τφ+ sign(φ∗) (|∇φ| − 1) = 0,

φ|τ=0 = φ∗.

• Very often, RK3-TVD scheme for τ , t, WENO-5 scheme for ∇φ.

Main problems of standart approach :
• WENO-5 schemes for reinitialization not enough accurate near
interface ⇒ the interface moves at each reinitalization step

• Cost : too many reinitialization steps ?
• With extension velocities : more accurate but even more costly



Standard approach

• Transport of φ with u (or with an extension velocity) :

φ∗ = φn −∆t un∇φn,

• Every few time steps, re-initialize φ∗ with :
• a Fast-Marching algorithm
• a Fast-Sweeping algorithm
• a relaxation method

∂τφ+ sign(φ∗) (|∇φ| − 1) = 0,

φ|τ=0 = φ∗.

• Very often, RK3-TVD scheme for τ , t, WENO-5 scheme for ∇φ.

Main problems of standart approach :
• WENO-5 schemes for reinitialization not enough accurate near
interface ⇒ the interface moves at each reinitalization step

• Cost : too many reinitialization steps ?
• With extension velocities : more accurate but even more costly



To reduce the interface moving

Constatation :
The WENO scheme uses information from the wrong side of the interface

Subcell fix (Russo & Smereka, 2000) :
Use information on interface to modify the scheme (decentering)

Higher order extension (Du Chéné et al. 2008) :

• Far from interface, WENO scheme,
• near interface, decentered ENO scheme, taking into account the
interface position



Example : interface with strong gradients

d =
√
x2 + y2 − r0

φ0 =
d

r0

(
ε+ (x− x0)2 + (y − y0)2)

Ω = (−1, 1)2

r0 = 0.5

ε = 0.1, x0 = −0.7, y0 = −0.4



Example : interface with strong gradients

1
h

‖φh − d‖L1(Ω) ‖φh − d‖L∞(Bn)

err coc err coc
20 3.37E-03 - 3.12E-02 -
40 4.25E-04 2.88 1.51E-03 4.22
80 1.10E-04 1.92 2.48E-04 2.56
160 3.19E-05 1.77 2.85E-05 3.09
320 9.43E-06 1.75 3.37E-06 3.06
640 2.57E-06 1.87 6.09E-07 2.46
1280 6.82E-07 1.91 6.98E-08 3.12



Example : interface with strong gradients

1
h

‖κh − κ‖L∞(Γ) Niterr coc
20 8.95E-02 - 24
40 4.01E-02 1.12 26
80 1.91E-02 1.05 28
160 9.38E-03 1.01 31
320 4.52E-03 1.05 34
640 2.34E-03 0.95 36
1280 1.18E-03 0.98 38



Coupling with transport

We introduce the quantity rg(∇φ) := ‖|∇φ| − 1‖L1(Ω), and choose a
threshold δ > 0.

Algorithm :

• Initialization : with φ0 = d0, the signed distance function at interface
Γ0,

• Transport : While rg(∇φ) < δ, compute the evolution of φ with
transport equation

• Re-initialization : When rg(∇φ) ≥ δ, re-compute φ as the signed
distance function d.

• redistanciation with relaxation in a band around interface
• second-order fast-sweeping elsewhere



Vortex test case

Ω = (0, 1)2

φ|t=0 =
√

((x− 0.5)2 + (y − 0.75)2)− 0.15

u = cos

(
πt

T

)
∇⊥ω

ω = sin(πx)2 sin(πy)2

T = 4, tfin = 4

Γ deforms then goes back to Γ0 at t = tfin.



Vortex test case

Comparison between 4 cases, at time t = 2 :
1 5 iterations of relaxation method, every 5 time steps
2 3 iterations of relaxation method, every time steps
3 new method, with δ = 0.1,
4 new method, with δ = 0.01.



Vortex test case

1
h

case 1 case 2 case 3 case 4
err. coc err. coc err. coc err. coc

40 1.82E-01 - 1.18E-01 - 1.47E-01 - 1.22E-01 -
80 5.53E-02 1.69 6.35E-02 0.87 4.63E-02 1.64 4.16E-02 1.53
160 7.07E-02 -0.35 7.62E-02 -0.26 1.51E-02 1.61 1.30E-02 1.66
320 6.56E-02 0.11 9.56E-02 -0.33 4.58E-03 1.71 3.87E-03 1.74
640 1.10E-01 -0.75 2.01E-01 -1.07 3.27E-04 3.80 3.05E-04 3.66

Table: Error L∞ on curvature at t = 2



Vortex test case

1
h

case 1 case 2 case 3 case 4
40 6.82E-03 1.06E-03 5.67E-03 2.50E-03
80 9.39E-04 2.72E-04 4.06E-04 1.53E-04
160 1.86E-04 2.19E-04 1.88E-05 1.30E-05
320 7.38E-05 1.15E-04 9.66E-07 9.25E-07
640 3.66E-05 6.21E-05 4.30E-08 3.50E-08

Table: Volume loss at t = 2.



Vortex test case

Figure: Left : δ = 0 (i.e.redistanciation at time step), right : δ = 0.1. grid 80× 80,
dt = dx/8



Flow around a cylinder

Ω = [−3; 3]2,

Γ0 =
{
x2 + y2 = 1

}
, φ0 = d0,

Ur = αc(r)

(
U∞ −

1

r2

)
cos(θ),

Uθ = −αc(r)
(
U∞ +

1

r2

)
sin(θ),

c(r) = min
(

1,
r

0.5

)3

,

U∞ = 1,

α such that ‖U‖L∞(Ω) = 1,

tfin = 6.



Flow around a cylinder

Figure: Left : δ = +∞ ( i.e. no redistanciation), right : δ = 0.1, grid 80× 80



Flow around a cylinder

1
h

δ = 0.01 δ = 0.1 δ = +∞.
err. coc err. coc err. coc

40 7.24E-02 - 8.35E-02 - 1.40E+00 -
80 3.91E-02 0.87 1.68E-02 2.27 2.15E+00 -0.61
160 9.71E-03 1.99 5.09E-03 1.71 3.53E+00 -0.71
320 3.66E-03 1.40 2.51E-03 1.01 8.22E+01 -4.52
640 2.51E-03 0.54 1.88E-03 0.42 1.57E+02 -0.93

Table: ‖κh − κ‖∞(Γ) at t = 6 and convergence order.



Rising of a large air bubble into water : new
redistanciation

Figure: Water : ρ = 1000 kg/m3, µ = 1, 137.10−3 kg/ms, air : ρ = 1kg/m3,
µ = 1, 78.10−5 kg/ms, σ = 0.0728 kg/s2, bubble radius 0.025 m



Rising of a large air bubble into water : new
redistanciation

Figure: Water : ρ = 1000 kg/m3, µ = 1, 137.10−3 kg/ms, air : ρ = 1kg/m3,
µ = 1, 78.10−5 kg/ms, σ = 0.0728 kg/s2, bubble radius 0.025 m



Conclusion

• New cartesian method for incompressible bifluid flows with high
density ratios :

• with second-order pressure resolution
• compromise between accuracy and simplicity

• To obtain a third-order level-set method along time :
DO NOT use redistanciation every few time steps !

In the future :

• Implementation in NasCar code
• Application to air-water interface + floating solid
• Development of an incremental form
• Comparisons with other families of methods : front-tracking, VOF,

phase-field...
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