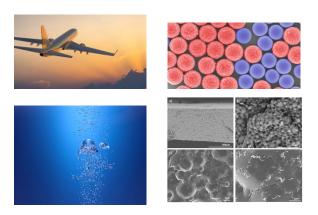
Prise en compte précise de géométries complexes pour l'approximation d'EDP sur grilles cartésiennes et leur simulation en calcul parallèle.

Lisl Weynans

Université de Bordeaux et INRIA

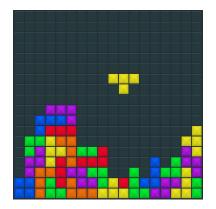
4 Décembre 2018

Géométries complexes



- Différents matériaux en interaction
- Régis par des lois physiques différentes, représentées par des EDP
- Conditions aux limites, conditions de transmission sur les interfaces

Discrétisation dans des géométries complexes

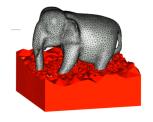


Comment gérer les maillages cartésiens?

Plan

- 1 Méthodes de frontières immergées
- 2 La stratégie adoptée
- **3** Exemples d'applications

Discrétisation dans des géométries complexes



Sources : site Mmg3d et Wami Delthorn, un amateur de legos sur Flickr

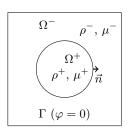
• Maillage adapté à la géométrie :

- difficile à créer, à faire évoluer en cas de géométrie mobile,
- raffinement naturel pour adapter localement la précision,
- facile de discrétiser directement les équations dessus.

• Maillage cartésien :

- pas de travail pour le créer et le manipuler,
- perte de précision due au raffinement uniforme,
- les schémas usuels ne conviennent plus, car dans une même maille peuvent exister deux états aux propriétés différentes.

Exemple: Navier-Stokes incompressible



• Equations de Navier-Stokes incompressible dans chaque fluide :

$$\rho(\boldsymbol{u}_t + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u}) = -\nabla p + (\nabla \cdot \tau)^T + \rho \boldsymbol{g},$$

$$\nabla \cdot \boldsymbol{u} = 0$$

• Conditions de saut au travers de l'interface

is de sant au travers de l'interface
$$[p] = \sigma \kappa + 2[\mu](u_n, v_n).\boldsymbol{n}, \qquad [\frac{\nabla p}{\rho}] = [\frac{(\nabla . \tau)^T}{\rho}].$$

Schéma numérique dans le fluide

• Prédiction (on prend p = 0)

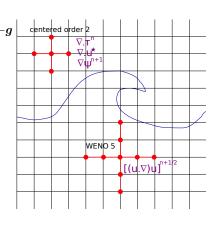
$$egin{aligned} oldsymbol{u}^* - oldsymbol{u}^n \ \Delta t \end{aligned} = \underbrace{-[(oldsymbol{u} \cdot
abla) oldsymbol{u}]^n}_{ ext{WENO 5}} + \underbrace{oldsymbol{(
abla \cdot au^n)^T}_{ ext{centr\'e ordre deux}} - oldsymbol{g} \end{aligned}$$

• Résolution d'une équation elliptique :

$$\nabla \cdot (\frac{1}{\rho} \nabla p^{n+1}) = \underbrace{\frac{\nabla \cdot \boldsymbol{u}^*}{\Delta t}}_{\text{centr\'e ordre deux}}$$

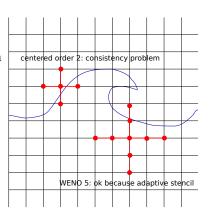
• Correction:

$$oldsymbol{u}^{n+1} = oldsymbol{u}^* - \underbrace{\frac{\Delta t}{
ho}
abla p^{n+1}}_{ ext{centr\'e ordre deux}}$$



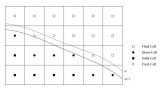
Discrétisation près de l'interface

- Diffusion : dérivées de la vitesse discontinues
- Equation elliptique : discontinuité de ρ , conditions de saut au travers de l'interface
- Correction : discontinuité de ρ et p
 - ⇒ Manque de consistance
- Convection: WENO 5 naturellement adaptatif vitesse continue
 - ⇒ moins gênant, dans une certaine mesure



Problématiques sur grille cartésienne

- Stabilité
- Précision : maintien de l'ordre de convergence du schéma utilisé dans chaque sous-domaine
- Interface mobile : nouvelles valeurs sur une cellule passant d'un matériau à un autre, conservativité



Source: Liu et al 2017

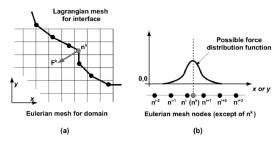
⇒ Développement des méthodes de frontières immergées

Régularisation (par ex Brackbill et al. 1992)

```
\begin{aligned} \text{Eau}: \rho &= 1000 \text{ kg/}m^3, \; \mu = 1,137.10^{-3} \text{ kg/ms}, \\ \text{air}: \rho &= 1\text{kg/}m^3, \; \mu = 1,78.10^{-5} \text{ kg/ms}, \\ \sigma &= 0.0728 \text{ kg/s}^2, \text{ rayon de la bulle } 1/300 \text{ m}, \; Tf = 0.05s. \end{aligned}
```

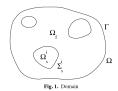
Immersed Interface Method (Peskin 1972):

- Fluide résolu sur une grille cartésienne
- Frontière solide représentée par des marqueurs lagrangiens



Source : J. Konkol PhD thesis

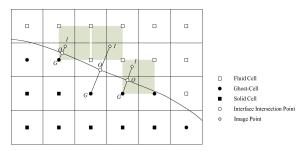
<u>Pénalisation</u> (Arquis et Caltagirone 1984, Angot et al 1999) : Frontière solide prise en compte par un terme de forçage dans les équations fluides



$$\begin{array}{ll} \partial_t u_\eta - \frac{1}{Re} \Delta u_\eta + u_\eta \cdot \nabla u_\eta + \frac{1}{\eta} \mathbf{1}_{\Omega_s} u_\eta + \nabla p_\eta = f & \text{in } \mathbb{R}^+ \times \Omega \\ \text{div } u_\eta = 0 & \text{in } \mathbb{R}^+ \times \Omega \\ u_\eta(0,\cdot) = u_0 & \text{in } \Omega \\ u_\eta = 0 & \text{on } \varGamma. \end{array}$$

Source: Angot et al 1999

Méthodes Ghost Fluid, Ghost cells : Création de valeurs fictives par une extrapolation tenant compte de la condition sur l'interface

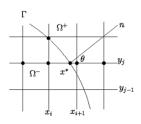


Source: Liu et al 2017

Inverse Lax Wendroff procédure : (Tan et Shu 2010)

Conversion de dérivées temporelles en dérivées spatiales pour construire des valeurs fictives à un ordre élevé

<u>Immersed Interface Method : (</u>Leveque and Li 1994) Différences finies avec stencil adapté

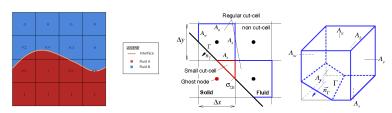


$$\begin{split} \frac{u(x+h)-u(x-h)}{2h} &= \left\{ \begin{array}{l} u'(x) + \frac{C(x,\alpha)}{2h} + O(h^2), & \text{if } 0 \leq \alpha \leq 1, \\ \\ u'(x) - \frac{C(x,\alpha)}{2h} + O(h^2), & \text{if } -1 \leq \alpha < 0, \\ \\ \frac{u(x+h)-2u(x)+u(x-h)}{h^2} &= u''(x) + \frac{C(x,\alpha)}{h^2} + O(h), \\ \end{array} \right. \end{split}$$
 where

 $C(x,\alpha) = [u] + [u_x](1 - |\alpha|)h + [u_{xx}]\frac{(1 - |\alpha|)^2 h^2}{2}.$

Source : Z. Li's slides

Approches conservatives: Volume of Fluid et Cut-Cell



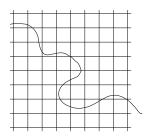
Gauche: discrétisation Volume of Fluid (J. Haider's Master Thesis),

Droite: discrétisation Cut Cell (Seo and Mittal 2011)

Notre stratégie

Compromis précision/complexité algorithmique :

- Plutôt de type "Ghost-Fluid" ou "Immersed Interface"
- Utiliser une résolution sous-maille tenant compte de la position de l'interface
- Maintenir une précision d'ordre deux
- Mais sans chercher à être strictement conservatif



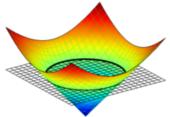
Description de l'interface

• Représentation implicite :

Interface = iso-ligne zéro d'une fonction régulière φ

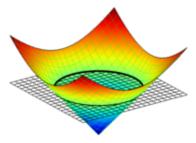
- Pratique avec une discrétisation sur grilles cartésiennes
- Traitement aisé de géométries complexes et changements de topologie (fragmentation, coalescence)
- Calcul des quantités géométriques :

$$m{n} =
abla arphi, \qquad \kappa =
abla \cdot \left(rac{
abla arphi}{|
abla arphi|}
ight),$$



Description de l'interface

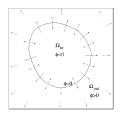
- En pratique, la fonction level-set φ est la distance signée à l'interface
- Elle est advectée à la vitesse de l'interface
- Besoin de calculer avec précision de l'évolution de la level-set,
- Et de préserver sa régularité



Comportement de l'erreur numérique

Le comportement de l'erreur diffère suivant le type d'équation :

- Hyperbolique : l'erreur se propage le long des caractéristiques
 - une erreur d'approximation portée par une caractéristique qui sort du domaine aura peu d'influence
 - attention à récupérer les informations dans la bonne direction (upwind)



- Elliptique : comportement non-local
 - une erreur d'approximation plus forte mais commise sur suffisamment peu de points n'influe pas sur l'ordre de convergence
 - phénomènes de super-convergence

Parallélisation

L'usage de grilles cartésienne uniformes permet une parallélisation aisée

- Partionnement immédiat
- Utilisation de librairies efficaces comme PETSc

Contraintes algorithmiques:

- Eviter les grands stencils
- Fast Sweeping plutôt que Fast Marching afin que l'ordre de parcours des points ne dépende pas de l'interface

Si la grille n'est plus uniforme:

- Ajout d'inconnues supplémentaires sur l'interface : numérotation locale et globale
- Octree : la numérotation de Morton impose un calcul des flux très local (voisins directs)

Mécanique des fluides et transport

Problèmes elliptiques

Suspensions de particules

Fonctions Level-set

Ecoulements incompressibles bifluides

Ecoulements de type Boussinesq

Electroporation de cellules biologiques

Ecoulements compressibles

Matériaux électrostrictifs

Mécanique des fluides et transport

Applications étudiées

Problèmes elliptiques

Suspensions de particules

Fonations Level set Yannick Gorsse, Angelo Iollo:

méthode Ghost-cell, décentrement upwind

Electroporation de cellules biologiques

Adrien Magni:

Ecoulements compressibles dans des géométries complexes Méthodes particulaires avec remaillage Transport optimal Adrien Magni : remaillage TVD non-linéaire preuve de convergence

Afaf Bouharguane, Angelo Iollo : méthode itérative

Mécanique des fluides et transport

Problèmes elliptiques

Suspensions de particules

Fonctions Level-set

Ecoulements incompressibles bifluides

Ecoulements de type Boussinesq

Electroporation de cellules biologiques

Ecoulements compressibles

Marco Cisternino, Angelo Iollo, Annie Colin, Philippe Poulin Librairie Pablo Calcul parallèle sur octree Matériaux électrostrictifs : modélisation et simulation

Mécanique des fluides et transport

Problèmes elliptiques

Suspensions de particules : modélisation des forces de lubrification

Baptiste Lambert, Michel Bergmann: modèle local applicable à des particules non-sphériques

Fonctions Level-set

Ecoulements incompressibles bifluides

Ecoulements de type Boussinesq : imposition d'une condition génératrice

David Lannes : couche limite dispersive Inverse Lax Wendroff

Ecoulements compressibles

Matériaux électrostrictifs

Mécanique des fluides et transport

Problèmes elliptiques

Suspensions de particules

Interfaces immergées

Fonctions Level-set

Ecoulements incompressibles bifluides

Ecoulements de type Boussinesq

Electroporation de cellules biologiques

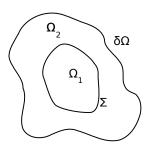
Ecoulements compressibles

Matériaux électrostrictifs

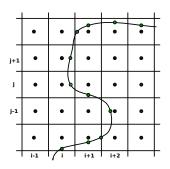
Problème elliptique avec interface immergée

Collaboration avec Marco Cisternino

$$\nabla \cdot (k\nabla u) = f \text{ sur } \Omega = \Omega_1 \cup \Omega_2$$
$$\llbracket u \rrbracket = \alpha \text{ sur } \Sigma$$
$$\llbracket k \frac{\partial u}{\partial n} \rrbracket = \beta \text{ sur } \Sigma$$
$$u = g \text{ sur } \delta\Omega$$



Stratégie de discrétisation

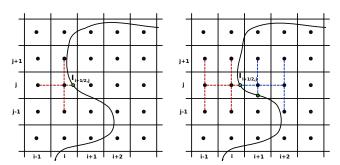


- Création d'inconnues supplémentaires sur l'interface
 - utilisées pour discrétiser l'opérateur elliptique de chaque côté de l'interface
 - obtenues par une discrétisation des conditions de saut au travers de l'interface
- Moins : inconnues supplémentaires...
- Plus : inconnues supplémentaires!

Quelle précision près de l'interface?

Pour obtenir la convergence à l'ordre deux (norme L^{∞}), il suffit d'avoir :

- une erreur de troncature à l'ordre un pour l'oprérateur elliptique près de l'interface
 - \Rightarrow éviter les extrapolations linéaires
- une erreur de troncature à l'ordre deux pour la discrétisation des flux ⇒ utilisation d'un stencil élargi



Interface
$$\Sigma$$
:

$$\left(\frac{x}{18/27}\right)^2 + \left(\frac{y}{10/27}\right)^2 = 1.$$

Solution exact:

$$u(x,y) = \begin{cases} e^x cos(y), \text{ à l'intérieur } \Sigma \\ 5e^{-x^2 - \frac{y^2}{2}}, \text{ en dehors.} \end{cases}$$

k=1 en dehors de Σ et 10 ou 1000 à l'intérieur.

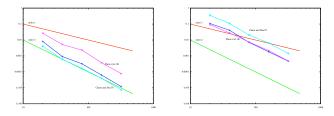
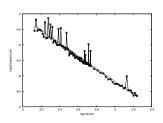


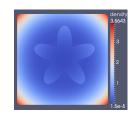
Figure: Gauche : k=10, droite : k=1000, convergence en norme L^{∞}

Cas test parallèle 2D

$$k = \begin{cases} k^- \text{ à l'intérieur de } \Sigma \\ 1 \text{ en dehors} \end{cases}$$

$$u = \left\{ \begin{aligned} e^x cos(y), & \text{ à l'intérieur de } \Sigma \\ 5e^{-x^2 - \frac{y^2}{2}}, & \text{ en dehors.} \end{aligned} \right.$$





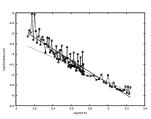


FIGURE: Tests de convergence avec $\omega=5,\,r_0=0.5,\,k^-=1000$ (gauche), et $\omega=12,\,r_0=0.4,\,k^-=100$ (droite).

Etude théorique de la convergence

• A_h matrice du système linéaire, U_h solution, f_h terme source

$$A_h U_h = f_h$$

• Erreur locale e_h et erreur de troncature τ_h liées par

$$A_h e_h = \tau_h$$

• Estimation naive:

$$||e_h||_{\infty} \le ||A_h^{-1}||_{\infty} ||\tau_h||_{\infty}$$

- Pas assez précise ici car $||\tau_h||_{\infty} = O(h)$
 - \Rightarrow besoin d'estimations pour les coefficients de $A_h^{-1},$ sommés par blocs.

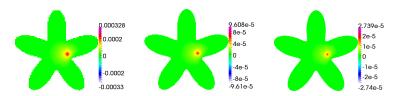
Etude théorique de la convergence

 Pour chaque point Q de la discrétisation, on définit la fonction de Green discrète G_h(P, Q) par :

$$\left\{ \begin{array}{c} A_hG_h(P,Q) = \left\{ \begin{array}{ll} 0, & P \neq Q \\ 1, & P = Q \end{array} \right. \\ G_h(P,Q) = 0, \text{ pour }. & P \text{ sur le bord }. \end{array} \right.$$

• Chaque $G_h(:,Q)$ est une colonne de A_h^{-1}

$$u_h(P) = \sum_{Q} G_h(P, Q) (A_h U_h)(Q) \quad \forall P$$



Exemples de fonction de Green discrète, 100^2 , 200^2 et 400^2 points.

Utilisation d'un principe du maximum discret

Théorème (Ciarlet, 71):

S est un sous-ensemble de Ω_h et W une fonction discrète telle que :

$$\begin{cases} W(P) \geq 0 & \forall P \in \Omega_h, \\ W(P) = 0 & \forall P \in \delta\Omega_h, \\ (A_h W)(P) \geq 0 & \forall P \in \Omega_h, \\ (A_h W)(P) \geq h^{-i} \text{ pour tout } P \in S. \end{cases}$$

Si A_h est monotone alors

$$\sum_{Q \in S} G_h(P, Q) \le h^i W(P).$$

Etude théorique de la convergence

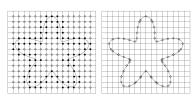
• Montrer que la matrice est monotone :

nécessite de montrer que si le minimum de U_h est atteint sur un point d'interface, alors le flux discret sur ce point est négatif

 Utiliser le principe du maximum discret et des fonctions ad hoc pour obtenir les estimations

$$\sum_{Q \in \Omega_h \cup \Sigma_h} G_h(P, Q) \leq O(1),$$

$$\sum_{Q \in \Omega_h^*} G_h(P, Q) \leq O(h).$$



 Ω_h = points réguliers, Ω_h^* = points irréguliers, Σ_h = points d'interface

Etude théorique de la convergence

• Multiplier l'erreur de troncature par A_h^{-1} , bloc par bloc :

$$|e_h(P)| \le \sum_{Q \in \Omega_h^*} |G_h(P, Q)\tau_h(Q)| + \sum_{Q \in \Omega_h \cup \Sigma_h} |G_h(P, Q)\tau_h(Q)|,$$

 $\le O(h^2)O(1) + O(1)O(h^2) = O(h^2)$

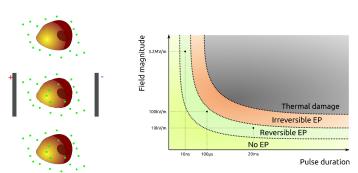
- Preuve ok pour 1D ordre deux, et en 2D à l'ordre un
- 2D ordre deux : la monotonie de la matrice dépend de l'angle entre la normale à l'interface et la normale à la cellule cartésienne
- Mais la matrice est bien monotone si la normale à l'interface est alignée avec l'axe de la grille ⇒ utile dans le cas bifluide!

Electroporation de cellules biologiques

Collaboration avec Clair Poignard, Michael Leguebe et Otared Kavian

L'électrochimiothérapie (bléomycine + champ électrique) :

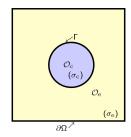
- thérapie locale de traitement du cancer,
- utilisée actuellement dans plusieurs centres anti-cancer européens.



Modèle d'électroporation

- La membrane cellulaire est très fine et très résistive, elle est représentée par une interface sans épaisseur.
- Le potentiel électrique u satisfait une équation de Poisson dans le cytoplasme et le milieu extracellulaire, avec des conductivités différentes.
- Electroporation prise en compte via une modification de la conductivité de la membrane.

$$\begin{split} &\nabla \cdot (\sigma_{\mathrm{e}} \nabla u) = 0 \text{ sur } \mathcal{O}_{\mathrm{e}} \\ &\nabla \cdot (\sigma_{\mathrm{c}} \nabla u) = 0 \text{ sur } \mathcal{O}_{\mathrm{c}} \\ &[\sigma \partial_{\mathbf{n}} u]_{\Gamma} = 0 \\ &C_{m} \partial_{t} [u]_{\Gamma} + S_{m}([u])[u]_{\Gamma} = \sigma_{\mathrm{c}} \partial_{\mathbf{n}} u_{|_{\Gamma^{-}}} \\ &u = g \text{ sur } \delta \Omega \end{split}$$



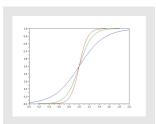
Modèle d'électroporation

 Interpolation entre deux valeurs de la conductivité (état de repos et électroporation irréversible)

$$S_m(t, [u]) := S_L + (S_{ir} - S_L)X(t, [u]).$$

 X obéit à un mécanisme de "sliding door" (semblable à la modélisation des canaux ioniques)

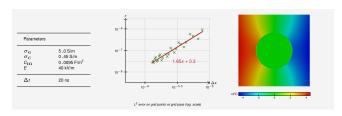
$$\begin{cases} \frac{\partial X(t,\lambda)}{\partial t} = \max\left(\frac{\beta(\lambda(t)) - X(t,\cdot)}{\tau_{\rm ep}}; \frac{\beta(\lambda(t)) - X(t,\cdot)}{\tau_{\rm res}}\right), \\ X(0,\lambda) = 0. \end{cases}$$



Méthode numérique

Adaptation de la méthode précédente :

- Convergence numérique à l'ordre deux en espace, ordre un en temps
- \bullet Convergence théorique à l'ordre 2 en espace pour le modèle 1D statique linéaire
- Convergence théorique à l'ordre 1 en temps pour le modèle 1D dynamique non-linéaire



Taux de convergence pour le problème sans électroporation

Simulations 2D : validation du modèle

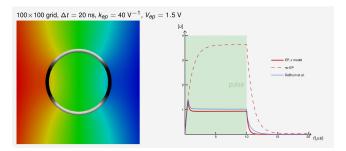
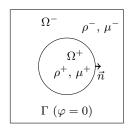


FIGURE: Paramètre X après électroporation et évolution temporelle du potentiel électrique sur le pôle arrière.

Ecoulements bifluides: le retour

Collaboration avec Michel Bergmann



• Equations de Navier-Stokes incompressible dans chaque fluide :

$$\rho(\boldsymbol{u}_t + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u}) = -\nabla p + (\nabla \cdot \tau)^T + \rho \boldsymbol{g},$$

$$\nabla \cdot \boldsymbol{u} = 0$$

• Conditions de saut au travers de l'interface

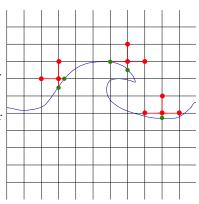
$$[p] = \sigma \kappa + 2[\mu](u_n, v_n).\boldsymbol{n},$$

nterface
$$\left[\frac{\nabla p}{\rho}\right] = \left[\frac{\left(\nabla . \tau\right)^T}{\rho}\right].$$

Nouvelle méthode : discrétisation près de l'interface

Pour résoudre la pression :

- Régularisation de μ et ρ seulement pour la prise en compte des effets visqueux
 ⇒ plus de discontinuité pour les termes visqueux



Discrétisation près de l'interface

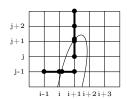
Problème elliptique

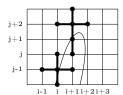
• Dans le fluide :

$$\nabla \cdot (\frac{1}{\rho} \nabla p) = \frac{\nabla \cdot \boldsymbol{u}^*}{\Delta t}.$$

• Sur l'interface :

$$\begin{split} [p] &= \sigma \, \kappa, \\ [\frac{\nabla p}{\rho}] &= 0, \\ \Rightarrow [\frac{p_x}{\rho}] &= 0 \text{ ou } [\frac{p_y}{\rho}] = 0. \end{split}$$

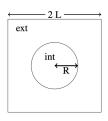




- * Elimination des variables d'interface
- * Matrice monotone donc méthode probablement plus stable

Bulle au repos: oscillations parasites

- Oscillations parasites causées par l'erreur d'approximation des valeurs discrètes de la courbure
- Plus ou moins amplifiées par le schéma utilisé pour résoudre la pression



$$\left\{ \begin{array}{l} L=2\ cm, \\ R=1\ cm, \\ \rho_{int}=1000\ kg.m^{-3}, \\ \mu_{int}=10^{-3}\ Pa.s, \\ \rho_{ext}=1\ kg.m^{-3}, \\ \mu_{ext}=10^{-5}\ Pa.s, \\ \sigma=0.1\ N.m^{-1} \end{array} \right.$$

N	Ghost Fluid	CSF	nouvelle méthode
16	8.08×10^{-3}	3.55×10^{-2}	5.21×10^{-3}
32	3.42×10^{-4}	3.12×10^{-2}	9.26×10^{-5}
64	5.13×10^{-5}	2.12×10^{-2}	1.36×10^{-5}
128	2.79×10^{-5}	6.44×10^{-3}	2.22×10^{-6}

Table: Erreur en norme L^{∞} au temps t=1.

Petite bulle d'air dans de l'eau

FIGURE: Comparaison entre méthode CSF (gauche) et nouvelle méthode (droite)

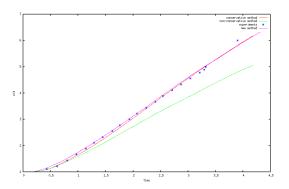
Une plus grande bulle d'air dans de l'eau

FIGURE: Eau : $\rho=1000~{\rm kg}/m^3,~\mu=1,137.10^{-3}~{\rm kg/ms},$ air : $\rho=1{\rm kg}/m^3,~\mu=1,78.10^{-5}~{\rm kg/ms},~\sigma=0.0728~{\rm kg/s^2},$ rayon bulle $0.025~{\rm m}$

Rupture de barrage

Eau : $\rho=1000~{\rm kg}/m^3,~\mu=1,137.10^{-3}~{\rm kg/ms},$ Air : $\rho=1,226{\rm kg}/m^3,~\mu=1,78.10^{-5}~{\rm kg/ms},$ $\sigma=0.0728~{\rm kg}/s^2,$ colonne d'eau $h=5.715~{\rm cm},$ domaine $40\times10~{\rm cm}$

Rupture de barrage



Propagation du front : comparaison entre la méthode conservative de Raessi et Pitsch, une méthode de type Ghost-Fluid et la nouvelle méthode

Motivations pour une level-set d'ordre élevé

Collaboration avec Francky Luddens et Michel Bergmann

- Meilleure description de l'interface
- Conservation de la masse
- Besoin de κ pour calculer les effets de tension de surface :

$$[p^{n+1}] = \sigma \, \kappa$$

Précision d'ordre 3 nécessaire pour calculer un κ consistant à partir des dérivées de la level-set!

Approche classique

• Transport de φ avec \boldsymbol{u}

$$\varphi^* = \varphi^n - \Delta t \, \boldsymbol{u}^n \nabla \varphi^n,$$

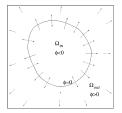
• Tous les quelques pas de temps, ré-initialisation de φ^* :

$$\partial_{\tau}\varphi + sign(\varphi^*)(|\nabla\varphi| - 1) = 0,$$

 $\varphi_{|\tau=0} = \varphi^*.$

- Très souvent, RK3-TVD en temps, schéma WENO-5 pour $\nabla \varphi$.
- MAIS schéma WENO-5 pour la ré-initialisation pas assez précis près de l'interface ⇒ l'interface se déplace un peu à chaque itération de ré-initialisation

Pour réduire le déplacement de l'interface



Constatation:

Le schéma WENO utilise de l'information qui vient du mauvais côté de l'interface

Subcell fix (Russo & Smereka, 2000):

Modification du schéma pour utiliser l'information sur l'interface (décentrement)

Extension d'ordre élevé (Du Chéné et al. 2008) :

- Loin de l'interface, schéma WENO,
- près de l'interface, schéma ENO décentré, tenant compte la position de l'interface

Couplage avec du transport

Ecart par rapport à la fonction distance :

$$r_g(\nabla \varphi) := \||\nabla \varphi| - 1\|_{L^1(\Omega)}$$

Algorithme:

- Initialisation : avec $\varphi_0 = d_0$, la fonction distance signée à l'interface Γ_0 ,
- Transport : Tant que $r_g(\nabla \varphi) < \delta$, calcul de φ avec l'équation de transport
- Re-initialisation : Quand $r_g(\nabla \varphi) \ge \delta$, on re-calcule φ comme la fonction distance signée d.
 - redistanciation avec relaxation dans une bande autour de l'interface
 - fast-sweeping d'ordre deux ailleurs

Cas test d'un vortex

- Approche classique : quelques itérations de relaxation tous les quelques pas de temps
 - \Rightarrow le calcul de la courbure ne converge pas
- Nouvelle méthode, δ = 0.1 ou δ = 0.01
 ⇒ le calcul de la courbure converge (ordre au moins un).

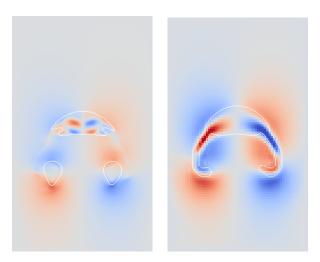
Cas test d'un vortex

Figure: Gauche : $\delta=0$ (i.e. redistanciation à chaque pas de temps), droite : $\delta=0.1.$ grille $80\times80,\ dt=dx/8$

Ecoulements bifluides : le retour du retour

Elévation d'une grande bulle d'air dans de l'eau : nouvelle redistanciation

Ecoulements bifluides: le retour du retour



Elévation d'une grande bulle d'air dans de l'eau : comparaison avec et sans la nouvelle redistanciation

Conclusion

- Conception, validation et analyse de schémas numériques sur grilles cartésiennes en présence de géométries complexes.
- Objectif: maintenir près des interfaces une précision suffisante (ordre deux) pour ne pas affecter la solution dans le reste du domaine.
- Stratégies différentes suivant le type d'équations
 - Hyperbolique : attention au sens de propagation de l'information
 - Elliptique : effet non-local, compensation

Perspectives

- Ecoulements incompressibles bifluides : extension en 3D, utiliser la forme conservative des équations de Navier-Stokes, développer une version incrémentale
- Etudes de convergence avec les fonctions de Green discrètes
- Condition génératrice pour les équations de Boussinesq : extension à des conditions sortantes et aux équations de Green-Naghdi

Changement thématique : problèmes inverses en électrocardiographie

- Calculer le potentiel électrique sur le coeur à partir de mesures sur le torse.
- Problème qualitativement différent : mal posé et très instable
- Similarités entre les modèles pour le champ électrique sur le coeur et pour l'électroporation
- Thèse Oumayma Bouhamama, co-encadrement avec Laura Bear (équipe Traitement du Signal de l'IHU)