A Sharp Cartesian Method For The Simulation Of Flows With High Density Ratios

Lisl Weynans

Bordeaux University and INRIA, France

3 June 2016
Incompressible flows with high density ratios?

Air-water interfaces
• NaSCar : 3D parallel incompressible code with fluid-structure interaction
 (Michel Bergmann, INRIA Bordeaux)
• Discretization on cartesian grids, level-set method
• Second-order for velocity near solid boundary : use of ghost cells
 (Mittal et al 2008, Bergmann et al 2014)
Goal: Fluid-structure interaction with waves
Goal: Fluid-structure interaction with waves
Regularized method for interface treatment: CSF

- Loss of accuracy + stability issues
- How to improve the accuracy near the interface?

⇒ Use a sharp cartesian method to solve the pressure at the interface
Methodology

We work with:

- a discretization on cartesian grids,
- finite differences,
- a level-set function to represent the interface.

We want

- a second-order accuracy for the pressure
- a scheme easy to implement (and to parallelize)
Interface description

• The level-set function ϕ is advected with fluid velocity,
• Straightforward treatment of complex geometries and topological changes (fragmentation, coalescence)
• Convenient for discretization on cartesian grids
• Formulas for geometric quantities:

\[n = \nabla \phi, \quad \kappa = \nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|} \right), \]

• In practice, ϕ is the signed distance to the interface
 \(\Rightarrow |\nabla \phi| = 1, \quad \kappa = \Delta \phi \).
Outline

1. Second-order cartesian method for elliptic problems with immersed interfaces
2. Application to incompressible bifluid flows
3. How to preserve high-order level-set along time?
Elliptic problem with immersed interface

\[\nabla.(k \nabla u) = f \text{ on } \Omega = \Omega_1 \cup \Omega_2 \]

\[[u] = \alpha \text{ on } \Sigma \]

\[[k \frac{\partial u}{\partial n}] = \beta \text{ on } \Sigma \]

\[u = g \text{ on } \delta \Omega \]
Discretization strategy

- Creation of additional unknowns on the interface
 - used to discretize the elliptic operator on each side of the interface
 - obtained by a discretization of jump conditions across the interface

* A method related to the large family of methods inspired by IIM *

- Cons: additional unknowns...
- Pros: additional unknowns!
Which accuracy near the interface?

To obtain second-order convergence (\(L^\infty \) norm), it is enough to have:

- a first-order truncation error for the elliptic operator near the interface
 \(\Rightarrow \) avoid linear extrapolations

- a second-order truncation error for the flux discretization
 \(\Rightarrow \) use of a larger stencil

\[
\begin{array}{cccccc}
 & j & j+1 & & & \\
 j & & & & & \\
 j-1 & & & & & \\
 i-1 & i & i+1 & i+2 & \\
\end{array}
\]
Theoretical convergence

- A_h matrix of linear system, U_h solution, f_h source term

$$A_h U_h = f_h$$

- Local error e_h and truncation error τ_h linked by

$$A_h e_h = \tau_h$$

- Naive estimate:

$$||e_h||_\infty \leq ||A_h^{-1}||_\infty ||\tau_h||_\infty$$

- Not accurate enough here because $||\tau_h||_\infty = O(h)$

\Rightarrow we need bounds on A_h^{-1} coefficients, summed by blocks
Theoretical convergence

• For each discretization point Q, define the discrete Green function $G_h(P, Q)$ as:

$$A_h G_h(P, Q) = \begin{cases}
0, & P \neq Q \\
1, & P = Q \\
G_h(P, Q) = 0, & P \text{ on the boundary}.
\end{cases}$$

• Each array $G_h(\cdot, Q)$ is a column of A_h^{-1}

$$u_h(P) = \sum_Q G_h(P, Q) (A_h U_h)(Q) \quad \forall P$$

Figure: Examples of discrete Green functions
Theoretical convergence

Theorem (Ciarlet, 71):

S is a subset of Ω_h and W an array such that:

\[
\begin{align*}
W(P) &\geq 0 \quad \forall P \in \Omega_h, \\
(A_h W)(P) &\geq 0 \quad \forall P \in \Omega_h, \\
(A_h W)(P) &\geq h^{-i} \text{ for each } P \in S.
\end{align*}
\]

If A_h is monotonic then

\[
\sum_{Q \in S} G_h(P, Q) \leq h^i W(P).
\]
Theoretical convergence

• Prove that the matrix is monotonic, that is \((A_h U_h \geq 0 \Rightarrow U_h \geq 0)\):

requires to prove that if the minimum of \(U_h\) is located on the interface, then the discrete flux on this point is negative

• Use discrete maximum principle and ad hoc test functions to obtain bound on the coefficients of \(A_h^{-1} = G_h\):

\[
\sum_{Q \in \Omega_h^* \cup \Sigma_h} G_h(P, Q) \leq O(1),
\]

\[
\sum_{Q \in \Omega_h^{**}} G_h(P, Q) \leq O(h^2).
\]

Figure 3: Left: regular nodes (belonging to \(\Omega_h^{**}\)) described by bullets \(\bullet\), irregular nodes (belonging to \(\Omega_h^{**}\)) described by circles \(\circ\), right: nodes belonging to \(\Sigma_h\).
Theoretical convergence

- Multiply the truncation error array by A_h^{-1}, block by block:

$$|e_h(P)| \leq \sum_{Q \in \Omega^{**}_h} |G_h(P, Q)\tau_h(Q)| + \sum_{Q \in \Omega^*_h \cup \Sigma_h} |G_h(P, Q)\tau_h(Q)|,$$

$$\leq O(h^2)O(1) + O(1)O(h^2) = O(h^2)$$

- In our case:

 - Proof ok in 1D, 2D order 1

 - 2D order 2: the monotonicity of the matrix depends on the direction of the normal to the interface compared to the direction of the normal to the cartesian cell

 - But monotonicity ensured if normal aligned with the axis of the grid

 \Rightarrow useful in the bifluid case!
2D convergence test

Interface Σ:

$$
\left(\frac{x}{18/27}\right)^2 + \left(\frac{y}{10/27}\right)^2 = 1.
$$

Exact solution:

$$
u(x, y) = \begin{cases}
 e^x \cos(y), & \text{inside } \Sigma \\
 5e^{-x^2-y^2}/2, & \text{outside.}
\end{cases}
$$

$k = 1$ outside Σ and 10 or 1000 inside.

Figure: Left : $k = 10$, right : $k = 1000$, convergence in L^∞ norm
Parallel 2D convergence test

\[k = \begin{cases} k^- \text{ inside } \Sigma \\ 1 \text{ outside} \end{cases} \]

\[u = \begin{cases} e^x \cos(y), \text{ inside } \Sigma \\ 5e^{-x^2 - \frac{y^2}{2}}, \text{ outside.} \end{cases} \]

Figure: Convergence tests with \(\omega = 5, r_0 = 0.5, k^- = 1000 \) (left), and \(\omega = 12, r_0 = 0.4, k^- = 100 \) (right).
Outline

1. Second-order cartesian method for elliptic problems with immersed interfaces
2. Application to incompressible bifluid flows
3. How to preserve high-order level-set along time?
Notations

\[\Omega^- \ (\phi < 0) \]

\[\Omega^+ \ (\phi > 0) \]

\[\Gamma \ (\phi = 0) \]

\[\rho^-, \mu^- \]

\[\rho^+, \mu^+ \]
Fluid model

- Incompressible Navier-Stokes equations in each fluid:
 \[
 \rho (u_t + (u \cdot \nabla) u) = -\nabla p + (\nabla \cdot \tau)^T + \rho g, \\
 \nabla \cdot u = 0
 \]

- Jump conditions on \(\Gamma \):
 \(\star\) Continuity of velocity and divergence of velocity
 \[
 [u] = [v] = 0, \\
 [(u_n, v_n) \cdot n] = 0.
 \]
 \(\star\) Balance between normal stresses and surface tension
 \[
 [\mu(u_n, v_n) \cdot \eta + \mu(u_\eta, v_\eta) \cdot n] = 0, \\
 [p] = \sigma \kappa + 2[\mu](u_n, v_n) \cdot n.
 \]
 \(\star\) Material derivative of velocity continuity
 \[
 \left[\frac{\nabla p}{\rho} \right] = \left[\frac{\nabla \cdot \tau}{\rho} \right].
 \]

* How to use them? *
Numerical scheme in the fluid

Predictor-corrector scheme (Chorin-Temam):

- **Prediction** (we take $p = 0$)

 \[
 \frac{u^* - u^n}{\Delta t} = -[(u \cdot \nabla)u]^n + \frac{(\nabla \cdot \tau^n)^T}{\rho} - g
 \]

 centered second-order

 WENO 5

- **Correction**

 \[
 u^{n+1} = u^* - \frac{\Delta t \nabla p^{n+1}}{\rho}
 \]

 centered second-order

- **Resolution of an elliptic equation** :

 \[
 \nabla \cdot \left(\frac{1}{\rho} \nabla p^{n+1} \right) = \frac{\nabla \cdot u^*}{\Delta t}
 \]

 centered second-order
Numerical scheme in the fluid

- Prediction

\[
\frac{u^* - u^n}{\Delta t} = -[(u \cdot \nabla)u]^n + \frac{(\nabla \cdot \tau^n)^T}{\rho} - g
\]

- Elliptic equation:

\[
\nabla \cdot \left(\frac{1}{\rho} \nabla p^{n+1} \right) = \frac{\nabla \cdot u^*}{\Delta t}
\]

- Correction:

\[
u^{n+1} = u^* - \frac{\Delta t}{\rho} \nabla p^{n+1}
\]
Discretization near the interface

Prediction:

\[
\frac{u^* - u^n}{\Delta t} = -[(u \cdot \nabla)u]^n + \frac{(\nabla \cdot \tau^n)^T}{\rho} - g
\]

- **Diffusion**: discontinuous velocity derivatives
 \[\Rightarrow\text{ lack of consistency}\]

- **Convection**: WENO 5 naturally adaptative continuous velocity
 \[\Rightarrow\text{ less worrying, to a certain extent}\]
Discretization near the interface

- **Elliptic equation:**
 \[
 \nabla \cdot \left(\frac{1}{\rho} \nabla p^{n+1} \right) = \frac{\nabla \cdot \mathbf{u}^*}{\Delta t}
 \]
 Discontinuity for \(\rho \), jump conditions
 \[\Rightarrow \text{lack of consistency} \]

- **Correction:**
 \[
 \mathbf{u}^{n+1} = \mathbf{u}^* - \frac{\Delta t}{\rho} \nabla p^{n+1}
 \]
 Discontinuity of \(\rho \) and \(\phi \)
 \[\Rightarrow \text{lack of consistency} \]
State of the art for methods on cartesian grids

CSF method (Brackbill et al. 91):
the classical one
regularization of values near the interface, surface tension effect
re-formulated as the limit of a volumic force

Methods without regularization:
- VOF methods: Sussman et al, Luo et al., Le Chenadec and Pitsch ...
- Kang, Fedkiw and Liu 2000: application of Ghost Fluid method
- Raessi and Pitsch 2012: cut-cell type method
Ghost fluid method

Turbulent atomization of a liquid Diesel jet (Desjardins et al.)

⇒ Easy to implement, nice results, but stability issues due to erroneous momentum transfers between fluids

Dam break test case: propagation of interface
Raessi and Pitsch method

Use of conservative equations for mass and momentum near the interface, solved consistently with the same flux density

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho U) = 0
\]

\[
\frac{\partial (\rho U)}{\partial t} + \nabla \cdot (\rho U U) = -\nabla p + \nabla \cdot \tau + F_B,
\]

Figure: Left: geometrical reconstruction near the interface, right: dam break, comparison between Ghost-Fluid method and conservative method of Raessi and Pitsch
New method: discretization near the interface

To solve accurately the pressure:

- Creation of interface unknowns for \(u^* \) and \(p \) on the interface

- Regularization of \(\mu \) and \(\rho \) only to take into account viscous effects
 \(\Rightarrow \) no more discontinuity for viscous terms
Elliptic problem

- In the fluid:
 \[\nabla \cdot \left(\frac{1}{\rho} \nabla p \right) = \frac{\nabla \cdot \mathbf{u}^*}{\Delta t} \]
 \[(u^* \text{ extrapolated on interface)} \]

- On interface:
 \[[p] = \sigma \kappa, \]
 \[\left[\frac{\nabla p}{\rho} \right] = 0. \]
Discretization near the interface

Elliptic problem

- In the fluid:
 \[\nabla \cdot \left(\frac{1}{\rho} \nabla p \right) = \frac{\nabla \cdot \mathbf{u}^*}{\Delta t}. \]

- On interface:
 \[[p] = \sigma \kappa, \]
 either \[\left[\frac{p_x}{\rho} \right] = 0, \]
 or \[\left[\frac{p_y}{\rho} \right] = 0. \]

* Elimination of interface variables
* Convergence analysis valid since the derivatives across the interface are aligned with the axis of the grid
Bubble at rest: parasitic oscillations

- Parasitic oscillations caused by approximated values of the curvature
- More or less amplified by the numerical scheme for the pressure

![Diagram of a bubble at rest with dimensions labeled as 2L, ext, int, and R]

\[L = 2 \text{ cm}, \]
\[R = 1 \text{ cm}, \]
\[\rho_{\text{int}} = 1000 \text{ kg.m}^{-3}, \]
\[\mu_{\text{int}} = 10^{-3} \text{ Pa.s}, \]
\[\rho_{\text{ext}} = 1 \text{ kg.m}^{-3}, \]
\[\mu_{\text{ext}} = 10^{-5} \text{ Pa.s}, \]
\[\sigma = 0.1 \text{ N.m}^{-1} \]

<table>
<thead>
<tr>
<th>N</th>
<th>Ghost Fluid method</th>
<th>CSF</th>
<th>new method</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>8.08×10^{-3}</td>
<td>3.55×10^{-2}</td>
<td>5.21×10^{-3}</td>
</tr>
<tr>
<td>32</td>
<td>3.42×10^{-4}</td>
<td>3.12×10^{-2}</td>
<td>9.26×10^{-5}</td>
</tr>
<tr>
<td>64</td>
<td>5.13×10^{-5}</td>
<td>2.12×10^{-2}</td>
<td>1.36×10^{-5}</td>
</tr>
<tr>
<td>128</td>
<td>2.79×10^{-5}</td>
<td>6.44×10^{-3}</td>
<td>2.22×10^{-6}</td>
</tr>
</tbody>
</table>

Table: Error in L^∞ norm at time $t = 1$.
Bubble at rest: parasitic oscillations

Figure: Left: 32*32 grid, horizontal velocity after 1 iteration, right: horizontal velocity after 1s.

<table>
<thead>
<tr>
<th>Δx</th>
<th>error L^∞ for VOF (Sussman et al)</th>
<th>error L^∞ for new method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5/16</td>
<td>7.3 $\times 10^{-4}$</td>
<td>7.48 $\times 10^{-5}$</td>
</tr>
<tr>
<td>2.5/32</td>
<td>4.5 $\times 10^{-6}$</td>
<td>4.7 $\times 10^{-6}$</td>
</tr>
<tr>
<td>2.5/64</td>
<td>5.5 $\times 10^{-8}$</td>
<td>1.26 $\times 10^{-6}$</td>
</tr>
</tbody>
</table>

Error at non-dimensional time $t = 250$ for the VOF method of Sussman et al. and new method.
Small air bubble into water

Figure: Water: $\rho = 1000 \text{ kg/m}^3$, $\mu = 1,137 \cdot 10^{-3} \text{ kg/ms}$, air: $\rho = 1\text{ kg/m}^3$, $\mu = 1,78 \cdot 10^{-5} \text{ kg/ms}$, $\sigma = 0.0728 \text{ kg/s}^2$, bubble radius $1/300 \text{ m}$, $T_f = 0.05 \text{s}$.
Small air bubble into water

Figure: Comparison between CSF method (left) and new method (right)
Larger air bubble into water

Figure: Water: \(\rho = 1000 \text{ kg/m}^3, \mu = 1,137 \times 10^{-3} \text{ kg/ms}, \) air: \(\rho = 1 \text{ kg/m}^3, \mu = 1,78 \times 10^{-5} \text{ kg/ms}, \sigma = 0.0728 \text{ kg/s}^2, \) bubble radius 0.025 m
Small water droplet in air

Figure: Water: $\rho = 1000 \text{ kg/m}^3$, $\mu = 1,137.10^{-3} \text{ kg/ms}$, air: $\rho = 1\text{ kg/m}^3$, $\mu = 1,78.10^{-5} \text{ kg/ms}$, $\sigma = 0.0728 \text{ kg/s}^2$, bubble radius $1/300 \text{ m}$, $Tf = 0.05\text{s}$.
Water: $\rho = 1000 \, \text{kg/m}^3$, $\mu = 1,137 \times 10^{-3} \, \text{kg/ms}$,
Air: $\rho = 1,226 \, \text{kg/m}^3$, $\mu = 1,78 \times 10^{-5} \, \text{kg/ms}$,
$\sigma = 0.0728 \, \text{kg/s}^2$, water column $h = 5.715 \, \text{cm}$, domain $40 \times 10 \, \text{cm}$
Propagation of front: comparison between the conservative method of Raessi and Pitsch, the Ghost-Fluid method and our new method
Outline

1 Second-order cartesian method for elliptic problems with immersed interfaces
2 Application to incompressible bifluid flows
3 How to preserve high-order level-set along time? (with F. Luddens and M. Bergmann)
Motivations for a high order level-set

- Better description of the interface
- Mass conservation
- Need of a consistent κ to compute surface tension effects:

$$[p^{n+1}] = \sigma \kappa$$

Third-order accuracy needed to compute consistently κ from derivatives of the level-set!
Standard approach

- Transport of ϕ with u (or with an extension velocity):

$$\phi^* = \phi^n - \Delta t \, u^n \nabla \phi^n,$$

- Every few time steps, re-initialize ϕ^* with:
 - a Fast-Marching algorithm
 - a Fast-Sweeping algorithm
 - a relaxation method

$$\partial_\tau \phi + sign(\phi^*) (|\nabla \phi| - 1) = 0,$$
$$\phi|_{\tau=0} = \phi^*.$$

- Very often, RK3-TVD scheme for τ, t, WENO-5 scheme for $\nabla \phi$.

Standard approach

- Transport of ϕ with u (or with an extension velocity):

$$\phi^* = \phi^n - \Delta t \, u^n \nabla \phi^n,$$

- Every few time steps, re-initialize ϕ^* with:
 - a Fast-Marching algorithm
 - a Fast-Sweeping algorithm
 - a relaxation method

$$\partial_\tau \phi + \text{sign}(\phi^*) (|\nabla \phi| - 1) = 0,$$

$$\phi|_{\tau=0} = \phi^*.$$

- Very often, RK3-TVD scheme for τ, t, WENO-5 scheme for $\nabla \phi$.

Main problems of standard approach:

- WENO-5 schemes for reinitialization not enough accurate near interface \Rightarrow the interface moves at each reinitialization step
- Cost: too many reinitialization steps?
- With extension velocities: more accurate but even more costly
To reduce the interface moving

Constatation:
The WENO scheme uses information from the wrong side of the interface

Subcell fix (Russo & Smereka, 2000):
Use information on interface to modify the scheme (decentering)

Higher order extension (Du Chéné et al. 2008):

- Far from interface, WENO scheme,
- near interface, decentered ENO scheme, taking into account the interface position
Example: interface with strong gradients

\[d = \sqrt{x^2 + y^2} - r_0 \]
\[\phi_0 = \frac{d}{r_0} \left(\epsilon + (x - x_0)^2 + (y - y_0)^2 \right) \]
\[\Omega = (-1, 1)^2 \]
\[r_0 = 0.5 \]
\[\epsilon = 0.1, \ x_0 = -0.7, \ y_0 = -0.4 \]
Example: interface with strong gradients

<table>
<thead>
<tr>
<th>$\frac{1}{h}$</th>
<th>$|\phi_h - d|_{L^1(\Omega)}$ err</th>
<th>coc</th>
<th>$|\phi_h - d|_{L^\infty(B_n)}$ err</th>
<th>coc</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3.37E-03</td>
<td>-</td>
<td>3.12E-02</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>4.25E-04</td>
<td>2.88</td>
<td>1.51E-03</td>
<td>4.22</td>
</tr>
<tr>
<td>80</td>
<td>1.10E-04</td>
<td>1.92</td>
<td>2.48E-04</td>
<td>2.56</td>
</tr>
<tr>
<td>160</td>
<td>3.19E-05</td>
<td>1.77</td>
<td>2.85E-05</td>
<td>3.09</td>
</tr>
<tr>
<td>320</td>
<td>9.43E-06</td>
<td>1.75</td>
<td>3.37E-06</td>
<td>3.06</td>
</tr>
<tr>
<td>640</td>
<td>2.57E-06</td>
<td>1.87</td>
<td>6.09E-07</td>
<td>2.46</td>
</tr>
<tr>
<td>1280</td>
<td>6.82E-07</td>
<td>1.91</td>
<td>6.98E-08</td>
<td>3.12</td>
</tr>
</tbody>
</table>
Example: interface with strong gradients

\[\|\kappa_h - \kappa\|_{L^\infty(\Gamma)} \]

<table>
<thead>
<tr>
<th>(\frac{1}{h})</th>
<th>err</th>
<th>coc</th>
<th>(N_{it})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>8.95E-02</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>40</td>
<td>4.01E-02</td>
<td>1.12</td>
<td>26</td>
</tr>
<tr>
<td>80</td>
<td>1.91E-02</td>
<td>1.05</td>
<td>28</td>
</tr>
<tr>
<td>160</td>
<td>9.38E-03</td>
<td>1.01</td>
<td>31</td>
</tr>
<tr>
<td>320</td>
<td>4.52E-03</td>
<td>1.05</td>
<td>34</td>
</tr>
<tr>
<td>640</td>
<td>2.34E-03</td>
<td>0.95</td>
<td>36</td>
</tr>
<tr>
<td>1280</td>
<td>1.18E-03</td>
<td>0.98</td>
<td>38</td>
</tr>
</tbody>
</table>
Coupling with transport

We introduce the quantity $r_g(\nabla \phi) := \| |\nabla \phi| - 1 \|_{L^1(\Omega)}$, and choose a threshold $\delta > 0$.

Algorithm:

- **Initialization**: with $\phi_0 = d_0$, the signed distance function at interface Γ_0,
- **Transport**: While $r_g(\nabla \phi) < \delta$, compute the evolution of ϕ with transport equation
- **Re-initialization**: When $r_g(\nabla \phi) \geq \delta$, re-compute ϕ as the signed distance function d.
 - redistanciation with relaxation in a band around interface
 - second-order fast-sweeping elsewhere
Vortex test case

\[\Omega = (0, 1)^2 \]

\[\phi|_{t=0} = \sqrt{((x - 0.5)^2 + (y - 0.75)^2)} - 0.15 \]

\[\mathbf{u} = \cos \left(\frac{\pi t}{T} \right) \nabla \perp \omega \]

\[\omega = \sin(\pi x)^2 \sin(\pi y)^2 \]

\[T = 4, t_{fin} = 4 \]

\[\Gamma \text{ deforms then goes back to } \Gamma_0 \text{ at } t = t_{fin}. \]
Comparison between 4 cases, at time $t = 2$:

1. 5 iterations of relaxation method, every 5 time steps
2. 3 iterations of relaxation method, every time steps
3. new method, with $\delta = 0.1$,
4. new method, with $\delta = 0.01$.
Vortex test case

<table>
<thead>
<tr>
<th>$\frac{1}{h}$</th>
<th>case 1</th>
<th>case 2</th>
<th>case 3</th>
<th>case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>err.</td>
<td>coc</td>
<td>err.</td>
<td>coc</td>
</tr>
<tr>
<td>40</td>
<td>1.82E-01</td>
<td>-</td>
<td>1.18E-01</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>5.53E-02</td>
<td>1.69</td>
<td>6.35E-02</td>
<td>0.87</td>
</tr>
<tr>
<td>160</td>
<td>7.07E-02</td>
<td>-0.35</td>
<td>7.62E-02</td>
<td>-0.26</td>
</tr>
<tr>
<td>320</td>
<td>6.56E-02</td>
<td>0.11</td>
<td>9.56E-02</td>
<td>-0.33</td>
</tr>
<tr>
<td>640</td>
<td>1.10E-01</td>
<td>-0.75</td>
<td>2.01E-01</td>
<td>-1.07</td>
</tr>
</tbody>
</table>

Table: Error L^∞ on curvature at $t = 2$
Vortex test case

<table>
<thead>
<tr>
<th>$\frac{1}{h}$</th>
<th>case 1</th>
<th>case 2</th>
<th>case 3</th>
<th>case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>6.82E-03</td>
<td>1.06E-03</td>
<td>5.67E-03</td>
<td>2.50E-03</td>
</tr>
<tr>
<td>80</td>
<td>9.39E-04</td>
<td>2.72E-04</td>
<td>4.06E-04</td>
<td>1.53E-04</td>
</tr>
<tr>
<td>160</td>
<td>1.86E-04</td>
<td>2.19E-04</td>
<td>1.88E-05</td>
<td>1.30E-05</td>
</tr>
<tr>
<td>320</td>
<td>7.38E-05</td>
<td>1.15E-04</td>
<td>9.66E-07</td>
<td>9.25E-07</td>
</tr>
<tr>
<td>640</td>
<td>3.66E-05</td>
<td>6.21E-05</td>
<td>4.30E-08</td>
<td>3.50E-08</td>
</tr>
</tbody>
</table>

Table: Volume loss at $t = 2$.
Vortex test case

Figure: Left: $\delta = 0$ (i.e. redistanciation at time step), right: $\delta = 0.1$. Grid 80×80, $dt = dx/8$
Flow around a cylinder

\[\Omega = [-3; 3]^2, \]
\[\Gamma_0 = \{ x^2 + y^2 = 1 \}, \quad \phi_0 = d_0, \]
\[U_r = \alpha c(r) \left(U_\infty - \frac{1}{r^2} \right) \cos(\theta), \]
\[U_\theta = -\alpha c(r) \left(U_\infty + \frac{1}{r^2} \right) \sin(\theta), \]
\[c(r) = \min \left(1, \frac{r}{0.5} \right)^3, \]
\[U_\infty = 1, \]
\[\alpha \text{ such that } \| \mathbf{U} \|_{L^\infty(\Omega)} = 1, \]
\[t_{fin} = 6. \]
Flow around a cylinder

Figure: Left : $\delta = +\infty$ (i.e. no redistanciation), right : $\delta = 0.1$, grid 80×80
Flow around a cylinder

| $\frac{1}{h}$ | $\delta = 0.01$ | | $\delta = 0.1$ | | $\delta = +\infty$. | \\
|---|---|---|---|---|---| \\
| | err. | coc | err. | coc | err. | coc | \\
| 40 | 7.24E-02 | - | 8.35E-02 | - | 1.40E+00 | - | \\
| 80 | 3.91E-02 | 0.87 | 1.68E-02 | 2.27 | 2.15E+00 | -0.61 | \\
| 160 | 9.71E-03 | 1.99 | 5.09E-03 | 1.71 | 3.53E+00 | -0.71 | \\
| 320 | 3.66E-03 | 1.40 | 2.51E-03 | 1.01 | 8.22E+01 | -4.52 | \\
| 640 | 2.51E-03 | 0.54 | 1.88E-03 | 0.42 | 1.57E+02 | -0.93 | \\

Table: $\|\kappa_h - \kappa\|_\infty(\Gamma)$ at $t = 6$ and convergence order.
Rising of a large air bubble into water: new redistanciation

Figure: Water: $\rho = 1000 \text{ kg/m}^3$, $\mu = 1,137.10^{-3} \text{ kg/ms}$, air: $\rho = 1 \text{ kg/m}^3$, $\mu = 1,78.10^{-5} \text{ kg/ms}$, $\sigma = 0.0728 \text{ kg/s}^2$, bubble radius 0.025 m
Rising of a large air bubble into water: new redistanciation

Figure: Water: $\rho = 1000 \text{ kg/m}^3$, $\mu = 1,137 \times 10^{-3} \text{ kg/ms}$, air: $\rho = 1\text{ kg/m}^3$, $\mu = 1,78 \times 10^{-5} \text{ kg/ms}$, $\sigma = 0.0728 \text{ kg/s}^2$, bubble radius 0.025 m
Conclusion

- New cartesian method for incompressible bifluid flows with high density ratios:
 - with second-order pressure resolution
 - compromise between accuracy and simplicity
- To obtain a third-order level-set method along time:
 DO NOT use redistanciation every few time steps!

In the future:

- Implementation in NasCar code
- Application to air-water interface + floating solid
- Development of an incremental form
- Comparisons with other families of methods: front-tracking, VOF, phase-field...