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Abstract. We describe a method allowing to deform stochastically the
completely integrable (deterministic) system of geodesics on the sphere
S2 in a way preserving all its symmetries.
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1 Introduction

Free diffusions on a sphere S2 are important case studies in applications, for
instance in Biology, Physics, Chemistry, Image processing etc., where they are
frequently analysed with computer simulations. However, as for most diffusions
on curved spaces, no closed form analytical expressions for their probability
densities are available for such simulations. Another way to express the kind
of difficulties one faces is to observe that one cannot define Gaussian functions
on S2.

If, instead of free diffusions on S2 we consider their deterministic counterpart,
the classical geodesic flow, a famous integrable system whose complete solution
dates back to the 19th century, the situation is much simpler. Indeed, one can
use the conservation of angular momentum and energy to foliate the phase space
(the cotangent bundle of its configuration space).

We describe here a method allowing to construct free diffusions on S2 as
stochastic deformations of the classical geodesic flow, including a probabilistic
counterpart of its conservation laws.

2 Classical Geodesics

The problem of geodesic on the sphere S2 is a classical example of completely
integrable elementary dynamical system [1].

For a unit radius sphere and using spherical coordinates (qi) = (θ, φ) ∈
]0, π[×[0, 2π] where φ is the longitude, the Lagrangian L of the system is the
scalar defined on the tangent bundle TS2 of the system by

L(θ, φ, θ̇, φ̇) = (θ̇2 + sin2 θ φ̇2) (1)
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(where θ̇ = dθ
dt etc. ...), since it coincides with ds2 = gijdqidqj , here g = (gij) =[

1 0
0 sin2 θ

]
. The Euler-Lagrange equations

d

dt

( ∂L

∂q̇i

)
− ∂L

∂qi
i = 1, 2 (2)

in these coordinates are easily solved. They describe the dynamics of the
extremals (here minimal) curves of the action functional

SL[q(·)] =
∫ Q2

Q1

L(q, q̇)dt (3)

computed, for instance, between two fixed configurations Q1 = (θ1, φ1) and
Q2 = (θ2, φ2) in the configuration space. Those equations are

θ̈ = φ̇2 sin θ cos θ, φ̈ = −2θ̇φ̇ cotg θ (4)

Defining the Hamiltonian H : T ∗S2 → R as the Legendre transform of L, we
have H = 1

2gijpipj , where pi = ∂L
∂q̇i = gij q̇

j denote the momenta, here

H(θ, φ, pθ, pφ) =
1
2
(p2θ +

1
sin2 θ

p2φ), (5)

with pθ = θ̇, pφ = sin2 θφ̇.
It is clear that the energy H is conserved during the evolution. There are three

other first integrals for this system, corresponding to the three components of
the angular momentum L. They can be expressed as differential operators of the
form Xθ

j
∂
∂θ + Xφ

j
∂

∂φ , j = 1, 2, 3, namely

L1 = sin φ
∂

∂θ
+

cos φ

tan θ

∂

∂φ

L2 = − cos φ
∂

∂θ
+

sinφ

tan θ

∂

∂φ
, L3 = − ∂

∂φ
(6)

In geometrical terms, written as Lj = (Xθ
j ,Xφ

j ), j = 1, 2, 3, they are the
three Killing vectors for S2, forming a basis for the Lie algebra of the group of
isometries SO(3) of S2. L3 corresponds to the conservation of the momentum pφ.

The integrability of this dynamical system relies on the existence of the two
first integrals H and pφ. They allow to foliate the phase space by a two-parameter
family of two-dimensional tori. Let us recall that the list of first integrals of the
system is the statement of Noether’s Theorem, according to which the invariance
of the Lagrangian L under the local flow of vector field

v(1) = Xi(q, t)
∂

∂qi
+

dXi

dt

∂

∂q̇i
(7)

associated with the group of transformations

(qi, t) → (Qi
α = qi + αXi(q, t), τα = t + αT (t))
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for α a real parameter, provides a first integral along extremals of SL of the form

d

dt
(Xipi − TH) = 0. (8)

The coefficients Xi, T must, of course, satisfy some relations between them
called “determining equations” of the symmetry group of the system [2]. For
instance, for our geodesics on S2,

T = 1,X = (Xθ,Xφ) = (0, 0) corresponds to the conservation of the energy
H, and T = 0,X = (0,−1) to the conservation of pφ In fact, the three vectors
Xj must satisfy the Killing equations in the (θ, φ) coordinates,

∇θXφ
j + ∇φXθ

j = 0, j = 1, 2, 3 (9)

where ∇· denotes the covariant derivatives.

3 Stochastic Deformation of the Geodesics on the Sphere

Many ways to construct diffusions on S2 are known. In the spirit of K. Itô [3],
we want to deform the above classical dynamical system in a way preserving the
essential of its qualitative properties.

Let us start from the backward heat equation for the Laplace-Beltrami
“Hamiltonian” operator H (without potentials). in local coordinates (qi) it can
be written ∂η

∂t = Hη, where g = det(gij) and

H = −1
2
ΔLB = − 1

2
√

det g

∂

∂qi

(√
det g gij ∂

∂qj

)
. (10)

A more revealing form in terms of the Christoffel symbols of the Riemannian
connection is

− 1
2
ΔLB = −gij

2
∂2

∂qi∂qj
+

1
2
Γ i

jk(q)gjk(q)
∂

∂qi
. (11)

Indeed, the extra first order term, of purely geometric origin, will coincide
with the drift of the simplest diffusion on our manifold, the Brownian motion;
this was observed by K. Itô, as early as 1962 [3]. In our spherical case, one finds

Γ θ
jkgjk = −cotg θ, Γφ

jkgjk = 0. (12)

Now we shall consider general diffusions zi on S2 solving SDEs of the form

dzi(τ) = (Bi − 1
2
Γ i

jkgjk)dτ + dW i(τ), τ > t (13)

for Bi an unspecified vector field, where dW i(τ) = σi
kdβk(τ) with σi

k the square

root of gij , i.e. gij = σi
kσj

k, in our case σ =
[
1 0
0 1

sin θ

]
and β is a two dimensional

Wiener process.
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Here is the stochastic deformation of the extremality condition for dynamical
trajectories in terms of the classical action SL. It will be convenient to consider
SL as a function of starting configurations q at a time t. For convenience, we
shall add a final boundary condition to Su to SL.

Let SL(q, t) be defined now by SL(q, t) = − ln η(q, t), where η(q, t) is a posi-
tive solution of the backward heat equation for a (smooth) final boundary con-
dition Su(q), u > t. Let Bi in (13) be adapted to the increasing filtration Pτ ,
bounded but otherwise arbitrary. Then

SL(q, t) ≤ Eqt{
∫ u

t

1
2
BiBi(z(τ), τ)dτ + Su(z(u))} (14)

where Eqt denotes the conditional expectation given z(t) = q. The equality holds
on the extremal diffusion on S2, of drift

Bi(q, t) =
∂iη

η
(q, t) = −∇iSL. (15)

This means, on S2, that SL minimizes the r.h.s. functional of (14) for the
Lagrangian

L =
1
2
[(

∂θη

η
)2 + sin2 θ(

∂φη

η
)2] (16)

where, manifestly, (∂θη
η ) and (∂φη

η ) plays the roles of θ̇ and φ̇ in the deterministic
definition (1).

Let us observe that after the above logarithmic change of variable, it follows
from the backward heat equation that the scalar field SL solves

− ∂SL

∂t
+

1
2
‖∇SL‖2 − 1

2
∇i∇iSL = 0, (17)

with t < u and SL(q, u) = Su(q).
This is an Hamilton-Jacobi-Bellman equation, whose relation with heat equa-

tions is well known and used in stochastic control [4]. The Laplacian term rep-
resents the collective effects of the irregular trajectories τ → zi(τ) solving (13).

A second order in time dynamical law like (4) requires the definition of the
parallel transport of our velocity vector field Bi.

In [3] Itô had already mentioned that there is some freedom of choice in this,
involving the Ricci tensor Ri

k on the manifold. One definition is known today in
Stochastic Analysis as “Damped parallel transport” [5]. Then the generator of
the diffusion zi acting on a vector field V on S2 is given by

DtV
i =

∂V i

∂t
+ Bk∇kV i +

1
2
(ΔV )i (18)

where, instead of the Laplace-Beltrami operator, one has now

ΔV i = ∇k∇kV i + Ri
kV k (19)
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When acting on scalar fields ϕ, Dt reduces to the familiar form

Dtϕ =
∂ϕ

∂t
+ Bk∇kϕ +

1
2
∇k∇kϕ (20)

When ϕ = qk, Dtϕ
k = Bk(z(t), t) = −∇kSL, so the r.h.s. Lagrangian of (14)

is really 1
2‖Dtz‖2, for ‖ · ‖ the norm induced by the metric, as it should. For the

vector field Bi, we use (17) and the integrability condition ∂
∂t∇iSL = ∇i ∂SL

∂t ,
following from the definition of SL, to obtain

DtDtz
i = 0 (21)

i.e., the stochastic deformation of both O.D.E.s (4) when z(t) = (θ(t), φ(t)) solve
Eq. (13) namely, in our case,

dθ(t) =
(∂θη

η
+

cotgθ

2
)
dt + dW θ(t), dφ(t) =

1
sin2 θ

(∂φη

η

)
dt + dWφ(t) (22)

The bonus of our approach lies in the study of the symmetries of our stochas-
tic system. The symmetry group of the heat equation, in our simple case with
constant positive curvature, is generated by differential operators of the form [6]

N̂ = Xi(q)∇i + T
∂

∂t
+ α (23)

where T and α are constants, and the Xi are three Killing vectors on (S2, g).
Besides a one dimensional Lie algebra generated by the identity, another one
corresponds to T = 1 and X = (Xθ,Xφ) = (0, 0). This provides the conservation
of energy defined here, since SL = − ln η, by h(θ(t), φ(t)) = − 1

η
∂η
∂t or, more

explicitly,

h =
1
2
gijBiBj +

1
2
gij ∂

∂qi
Bj − 1

2
Γ i

jkgjkBi (24)

Using (20), one verifies that

Dth(z(t), t) = 0 (25)

in other words, h is a martingale of the diffusion z(t) extremal of the Action func-
tional in (14). This is the stochastic deformation of the corresponding classical
statement (8) when X = (0, 0), T = 1. Analogously, our (deformed) momentum
pφ is a martingale. In these conditions, one can define a notion of integrability for
stochastic systems (not along Liouville’s way, but inspired instead by Jacobi’s
classical approach) and show that, in this sense, our stochastic problem of geo-
desics on the sphere is as integrable as its deterministic counterpart. This will
be done in [7].

To appreciate better in what sense our approach is a stochastic deformation
of the classical problem of geodesics in S2, replace our metric (gij) by �(σij) for
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σij the Riemannian metric, where � is a positive constant, and take into account
that our underlying backward heat equation now becomes

∂η

∂t
= −�

2
ΔLBη (26)

then, one verifies easily that, when � → 0, Dt → d
dt , the Lagrangian of (14)

reduces to the classical one (1) and the conditional expectation of the action
(1) disappears. The Hamilton-Jacobi-Bellman equation (17) reduces to the one
of the classical dynamical system and our martingales to its first integrals. In
this respect, observe that general (positive) final conditions for Eq. (26) may
depend as well on �. They provide analogues of Lagrangian submanifolds in the
semiclassical limit of Schrödinger equation (Cf Appendix 11 of [13]).

We understand better, now, the role of the future boundary condition Su in
(1): when Su is constant, the extremal process z(·) coincides with the Brownian
motion on S2 but, of course, in general this is not the case anymore. Stochastic
deformation on a Riemannian manifold was treated in [8]. For another approach
c.f. [9].

In spite of what was shown here, our approach can be made invariant under
time reversal, in the same sense as our underlying classical dynamical system.
The reason is that the very same stochastic system can be studied as well with
respect to a decreasing filtration and an action functional on the time interval
[s, t], with an initial boundary condition S∗

s (q). This relates to the fact that to any
classical dynamical systems like ours are associated, in fact, two Hamilton-Jacobi
equations adjoint with respect to the time parameter. The same is true after
stochastic deformation. So, a time-adjoint heat equation, with initial positive
boundary condition, is involved as well. The resulting (“Bernstein reciprocal” )
diffusions, built from these past and future boundary conditions, are invariant
under time reversal on the time interval [s, u]. C.f. [10,12].

In particular, Markovian Bernstein processes are uniquely determined from
the data of two (stictly positive) probability densities at different times s and u,
here on S2. They solve a “Schrödinger’s optimization problem”, an aspect very
reminiscent of foundational questions of Mass Transportation theory [14]. The
close relations between this theory and our method of Stochastic Deformation
have been carefully analysed in [11], where many additional references can be
found as well.
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