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We propose a second order differential calculus to analyze the regu-
larity and the stability properties of the distribution semigroup associated
with McKean–Vlasov diffusions. This methodology provides second order
Taylor type expansions with remainder for both the evolution semigroup
as well as the stochastic flow associated with this class of nonlinear diffu-
sions. Bismut–Elworthy–Li formulae for the gradient and the Hessian of the
integro-differential operators associated with these expansions are also pre-
sented.

The article also provides explicit Dyson–Phillips expansions and a refined
analysis of the norm of these integro-differential operators. Under some nat-
ural and easily verifiable regularity conditions we derive a series of expo-
nential decays inequalities with respect to the time horizon. We illustrate
the impact of these results with a second order extension of the Alekseev–
Gröbner lemma to nonlinear measure valued semigroups and interacting dif-
fusion flows. This second order perturbation analysis provides direct proofs
of several uniform propagation of chaos properties w.r.t. the time parameter,
including bias, fluctuation error estimate as well as exponential concentration
inequalities.
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1. Introduction.

1.1. Description of the models. For any n ≥ 1 we let Pn(R
d) be the convex set of prob-

ability measures η, μ on Rd with absolute nth moment and equipped with the Wasser-
stein distance of order n denoted by Wn(η,μ). Also let bt (x1, x2) be some Lipschitz func-
tion from R2d into Rd and let Wt be an d-dimensional Brownian motion defined on some
filtered probability space (�, (Ft )t≥0,P). We also consider the Hilbert space Ht (R

d) :=
L2((�,Ft ,P),Rd) equipped with the L2 inner product 〈·, ·〉Ht (Rd ). Up to a probability space
enlargement there is no loss of generality to assume that Ht (R

d) contains square integrable
Rd -valued variables independent of the Brownian motion.

For any μ ∈ P2(R
d) and any time horizon s ≥ 0 we denote by X

μ
s,t (x) the stochastic flow

defined for any t ∈ [s,∞[ and any starting point x ∈Rd by the McKean–Vlasov diffusion

(1.1) dX
μ
s,t (x) = bt

(
X

μ
s,t (x),φs,t (μ)

)
dt + dWt with bt (x,μ) :=

∫
μ(dy)bt (x, y).

In the above display, φs,t stands for the evolution semigroup on P2(R
d) defined by the for-

mulae

φs,t (μ)(dy) = μP
μ
s,t (dy) :=

∫
μ(dx)P

μ
s,t (x, dy) with P

μ
s,t (x, dy) := P

(
X

μ
s,t (x) ∈ dy

)
.

We denote by Lt,φs,t (μ) the generator of the stochastic flow X
μ
s,t (x). The existence of the

stochastic flow X
μ
s,t (x) is ensured by the Lipschitz property of the drift function; see, for

instance, [41, 46]. To analyze the smoothness of the semigroup φs,t we need to strengthen
this condition.

We shall assume that the function bt (x1, x2) is differentiable at any order with uniformly
bounded derivatives. In addition, the partial differential matrices w.r.t. the first and the second
coordinate are uniformly bounded; that is, for any i = 1,2 we have

(1.2)
∥∥b[i]∥∥

2 := sup
t≥0

sup
(x1,x2)∈R2d

∥∥b[i]
t (x1, x2)

∥∥
2 < ∞ with b

[i]
t (x1, x2) := ∇xi

bt (x1, x2).

In the above display, ‖A‖2 := λmax(AA′)1/2 stands for the spectral norm of some matrix
A, where A′ stands for the transpose of A, λmax(·) and λmin(·) the maximal and minimal
eigenvalue. In the further development of the article, we shall also denote by Asym = (A +
A′)/2 the symmetric part of a matrix A. In the further development of the article we represent
the gradient of a real valued function as a column vector, or equivalently as the transpose of
the differential-Jacobian operator which is, as any cotangent vector, represented by a row
vector. The gradient and the Hessian of a column vector valued function as tensors of type
(1,1) and (2,1); see for instance (3.1).
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The mean field particle interpretation of the nonlinear diffusion (1.1) is described by a sys-
tem of N -interacting diffusions ξt = (ξ i

t )1≤i≤N defined by the stochastic differential equa-
tions

(1.3) dξ i
t = bt

(
ξ i
t ,m(ξt )

)
dt + dWi

t with 1 ≤ i ≤ N and m(ξt ) := 1

N

∑
1≤j≤N

δξi
t
.

In the above display, ξ i
0 stands for N independent random variables ξ i

0 with common distri-
bution μ0, and Wi

t are N independent copies of the Brownian motion Wt .
McKean–Vlasov diffusions and their mean field type particle interpretations arise in a

variety of application domains, including in porous media and granular flows [7, 8, 18, 65],
fluid mechanics [56, 57, 59, 66], data assimilation [10, 26, 37], and more recently in mean
field game theory [9, 13–17, 43, 45], and many others.

The origins of this subject certainly go back to the beginning of the 1950s with the article
by Harris and Kahn [44] using mean field type splitting techniques for estimating particle
transmission energies. We also refer to the pioneering article by Kac [48, 49] on particle
interpretations of Boltzmann and Vlasov equations, and the seminal articles by McKean [56,
57] on mean field particle interpretations of nonlinear parabolic equations arising in fluid
mechanics. Since this period, the analysis of this class of mean field type nonlinear diffusions
and their discrete time versions have been developed in various directions. For a survey on
these developments we refer to [17, 26, 63], and the references therein.

The McKean–Vlasov diffusions discussed in this article belong to the class of nonlinear
Markov processes. One of the most important and difficult research questions concerns the
regularity analysis and more particularly the stability and the long time behavior of these
stochastic models.

In contrast with conventional Markov processes, one of the main difficulties of these
Markov processes comes from the fact that the evolution semigroup φs,t (μ) is nonlinear
w.r.t. the initial condition μ of the system. The additional complexity in the analysis of these
models is that their state space is the convex set of probability measures, thus conventional
functional analysis and differential calculus on Banach space cannot be directly applied.

The main contribution of this article is the development of a second order differential
calculus to analyze the regularity and the stability properties of the distribution semigroup
associated with McKean–Vlasov diffusions. This methodology provides second order Taylor
type expansions with remainder for both the evolution semigroup as well as the stochastic
flow associated with this class of nonlinear diffusions. We also provide a refined analysis of
the norm of these integro-differential operators with a series of exponential decays inequali-
ties with respect to the time horizon.

The article is organized as follows:
The main contributions of this article are briefly discussed in Section 1.2. The main the-

orems are stated in some detailed in Section 2. Section 3 provides some pivotal results on
tensor integral operators and on integro-differential operators associated with the second or-
der Taylor expansions of the semigroup φs,t (μ). Section 4 is dedicated to the analysis of the
tangent process associated with the nonlinear diffusion flow. We presents explicit Dyson–
Phillips expansions as well as some spectral estimates. The last section, Section 4 is mainly
concerned with the proofs of the first and second order Taylor expansions. The proof of some
technical results are collected in the Appendix. Detailed comparisons with existing literature
on this subject are also provided in Section 2.5.

1.2. Statement of some main results. One of the main contributions of the present article
is the derivation of a second order Taylor expansion with the remainder of the semigroup
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φs,t on probability spaces. For any pair of measures μ0,μ1 ∈ P2(R
d), these expansions take

basically the following form:

(1.4) φs,t (μ1) � φs,t (μ0) + (μ1 − μ0)Dμ0φs,t + 1

2
(μ1 − μ0)

⊗2D2
μ0

φs,t .

In the above display, Dk
μ0

φs,t stands for some first and second order operators, with k =
1,2. A more precise description of these expansions and the remainder terms is provided in
Section 2.2.

Section 2.3.1, also provides an almost sure second order Taylor expansions with the re-
mainder of the random state X

μ
s,t (x) of the McKean diffusion w.r.t. the initial distribution μ.

These almost sure expansions take basically the following form:

(1.5)
X

μ1
s,t (x) − X

μ0
s,t (x) �

∫
(μ1 − μ0)(dy)Dμ0X

μ0
s,t (x, y)

+ 1

2

∫
(μ1 − μ0)

⊗2(dz)D2
μ0

X
μ0
s,t (x, z)

for some random functions Dk
μ0

X
μ0
s,t from R(1+k)d into Rd , with k = 1,2. A more precise

description of these almost sure expansions is provided in Section 2.3.1 (see, for instance,
(2.19) and Theorem 2.6).

Given some random variable Y ∈ Hs(R
d) with distribution μ ∈ P2(R

d), observe that the
stochastic flow ψs,t (Y ) := X

μ
s,t (Y ) satisfies the Ht (R

d)-valued stochastic differential equa-
tion

(1.6) dψs,t (Y ) := Bt

(
ψs,t (Y )

)
dt + dWt .

In the above display, Bt stands for the drift function from Ht (R
d) into itself defined by the

formula

Bt(X) := E
(
bt (X,X)|X).

In the above display, X stands for an independent copy of X. The above Hilbert space valued
representation of the McKean–Vlasov diffusion (1.1) readily implies that for any Y1, Y0 ∈
Hs(R

d) we have the exponential contraction inequality∥∥ψs,t (Y1) − ψs,t (Y0)
∥∥
Ht (Rd ) ≤ e−λ(t−s)‖Y1 − Y0‖Ht (Rd )

for some λ > 0, as soon as the following condition is satisfied:

(1.7)
〈
X1 − X0,Bt (X1) − Bt(X0)

〉
Ht (Rd ) ≤ −2λ‖X1 − X0‖2

Ht (Rd )

for any t ≥ 0 and any X1,X0 ∈ Ht (R
d). In addition, in this framework the first order differ-

ential ∂ψs,t (Y ) of the stochastic flow coincides with the conventional Fréchet derivative of
functions from an Hilbert space into another. In addition, we shall see that the gradient of
first order operator Dμφs,t coincides with the dual of the tangent process associated with the
Hilbert space-valued representation (1.6) of the McKean–Vlasov diffusion (1.1); that is, for
any smooth function f we have that the dual tangent formula

(1.8) ∂ψs,t (Y )
 · ∇f
(
ψs,t (Y )

)= ∇Dμφs,t (f )(Y ).

A more precise description of the Fréchet differential ∂ψs,t (Y ) and the dual operator is pro-
vided in Section 2.1 and Section 4. A proof of the above formula is provided in Theorem 4.8.

The Taylor expansions discussed above are valid under fairly general and easily verifiable
conditions on the drift function. For instance, the regularity condition (1.2) is clearly satisfied
for linear drift functions. As is well known, dynamical systems and hence stochastic models
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involving drift functions with quadratic growth require additional regularity conditions to
ensure nonexplosion of the solution in finite time.

Of course the expansions (1.4) and (1.5) will be of rather poor practical interest without
a better understanding of the differential operators and the remainder terms. To get some
useful approximations, we need to quantify with some precision the norm of these operators.
A important part of the article is concerned with developing a series of quantitative estimates
of the differential operators Dk

μ0
φs,t and the remainder term; see, for instance, Theorem 2.3

and Theorem 2.4.
To avoid estimates that grow exponentially fast with respect to the time horizon, we need

to estimate with some precision the operator norms of the differential operators in (1.4). To
this end, we shall consider an additional regularity condition:

(H): There exists some λ0 > 0 and λ1 > ‖b[2]‖2 such that for any (x1, x2) ∈ R2d and any
time horizon t ≥ 0 we have

(1.9) At(x1, x2)sym ≤ −λ0I and b
[1]
t (x1, x2)sym ≤ −λ1I.

In the above display, I stands for the identity matrix and At the matrix-valued function de-
fined by

(1.10) At(x1, x2) :=
⎡⎣b

[1]
t (x1, x2) b

[2]
t (x2, x1)

b
[2]
t (x1, x2) b

[1]
t (x2, x1)

⎤⎦ and we set λ1,2 := λ1 − ∥∥b[2]∥∥
2.

Whenever (1.9) and (1.10) are met for some parameters λ0 and λ1 ∈ R all the exponential
estimates stated in the article remains valid but they grow exponentially fast with respect
to the time horizon. More detailed comments on the above regularity conditions, including
illustrations for linear drift and gradient flow models, as well as comparisons with related
conditions used in the literature on this subject are also provided in Section 2.4.

Under the above condition, we shall develop several exponential decays inequalities for
the norm of the differential operators Dk

μ0
φs,t as well as for the remainder terms in the Taylor

expansions. The first order estimates are given in (2.6), the ones on the Bismut–Elworthy–Li
gradient and Hessian extension formulae are provided in (2.7) and (2.8). Second and third
order estimates can also be found in (2.12) and (2.15).

The second order differential calculus discussed above provides a natural theoretical basis
to analyze the stability properties of the semigroup φs,t and the one of the mean field particle
system discussed in (1.3).

For instance, a first order Taylor expansion of the form (1.4) already indicates that the
sensitivity properties of the semigroup w.r.t. the initial condition μ are encapsulated in the
first order differential operator Dμφs,t . Roughly speaking, whenever (H) is satisfied, we
show that there exists some parameter λ > 0 such that

(1.11)
∨

k=1,2

∣∣∣∣∣∣Dk
μ0

φs,t

∣∣∣∣∣∣� e−λ(t−s) and therefore
∣∣∣∣∣∣φs,t (μ1) − φs,t (μ0)

∣∣∣∣∣∣� e−λ(t−s)

for some operator norms ||| · |||. For a more precise statement we refer to Theorem 2.2 and the
discussion following the theorem.

The second order expansion (1.4) also provides a natural basis to quantify the propagation
of chaos properties of the mean field particle model (1.3). Combining these Taylor expansions
with a backward semigroup analysis we derive a variety of uniform mean error estimates
w.r.t. the time horizon. This backward second order analysis can be seen as a second order
extension of the Alekseev–Gröbner lemma [1, 42] to nonlinear measure valued and stochastic
semigroups. For a more precise statement we refer to Theorem 2.7. As in (1.11), one of the
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main feature of the expansion (1.4) is that it allows to enter the stability properties of the
limiting semigroup φs,t into the analysis of the flow of empirical measures m(ξt ).

Roughly speaking, this backward perturbation analysis can be interpreted as a second or-
der variation-of-constants technique applied to nonlinear equations in distribution spaces. As
in the Ito’s lemma, the second order term is essential to capture the quadratic variation of the
processes; see, for instance, the recent articles [36, 47] in the context of conventional stochas-
tic differential equation, as well as in [4, 32] in the context of interacting jump models.

The discrete time version of this backward perturbation semigroup methodology can also
be found in Chapter 7 in [25], a well as in the articles [27, 28, 31] and [29, 35] for general
classes of mean field particle systems.

The central idea is to consider the telescoping sum on some time mesh tn ≤ tn+1 given by
the interpolating formula

mtn − φt0,tn(mt0) = ∑
1≤k≤n

[
φtk,tn(mtk ) − φtk,tn

(
φtk−1,tk (mtk−1)

)]
with mtk := m(ξtk ).

Applying (1.4) and whenever (tk − tk−1) � 0 we have the second order approximation

mtn − φt0,tn(mt0) � 1√
N

∑
1≤k≤n

�MtkDmtk
φtk,tn + 1

2N

∑
1≤k≤n

(�Mtk )
⊗2D2

mtk
φtk,t

with the local fluctuation random fields

�Mtk := √
N(mtk − mtk ) and mtk := φtk−1,tk (mtk−1) � mtk−1 .

For discrete generation particle systems, ξ i
tk

are defined by N conditionally independent vari-
ables given the system ξtk−1 . For a more rigorous analysis we refer to Section 2.3.2.

The above decomposition shows that the first order operator Dμφs,t reflects the fluctua-
tion errors of the particle measures, while the second order term encapsulates their bias. In
other words, estimating the norm of second order operator D2

μφs,t allows to quantify the bias
induced by the interaction function, while the estimation of first order term is used to derive
central limit theorems as well as Lp-mean error estimates.

As in (1.11), these estimates take basically the following form. For n ≥ 1 and any suffi-
ciently regular function f we have

(1.12) |||Dμ0φs,t ||| � e−λ(t−s) =⇒ ∣∣E[∥∥mt(f ) − φ0,t (m0)(f )
∥∥n]1/n∣∣≤ cn/

√
N.

In addition, we have the uniform bias estimate w.r.t. the time horizon

(1.13)
∣∣∣∣∣∣D2

μ0
φs,t

∣∣∣∣∣∣� e−λ(t−s) =⇒ ∣∣E[mt(f ) − φ0,t (m0)(f )
]∣∣≤ c/N.

In the above display, ||| · ||| stands for some operator norm, and (c, cn) stands for some finite
constants whose values doesn’t depend on the time horizon. We emphasize that the above
results are direct consequence of a second order extension of the Alekseev–Gröbner type
lemma for particle density profiles. For more precise statements we refer to Theorem 2.7 and
the discussion following the theorem.

1.3. Some basic notation. Let Lin(B1,B2) be the set of bounded linear operators from a
normed space B1 into a possibly different normed space B2 equipped with the operator norm
||| · |||B1→B2 . When B1 = B2 we write Lin(B1) instead of Lin(B1,B1).

With a slight abuse of notation, we denote by I the identity (d × d)-matrix, for any d ≥ 1,
as well as the identity operator in Lin(B1,B1). We also denote by ‖ · ‖ any (equivalent) norm
on some finite dimensional vector space over R.

We also use the conventional notation ∂ε , ∂xi
, ∂s , ∂t and so on for the partial derivatives

w.r.t. some real valued parameters ε, xi , s and t .
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We let ∇f (x) = [∂xi
f (x)]1≤i≤d be the gradient column vector associated with some

smooth function f (x) from Rd into R. Given some smooth function h(x) from Rd into Rd

we denote by ∇h = [∇h1, . . . ,∇hd ] the gradient matrix associated with the column vector
function h = (hi)1≤i≤d . We also let (∇ ⊗∇) be the second order differential operator defined
for any twice differentiable function g(x1, x2) on R2d by the Hessian-type formula

(1.14)
(
(∇ ⊗ ∇)g

)
i,j = (∇x1 ⊗ ∇x2)(g)i,j = (∇x2 ⊗ ∇x1)(g)j,i = ∂xi

1
∂
x

j
2
g.

We consider the space Cn(Rd) of n-differentiable functions and we denote by Cn
m(Rd) the

subspace of functions f such that

sup
0≤k≤n

∥∥∇kf (x)
∥∥≤ cwm(x) with the weight function wm(x) = (

1+‖x‖)m for some m ≥ 0.

We equip Cn
m(Rd) with the norm

‖f ‖Cn
m(Rd ) := ∑

0≤k≤n

∥∥∇kf/wm

∥∥∞ with
∥∥∇kf/wm

∥∥∞ = sup
x∈Rd

∥∥∇kf (x)/wm(x)
∥∥.

When there are no confusions, we drop to lower symbol ‖ · ‖∞ and we write ‖f ‖ instead
of ‖f ‖∞ the supremum norm of some real valued function. We let e(x) := x be the identify
function on Rd and for any μ ∈ Pn(R

d) and n ≥ 1 we set

‖e‖μ,n :=
[∫

‖x‖nμ(dx)

]1/n

.

For any μ1,μ2 ∈ Pn(R
d), we also denote by ρn(μ1,μ2) some polynomial function of

‖e‖μi,n with i = 1,2. When μ1 = μ2 we write ρn(μ1) instead of ρn(μ1,μ1).
Under our regularity conditions on the drift function, using elementary stochastic calculus

for any n ≥ 2 and μ ∈ Pn(R
d) we check the following estimates:

(1.15)
E
(∥∥Xμ

s,t (x)
∥∥n)1/n ≤ cn(t)

(‖x‖ + ‖e‖μ,2
)

which implies that φs,t (μ)
(‖e‖n)1/n ≤ cn(t)‖e‖μ,n.

In the above display and throughout the rest of the article, we write c(t), cε(t), cn(t), cn,ε(t),
cε,n(t) and cm,n(t) with m,n ≥ 0 and ε ∈ [0,1] some collection of nondecreasing and non-
negative functions of the time parameter t whose values may vary from line to line, but which
only depend on the parameters m, n, ε, as well as on the drift function bt . Importantly these
contants do not depend on the probability measures μ. We also write c, cε , cn, cn,ε , and cm,n

when the constant does not depend on the time horizon.

2. Statement of the main theorems.

2.1. First variational equation on Hilbert spaces. As expected, the Fréchet differential
∂ψs,t (Y ) of the stochastic flow ψs,t (Y ) associated with the stochastic differential equation
(1.6) satisfies an Hilbert space-valued linear equation (cf. (4.1)). The drift-matrix of this evo-
lution equation is given by the Fréchet differential ∂Bt(ψs,t (Y )) of the drift function Bt eval-
uated along the solution of the flow. Mimicking the exponential notation of the solution of
conventional homogeneous linear systems, the evolution semigroup (a.k.a. propagator) asso-
ciated with the first variational equation is written as follows

∂ψs,t (Y ) = e
∮ t
s ∂Bu(ψs,u(Y )) du ∈ Lin

(
Hs

(
R

d),Ht

(
R

d)).
The above exponential is understood as an operator valued Peano–Baker series [62]. A more
detailed presentation of these models is provided in Section 4.
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The Ht (R
d)-log-norm of an operator Tt ∈ Lin(Ht (R

d),Ht (R
d)) is defined by

γ (Tt ) := sup
‖Z‖

Ht (R
d )

=1

〈
Z,
(
Tt + T 


t

)
/2 · Z〉

Ht (Rd ).

Our first main result is an extension of an inequality of Coppel [22] to tangent processes
associated with Hilbert-space valued stochastic flows.

THEOREM 2.1. For any time horizon t ≥ s and any Y ∈ Hs(R
d) we have the log-norm

estimate

(2.1)
−
∫ t

s
γ
(−∂Bu

(
ψs,u(Y )

))
du ≤ 1

t
log

∣∣∣∣∣∣e∮ t
s ∂Bu(ψs,u(Y )) du

∣∣∣∣∣∣
Ht (Rd )→Ht (Rd )

≤
∫ t

s
γ
(
∂Bu

(
ψs,u(Y )

))
du.

In addition, we have

(2.2)
(H) =⇒ ∂Bt(X)sym ≤ −λ0I

=⇒ 1

t
log

∣∣∣∣∣∣e∮ t
s ∂Bu(ψs,u(Y )) du

∣∣∣∣∣∣
Ht (Rd )→Ht (Rd ) ≤ −λ0.

The proof of the above theorem in provided in Section 4.1.
Let Y0, Y1 ∈ Hs(R

d) be a pair of random variables with distributions (μ0,μ1) ∈ P2(R
d)2.

Also let με be the probability distribution of the random variable

(2.3) Yε := (1 − ε)Y0 + εY1 =⇒ ∂εψs,t (Yε) = e
∮ t
s ∂Bu(ψs,u(Y )) du · (Y1 − Y0).

This observation combined with the above theorem yields an alternative and more direct
proof of an exponential Wasserstein contraction estimate obtained in [5]. Namely, using (2.2)
we readily check the W2-exponential contraction inequality

(2.4) ∂Bt(X)sym ≤ −λ0I =⇒ W2
(
φs,t (μ1), φs,t (μ0)

)≤ e−λ0(t−s)
W2(μ0,μ1).

For any function f ∈ C1(Rd) with bounded derivative we also quote the first order expansion

[
φs,t (μ1) − φs,t (μ0)

]
(f ) =

∫ 1

0

〈
∂ψs,t (Yε)


 · ∇f
(
ψs,t (Yε)

)
, (Y1 − Y0)

〉
Ht (Rd ) dε.

In the above display, 〈·, ·〉Ht (Rd ) stands for the conventional inner product on L2((�,Ft ,P),

Rd). The above assertion is a direct consequence of Theorem 4.8.

2.2. Taylor expansions with remainder. The first expansion presented in this section is a
first order linearization of the measure valued mapping φs,t in terms of a semigroup of linear
integro-differential operators.

THEOREM 2.2. For any m,n ≥ 1 and μ0,μ1 ∈ Pm∨2(R
d), there exists a semigroup of

linear operators Dμ1,μ0φs,t from Cn
m(Rd) into itself such that

(2.5) φs,t (μ1) = φs,t (μ0) + (μ1 − μ0)Dμ1,μ0φs,t .

In addition, when (H) is satisfied we have the gradient estimate

(2.6)
∥∥∇Dμ1,μ0φs,t (f )

∥∥≤ ce−λ(t−s)‖∇f ‖ for some λ > 0.
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The proof of the above theorem with a more explicit description of the first order operators
Dμ1,μ0φs,t are provided in Section 4.3. In (2.6) we can choose λ = λ1,2, with the parameter
λ1,2 introduced in (1.10). The semigroup property is a consequence of Theorem 4.5 and the
gradient estimates is a reformulation of the operator norm estimate discussed in (4.13).

We also provide Bismut–Elworthy–Li-type formulae that allow to extend the gradient and
Hessian operators ∇kDμ1,μ0φs,t with k = 1,2 to measurable and bounded functions. When
the condition (H) is satisfied we show the following exponential estimates:

(2.7)
∥∥∇Dμ1,μ0φs,t (f )

∥∥≤ c(1 ∨ 1/
√

t − s)e−λ(t−s)‖f ‖ for some λ > 0

In addition, we have the Hessian estimate

(2.8)
∥∥∇2Dμ1,μ0φs,t (f )

∥∥≤ c
(
1 ∨ 1/(t − s)

)
e−λ(t−s)‖f ‖ for some λ > 0

The proof of the first assertion can be found in Remark 4.7 on page 2642. The proof of the
Hessian estimates is a consequence of the decomposition of ∇2Dμ0,μ1φs,t discussed in (5.1)
and the Hessian estimates (3.17) and (3.32).

It is worth mentioning that the semigroup property is equivalent to the chain rule formula

(2.9) Dμ1,μ0φs,t = Dμ1,μ0φs,u ◦ Dφs,u(μ1),φs,u(μ0)φu,t

which is valid for any s ≤ u ≤ t . Without further work, Theorem 2.2 also yields the exponen-
tial W1-contraction inequality

(2.10) W1
(
φs,t (μ1), φs,t (μ0)

)≤ ce−λ(t−s)
W1(μ0,μ1)

with the same parameter λ a in (2.6). In the same vein, the estimate (2.7) yields the total
variation estimate∥∥φs,t (μ1) − φs,t (μ0)

∥∥
tv ≤ c(1 ∨ 1/

√
t − s)e−λ(t−s)‖μ0 − μ1‖tv

with the same parameter λ a in (2.7). In all the inequalities discussed above we can choose
any parameter λ > 0 such that λ < λ1,2, with the parameter λ1,2 introduced in (1.10). In
the W1-contraction inequality (2.10) we can choose λ = λ1,2. A more refined estimate is
provided in Section 2.4.

Next theorem provides a first order Taylor expansion with remainder.

THEOREM 2.3. For any m,n ≥ 0 and μ0,μ1 ∈ Pm+2(R
d), there exists a linear operator

D2
μ1,μ0

φs,t from Cn+2
m (Rd) into Cn

m+2(R
2d) such that

(2.11) φs,t (μ1) = φs,t (μ0) + (μ1 − μ0)Dμ0φs,t + 1

2
(μ1 − μ0)

⊗2D2
μ1,μ0

φs,t

with the first order operator Dμ0φs,t := Dμ0,μ0φs,t introduced in Theorem 2.2. In addition,
when (H) is satisfied we also have the estimate

(2.12)
∥∥(∇ ⊗ ∇)D2

μ1,μ0
φs,t (f )

∥∥≤ ce−λ(t−s) sup
i=1,2

∥∥∇ if
∥∥ for some λ > 0.

The proof of the above theorem in provided in Section 5.2. A more precise description of
the second order operator D2

μ1,μ0
φs,t is provided in (5.9) and (5.13). Using (2.11) and arguing

as in the proof of proposition 2.1 in [4], for any twice differentiable function f with bounded
derivatives we check the backward evolution equation

(2.13) ∂sφs,t (μ)(f ) = −μLs,μ

(
Dμφs,t (f )

)
with the first order operator Dμφs,t introduced in Theorem 2.3. The above equation is a
central tool to derive an extended version of the Alekseev–Gröbner lemma [1, 42] to measure
valued semigroups and interacting diffusions (cf. Theorem 2.7).

Next theorem provides a second order Taylor expansion with remainder.
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THEOREM 2.4. For any m,n ≥ 1 and μ0,μ1 ∈ Pm+4(R
d), there exists a linear operator

D3
μ1,μ0

φs,t from Cn+3
m (Rd) into Cn

m+4(R
3d) such that

(2.14)
φs,t (μ1) − φs,t (μ0)

= (μ1 − μ0)Dμ0φs,t + 1

2
(μ1 − μ0)

⊗2D2
μ0

φs,t + (μ1 − μ0)
⊗3D3

μ0,μ1
φs,t

with the second order operator D2
μ0

φs,t := D2
μ0,μ0

φs,t introduced in Theorem 2.3. In addi-
tion, when (H) is satisfied we have the third order estimate

(2.15)

∣∣(μ1 − μ0)
⊗3D3

μ0,μ1
φs,t (f )

∣∣
≤ ce−λ(t−s)

( ∨
i=1,2,3

∥∥∇ if
∥∥)W2(μ0,μ1)

3 for some λ > 0.

The proof of the first part of the above theorem is provided in Section 5.3. We can choose
in (2.15) any parameter λ > 0 such that λ < λ1,2, with the parameter λ1,2 introduced in
(1.10). The proof of the third order estimate (2.15) is rather technical, thus it is provided in
the Appendix, on page 2654.

2.3. Illustrations. The first part of this section states with more details the almost sure
expansions discussed in (1.5). Up to some differential calculus technicalities, this result is a
more or less direct consequence of the Taylor expansions with remainder presented in Theo-
rem 2.3 and Theorem 2.4 combining with a backward formula presented in [5].

The second part of this section is concerned with a second order extension of the Alekseev–
Gröbner lemma to nonlinear measure valued semigroups and interacting diffusion flows. This
second order stochastic perturbation analysis is also mainly based on the second order Taylor
expansion with the remainder presented in Theorem 2.4.

In the further development of this section without further mention we shall assume that
condition (H) is satisfied.

2.3.1. Almost sure expansions. We recall the backward formula

(2.16)

X
μ1
s,t (x) − X

μ0
s,t (x)

=
∫ t

s

[∇X
φs,u(μ0)
u,t

](
Xμ1

s,u(x)
)′[

φs,u(μ1) − φs,u(μ0)
](

bu

(
Xμ1

s,u(x), ·))du.

The above formula combined with (2.4) and the tangent process estimates presented in Sec-
tion 3.3 yields the uniform almost sure estimates

(2.17)
∥∥Xμ1

s,t (x) − X
μ0
s,t (x)

∥∥≤ e−(λ0∧λ1)(t−s)
W2(μ0,μ1).

The above estimate is a consequence of (2.4) and conventional exponential estimates of the
tangent process ∇X

μ
s,t (cf., for instance, (3.2)). A detailed proof of this claim and the back-

ward formula (2.16) can be found in [5].
We extend the operators Dk

μφs,t introduced in Theorem 2.4 to tensor valued functions
f = (fi)i∈[n] with i = (i1, . . . , in) ∈ [n] := {1, . . . , d}n by considering the same type tensor
function with entries

(2.18) Dk
μφs,t (f )i := Dk

μφs,t (fi) and we set d
μ
s,t (x, y) := Dμφs,t

(
bt (x, ·))(y)

for any (x, y) ∈ R2d . A brief review on tensor spaces is provided in Section 3.1. We also
consider the function

DμX
μ
s,t (x, y) :=

∫ t

s

[∇X
φs,u(μ)
u,t

](
Xμ

s,u(x)
)′
dμ
s,u

(
Xμ

s,u(x), y
)
du.
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Combining the first order formulae stated in Theorem 2.3 with conventional Taylor expan-
sions we check the following theorem.

THEOREM 2.5. For any x ∈ Rd , μ0,μ1 ∈ P2(R
d) and s ≤ t we have the almost sure

expansion

(2.19) X
μ1
s,t (x) − X

μ0
s,t (x) =

∫
(μ1 − μ0)(dy)Dμ0X

μ0
s,t (x, y) + �

[2],μ0,μ1
s,t (x)

with the second order remainder function �
[2],μ0,μ1
s,t such that∥∥�[2],μ0,μ1

s,t

∥∥≤ ce−λ(t−s)
W2(μ0,μ1)

2 for some λ > 0.

The detailed proof of the above theorem is provided in the Appendix, on page 2659.
Second order expansions are expressed in terms of the functions defined for any (x, y) ∈

R2d and for any z ∈R2d by the formulae

d
[1,1],μ
s,t (x, y) := Dμφs,t

(
b

[1]
t (x, ·)′)(y) and d

[2],μ
s,t (x, z) := D2

μφs,t

(
bt (x, ·))(z).

We associate with these objects the function D2
μ0

X
μ0
s,t defined by

D2
μX

μ
s,t (x, z) :=

∫ t

s

[∇X
φs,u(μ)
u,t

](
Xμ

s,u(x)
)′[

d[2],μ
s,u

(
Xμ

s,u(x), z
)+ D[1,1]

μ Xμ
s,u(x, z)

]
du

+
∫ t

s

[∇2X
φs,u(μ)
u,t

](
Xμ

s,u(x)
)′
D[2,1]

μ Xμ
s,u(x, z) du.

In the above display, D[i,1]
μ X

μ
s,u stands for the functions given by

D[1,1]
μ Xμ

s,u(x, z) := [
d[1,1],μ
s,u

(
Xμ

s,u(x), z2
)
DμXμ

s,u(x, z1)

+ d[1,1],μ
s,u

(
Xμ0

s,u(x), z1
)
DμXμ

s,u(x, z2)
]
,

D[2,1]
μ0

Xμ
s,u(x, z) := [

DμXμ
s,u(x, z1) dμ

s,u

(
Xμ

s,u(x), z2
)+ DμXμ

s,u(x, z2) dμ
s,u

(
Xμ

s,u(x), z1
)]

.

We are now in position to state the main result of this section.

THEOREM 2.6. For any x ∈ Rd , μ0,μ1 ∈ P2(R
d) and s ≤ t we have the almost sure

expansion

(2.20)

X
μ1
s,t (x) − X

μ0
s,t (x)

=
∫

(μ1 − μ0)(dy)Dμ0X
μ0
s,t (x, y)

+ 1

2

∫
(μ1 − μ0)

⊗2(dz)D2
μ0

X
μ0
s,t (x, z) + �

[3],μ0,μ1
s,t (x)

with a third order remainder function �
[3],μ1,μ0
s,t such that∥∥�[3],μ0,μ1

s,t

∥∥≤ ce−λ(t−s)
W2(μ0,μ1)

3 for some λ > 0.

The proof of the above theorem is provided in the Appendix, on page 2659. In the remain-
der term estimates presented in the above theorems, we can choose any parameter λ > 0 such
that λ < λ1,2, with the parameter λ1,2 introduced in (1.10).
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2.3.2. Interacting diffusions. For any N ≥ 2, the N -mean field particle interpretation
associated with a collection of generators Lt,η is defined by the Markov process ξt =
(ξ i

t )1≤i≤N ∈ (Rd)N with generators �t given for any sufficiently smooth function F and
any x = (xi)1≤i≤N ∈ (Rd)N by

(2.21) �t(F )(x) = ∑
1≤i≤N

Lt,m(x)(Fx−i )
(
xi)

with the function

Fx−i (y) := F
(
x1, . . . , xi−1, y, xi+1, . . . , xN ) and the measure m(x) = 1

N

∑
1≤i≤N

δxi .

We extend Lt,μ to symmetric functions F(x1, x2) on R2d by setting

L
(2)
t,μ(F )

(
x1, x2) := Lt,μ

(
F
(
x1, ·))(x2)+ Lt,μ

(
F
(·, x2))(x1).

In this notation, in our context we readily check that

(2.22)
F(x) = m(x)(f ) =⇒ �t(F)(x) = m(x)Lt,m(x)(f ),

F(x) = m(x)⊗2(F ) =⇒ �t(F)(x) = m(x)⊗2L
(2)
t,m(x)(F ) + 1

N
m(x)

[
�(F)

]
for any symmetric function F(x1, x2) = F(x2, x1), with the function �(F) on Rd defined
for any y ∈Rd by the formula

�(F)(y) := Tr
(([∇ ⊗ ∇]F )(y, y)

)= ∑
1≤i≤d

(∂xi
1
∂xi

2
F)(y, y)

=⇒ �(f ⊗ g)(y) = ∑
1≤k≤d

∂yk
f (y)∂yk

g(y) = Tr
(∇f (y)∇g(y)′

)
.

A proof of the above formula is provided in the Appendix, on page 2647. Applying Ito’s
formula, for any smooth function g : t ∈ [0,∞[�→ gt ∈ C2

b(Rd) we prove that

mt := m(ξt ) =⇒ dmt(gt ) = [
mt(∂tgt ) + mtLt,mt (gt )

]
dt + 1√

N
dMt(g).

In the above display, g �→ Mt(g) stands for a martingale random field with angle bracket

∂t

〈
M(f ),M(g)

〉
t := mt

(
�(f ⊗ g)

) =⇒ ∂t

〈
M(g)

〉
t =

∫
mt(dx)

∥∥∇g(x)
∥∥2

.

The above evolution equation is rather standard in mean field type interacting particle system
theory, a detailed proof can be found in [30] (see, for instance, Section 4.3). In the same vein,
with some obvious abusive notation, using (2.22) we have

dm⊗2
s (F ) = [

ms ⊗ dms + dms ⊗ ms + (dms ⊗ dms)
]
(F )

=
[
m⊗2

s L(2)
s,ms

(F ) + 1

N
ms

[
�(F)

]]
ds + martingale increment

=⇒ [dms ⊗ dms](F ) = 1

N
ms

[
�(F)

]
ds.

We fix a final time horizon t ≥ 0 and we denote by

s ∈ [0, t] �→ Ms

(
Dm·φ·,t (f )

)
the martingale associated with the predictable function

s ∈ [0, t] �→ gs = Dmsφs,t (f ).
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Combining the Itô formula with the tensor product formula (2.22) and with the backward
formula (2.13) we obtain

dφs,t (ms)(f ) = −msLs,ms

(
Dmsφs,t (f )

)
ds + (dms)

(
Dmsφs,t (f )

)
+ 1

2
(dms ⊗ dms)

(
D2

ms
φs,t (f )

)
ds.

This implies that

dφs,t (ms)(f ) = 1

2
(dms ⊗ dms)

(
D2

ms
φs,t (f )

)
ds + 1√

N
dMs

(
Dm·φ·,t (f )

)
.

This yields the following theorem.

THEOREM 2.7. For any time horizon t ≥ 0, the interpolating semigroup s ∈ [0, t] �→
φs,t (ms) satisfies for any f ∈ C2(Rd) with supk=1,2 ‖∇kf ‖ ≤ 1 the evolution equation

(2.23) dφs,t (ms)(f ) = 1

2N
ms

[
�
(
D2

ms
φs,t (f )

)]
ds + 1√

N
dMs

(
Dm·φ·,t (f )

)
.

The above theorem can be seen as a second order extension of the Alekseev–Gröbner
lemma [1, 42] to nonlinear measure valued and stochastic semigroups. This result also ex-
tends the perturbation theorem obtained in [4] (cf. Theorem 3.6) in the context of interacting
jumps processes to McKean–Vlasov diffusions. The discrete time version of the backward
perturbation analysis described above can also be found in [27, 28, 31] in the context of
Feynman–Kac particle models (see also [25, 26, 32]).

We end this Section with some direct consequences of the above theorem. Firstly, using
(2.6) and (2.12) we have the almost sure estimates∣∣∂s

〈
M·,t

(
Dm·φ·,t (f )

)〉
s

∣∣≤ ce−2λ(t−s)‖∇f ‖2

and
∥∥ms

[
�
(
D2

ms
φs,t (f )

)]∥∥≤ ce−λ(t−s) sup
i=1,2

∥∥∇ if
∥∥ for some λ > 0.

Without further work, the above inequality yields the uniform bias estimate stated in the r.h.s.
of (1.13), for any twice differentiable function f with bounded derivatives. Using well known
martingale concentration inequalities (cf., for instance, Lemma 3.2 in [58]), there exists some
finite parameter c such that for any t ≥ 0 and any δ ≥ 1 the probability of the following event:∣∣∣∣mt(f ) − φ0,t (m0)(f ) − 1

2N

∫ t

0
ms

[
�
(
D2

ms
φs,t (f )

)]
ds

∣∣∣∣≤ c

√
δ

N

is greater than 1 − e−δ . In addition, using the Burkholder–Davis–Gundy inequality, for any
n ≥ 1 we obtain the time uniform estimates stated in the r.h.s. of (1.12). On the other hand,
using (2.5) and (2.6) we have the almost sure exponential contraction inequality

W1
(
φ0,t (m0), φ0,t (μ0)

)≤ ce−λt
W1(m0,μ0) for some λ > 0.

This yields the bias estimates∣∣E[mt(f ) − φ0,t (μ0)(f )
]∣∣≤ c1

N
+ c2

N1/d
e−λt

for any twice differentiable function f with bounded derivatives. The r.h.s. estimate comes
from well known estimates of the average of the Wassertein distance for occupation measures;
see, for instance, [38] and the more recent studies [40, 54]. The above inequality yields the
following uniform bias estimate:

sup
t≥ d−1

dλ
logN

∣∣E[mt(f ) − φ0,t (μ0)(f )
]∣∣≤ c

N
.
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2.4. Comments on the regularity conditions. We discuss in this section the regularity
condition (H) introduced in (1.9). We illustrate these spectral conditions for linear-drift and
gradient flow models. Comparisons with related conditions presented in other works are also
provided.

First, we mention that the condition stated in (1.9) has been introduced in the article [5] to
derive several Wasserstein exponential contraction inequalities as well as uniform propaga-
tion of chaos estimates w.r.t. the time horizon.

Using the log-norm triangle inequality and recalling that the log-norm is dominated by the
spectral norm we check that

λmax
(
At(x1, x2)sym

)≤ λmax
(
b

[1]
t (x1, x2)sym

)+ 2−1∥∥b[2]
t (x2, x1) + b

[2]
t (x1, x2)

′∥∥
2.

Choosing λ0 and λ1 as the supremum of the maximal eigenvalue functional of the matrices
At(x1, x2)sym and b

[1]
t (x1, x2)sym, the Cauchy interlacing theorem (see, for instance, [53] on

page 294) yields λ1 ≥ λ0 ≥ λ1,2.
For linear drift functions

(2.24) bt (x1, x2) = B1x1 + B2x2

the matrix At(x1, x2)sym reduces to the two-by-two block partitioned matrix

(2.25)
At(x1, x2)sym =

[
(B1)sym (B2)sym
(B2)sym (B1)sym

]
=⇒ λ0 ≥ λ1 = −λmax

(
(B1)sym

)
and

∥∥b[2]∥∥
2 = ‖B2‖2.

In this situation the diffusion flow X
μ
s,t (x) ∈ Rd is given by the formula

X
μ
s,t (x) = e(t−s)B1

(
x − μ(e)

)+ e(t−s)[B1+B2]μ(e) +
∫ t

s
eB1(t−u) dWu.

In the one-dimensional case we have

B1 < 0 < B2 =⇒ B1 = −λ1 ≤ B1 + B2 = −λ1,2 = −λ0.

Nonlinear Langevin diffusions are associated with the drift function

b(x1, x2) := −∇U(x1) − ∇V (x1 − x2)

=⇒ b[1](x1, x2) = −∇2U(x1) − ∇2V (x1 − x2) and b[2](x1, x2) = ∇2V (x1 − x2)

some confinement type potential function U (a.k.a. the exterior potential) and some interac-
tion potential function V . In this context we have

−At(x1, x2)sym

=
[
∇2U(x1) 0

0 ∇2U(x2)

]

+
[

∇2V (x1 − x2) −(∇2V (x2 − x1) + ∇2V (x1 − x2)
)
/2

−(∇2V (x2 − x1) + ∇2V (x1 − x2)
)
/2 ∇2V (x2 − x1)

]
.

When the potential function V is even and convex we have

At(x1, x2)sym ≤ −
[
∇2U(x1) 0

0 ∇2U(x2)

]
.
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In the reverse angle, when the function V is odd we have the formula

At(x1, x2)sym = −
[
∇2U(x1) + ∇2V (x1 − x2) 0

0 ∇2U(x2) + ∇2V (x2 − x1)

]
.

In both situations, condition (H) is satisfied when the strength of the confinement type po-
tential dominates the one of the interaction potential; that is, when we have that

∇2U(x1) + ∇2V (x2) ≥ λ1 >
∥∥∇2V

∥∥
2.

The decay rate λ0 in the W2-contraction inequality (2.4) is larger than the decay rate λ1,2 in
the W1-contraction inequality (2.10). In addition, the W1-exponential stability requires that
λ0 dominates the spectral norm of the matrix b[2]. Next we provide a more refined analysis
based on the proof of the W2-contraction inequality presented in [5]. Using the interpolating
paths (Yε,με) introduced in (2.3) we set

(2.26) Xε
s,t := X

με
s,t (Yε) and X

ε

s,t := X
με

s,t (Y ε).

In the above display (X
με

s,t (x), Y ε) stands for an independent copy of (X
με
s,t (x), Yε). Arguing

as in [5] we have

∂tE
(∥∥∂εX

ε
s,t

∥∥)= E
[∥∥∂εX

ε
s,t

∥∥−1(〈
∂εX

ε
s,t , b

[1](Xε
s,t ,X

ε

s,t

)
∂εX

ε
s,t

〉
+ 〈

∂εX
ε

s,t , b
[2](Xε

s,t ,X
ε

s,t

)
∂εX

ε
s,t

〉)]
.

We consider the symmetric and anti-symmetric matrices

b
[2]
t (x1, x2)sym := 1

2

(
b

[2]
t (x1, x2) + b

[2]
t (x2, x1)

′),
b

[2]
t (x1, x2)asym := 1

2

(
b

[2]
t (x1, x2) − b

[2]
t (x2, x1)

′)
and we set

(
Uε

s,t ,U
ε

s,t

) := (
∂εX

ε
s,t√

‖∂εX
ε
s,t‖

,
∂εX

ε

s,t√
‖∂εX

ε

s,t‖

)
and

(
V ε

s,t , V
ε

s,t

) := (
∂εX

ε
s,t

‖∂εX
ε
s,t‖

,
∂εX

ε

s,t

‖∂εX
ε

s,t‖
)
.

By symmetry arguments and using some elementary manipulations we check the formula

2∂tE
(∥∥∂εX

ε
s,t

∥∥)= E

(〈(
Uε

s,t

U
ε

s,t

)
,At

(
Xε

s,t ,X
ε

s,t

)(Uε
s,t

U
ε

s,t

)〉

+
(√∥∥∂εX

ε

s,t

∥∥−
√∥∥∂εX

ε
s,t

∥∥)2〈
V

ε

s,t , b
[2]
t

(
Xε

s,t ,X
ε

s,t

)
symV ε

s,t

〉
+ (∥∥∂εX

ε

s,t

∥∥− ∥∥∂εX
ε
s,t

∥∥)〈V ε

s,t , b
[2]
t

(
Xε

s,t ,X
ε

s,t

)
asymV ε

s,t

〉)
.

This shows that

∂tE
(∥∥∂εX

ε
s,t

∥∥)≤ −λ̂1,2E
(∥∥∂εX

ε
s,t

∥∥)
with the parameter λ̂1,2 given by

−λ̂1,2 := sup
x1,x2

[
λmax

(
At(x1, x2)

)+ ∥∥b[2]
t (x1, x2)sym

∥∥
2 + ∥∥b[2]

t (x1, x2)asym
∥∥

2

]≤ −λ1,2.

We conclude that the W1-contraction inequality (2.10) is met with λ = λ̂1,2.
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In a more recent article [67] the author presents some Wasserstein contraction inequalities
of the same form as in (2.4) with λ0 replaced by some parameter λ−

0 = (κ1 − κ2), under the
assumption〈

x1 − y1, bt (x1,μ1) − bt (y1,μ2)
〉≤ −κ1‖x1 − y1‖2 + κ2W2(μ1,μ2)

2 for some κ1 > κ2.

Taking Dirac measures μ1 = δx2 and μ2 = δy2 we check that the above condition is equivalent
to the fact that〈

x1 − y1, bt (x1, x2) − bt (y1, y2)
〉≤ −κ1‖x1 − y1‖2 + κ2‖x2 − y2‖2.

By symmetry arguments this implies that

(2.27)

〈
x1 − y1, bt (x1, x2) − bt (y1, y2)

〉+ 〈
x2 − y2, bt (x2, x1) − bt (y2, y1)

〉
≤ −λ−

0

[‖x1 − y1‖2 + ‖x2 − y2‖2].
For the linear drift model discussed in (2.25) the above condition reads[

(B1)sym (B2)sym
(B2)sym (B1)sym

]
≤ −λ−

0 I which is implies that λ0 ≥ λ−
0 .

We also have (2.27) =⇒ (1.7) with λ = λ−
0 .

2.5. Comparisons with existing literature. The perturbation analysis developed in the
article differs from the Otto differential calculus on (P2(R

d),W2) introduced in [59] and
further developed by Ambrosio and his co-authors [2, 3] and Otto and Villani in [60]. These
sophisticated gradient flow techniques in Wasserstein metric spaces are based on optimal
transport theory.

The central idea is to interpret P2(R
d) as an infinite-dimensional Riemannian manifold. In

this context, the Benamou–Brenier formulation of the Wasserstein distance provides a natural
way to define geodesics, gradients and Hessians w.r.t. the Wasserstein distance. The details of
these gradient flow techniques are beyond the scope of the semigroup perturbation analysis
considered herein.

This methodology is mainly used to quantify the entropy dissipation of Langevin-type
nonlinear diffusions. Thus, it cannot be used to derive any Taylor expansion of the form (1.4)
nor to analyze the stability properties of more general classes of McKean–Vlasov diffusions.

Besides some interesting contact points, the methodology developed in the present article
doesn’t rely on the more recent differential calculus on (P2(R

d),W2) developed by P. L. Li-
ons and his co-authors in the seminal works on mean field game theory [14, 43]. In this con-
text, the first order Lions differential of a smooth function from P2(R

d) into R is defined as
the conventional derivative of lifted real valued function acting on the Hilbert space of square
integrable random variables. In this interpretation, for a given test function, say f the gradi-
ent ∇Dμφs,t (f )(Y ) of the first order differential in (1.4) can be seen as the Lions derivative
(δus,t /δμ)(Y ) of the lifted scalar function Y �→ us,t (Y ) := E(f (X

μ
s,t (Y ))), for some random

variable Y with distribution μ.
In the recent book [17], to distinguish these two notions, the authors called the random

variable Dμφs,t (f )(Y ) the linear functional derivative. For a more thorough discussion on
the origins and the recent developments in mean field game theory, we refer to the book [17]
as well as the more recent articles [13, 19, 23] and the references therein.

To the best of our knowledge, most of the literature on Lions’ derivatives is concerned with
existence theorems without a refined analysis of the exponential decays of these differentials
w.r.t. the time parameter. Last but not least, from the practical point of view all differential
estimates we found in the literature are rather quite deceiving since after carefully checking,
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they grow exponentially fast with respect to the time horizon (cf., for instance, [13, 19, 20,
23]).

Taylor expansions of the form (1.4) have already been discussed in the book [26] and
in the article [33] for discrete time nonlinear measure valued semigroups (cf., for instance,
Chapters 3 and 10 in [26]). We also refer to the more recent articles [4, 34] in the context of
continuous time Feynman–Kac semigroups. In this context, we emphasize that the semigroup
φs,t (μ) is explicitly given by a normalization of a linear semigroup of positive operators.
Thus, a fairly simple Taylor expansion yields the second order formula (1.4). In contrast
with Feynman–Kac models, McKean–Vlasov semigroups don’t have any explicit form nor
an analytical description. As a result, none of above methodologies cannot be used to analyze
nonlinear diffusions.

The second order perturbation analysis discussed in this article has been used with success
in [27, 28, 31] to analyze the stability properties of Feynman–Kac type particle models, as
well as the fluctuations and the exponential concentration of this class of interacting jump
processes; see also [29, 35] for general classes of discrete generation mean field particle
systems, a well as Chapter 7 in [25] and [4, 32] for continuous time models.

These second order perturbation techniques have also been extended in the seminal book
by V. N. Kolokoltsov [50] to general classes of nonlinear Markov processes and kinetic equa-
tions. Chapter 8 in [50] is dedicated to the analysis of the first and the second order derivatives
of nonlinear semigroups with respect to initial data. The use of the first and the second order
derivatives in the analysis of central limit theorems and propagation of chaos properties re-
spectively is developed in Chapter 9 and Chapter 10 in [50]. We underline that these results
are obtained for diffusion processes as well as for jump-type processes and their combina-
tions, see also [51, 52].

Nevertheless none of these studies apply to derive nonasymptotic Taylor expansions (2.14)
and (2.20) with exponential decay-type remainder estimates for McKean–Vlasov diffusions
nor to estimate the stability properties of the associated semigroups. In addition, to the best
of our knowledge the stochastic perturbation Theorem 2.7 is the first result of this type for
mean field type interacting diffusions.

Last but not least, the idea of considering the flow of empirical measures m(ξt ) of a mean
field particle model as a stochastic perturbation of the limiting flow φ0,t (μ0) certainly goes
back to the work by Dawson [24], itself based on the martingale approach developed by
Papanicolaou, Stroock and Varadhan in [61], published in the end of the 1970’s. These two
works are mainly centered on fluctuation type limit theorems. They don’t discuss any Taylor
expansion on the limiting semigroup φs,t nor any question related to the stability properties
of the underlying processes.

3. Some preliminary results. The first part of this section provides a review of tensor
product theory and Fréchet differential on Hilbert spaces. Section 3.1 is concerned with con-
ventional tensor products and Fréchet derivatives. Section 3.2 provides a short introduction
to tensor integral operators.

In the second part of this section we review some basic tools of the theory of stochas-
tic variational equations, including some differential properties of Markov semigroups. Sec-
tion 3.3 is dedicated to variational equations. Section 3.5 discusses Bismut–Elworthy–Li ex-
tension formulae. We also provide some exponential inequalities for the gradient and the
Hessian operators on bounded measurable functions.

The differential operator arising in the Taylor expansions (1.4) are defined in terms of
tensor integral operators that depend on the gradient of the drift function bt (x1, x2) of the
nonlinear diffusion. These integro-differential operators are described in Section 3.6. The
last section, Section 3.7 provides some differential formulae as well as some exponential
decays estimates of the norm of these operators w.r.t. the time horizon.
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3.1. Fréchet differential. We let [n] stands for the set of n multiple indexes i =
(i1, . . . , in) ∈ In over some finite set I . Notice that [n1] × [n2] = [n1 + n2]. We denote by
Tp,q(I) the space of (p, q)-tensor X with real entries (Xi,j )(i,j)∈[p]×[q]. Given a (p1, q1)-
tensor X and a (p2, q2)-tensor Y we denote by (X ⊗ Y) the ((p1 + q1), (p2 + q2))-tensor
defined by

(X ⊗ Y)(i,j),(k,l) := Xi,kYj,l .

For a given (p1, q)-tensor X and a given (q,p2) tensor Y , the product XY and the trans-
position Y ′ are the (p1,p2) and (p2, q) tensors with entries

∀(i, j) ∈ [p1] × [p2] (XY)i,j := ∑
k∈[q]

Xi,kYk,j and Y ′
j,k = Yk,j .

We equip Tp,q(I) with the Frobenius inner product

〈X,Y 〉 := Tr
(
XY ′) := ∑

i∈[p]

(
XY ′)

i,i and the norm ‖X‖Frob :=
√

Tr
(
XX′).

Identifying (1,0)-tensors T1,0(I) = RI with column vectors (Xi)i∈I ∈ RI the above quan-
tities coincide with the conventional Euclidian inner product and norm on the product space
RI . When I = {1, . . . , d} we simplify notation and we set Rd instead of R{1,...,d}. For any
tensors X and Y with appropriate dimensions, using Cauchy–Schwartz inequality we check
that

〈X,Y 〉2 ≤ ‖X‖Frob‖Y‖Frob and ‖XY‖Frob ≤ ‖X‖Frob‖Y‖Frob.

Let H(Tp,q(I)) := L2((�,F,P),Tp,q(I)) be the Hilbert space of Tp,q(I)-valued random
variables defined on some probability space (�,F,P), equipped with the inner product

〈X,Y 〉H(Tp,q(I)) = E
(〈X,Y 〉) and the norm ‖X‖H(Tp,q(I)) := 〈X,X〉1/2

H(Tp,q(I))

induced by the inner product 〈X,Y 〉 on Tp,q(I). We denote by E(X) = E(Xi,j )(i,j)∈[p]×[q]
the entry-wise expected value of a (p, q)-tensor.

When I = {1, . . . , d} and (p, q) = (1,0) the space H(Tp,q(I)) coincides with be the
Hilbert space H(Rd) = L2((�,F,P),Rd) of square integrable Rd -valued and F-measurable
random variables.

We denote by

Hn

(
Tp,q(I)

) := L2
(
(�,Fn,P),Tp,q(I)

)
the nondecreasing sequence of Hilbert spaces associated with some increasing filtration Fn ⊂
Fn+1.

In Landau notation, we recall that a function

F : X ∈ H1
(
Tp1,q1(I)

) �→ F(X) ∈ H2
(
Tp2,q2(J )

)
is said to be Fréchet differentiable at X if there exists a continuous map

X ∈ H1
(
Tp,q(I)

) �→ ∂F (X) ∈ Lin
(
H1
(
Tp1,q2(I)

)
,H2

(
Tp2,q2(J )

))
such that

F(X + Y) = F(X) + ∂F (X) · Y + o(Y ).
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3.2. Tensor integral operators. Let B(E,Tp,q(I)) be the set of bounded measurable
functions from a measurable space E into some tensor space Tp,q(I). Signed measures μ

on E act on bounded measurable functions g from E into R. We extend these integral op-
erators to tensor valued functions g = (gi,j )(i,j)∈[p]×[q]) ∈ B(E,Tp,q(I)) by setting for any
(i, j) ∈ [p] × [q]

μ(g)i,j = μ(gi,j ) :=
∫

μ(dx)gi,j (x) and we set μ(g) :=
∫

μ(dx)g(x).

Let (E,E) and (F,F) be some pair of measurable spaces. A (p, q)-tensor integral operator

Q : g ∈ B
(
F,Tq,r (I)

) �→ Q(g) ∈ B
(
E,Tp,r (I)

)
is defined for r ≥ 0 and g ∈ B(F,Tq,r (I)) by the tensor valued and measurable function
Q(g) with entries given x ∈ E and (i, j) ∈ ([p] × [r]) by the integral formula

Q(g)i,j (x) = ∑
k∈[q]

∫
F
Qi,k(x, dx)gk,j (x)

for some collection of integral operators Qi,k(x1, dx2) from B(E,R) into B(F,R). We also
consider the operator norm

|||Q||| := sup
‖g‖≤1

∥∥Q(g)
∥∥ for some tensor norm ‖ · ‖.

The tensor product (Q1 ⊗Q2) of a couple of (pi, qi)-tensor integral operators

Qi : g ∈ B
(
Fi,Tqi,ri (I)

) �→ Q(g) ∈ B
(
Ei,Tpi,ri (I)

)
with i = 1,2

is a (p, q)-tensor integral operator

Q1 ⊗Q2 : h ∈ B
(
F,Tq,r (I)

) �→ Q(g) ∈ B
(
E,Tp,q(I)

)
with the product spaces

(E,F ) := (E1 × E2,F1 × F2) and (p, q, r) = (p1 + p2, q1 + q2, r1 + r2).

The entries of (Q1 ⊗ Q2)(h) are given for any x = (x1, x2) and any pair of multi-indices
i = (i1, i2) ∈ ([p1] × [p2]), j = (j1, j2) ∈ ([r1] × [r2]) by the integral formula(

Q1 ⊗Q2)(h)i,j (x) = ∑
k∈([q1]×[q2])

∫
F1×F2

(
Q1 ⊗Q2)

i,k(x, dy)hk,j (y)

with the tensor product measures defined for any k = (k1, k2) ∈ ([q1] × [q2]) and any y =
(y1, y2) by(

Q1 ⊗Q2)
(i1,i2),(k1,k2)

(
(x1, x2), d(y1, y2)

) := Q1
i1,k1

(x1, dy1)Q2
i2,k2

(x2, dy2).

3.3. Variational equations. The gradient and the Hessian of a multivariate smooth func-
tion h(x) = (hi(x))i∈[p] is defined by the (1,p) and (2,p) tensors ∇h(x) and ∇2h(x) with
entries given for any 1 ≤ k, l ≤ d and i ∈ [p] by the formula

(3.1) ∇h(x)k,i = ∂xk
hi(x) and ∇2h(x)(k,l),i = ∂xk

∂xl
hi(x).

We consider the tensor valued functions b
[k1,k2]
t and b

[k1,k2,k3]
t defined for any k1, k2, k3 = 1,2

by

b
[k1,k2]
t := (∇xk1

⊗ ∇xk2
)bt and b

[k1,k2,k3]
t := (∇xk1

⊗ ∇xk2
⊗ ∇xk3

)bt
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with the (2,1) and (3,1)-tensor valued functions(
b

[k1,k2]
t

)
(i1,i2),j

= ∂
x

i1
k1

∂
x

i2
k2

b
j
t and

(
b

[k1,k2,k3]
t

)
(i1,i2,i3),j

= ∂
x

i1
k1

∂
x

i2
k2

∂
x

i3
k3

b
j
t .

In the above display, ∂xi
k
b

j
t (x1, x2) stands for the partial derivative of the scalar function

b
j
t (x1, x2) w.r.t. the coordinate xi

k , with the drift function bt (x1, x2) from R2d into Rd intro-

duced in Section 1.1. In the same vein, ∂
x

i1
k1

∂
x

i2
k2

b
j
t (x1, x2) and ∂

x
i1
k1

∂
x

i2
k2

∂
x

i3
k3

b
j
t (x1, x2) stands

for the second and third partial derivatives of b
j
t (x1, x2) w.r.t. the coordinates x

i1
k1

, x
i2
k2

and x
i3
k3

with k1, k2, k3 ∈ {1,2}.
For any μ ∈ P2(R

d) and x1 ∈Rd we also consider the tensor functions

b
[1]
t (x1,μ)i,j :=

∫
μ(dx2)∂xi

1
b

j
t (x1, x2),

b
[1,1]
t (x1,μ)(i1,i2),j :=

∫
μ(dx2)∂

x
i1
1

∂
x

i2
1

b
j
t (x1, x2).

Recalling that bt (x,φs,t (μ)) has continuous and uniformly bounded derivatives up to the
third order, the stochastic flow x �→ X

μ
s,t (x) is a twice differentiable function of the initial

state x. In addition, when (H) holds the gradient ∇X
μ
s,t (x) of the diffusion flow X

μ
s,t (x)

satifies the (d × d)-matrix valued stochastic diffusion equation

(3.2) ∂t∇X
μ
s,t (x) = ∇X

μ
s,t (x)b

[1]
t

(
X

μ
s,t (x),φs,t (μ)

) =⇒ ∥∥∇X
μ
s,t (x)

∥∥
2 ≤ e−λ1(t−s).

The above estimate is a direct consequence of well-known log-norm estimates for exponential
semigroups; see, for instance, [22] as well as Section 1.3 in the recent article [11].

We have the stochastic tensor evolution equation

∂t∇2X
μ
s,t (x)

= ∇2X
μ
s,t (x)b

[1]
t

(
X

μ
s,t (x),φs,t (μ)

)+ [∇X
μ
s,t (x) ⊗ ∇X

μ
s,t (x)

]
b

[1,1]
t

(
X

μ
s,t (x),φs,t (μ)

)
.

This implies that

∂t

∥∥∇2X
μ
s,t (x)

∥∥2
Frob ≤ −2λ1

∥∥∇2X
μ
s,t (x)

∥∥2
Frob + 2

∥∥b[1,1]∥∥
Frob

∥∥∇X
μ
s,t (x)

∥∥2
Frob

∥∥∇2X
μ
s,t (x)

∥∥
Frob

from which we check that

∂t

∥∥∇2X
μ
s,t (x)

∥∥
Frob ≤ −λ1

∥∥∇2X
μ
s,t (x)

∥∥
Frob + ∥∥b[1,1]∥∥

Frob

∥∥∇X
μ
s,t (x)

∥∥2
Frob.

Using (3.2), this yields the estimate

(3.3)
∥∥∇2X

μ
s,t (x)

∥∥
Frob ≤ c1e

−λ1(t−s)
∫ t

s
eλ1(u−s)

∥∥∇Xμ
s,u(x)

∥∥2
Frob du ≤ c2e

−λ1(t−s).

More generally, using the multivariate version of the de Faà di Bruno derivation formula [21]
(see also formula (A.1) in the Appendix), for any n ≥ 1 we also check the uniform estimate

(3.4)
∥∥∇nX

μ
s,t (x)

∥∥
Frob ≤ cne

−λ1(t−s).

A detailed proof is provided in the Appendix, on page 2648.
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3.4. Differential of Markov semigroups. We have the commutation formula

(3.5) ∇ ◦ P
μ
s,t = Pμ

s,t ◦ ∇
with the (1,1)-tensor integral operator Pμ

s,t defined for any x ∈ Rd and any differentiable
function f on Rd by the formula

(3.6) Pμ
s,t (∇f )(x) := E

[∇X
μ
s,t (x)∇f

(
X

μ
s,t (x)

)]
.

The tensor product of Pμ
s,t is also given by the (2,2)-tensor integral operator(

Pμ
s,t

)⊗2
(h)(x1, x2) := E

[[∇X
μ
s,t (x1) ⊗ ∇X

μ

s,t (x2)
]
h
(
X

μ
s,t (x1),X

μ

s,t (x2)
)]

.

In the above display, X
μ

s,t (x) stands for an independent copy of X
μ
s,t (x) and h = (∇ ⊗ ∇)g

stands for the matrix valued function defined in (1.14). We also have the commutation for-
mula (

Pμ
s,t

)⊗2 ◦ (∇ ⊗ ∇) = (∇ ⊗ ∇) ◦ (P μ0
s,t

)⊗2
.

In the same vein, we have the second order differential formula

(3.7) ∇2P
μ
s,t (f ) =P [2,1],μ

s,t (∇f ) +P [2,2],μ
s,t

(∇2f
)

with the (2,1) and (2,2)-tensor integral operators

(3.8)
P [2,1],μ

s,t (∇f )(x) := E
[∇2X

μ
s,t (x)∇f

(
X

μ
s,t (x)

)]
,

P [2,2],μ
s,t

(∇2f
)
(x) := E

[(∇X
μ
s,t (x) ⊗ ∇X

μ
s,t (x)

)∇2f
(
X

μ
s,t (x)

)].
Iterating the above procedure, the nth differential of P

μ
s,t (f ) at any order n ≥ 1 takes the form

∇nP
μ
s,t (f ) = ∑

1≤k≤n

P [n,k],μ
s,t

(∇kf
)

for some integral operators P [n,k],μ
s,t . For instance, we have the third order differential formula

(3.9) ∇3P
μ
s,t (∇f ) =P [3,1],μ

s,t (∇f ) +P [3,2],μ
s,t

(∇2f
)+P [3,3],μ

s,t

(∇3f
)

with the (2,1) and (2,2)-tensor integral operators

(3.10)

P [3,1],μ
s,t (∇f )(x) := E

[∇3X
μ
s,t (x)∇f

(
X

μ
s,t (x)

)]
,

P [3,2],μ
s,t

(∇2f
)
(x) := E

[(∇2X
μ
s,t (x)

�⊗ ∇X
μ
s,t (x)

)∇2f
(
X

μ
s,t (x)

)]
,

P [3,3],μ
s,t

(∇3f
)
(x) := E

[(∇X
μ
s,t (x) ⊗ ∇X

μ
s,t (x) ⊗ ∇X

μ
s,t (x)

)∇3f
(
X

μ
s,t (x)

)]
with the

�⊗-tensor product of type (3,2) given for any i = (i1, i2, i3) and l = (l1, l2) by(∇2X
μ
s,t (x)

�⊗ ∇X
μ
s,t (x)

)
i,l

:= (∇2X
μ
s,t (x) ⊗ ∇X

μ
s,t (x)

)
((i1,i2),i3),l

+ (∇2X
μ
s,t (x) ⊗ ∇X

μ
s,t (x)

)
((i2,i3),i1),l

+ (∇2X
μ
s,t (x) ⊗ ∇X

μ
s,t (x)

)
((i3,i1),i2),l

.

The above formulae remains valid for any column vector multivariate function f =
(fi)1≤i≤d . An explicit description of the integral operators P [n,k],μ

s,t for any 1 ≤ k ≤ n can
be obtained using multivariate derivations and combinatorial manipulations; see, for instance
the multivariate version of the de Faà di Bruno derivation formulae (A.1) and (A.2) in the
Appendix. Following the proof of (3.4) we also check the uniform estimates

(3.11) sup
1≤k≤n

∣∣∣∣∣∣P [n,k],μ
s,t

∣∣∣∣∣∣≤ cne
−λ1(t−s).
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Using the moment estimates (1.15) for any μ ∈ P2(R
d), m,n ≥ 0, and any s ≤ t , we also

check the rather crude estimate

(3.12)
∣∣∣∣∣∣P μ

s,t

∣∣∣∣∣∣
Cn

m(Rd )→Cn
m(Rd ) ∨ ∣∣∣∣∣∣(P μ

s,t

)⊗2∣∣∣∣∣∣
Cn

m(R2d )→Cn
m(R2d ) ≤ cm,n(t)

[
1 + ‖e‖μ,2

]m
.

For instance, using the de Faà di Bruno derivation formula (A.2) for any function f ∈ Cn
m(Rd)

such that ‖f ‖Cn
m(Rd ) ≤ 1 and for any 0 ≤ k ≤ n we check that∥∥∇kP
μ
s,t (f )(x)

∥∥= ∥∥E(∇k(f ◦ X
μ
s,t

)
(x)
)∥∥≤ cn,m(t)E

((
1 + ∥∥Xμ

s,t (x)
∥∥)m).

The estimates (1.15) implies that∥∥∇kP
μ
s,t (f )(x)

∥∥≤ cn,m(t)
(‖x‖ + ‖e‖μ,2

)m ≤ cn,m(t)
(
1 + ‖x‖)m(1 ∨ ‖e‖μ,2

)m
from which we conclude that∣∣∣∣∣∣P μ

s,t

∣∣∣∣∣∣
Cn

m(Rd )→Cn
m(Rd ) ≤ cm,n(t)

[
1 + ‖e‖μ,2

]m
.

3.5. Bismut–Elworthy–Li extension formulae. We have the Bismut–Elworthy–Li for-
mula

(3.13)

∇P
μ
s,t (f )(x) = E

(
f
(
X

μ
s,t (x)

)
τ

μ,ω
s,t (x)

)
with τ

μ,ω
s,t (x) :=

∫ t

s
∂uωs,t (u)∇Xμ

s,u(x) dWu.

The above formula is valid for any function ωs,t : u ∈ [s, t] �→ ωs,t (u) ∈ R of the following
form:

(3.14) ωs,t (u) = ϕ
(
(u − s)/(t − s)

) =⇒ ∂uωs,t (u) = 1

t − s
∂ϕ
(
(u − s)/(t − s)

)
for some nondecreasing differentiable function ϕ on [0,1] with bounded continuous deriva-
tives and such that (

ϕ(0), ϕ(1)
)= (0,1) =⇒ ωs,t (t) − ωs,t (s) = 1.

In the same vein, for any s ≤ u ≤ t we have

(3.15) ∇2P
μ
s,t (f )(x) = E

(
f
(
X

μ
s,t (x)

)[
τ [2],μ,ω
s,u (x) + ∇Xμ

s,u(x)τ
φs,u(μ),ω
u,t

(
Xμ

s,u(x)
)
τμ,ω
s,u (x)′

])
with the stochastic process

τ
[2],μ,ω
s,t (x) :=

∫ t

s
∂uωs,t (u)∇2Xμ

s,u(x) dWu.

Besides the fact that X
μ
s,t (x) is a nonlinear diffusion, the proof of the above formula follows

the same proof as the one provided in [6, 12, 39, 55, 64] in the context of diffusions on
differentiable manifolds. For the convenience of the reader, a detailed proof is provided in
the Appendix on page 2650. Using (3.13), for any f s.t. ‖f ‖ ≤ 1 we check that∥∥∇P

μ
s,t (f )

∥∥2 ≤ E
(∥∥τμ,ω

s,t (x)
∥∥2)

≤
∫ t

s
e−2λ1(u−s)

∥∥∂uω
s,t (u)

∥∥2
du = 1

t − s

∫ 1

0
e−2λ1(t−s)v(∂ϕ(v)

)2
dv.

Let ϕε with ε ∈]0,1[ be some differentiable function on [0,1] null on [0,1 − ε] and such that
|∂ϕε(u)| ≤ c/ε and (ϕε(1 − ε), ϕ(1)) = (0,1), for instance, we can choose

ϕ(u) =
⎧⎪⎨⎪⎩

0 if u ∈ [0,1 − ε],
1 + cos

((
1 + 1 − u

ε

)
π

2

)
if u ∈ [1 − ε,1].
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In this situation, we find the rather crude uniform estimate

(3.16)

∥∥∇P
μ
s,t (f )

∥∥2 ≤
(

c

ε

)2 1

t − s

∫ 1

1−ε
e−2λ1(t−s)v dv

=⇒ ∥∥∇P
μ
s,t (f )

∥∥≤ c

ε

1√
t − s

e−λ1(1−ε)(t−s).

In the same vein, combining (3.15) with the estimate (3.3) for any ε ∈]0,1[ and u ∈]s, t[ we
also check the rather crude uniform estimate∥∥∇2P

μ
s,t (f )

∥∥≤ c1

ε

1√
u − s

e−λ1(u−s)(1−ε) + c2

ε2

1√
(t − u)(u − s)

e−λ1(u−s)e−λ1(t−s)(1−ε).

Choosing u = s + (1 − ε)(t − s) in the above display we readily check that

(3.17)

∥∥∇2P
μ
s,t (f )

∥∥≤ c1

ε
√

1 − ε

1√
t − s

e−λ1(1−ε)2(t−s)

+ c2

ε2

1√
ε(1 − ε)

1

t − s
e−2λ1(t−s)(1−ε).

3.6. Integro-differential operators. Let B
μ
s,t (x0, x1) be the matrix-valued function de-

fined for any (x0, x1) ∈R2d , μ ∈ P2(R
d) and any s ≤ t by the formulae

(3.18) B
μ
s,t (x0, x1) := ∇x0b

μ
s,t (x0, x1) with b

μ
s,t (x0, x1) := E

[
bt

(
x1,X

μ
s,t (x0)

)]
.

For instance, for the linear model discussed in (2.24) we have

B
μ
s,t (x0, x1)

′ = B2e
(t−s)B1 and

b
μ
s,t (x0, x1) = B1x1 + B2

[
e(t−s)B1

(
x0 − μ(e)

)+ e(t−s)[B1+B2]μ(e)
]
.

We also consider the collection Weyl chambers [s, t]n defined for any n ≥ 1 by

[s, t]n := {
u = (u1, . . . , un) ∈ [s, t]n : s ≤ u1 ≤ · · · ≤ un ≤ t

}
and set du := du1 · · ·dun.

We consider the space-time Weyl chambers

(3.19) �s,t := ⋃
n≥1

�n
s,t with �n

s,t := [s, t]n ×R
nd .

The coordinates of a generic point (u, y) ∈ �n
s,t for some n ≥ 1 are denoted by

u = (u1, . . . , un) ∈ [s, t]n and y = (y1, . . . , yn) ∈R
nd .

We also use the convention u0 = s and un+1 = t . We consider the measures �s,u(μ) on �s,t

given on every set �n
s,t and any n ≥ 1 by

�s,u(μ)
(
d(u, y)

)= φs,u(μ)(dy) du

with the tensor product measures

φs,u(μ)(dy) := φs,u1(μ)(dy1) . . . φs,un(μ)(dyn).

DEFINITION 3.1. Let b
μ
s,u(x, y) be the function defined for any μ ∈ P2(R

d), x ∈ Rd ,
and any (u, y) ∈ �n

s,t and n ≥ 1 by the formula

(3.20) bμ
s,u(x, y)′ := bμ

s,u1
(x, y1)

′ ∏
1≤k<n

B
φs,uk

(μ)
uk,uk+1 (yk, yk+1).
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In the above display the product of matrices is understood as a directed product from k = 1
to k = (n − 1). For instance, for the linear model discussed in (2.24) we have

bμ
s,u(x, y) = B2e

(un−un−1)B1 · · ·B2e
(u2−u1)B1bμ

s,u1
(x, y1).

For any x ∈ Rd , and any (u, y) ∈ �n
s,t and n ≥ 1 we also set

(3.21) B
φs,u(μ)
u,t (y, x) := B

φs,un (μ)
un,t (yn, x) and Pφs,u(μ)

u,t (∇f )(y) := Pφs,un(μ)
un,t (∇f )(yn).

DEFINITION 3.2. For any μ0,μ1 ∈ P2(R
d) and s ≤ t we let Q

μ1,μ0
s,t be the operator

defined on differentiable functions f on Rd by

(3.22) Q
μ1,μ0
s,t (f ) := Qμ1,μ0

s,t (∇f )

with the (0,1)-tensor integral operator Qμ1,μ0
s,t defined by the integral formula

Qμ1,μ0
s,t (∇f )(x) :=

∫
�s,t

�s,u(μ1)
(
d(u, y)

)
bμ0
s,u(x, y)′Pφs,u(μ0)

u,t (∇f )(y).

Recall that bt (x, y) is differentiable at any order with uniformly bounded derivatives. Thus,
using the estimates (1.15) and (3.4), for any m,n ≥ 0, μ0,μ1 ∈ Pm∨2(R

d) we have

(3.23)
∥∥Qμ1,μ0

s,t

∥∥
C1

m(Rd )→Cn
1 (Rd ) ≤ cm,n(t)ρm∨2(μ0,μ1).

DEFINITION 3.3. Let p
μ1,μ0
s,t be the function defined for any s ≤ t and x, z ∈ Rd by the

formula

(3.24) p
μ1,μ0
s,t (x, z)′ = b

μ0
s,t (x, z)′ +

∫
�s,t

�s,u(μ1)
(
d(u, y)

)
bμ0
s,u(x, y)′Bφs,u(μ0)

u,t (y, z).

In this notation, we readily check the following proposition.

PROPOSITION 3.4. The (0,1)-tensor integral operator Qμ1,μ0
s,t can be rewritten as fol-

lows:

Qμ1,μ0
s,t (∇f )(x) =

∫
�1

s,t

�s,u(μ1)
(
d(u, y)

)
pμ1,μ0

s,u (x, y)′Pφs,u(μ0)
u,t (∇f )(y).

For instance, for the linear model discussed in (2.24) the function p
μ1,μ0
s,t (x, z) defined in

(3.24) reduces to

(3.25)

p
μ1,μ0
s,t (x, z) = B1z + B2e

(t−s)(B1+B2)x

+ B2

[∫ t

s
e(t−u)(B1+B2)B1e

(u−s)(B1+B2) duμ1(e)

+
∫ t

s
e(t−u)(B1+B2)B2e

(u−s)(B1+B2) duμ0(e)

]
.

We check this claim expanding in (3.24) the exponential series coming from the integration
over the set �s,t . A detailed proof of the above formula is provided in the Appendix on
page 2651.
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3.7. Some differential formulae. The matrix ∇y0b
μ
s,t (y0, y1) defined in (3.18) can alter-

natively be written as follows

∇y0b
μ
s,t (y0, y1) = Pμ

s,t

(
b

[2]
t (y1, ·))(y0) = E

[∇X
μ
s,t (y0)b

[2]
t

(
y1,X

μ
s,t (y0)

)]
.

We also have the (2,1) and (3,1)-tensor formulae

∇2
y0

b
μ
s,t (y0, y1) = P [2,1],μ

s,t

(
b

[2]
t (y1, ·))(y0) +P [2,2],μ

s,t

(
b

[2,2]
t (y1, ·))(y0),

∇3
y0

b
μ
s,t (y0, y1) = P [3,1],μ

s,t

(
b

[2]
t (y1, ·))(y0) +P [3,2],μ

s,t

(
b

[2,2]
t (y1, ·))(y0)

+P [3,3],μ
s,t

(
b

[2,2,2]
t (y1, ·))(y0).

For any (u, y) ∈ �n
s,t with n ≥ 1 and for any k ≥ 1 we have the (k,1)-tensor formulae

(3.26) ∇k
y0

bμ
s,u(y0, y) = B

[k],μ
s,u (y0, y) := ∇k

y0
bμ
s,u1

(y0, y1)
∏

1≤k<n

B
φs,uk

(μ)
uk,uk+1 (yk, yk+1).

We consider the (n,1)-tensor valued function

q
[n],μ1,μ0
s,t (x, z) := B

[n],μ0
s,t (x, z) +

∫
�s,t

�s,u(μ1)
(
d(u, y)

)
B

[n],μ0
s,u (x, y)B

φs,u(μ0)
u,t (y, z)

and we use the convention

B
[0],μ0
s,t (x, z) = b

μ0
s,t (x, z)′ so that q

[0],μ1,μ0
s,t (x, z) = p

μ1,μ0
s,t (x, z)′.

For instance, for the linear model discussed in (2.24) and (3.25) the above objects reduce to

q
[1],μ1,μ0
s,t (x, y)′ = B2e

(B1+B2)(t−s) and ∀n ≥ 2 q
[n],μ1,μ0
s,t (x, y) = 0.

In this notation, we have the following proposition.

PROPOSITION 3.5. For any n ≥ 0 the nth differential of the operator Q
μ1,μ0
s,t is given by

the formula

∇nQ
μ1,μ0
s,t (f ) = Q[n],μ1,μ0

s,t (∇f )

with the (n,1)-tensor integral operator given by

(3.27) Q[n],μ1,μ0
s,t (∇f )(x) :=

∫
�1

s,t

�s,u(μ1)
(
d(u, y)

)
q[n],μ1,μ0
s,u (x, y)Pμ0

u,t (∇f )(y).

In addition, when condition (H) is satisfied for any n ≥ 1 we have the exponential estimates

(3.28)
∣∣∣∣∣∣Q[n],μ1,μ0

s,t

∣∣∣∣∣∣≤ cne
−λ(t−s) for some λ > 0.

PROOF. The proof of the first assertion follows from (3.24). More precisely, using (3.24)
we have

∇n
x p

μ1,μ0
s,t (x, y) = q

[n],μ1,μ0
s,t (x, y).

On the other hand, by Proposition 3.4 we also have

∇nQ
μ1,μ0
s,t (f )(x) = ∇nQμ1,μ0

s,t (∇f )(x)

=
∫
�1

s,t

�s,u(μ1)
(
d(u, y)

)∇n
x pμ1,μ0

s,u (x, y)Pφs,u(μ0)
u,t (∇f )(y)

= Q[n],μ1,μ0
s,t (∇f )(x).
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This ends the proof of the first assertion. When condition (H) is satisfied, for any x ∈Rd and
(u, y) ∈ �n

s,t we have

(3.29)
∥∥Bμ

s,t (y0, y1)
∥∥

2 ≤ ∥∥b[2]∥∥
2e

−λ1(t−s) and
∥∥Bμ

s,u(x, y)
∥∥

2 ≤ ∥∥b[2]∥∥n
2e

−λ1(un−s).

Using (3.4) we also check the uniform estimate

(3.30)
∥∥q[n],μ1,μ0

s,t (x, y)
∥∥≤ cne

−λ1,2(t−s).

The end of the proof is now a consequence of (3.2). �

PROPOSITION 3.6. For any n ≥ 0 any bounded function f on Rd and for any function
ω of the form (3.14) we have the Bismut–Elworthy–Li formula

(3.31) ∇nQ
μ1,μ0
s,t (f ) =

∫
�1

s,t

�s,u(μ)
(
d(u, y)

)
q[n],μ1,μ0
s,u (x, y)E

(
f
(
X

μ0
u,t (y)

)
τ

μ0,ω
u,t (y)

)
.

In the above display, τ
μ,ω
u,t (y) stands for the stochastic process defined in (3.13). In addition,

when condition (H) is satisfied we have the exponential estimates

(3.32)
∥∥∇nQ

μ1,μ0
s,t (f )

∥∥≤ cne
−λ(t−s)‖f ‖ for some λ > 0.

PROOF. The proof of the first assertion is a direct application of the Bismut–Elworthy–Li
formula (3.13). More precisely, using (3.13) we have

Pμ0
u,t (∇f )(y) = E

(
f
(
X

μ0
u,t (y)

)
τ

μ0,ω
u,t (y)

)
.

The formula (3.31) is now a direct consequence of (3.27).
We check (3.32) combining (3.16) with (3.30). This ends the proof of the proposition. �

When n = 1 we drop the upper index and we write (B
μ
s,u, q

μ1,μ0
s,t ) instead of (B

[1],μ
s,u ,

q
[1],μ1,μ0
s,t ).

The operators discussed above are indexed by a pair of measures (μ0,μ1). To simplify
notation, when μ1 = μ0 = μ we suppress one of the indices and we write (Q

μ
s,t ,Q

[n],μ
s,t ) and

(p
μ
s,t , q

[n],μ
s,t ) instead of (Q

μ,μ
s,t ,Q[n],μ,μ

s,t ) and (p
μ,μ
s,t , q

[n],μ,μ
s,t ).

4. Tangent processes. The tangent process associated with the diffusion flow ψs,t (Y )

introduced in (1.6) is given for any U ∈Hs(R
d) by the evolution equation

(4.1) ∂t

(
∂ψs,t (Y ) · U )= ∂Bt

(
ψs,t (Y )

) · (∂ψs,t (Y ) · U ).
In the above display, ∂Bt(X) ∈ Lin(Ht (R

d),Ht (R
d)) stands for the Fréchet differential of

the drift function Bt defined for any Z ∈Ht (R
d) by

∂Bt(X) · Z = E
(∇x1bt (X,X)′Z + ∇x2bt (X,X)′Z|Ft

)
,

where (X,Z) stands for an independent copy of (X,Z).

4.1. Spectral estimate. This section is mainly concerned with the proof of Theorem 2.1.
For any pair of random variables Z1,Z2 ∈ Ht (R

d) we have the duality formula〈
Z1, ∂Bt (X) · Z2

〉
Ht (Rd ) = 〈

∂Bt(X)
 · Z1,Z2
〉
Ht (Rd )

with the dual operator ∂Bt(X)
 defined by the formula

∂Bt(X)
 · Z1 := E
(
b

[1]
t (X,X)Z1 + b

[2]
t (X,X)Z1|Ft

)
.
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In the above display, (X,Z1) stands for an independent copy of (X,Z1). The symmetric part
of ∂Bt(X) is given by the formula

∂Bt(X)sym := 1

2

[
∂Bt(X) + ∂Bt(X)


]
.

We are now in position to prove Theorem 2.1.
The first assertion is a direct consequence of the evolution equation

2−1∂t

∥∥∂ψs,t (Y ) · U∥∥2
Ht (Rd ) = 〈(

∂ψs,t (Y ) · U ), ∂Bt

(
ψs,t (Y )

)
sym · (∂ψs,t (Y ) · U )〉

Ht (Rd ).

Whenever (H) is met we have ∂Bt(X)sym ≤ −λ0I for some λ0 > 0. In this situation, the
r.h.s. estimate in (2.2) is a direct consequence of (2.1). Given an independent copy (X,Z2)

of (X,Z2) we have

2
〈
Z1, ∂Bt (X)
 · Z2

〉
Ht (Rd ) = E

(〈[
Z1

Z1

]
,At (X,X)

[
Z2

Z2

]〉)
= 2

〈
∂Bt(X) · Z1,Z2

〉
Ht (Rd ).

This yields the log-norm estimate

At(X,X)sym ≤ −λ0I =⇒ ∂Bt(X)sym ≤ −λ0I.

The proof of Theorem 2.1 is now completed.

4.2. Dyson–Phillips expansions. In the further development of this section we shall de-
note by (

ψs,t ,U,X
μ

s,t , Y
)

and
(
ψ

n
s,t ,U

n
,X

μ,n

s,t , Y
n)

n≥0

a collection of independent copies of the stochastic flows (ψs,t ,X
μ
s,t ) and some given U,Y ∈

Hs(R
d). To simplify notation, we also set

Xs,t := ψs,t (Y ), Xs,t := ψs,t (Y ) and X
n

s,t := ψ
n
s,t

(
Y

n)
.

We are now in position to state and prove the main result of this section.

THEOREM 4.1. The tangent process ∂ψs,t is given for any U ∈ Hs(R
d) and any Y ∈

Hs(R
d) with distribution μ ∈ P2(R

d) by the Dyson–Phillips series

(4.2)

∂ψs,t (Y ) · U = ∇X
μ
s,t (Y )′U

+∑
n≥1

∫
[s,t]n

(∇X
φs,un(μ)
un,t

)
(Xs,un)

′

×E

([ ∏
1≤k≤n

B
φs,uk−1 (μ)

uk−1,uk

(
X

k−1
s,uk−1

,X
k

s,uk

)]′
U
∣∣∣Fun

)
du

with the boundary conventions

u0 = s, X
0
s,u1

= Xs,u1 and X
n

s,un
= Xs,un for any n ≥ 1.

PROOF. For any s ≤ u ≤ t and x ∈ Rd we have

∂t∇X
μ
s,t (x)−1 = −b

[1]
t

(
X

μ
s,t (x),φs,t (μ)

)∇X
μ
s,t (x)−1

and

∇X
μ
s,t (x) = ∇Xμ

s,u(x)
(∇X

φs,u(μ)
u,t

)(
Xμ

s,u(x)
)
.
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In addition, for any s ≤ u ≤ t and x0, x1 ∈ Rd we have

∇x0bt

(
x1,X

φs,u(μ)
u,t (x0)

)= ∇X
φs,u(μ)
u,t (x)b

[2]
t

(
x1,X

φs,u(μ)
u,t (x0)

)
.

Combining the above with (4.1) we check that

∂t

((∇X
μ
s,t (Y )−1)′(∂ψs,t (Y ) · U ))

= (∇X
μ
s,t (Y )−1)′

E
(∇bt

(
ψs,t (Y ),X

μ

s,t (·)
)
(Y )′

(∇X
μ

s,t (Y )−1)′(∂ψs,t (Y ) · U )|Ft

)
.

In the above display, ∇bt (ψs,t (Y ),X
μ

s,t (·))(Y ) = ∇h(Y ) stands for the gradient of the random
function

h : x �→ h(x) = bt

(
ψs,t (Y ),X

μ

s,t (x)
)

evaluated at x = Y .

Equivalently, we have(∇X
μ
s,t (Y )−1)′(∂ψs,t (Y ) · U )

= U +
∫ t

s

(∇Xμ
s,u(Y )−1)′

×E
(∇bu

(
ψs,u(Y ),X

μ

s,u(·)
)
(Y )′

(∇X
μ

s,u(Y )−1)′(∂ψs,u(Y ) · U )|Fu

)
du

and therefore

∂ψs,t (Y ) · U = (∇X
μ
s,t (Y )

)′
U +

∫ t

s

((∇X
φs,u(μ)
u,t

)(
Xμ

s,u(Y )
))′

×E
(∇bu

(
ψs,u(Y ),X

μ

s,u(·)
)
(Y )′

(∇X
μ

s,u(Y )−1)′(∂ψs,u(Y ) · U )|Fu

)
du.

Now, the end of the proof of (4.2) follows a simple induction, thus it is skipped. �

COROLLARY 4.2. For any V ∈ Ht (R
d) and for any Y ∈ Hs(R

d) with distribution μ ∈
P2(R

d) we have

(4.3)

∂ψs,t (Y )
 · V
= E

(∇X
μ
s,t (Y )V |Fs

)
+∑

n≥1

∫
[s,t]n

E

([ ∏
1≤k≤n

B
φs,uk−1 (μ)

uk−1,uk

(
X

k−1
s,uk−1

,X
k

s,uk

)](∇X
φs,un(μ)

un,t

)
(Xs,un)V

∣∣∣Fs

)
du

with the boundary conditions

u0 = s and X
0
s,u1

= ψs,u1(Y ) and X
n

s,un
= Xs,un.

4.3. Gradient semigroup analysis. This section is concerned with a gradient semigroup
description of the dual of the tangent process.

DEFINITION 4.3. For any μ0,μ1 ∈ P2(R
d) and s ≤ t we let Dμ1,μ0φs,t be the operator

defined on differentiable functions f on Rd by

(4.4) Dμ1,μ0φs,t := P
μ0
s,t + Q

μ1,μ0
s,t .

In the above display, Q
μ1,μ0
s,t stands for the operator defined in (3.22).
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Rewritten in terms of expectation operators we have

Dμ1,μ0φs,t (f )(x)

= E
[(

f ◦ X
μ0
s,t

)
(x)
]+∑

n≥1

∫
�n

s,t

�s,u(μ1)
(
d(u, y)

)
E
[
bμ0
s,u(x, y)′∇(f ◦ X

φs,un(μ0)
un,t

)
(yn)

]
.

Recall that bt (x, y) is differentiable at any order with uniformly bounded derivatives. Thus,
arguing as in the proof of (3.12) and (3.23) for any m,n ≥ 1, μ0,μ1 ∈ Pm∨2(R

d) we have

(4.5) ‖Dμ1,μ0φs,t‖Cn
m(Rd )→Cn

m(Rd ) ≤ cm,n(t)ρm∨2(μ0,μ1).

In the same vein, we check that

(4.6)
∥∥(Dμ1,μ0φs,t )

⊗2∥∥
Cn+1

m (R2d )→Cn
m+1(R

2d )
≤ cm,n(t)ρm∨2(μ0,μ1).

The proof of the above estimate is rather technical, thus it is housed in the Appendix on
page 2651.

REMARK 4.4. Using the Bismut–Elworthy–Li formula (3.31), we extend the operators
Dμ1,μ0φs,t with s < t to nonnecessarily differentiable and bounded functions.

We also extend the operator Dμ1,μ0φs,t to tensor functions f = (fi)i∈[n] by considering
the tensor function with entries

(4.7) Dμ1,μ0φs,t (f )i = Dμ1,μ0φs,t (fi).

In this situation, the function p
μ1,μ0
s,t introduced in (3.24) takes the form

p
μ1,μ0
s,t (x, z) = Dμ1,μ0φs,t

(
bt (z, ·))(x).

Let Gt,μ1 be the collection of integro-differential operators indexed by μ1 ∈ P2(R
d) de-

fined by

Gt,μ1(f )(x2) :=
∫

μ1(dx1)bt (x1, x2)
′∇f (x1).

We also set

Ht,μ0,μ1 := Lt,μ0 + Gt,μ1 and Ht,μ0 := Lt,μ0 + Gt,μ0 .

In this notation, we have the first order expansion

(4.8) μ1Lt,μ1 − μ0Lt,μ0 = (μ1 − μ0)Lt,μ0 + (μ1 − μ0)Gt,μ1 = (μ1 − μ0)Ht,μ0,μ1 .

THEOREM 4.5. For any m,n ≥ 1 and any μ0,μ1 ∈ Pm∨2(R
d) the operator Dμ1,μ0φs,t

coincides with the evolution semigroup of the integro-differential operator Ht,φs,t (μ0),φs,t (μ1);
that is, we have the forward evolution equation

(4.9) ∂tDμ1,μ0φs,t = Dμ1,μ0φs,t ◦ Ht,φs,t (μ0),φs,t (μ1) on Cn∨2
m

(
R

d).
In addition, for any s ≤ u < t we have the backward evolution equation

(4.10) ∂uDφs,u(μ1),φs,u(μ0)φu,t = −Hu,φs,u(μ0),φs,u(μ1) ◦ Dφs,u(μ1),φs,u(μ0)φu,t on Cn
m

(
R

d).
PROOF. The proof of the forward equation (4.9) is a direct consequence of the forward

evolution equation

∂tP
μ0
s,t = P

μ0
s,t Lt,φs,t (μ0)
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associated with the Markov semigroup P
μ0
s,t , thus it is skipped. The semigroup property (2.9)

yields

∂u(Dμ1,μ0φs,u ◦ Dφs,u(μ1),φs,u(μ0)φu,t ) = 0.

Combining the above with the forward equation (4.9) we check that

Dμ1,μ0φs,u ◦ ∂uDφs,u(μ1),φs,u(μ0)φu,t

= −Dμ1,μ0φs,u ◦ Hu,φs,u(μ0),φs,u(μ1) ◦ Dφs,u(μ1),φs,u(μ0)φu,t .

This implies that

[∂uDφs,u(μ1),φs,u(μ0)φu,t ]u=s = −Hs,μ0,μ1Dμ1,μ0φu,t

from which we conclude that

[∂uDφs,u(μ1),φs,u(μ0)φu,t ]u=v

= [∂uDφv,u(φs,v(μ1)),φv,u(φs,v(μ0))φu,t ]u=v = −Hs,φs,v(μ0),φs,v(μ1)Dφs,v(μ1),φs,v(μ0)φv,t .

This yields the backward evolution equation (4.10). This ends the proof of the theorem. �

Next proposition is a direct consequence of (4.4) combined with the formulae (3.5) and
(3.27).

PROPOSITION 4.6. We have the commutation formula

(4.11) ∇ ◦ Dμ1,μ0φs,t = Dμ1,μ0φs,t ◦ ∇
with the (1,1)-tensor integral operator given by the column vector function

(4.12)

Dμ1,μ0φs,t (∇f )(x) := Pμ0
s,t (∇f )(x)

+
∫
�1

s,t

�s,v(μ1)
(
d(v, y)

)
qμ1,μ0
s,v (x, y)Pφs,v(μ0)

v,t (∇f )(y).

In addition, when condition (H) is satisfied we have

(4.13) |||Dμ1,μ0φs,t ||| ≤ ce−λ(t−s) for some λ > 0.

REMARK 4.7. Following Remark 4.4, using the Bismut–Elworthy–Li formula (3.31), we
extend the gradient operators ∇Dμ1,μ0φs,t with s < t to measurable and bounded functions.
The exponential estimate stated in (3.32) are a direct consequence of the estimates presented
in (3.32).

By (4.7) the commutation formula (4.11) is also satisfied for multivariate column func-
tions f . In this situation Dμ1,μ0φs,t (∇f ) is a (d × d)-matrix valued function.

The proof of Theorem 2.2 is now a consequence of the estimate (4.13) and the fact that

∂t

[
φs,t (μ1) − φs,t (μ0)

]= [
φs,t (μ1) − φs,t (μ0)

] ◦ Ht,φs,t (μ0),φs,t (μ1).

More precisely, using (4.8) the above formula implies that

∂u

([
φs,u(μ1) − φs,u(μ0)

]
Dφs,u(μ1),φs,u(μ0)φu,t

)= 0

=⇒ φs,t (μ1) − φs,t (μ0) = (μ1 − μ0)Dμ1,μ0φs,t .

The operators discussed above are indexed by a pair of measures (μ0,μ1). To simplify no-
tation, when μ1 = μ0 = μ we suppress one of the parameters and we write (Dμφs,t ,Dμφs,t )

instead of (Dμ,μφs,t ,Dμ,μφs,t ).
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THEOREM 4.8. For any m,n ≥ 1, any function f ∈ Cn
m(Rd) and any Y ∈ Hs(R

d) with
distribution μ ∈ P2(R

d) we have the gradient formula

∂ψs,t (Y )
 · ∇f
(
ψs,t (Y )

)= ∇Dμφs,t (f )(Y ) = Dμφs,t (∇f )(Y ).

PROOF. Given a smooth function f on Rd we have〈∇f
(
ψs,t (Y )

)
, ∂ψs,t (Y ) · U 〉

Ht (Rd ) = 〈
∂ψs,t (Y )
 · ∇f

(
ψs,t (Y )

)
,U
〉
Hs (Rd ).

Replacing V by ∇f (ψs,t (Y )) in (4.3) we check that

∂ψs,t (Y )
 · ∇f
(
ψs,t (Y )

)
= ∇Dμφs,t (f )(Y )

= E
(∇(f ◦ X

μ
s,t

)
(Y )|Y )

+∑
n≥1

∫
[s,t]n

E

([ ∏
0≤k<n

B
φs,uk

(μ)
uk,uk+1

(
X

k

s,uk
,X

k+1
s,uk+1

)]∇(f ◦ X
φs,un(μ)
un,t

)
(Xs,un)

∣∣∣Y)du.

This ends the proof of the theorem �

5. Taylor expansions. This section is mainly concerned with the proof of the first and
second order Taylor expansions stated in Theorem 2.3 and Theorem 2.4. Section 5.1 presents
some preliminary differential formulae used in the proof of the theorems.

5.1. Some differential formulae. The commutation formula (4.11) takes the form

∇Dμ1,μ0φs,t (f ) =Dμ1,μ0φs,t (∇f ).

Combining (4.4) with Proposition 3.5 and the second order formula (3.7) we also have

∇2Dμ1,μ0φs,t (f ) = ∇2P
μ0
s,t (f ) +Q[2],μ1,μ0

s,t (∇f )

= P [2,1],μ
s,t (∇f ) +P [2,2],μ

s,t

(∇2f
)+Q[2],μ1,μ0

s,t (∇f ).

In summary, we have the first and second order differential formulae

(5.1)

∇Dμφs,t (f ) = Dμφs,t (∇f ),

∇2Dμφs,t (f ) = Dμφ
[2,1]
s,t (∇f ) +P [2,2],μ

s,t

(∇2f
)

with Dμφ
[2,1]
s,t =P [2,1],μ

s,t +Q[2],μ
s,t .

Similar formulae for ∇Dμ0,μ1φs,t and ∇2Dμ0,μ1φs,t can easily be found. In the same vein,
using (3.9) we check the third order differential formula

(5.2)

∇3Dμφs,t (f )

= Dμφ
[3,1]
s,t (∇f ) +P [3,2],μ

s,t

(∇2f
)+P [3,3],μ

s,t

(∇3f
)

with Dμφ
[3,1]
s,t := P [3,1],μ

s,t +Q[3],μ
s,t .

In addition, when condition (H) is satisfied we have the exponential estimates

(5.3) |||Dμφs,t ||| ∨
∣∣∣∣∣∣Dμφ

[2,1]
s,t

∣∣∣∣∣∣∨ ∣∣∣∣∣∣Dμφ
[3,1]
s,t

∣∣∣∣∣∣≤ ce−λ(t−s) for some λ > 0.
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DEFINITION 5.1. We let S
μ
s,t be the operator defined for any differentiable function f

on Rd by

S
μ
s,t (f ) = Sμ

s,t (∇f )

with the (0,1)-tensor integral operator Sμ
s,t defined by the formula

(5.4) Sμ
s,t (∇f )(x1, x2) := bs(x1, x2)

′Dμφs,t (∇f )(x1) + bs(x2, x1)
′Dμφs,t (∇f )(x2).

Using (4.5) and (4.12) for any m,n ≥ 0 and μ ∈ Pm∨2(R
d) we check that

(5.5)
∥∥Sμ

s,t

∥∥
Cn+1

m (Rd )→Cn
m+1(R

2d )
≤ cm,n(t)ρm∨2(μ).

We also have the differential formula

(5.6) (∇ ⊗ ∇)
(
S

μ
s,t (f )

)= S
[2,1],μ
s,t (∇f ) + S

[2,2],μ
s,t

(∇2f
)

with the matrix valued functions

S
[2,1],μ
s,t (∇f )(x1, x2) = b[1,2]

s (x1, x2)Dμφs,t (∇f )(x1) + b[2,1]
s (x2, x1)Dμφs,t (∇f )(x2)

+ b[2]
s (x2, x1)Dμφ

[2,1]
s,t (∇f )(x2)

′ +Dμφ
[2,1]
s,t (∇f )(x1)b

[2]
s (x1, x2)

′,

S
[2,2],μ
s,t

(∇2f
)
(x1, x2) := b[2]

s (x2, x1)P [2,2],μ
s,t

(∇2f
)
(x2)

′ +P [2,2],μ
s,t

(∇2f
)
(x1)b

[2]
s (x1, x2)

′.

When condition (H) is satisfied we also have the exponential estimates

(5.7)
∣∣∣∣∣∣S[2,1],μ

s,t

∣∣∣∣∣∣∨ ∣∣∣∣∣∣S[2,2],μ
s,t

∣∣∣∣∣∣≤ ce−λ(t−s) for some λ > 0.

In addition, using the Bismut–Elworthy–Li extension formulae and the estimates (2.7) and
(2.8), or any bounded measurable function f on Rd we check that∥∥(∇ ⊗ ∇)

(
S

μ
s,t (f )

)∥∥≤ c
(
1 ∨ 1/(t − s)

)
e−λ(t−s)‖f ‖ for some λ > 0.

5.2. A first order expansion. This section is mainly concerned with the proof of Theo-
rem 2.3. The next technical lemma is pivotal.

LEMMA 5.2. For any m ≥ 1 for any μ0,μ1 ∈ Pm+1(R
d) we have the second order ex-

pansion

(5.8)

φs,t (μ1) − φs,t (μ0)

= (μ1 − μ0)Dμ0φs,t

+ 1

2

∫ t

s

[
φs,u(μ1) − φs,u(μ0)

]⊗2 ◦ S
φs,u(μ0)
u,t du on Cn+1

m

(
R

d).
PROOF. Combining (4.8) with the backward evolution equation (4.10) we check that

∂u

{[
φs,u(μ1) − φs,u(μ0)

] ◦ Dφs,u(μ0)φu,t

}
= [

φs,u(μ1) − φs,u(μ0)
] ◦ [Hu,φs,u(μ0),φs,u(μ1) − Hu,φs,u(μ0)] ◦ Dφs,u(μ0)φu,t

= [
φs,u(μ1) − φs,u(μ0)

] ◦ [Gu,φs,u(μ1) − Gu,φs,u(μ0)] ◦ Dφs,u(μ)φu,t .

On the other hand, we have

[Gu,φs,u(μ1) − Gu,φs,u(μ0)](x2) :=
∫ (

φs,u(μ1) − φs,u(μ0)
)
(dx1)bu(x1, x2)

′∇f (x1).
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Integrating u from u = s to u = t we obtain the formula[
φs,t (μ1) − φs,t (μ0) − (μ1 − μ0)Dμ0φs,t

]
(f )

= 1

2

∫ t

s

∫ [
φs,u(μ1) − φs,u(μ0)

]⊗2(
d(x1, x2)

)
× [

bu(x1, x2)
′∇Dφs,u(μ0)φu,t (f )(x1) + bu(x2, x1)

′∇Dφs,u(μ0)φu,t (f )(x2)
]
du.

The end of the lemma is now completed. �

Combining the above lemma with (4.6) and (5.5) we check (2.11) with the operator
D2

μ1,μ0
φs,t defined for any m,n ≥ 0 and μ0,μ1 ∈ Pm+2(R

d) by

(5.9) D2
μ1,μ0

φs,t :=
∫ t

s
(Dμ1,μ0φs,u)

⊗2 ◦ S
φs,u(μ0)
u,t du ∈ Lin

(
Cn+2

m

(
R

d),Cn
m+2

(
R

2d)).
REMARK 5.3. The second order term in (2.11) can alternatively be expressed in terms

of the Hessian of the semigroup D2
μ1,μ0

φs,t ; that is, we have that

(5.10)
(μ1 − μ0)

⊗2D2
μ1,μ0

φs,t (f )

=
∫
[0,1]2

E
(〈[

(∇ ⊗ ∇)D2
μ1,μ0

φs,t (f )
]
(Yε,ε), (Y1 − Y0) ⊗ (Y 1 − Y 0)

〉)
dε dε

with the interpolating path

Yε,ε := (
Y0 + ε(Y1 − Y0), Y 0 + ε(Y 1 − Y 0)

)
.

In the above display, (Y 1, Y 0) stands for an independent copy of a pair of random variables
(Y0, Y1) with distribution (μ0,μ1). Also observe that

(μ1 − μ0)
⊗2D2

μ1,μ0
φs,t = (μ1 − μ0)

⊗2D
2
μ1,μ0

φs,t

with the centered second order operator

D
2
μ1,μ0

φs,t (f )(x1, x2)

:= [
(δx1 − μ0) ⊗ (δx2 − μ0)

]
D2

μ0
φs,t (f )

=
∫
[0,1]2

E
(〈[

(∇ ⊗ ∇)D2
μ1,μ0

φs,t (f )
](

Yε,ε(x1, x2)
)
, (x1 − Y0) ⊗ (x2 − Y 0)

〉)
dε dε.

In the above display, Yε,ε(x1, x2) stands for the interpolating path

Yε,ε(x1, x2) := (
Y0 + ε(x1 − Y0), Y 0 + ε(x2 − Y 0)

)
.

PROPOSITION 5.4. We have commutation formula

(5.11) (∇ ⊗ ∇) ◦ (Dμ1,μ0φs,t )
⊗2 = (Dμ1,μ0φs,t )

⊗2 ◦ (∇ ⊗ ∇).

In addition, we have the estimate

(5.12)
∣∣∣∣∣∣(Dμ1,μ0φs,t )

⊗2∣∣∣∣∣∣≤ ce−λ(t−s) for some λ > 0.
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PROOF. The proof of the first assertion is a consequence of the commutation formula
(4.11). Letting h = (∇ ⊗ ∇)g we have

(Dμ1,μ0φs,t )
⊗2(h)(x1, x2)

= (
Pμ0

s,t

)⊗2
(h)(x1, x2)

+
∫
�1

s,t

�s,v(μ1)
(
d(u, y)

)
qμ1,μ0
s,u (x2, y)

(
Pμ0

s,t ⊗Pφs,u(μ0)
u,t

)
(h)(x1, y)

+
∫
�1

s,t

�s,v(μ1)
(
d(u, y)

)
qμ1,μ0
s,u (x1, y)

(
Pφs,u(μ0)

u,t ⊗Pμ0
s,t

)
(h)(y, x2)

+
∫
�1

s,t×�1
s,t

�s,u(μ1)
(
d(u, y)

)
�s,v(μ1)

(
d(v, z)

)
× [

qμ1,μ0
s,u (x1, y) ⊗ qμ1,μ0

s,v (x2, z)
](
Pφs,u(μ0)

u,t ⊗Pφs,v(μ0)
v,t

)
(h)(y, z).

The proof of (5.12) now follows the same arguments as the ones we used in the proof of
(4.13), thus it is skipped. This ends the proof of the proposition. �

Combining (5.6) with the commutation formula (5.11), for any twice differentiable func-
tion f and any s ≤ t and μ0,μ1 ∈ P2(R

d) we check that

(5.13)

(∇ ⊗ ∇)D2
μ0,μ1

φs,t (f )

:=
∫ t

s
(Dμ0,μ1φs,u)

⊗2(
S

[2,1],φs,u(μ0)
u,t (∇f ) + S

[2,2],φs,u(μ0)
u,t

(∇2f
))

du

with the operators S[2,k],μ
s,t discussed in (5.6). The proof of (2.12) is a direct consequence of

(5.7) and (5.12). The proof of Theorem 2.3 is now completed.

5.3. Second order analysis. This short section is mainly concerned with the proof of the
first part of Theorem 2.4.

LEMMA 5.5. For any m ≥ 1 and μ0,μ1 ∈ Pm+3(R
d) and s ≤ t we have the tensor

product formula(
φs,t (μ1) − φs,t (μ0)

)⊗2

= (μ1 − μ0)
⊗2(Dμ0φs,t )

⊗2 + (μ1 − μ0)
⊗3Rμ1,μ0φs,t on Cn+2

m

(
R

2d)
for some third order linear operator Rμ1,μ0φs,t such that

‖Rμ1,μ0φs,t‖Cn+2
m (R2d )→Cn

m+3(R
3d )

≤ cm,n(t)ρm+2(μ0,μ1).

The proof of the above lemma is rather technical, thus it is housed in the Appendix, on
page 2652.

Combining the above lemma with (5.8) we readily check the second order decomposition
(2.14) with a the remainder linear operator D3

μ0,μ1
φs,t such that∥∥D3

μ0,μ1
φs,t

∥∥
Cn+3

m (Rd )→Cn
m+4(R

3d )
≤ cm,n(t)ρm+3(μ0,μ1).

This ends the proof of the first part of Theorem 2.4. The proof of the second part of the
theorem is provided in the Appendix, on page 2654.
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APPENDIX

PROOF OF (2.22). It is easy to check that this first assertion is true for any collection
of generators Lt,μ, thus we skip the details. The proof of the second assertion is a also a
direct consequence of a more general result which is valid for any collection of generators
and nonnecessarily symmetric functions.

For any N ≥ 2 and x = (xi)1≤i≤N ∈ (Rd)N we set

m(x)�2 := 1

N(N − 1)

∑
1≤i �=j≤N

δ(xi,xj ) and F(x) = m(x)⊗2(F ).

We extend Lt,μ to functions F(x1, x2) on R2d by setting

L
(2)
t,μ(F )

(
x1, x2)

= 1

2

(
Lt,μ

(
F
(
x1, ·))(x2)+ Lt,μ

(
F
(·, x2))(x1)

+ Lt,μ

(
F
(
x2, ·))(x1)+ Lt,μ

(
F
(·, x1))(x2)).

For any function F(x1, x2) on R2d we have

m(x)⊗2(F ) =
(

1− 1

N

)
m(x)�2(F )+ 1

N
m(x)

(
C(F)

)= m(x)�2
((

1− 1

N

)
F + 1

N
C(2)(F )

)
with

C(F)(x) = F(x, x) and C(2)(F )
(
x1, x2)= 1

2

(
C(F)

(
x1)+ C(F)

(
x2)).

This implies that

�t(F)(x) =
(

1 − 1

N

)
m(x)�2(L(2)

t,m(x)(F )
)+ 1

N
m(x)�2(L(2)

t,m(x)

(
C(2)(F )

))
.

Recalling that

m(x)�2(F ) = N

N − 1
m(x)⊗2(F ) − 1

N − 1
m(x)�2(C(2)(F )

)
we conclude that

�t(F)(x) = m(x)⊗2(L(2)
t,m(x)(F )

)+ 1

N
m(x)�2(�(2)

Lt,m(x)
(F )

)
with the operator

�
(2)
Lt,m(x)

= L
(2)
t,m(x) ◦ C(2) − C(2) ◦ L

(2)
t,m(x).

Observe that

�
(2)
Lt,m(x)

(F )
(
x1, x2)

= 1

2

(
Lt,m(x)

(
C(F)

)(
x1)+ Lt,m(x)

(
C(F)

)(
x2))

− 1

2

(
Lt,m(x)

(
F
(
x1, ·))(x1)+ Lt,m(x)

(
F
(·, x1))(x1)

+ Lt,m(x)

(
F
(
x2, ·))(x2)+ Lt,m(x)

(
F
(·, x2))(x2)).
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This yields the formula

�
(2)
Lt,m(x)

(F )
(
x1, x2)= 1

2

(
C
(
�

(2)
Lt,m(x)

(F )
)(

x1)+ C
(
�

(2)
Lt,m(x)

(F )
)(

x2))
from which we conclude that

�t(F)(x) = m(x)⊗2(L(2)
t,m(x)(F )

)+ 1

N
m(x)

(
�Lt,m(x)

(F )
)

with the function �Lt,m(x)
(F ) defined for any y ∈Rd by

�Lt,m(x)
(F )(y) = C

(
�

(2)
Lt,m(x)

(F )
)
(y, y)

= Lt,m(x)

(
C(F)

)
(y) − Lt,m(x)

(
F(y, ·))(y) − Lt,m(x)

(
F(·, y)

)
(y).

The above formula readily implies (2.22) as soon as Lt,μ is the collection of generators
associated with the stochastic flow defined in (1.1). This ends the proof of (2.22). �

PROOF OF (3.4). For any given 1 ≤ m ≤ n, we denote by �n,m the set of partitions
π = {π1, . . . , πm} of the set {1, . . . , n} with m blocks πi of size |πi |, with i ∈ {1, . . . ,m}. We
also let �n the set of partitions of the set {1, . . . , n} and �(π) the number of blocks in a given
partition π , and �+

n the subset of partitions π s.t. �(π) > 1.
Let [n] be the set of m multiple indexes i = (i1, . . . , in) ∈ {1, . . . , d}n. For any given i ∈ [n]

and any subset S = {j1, . . . , js} ⊂ {1, . . . , n} we set

iS = (ij1, . . . , ijs ).

For any x = (x1, . . . , xd) ∈ Rd and any multiple index i ∈ [n] we write ∂i instead of
∂xi1 ,...xin = ∂xi1 · · · ∂xin the nth partial derivatives w.r.t. the coordinates (xi1, . . . , xin).

Let f and X be a couple of smooth functions from Rd into itself. In this notation for any
i ∈ [n] and 1 ≤ j ≤ d we have the multivariate Faà di Bruno derivation formula

∂i

(
f j ◦ X

)= ∑
1≤m≤n

∑
k∈[m]

∂kf
j (X)

∑
π∈�n,m

(∇πX
)
i,k

with the π -gradient tensor(∇πX
)
i,k := (∇|π1|X

)
iπ1 ,k1

· · · (∇|πm|X
)
iπm,km

.

We check the above formula by induction w.r.t. the parameter n. In a more compact form we
have checked the following lemma.

LEMMA A.1. For any n ≥ 1 we have the Faà di Bruno derivation formula

(A.1) ∇n(f ◦ X) = ∑
π∈�n

(∇πX
)(∇�(π)f

)
(X).

Whenever X(x) is a random function we have

(A.2) P(f )(x) := E
(
(f ◦ X)(x)

) =⇒ ∇nP (f ) = ∑
1≤m≤n

P [n,m](∇mf
)

with the collection of integral operators

P [n,m](∇mf
)
(x) := ∑

π∈�n,m

E
((∇πX(x)

)∇mf
(
X(x)

))
.
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Using the above lemma we also check the stochastic tensor evolution equation

∂t

(∇nX
μ
s,t (x)

)
i,j

= (∇nX
μ
s,t (x)b

[1]
t

(
X

μ
s,t (x),φs,t (μ)

))
i,j

+ ∑
1<m≤n

∑
k∈[m]

∑
π∈�n,m

(∇πX
μ
s,t (x)

)
i,kb

[1]�(π)

t

(
x,φs,t (μ)

)
k,j :

with

b
[1]m
t (x,μ)(k1,...,km),j := ∂k1,...,kmb

j
t (x,μ).

In a more compact form we have

∂t∇nX
μ
s,t (x) = ∇nX

μ
s,t (x)b

[1]
t

(
X

μ
s,t (x),φs,t (μ)

)+ ∑
π∈�+

n

∇πX
μ
s,t (x)b

[1]�(π)

t

(
x,φs,t (μ)

)
.

This implies that

∂t∇nX
μ
s,t (x)∇nX

μ
s,t (x)′

= ∇nX
μ
s,t (x)

(
b

[1]
t

(
X

μ
s,t (x),φs,t (μ)

)+ b
[1]
t

(
X

μ
s,t (x),φs,t (μ)

)′)∇nX
μ
s,t (x)′

+ ∑
π∈�+

n

∇πX
μ
s,t (x)

(
b

[1]�(π)

t

(
x,φs,t (μ)

)+ b
[1]�(π)

t

(
x,φs,t (μ)

)′)∇nX
μ
s,t (x)′.

Taking the trace in the above display, we check that

∂t

∥∥∇nX
μ
s,t (x)

∥∥2
Frob ≤ −2λ1

∥∥∇nX
μ
s,t (x)

∥∥2
Frob

+ 2
∥∥∇nX

μ
s,t (x)

∥∥
Frob

∑
π∈�+

n

∥∥b[1]�(π)
∥∥

Frob

∥∥∇πX
μ
s,t (x)

∥∥
Frob.

This yields the rather crude estimate

∂t

∥∥∇nX
μ
s,t (x)

∥∥2
Frob

≤ −2λ1
∥∥∇nX

μ
s,t (x)

∥∥2
Frob

+ cn

∥∥∇nX
μ
s,t (x)

∥∥
Frob

∑
π∈�+

n

∥∥∇|π1|Xμ
s,t (x)

∥∥
Frob · · ·∥∥∇|π�(π)|Xμ

s,t (x)
∥∥

Frob

from which we check that

∂t

∥∥∇nX
μ
s,t (x)

∥∥
Frob

≤ −λ1
∥∥∇nX

μ
s,t (x)

∥∥
Frob + cn

∑∥∥∇X
μ
s,t (x)

∥∥l1
Frob

∥∥∇2X
μ
s,t (x)

∥∥l2
Frob · · ·∥∥∇n−1X

μ
s,t (x)

∥∥ln−1
Frob.

The summation in the above display is taken over all indices l1, . . . , ln−1 such that l1 + · · · +
ln−1 = m and l1 + 2l2 + · · · + (n − 1)ln−1 = n and 1 < m ≤ n. Assume that (3.4) has been
checked up to rank (n − 1). In this case, we have

∥∥∇nX
μ
s,t (x)

∥∥
Frob ≤ cn,1e

−λ1(t−s)
∫ t

s
eλ1(u−s)e−2λ1(u−s) du ≤ cn,2e

−λ1(t−s).

This ends the proof of (3.4). �
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PROOF OF (3.13) AND (3.15). We recall the backward formula

P
μ
s,t (f )(x) = f (x) +

∫ t

s
Lu,φs,u(μ)

(
P

φs,u(μ)
u,t (f )

)
(x) du.

A detailed proof of the above formula based on backward stochastic flows can be found in
Theorem 3.1 in the article [5]. This implies that

d
(
P

φs,u(μ)
u,t (f )

(
X

μ
u,t (x)

))= (∇P
φs,u(μ)
u,t (f )

)(
X

μ
u,t (x)

)′
dWu

from which we check that

f
(
X

μ
s,t (x)

)= P
μ
s,t (f )(x) +

∫ t

s

(∇P
φs,u(μ)
u,t (f )

)(
X

μ
u,t (x)

)′
dWu.

This yields the formula

E
(
f
(
X

μ
s,t (x)

)
τ

μ,ω
s,t (x)

)
= E

((∫ t

s

(∇P
φs,u(μ)
u,t (f )

)(
X

μ
u,t (x)

)′
dWu

)(∫ t

s
∂uωs,t (u)∇Xμ

s,u(x) dWu

))
= E

(∫ t

s
∇(P φs,u(μ)

u,t (f ) ◦ X
μ
u,t

)
(x)∂uωs,t (u) du

)
.

We conclude that

E
(
f
(
X

μ
s,t (x)

)
τ

μ,ω
s,t (x)

)
= ∇P

μ
s,t (f )(x)E

(∫ t

s
∂uωs,t (u) du

)
= ∇P

μ
s,t (f )(x)

(
ωs,t (t) − ωs,t (s)

)= ∇P
μ
s,t (f )(x).

This ends the proof of (3.13). For any s ≤ u ≤ t applying (3.13) to the function P
φs,u(μ)
u,t (f )

we have

∇P
μ
s,t (f )(x) = ∇P μ

s,u

(
P

φs,u(μ)
u,t (f )

)
(x)

= E

(
P

φs,u(μ)
u,t (f )

(
Xμ

s,u(x)
) ∫ u

s
∂vωs,u(v)∇Xμ

s,v(x) dWv

)
.

This implies that

∂xj ,xi
P

μ
s,t (f )(x)

= ∑
1≤l≤d

E

(
∂xj

Xμ,l
s,u (x)∂xl

(
P

φs,u(μ)
u,t (f )

)(
Xμ

s,u(x)
) ∫ u

s
∂vωs,u(v)∂xi

Xμ,k
s,v (x) dWk

v

)

+E

(
P

φs,u(μ)
u,t (f )

(
Xμ

s,u(x)
) ∫ u

s
∂vωs,u(v)∂xj ,xi

Xμ,k
s,v (x) dWk

v

)
.

Applying (3.13) to the first term we check that

E
(
∂xj

Xμ,l
s,u (x)∂xl

(
P

φs,u(μ)
u,t (f )

)(
Xμ

s,u(x)
)
τμ,ω
s,u (x)i

)
= E

(
f
(
X

μ
s,t (x)

)
∂xj

Xμ,l
s,u (x)τμ,ω

s,u (x)i

×
( ∑

1≤m≤d

∫ t

u
∂vωu,t (v)

(
∂xl

X
φs,u(μ),m
u,v

)(
Xμ

s,u(x)
)
dWm

v

))

= E
(
f
(
X

μ
s,t (x)

)
∂xj

Xμ,l
s,u (x)τ

φs,u(μ),ω
u,t

(
Xμ

s,u(x)
)
lτ

μ,ω
s,u (x)i

)
.
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We conclude that

∇2P
μ
s,t (f )(x)i,j = ∇2P

μ
s,t (f )(x)j,i

= E
(
f
(
X

μ
s,t (x)

)∇Xμ
s,u(x)j,lτ

φs,u(μ),ω
u,t

(
Xμ

s,u(x)
)
lτ

μ,ω
s,u (x)i

)
+E

(
P

φs,u(μ)
u,t (f )

(
Xμ

s,u(x)
) ∫ u

s
∂vωs,u(v)∇2Xμ

s,v(x)(i,j),k dWk
v

)
.

This ends the proof of (3.15). �

PROOF OF (3.25). We have

p
μ1,μ0
s,t (x, z) = b

μ0
s,t (x, z) +∑

n≥1

∫
[s,t]n

B2e
(t−un)B1B2e

(un−un−1)B1 · · ·B2e
(u2−u1)B1

× (
B1φs,u1(μ1)(e) + B2

(
e(u1−s)B1

(
x − μ0(e)

)
+ e(u1−s)(B1+B2)μ0(e)

))
du1 · · ·dun.

Recalling that

φs,u1(μ1)(e) = e(u1−s)[B1+B2]μ1(e),

b
μ0
s,t (x, z) = B1z + B2

[
e(t−s)B1

(
x − μ0(e)

)+ e(t−s)[B1+B2]μ0(e)
]

and using the rather well known exponential formulae

e(t−s)(B1+B2) = e(t−s)B1 +
∫ t

s
e(t−u)B1B2e

(u−s)(B1+B2) du

= e(t−s)B1 +
∫ t

s
e(t−u)(B1+B2)B2e

(u−s)B1 du

we check that

p
μ1,μ0
s,t (x, z) = b

μ0
s,t (x, z)

+ B2

∫ t

s
e(t−u1)(B1+B2)

(
B1φs,u1(μ1)(e)

+ B2
(
e(u1−s)B1

(
x − μ0(e)

)+ e(u1−s)(B1+B2)μ0(e)
))

du1

from which we find that

p
μ1,μ0
s,t (x, z) = B1z + B2

[
e(t−s)B1

(
x − μ0(e)

)+ e(t−s)[B1+B2]μ0(e)
]

+ B2

[∫ t

s
e(t−u1)(B1+B2)B1e

(u1−s)[B1+B2] du1

]
μ1(e)

+ B2

[∫ t

s
e(t−u1)(B1+B2)B2e

(u1−s)(B1+B2) du1

]
μ0(e)

+ B2
[
e(t−s)(B1+B2) − e(t−s)B1

](
x − μ0(e)

)
.

This ends the proof of (3.25). �

PROOF OF (4.6). We have the tensor product formula

(Dμ1,μ0φs,t )
⊗2 := (

P
μ0
s,t

)⊗2 + (
Q

μ1,μ0
s,t

)⊗2 + Q
μ1,μ0
s,t ⊗ P

μ0
s,t + P

μ0
s,t ⊗ Q

μ1,μ0
s,t .
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We also have(
Q

μ1,μ0
s,t ⊗ P

μ0
s,t

)
(g)(x, x)

=
∫
�s,t

�s,u(μ1)
(
d(u, y)

)(
bμ0
s,u(x, y)′ ⊗ I

)(
Pφs,u(μ0)

u,t ⊗ P
μ0
s,t

)
(∇x1g)(y, x).

Recall that bt (x, y) is differentiable at any order with uniformly bounded derivatives. Thus all
differentials of the above function w.r.t. the coordinate x have uniformly bounded derivatives.
On the other hand, the mapping x �→ bt (x, y) has at most linear growth. Thus, using the
estimates (1.15) and (3.4), for any m ≥ 0 we check that∥∥Qμ1,μ0

s,t ⊗ P
μ0
s,t

∥∥
Cn+1

m (R2d )→Cn
m+1(R

2d )
≤ cm,n(t)ρm∨2(μ0,μ1).

In the same vein, we have the tensor product formula(
Q

μ1,μ0
s,t

)⊗2
(g)(x, x) = (

Qμ1,μ0
s,t

)⊗2(
(∇ ⊗ ∇)g

)
(x, x)

:=
∫
�s,t×�s,t

[
�s,u(μ1) ⊗ �s,u(μ1)

](
d
(
(u, y), (u, y)

))
× b̂

μ0
s,u,u

(
(x, x), (y, y)

)′P̂φs,u,u(μ0)

u,u,t

(
(∇ ⊗ ∇)g

)
(y, y)

with

b̂
μ0
s,u,u

(
(x, x), (y, y)

)′ := bμ0
s,u(x, y)′ ⊗ b

μ0
s,u(x, y)′ and P̂φs,u,u(μ0)

u,u,t := Pφs,u(μ0)
u,t ⊗Pφs,u(μ0)

u,t .

Arguing as above and using the estimates (1.15) and (3.4) for any m ≥ 0 we check that∥∥(Qμ1,μ0
s,t

)⊗2∥∥
C2

m(R2d )→Cn
2 (R2d ) ≤ cm,n(t)ρm∨2(μ0,μ1). �

PROOF OF LEMMA 5.5. Using the decomposition

φs,u(μ1) − φs,u(μ0)

= ∑
1≤l≤n

[
φs,u1(μ1) ⊗ · · · ⊗ φs,ul−1(μ1)

]⊗ [
φs,ul

(μ1) − φs,ul
(μ0)

]
⊗ [

φs,ul+1(μ0) ⊗ · · · ⊗ φs,un(μ0)
]

which is valid for any μ0,μ1 ∈ P2(R
d) and any u = (u1, . . . , un) ∈ [s, t]n with n ≥ 1, for any

function

(u, y) ∈ �s,t �→ hu(y) ∈ R

we check that

(A.3)

∫
�s,t

[
�s,u(μ1) − �s,u(μ0)

](
d(u, y)

)
hu(y)

=
∫
�1

s,t

[
�s,v(μ1) − �s,v(μ0)

](
d(v, z)

)
hv(z)

with the function

hv(z) := hv(z) +
∫
�s,v

�s,u(μ1)
(
d(u, y)

)
hu,v(y, z)

+
∫
�v,t

�v,u

(
φs,v(μ0)

)(
d(u, y)

)
hv,u(z, y)

+
∫
�s,v×�v,t

ϒ
μ1,μ0
s,t

(
(v, z), d

(
(u, y), (u, y)

))
h(u,v,u)(y, z, y).
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In the above display, ϒ
μ1,μ0
s,t stands for the tensor product measures

ϒ
μ1,μ0
s,t

(
(v, z), d

(
(u, y), (u, y)

))= �s,u(μ1)
(
d(u, y)

)
�v,u

(
φs,v(μ0)

)(
d(u, y)

)
.

We also have the tensor product formula

(Dμ1,μ0φs,t )
⊗2 − (Dμ0φs,t )

⊗2

= (
Q

μ1,μ0
s,t

)⊗2 − (
Q

μ0
s,t

)⊗2 + (
Q

μ1,μ0
s,t − Q

μ0
s,t

)⊗ P
μ0
s,t + P

μ0
s,t ⊗ (

Q
μ1,μ0
s,t − Q

μ0
s,t

)
.

This yields the decomposition([
Q

μ1,μ0
s,t − Q

μ0
s,t

]⊗ P
μ0
s,t

)
(g)(x, x)

:=
∫ t

s

∫ [
φs,v(μ1) − φs,v(μ0)

]
(dx̂)Iμ0,μ1

s,v,t (g)(x, x, x̂) dv

with the integral operator

Iμ0,μ1
s,v,t (g)(x, x, x̂)

:= bμ0
s,v(x, x̂)′

(
Pφs,v(μ0)

v,t ⊗ P
μ0
s,t

)
(∇x1g)(x̂, x)

+
∫
�s,v

�s,u(μ1)
(
d(u, y)

)
bμ0
s,u,v(x, y, x̂)′

(
Pφs,v(μ0)

v,t ⊗ P
μ0
s,t

)
(∇x1g)(x̂, x)

+
∫
�v,t

�v,u

(
φs,v(μ0)

)(
d(u, y)

)
bμ0
s,v,u(x, x̂, y)′

(
Pφs,u(μ0)

u,t ⊗ P
μ0
s,t

)
(∇x1g)(y, x)

+
∫
�s,v×�v,t

ϒ
μ1,μ0
s,t

(
(v, z), d

(
(u, y), (u, y)

))
× b

μ0
s,u,v,u(x, y, x̂, y)′

(
Pφs,u(μ0)

u,t ⊗ P
μ0
s,t

)
(∇x1g)(y, x).

Arguing as in the proof of (3.12) and (4.5) we check that∥∥Iμ0,μ1
s,v,t

∥∥
Cn+1

m (R2d )→Cn
m+2(R

3d )
≤ cm,n(t)ρm∨2(μ0,μ1).

In the same vein, we have[(
Q

μ1,μ0
s,t

)⊗2 − (
Q

μ0
s,t

)⊗2]
(g)(x, x)

=
∫
�s,t

[
�s,u(μ1) − �s,u(μ0)

](
d(u, y)

)[
�

μ1,μ0
s,u,t + �

μ1,μ0
s,u,t

]
(g)(x, x, y) dv

with

�
μ1,μ0
s,u,t (g)(x, x, y)

:=
∫
�s,t

�s,u(μ1)
(
d(u, y)

)
b̂

μ0
s,u,u

(
(x, x), (y, y)

)′P̂φs,u,u(μ0)

u,u,t

(
(∇ ⊗ ∇)g

)
(y, y)

and

�
μ1,μ0
s,u,t (g)(x, x, y)

:=
∫
�s,t

�s,u(μ0)
(
d(u, y)

)
b̂

μ0
s,u,u

(
(x, x), (y, y)

)′P̂φs,u,u(μ0)

u,u,t

(
(∇ ⊗ ∇)g

)
(y, y).

This yields the formula[(
Q

μ1,μ0
s,t

)⊗2 − (
Q

μ0
s,t

)⊗2]
(g)(x, x)

=
∫ t

s

[
φs,v(μ1) − φs,v(μ0)

]
(dx̂)J μ0,μ1

s,v,t (g)(x, x, x̂) dv
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with the integral operator

J μ0,μ1
s,v,t (g)(x, x, x̂)

:= [
�

μ1,μ0
s,v,t + �

μ1,μ0
s,v,t

]
(g)(x, x, x̂)

+
∫
�s,v

�s,u(μ1)
(
d(u, y)

)[
�

μ1,μ0
s,(u,v),t + �

μ1,μ0
s,(u,v),t

]
(g)
(
x, x, (y, x̂)

)
+
∫
�v,t

�v,u

(
φs,v(μ0)

)(
d(u, y)

)[
�

μ1,μ0
s,(v,u),t + �

μ1,μ0
s,(v,u),t

]
(g)
(
x, x, (x̂, y)

)
+
∫
�s,v×�v,t

ϒ
μ1,μ0
s,t

(
(v, z), d

(
(u, y), (u, y)

))
× [

�
μ1,μ0
s,(u,v,u),t + �

μ1,μ0
s,(u,v,u),t

]
(g)
(
x, x, (y, x̂, y)

)
.

Arguing as above, we check that∥∥J μ0,μ1
s,v,t

∥∥
C2

m(R2d )→Cn
2 (R3d ) ≤ cm,n(t)ρm∨2(μ0,μ1).

Combining the above decompositions we find that[
(Dμ1,μ0φs,t )

⊗2 − (Dμ0φs,t )
⊗2](g)(x, x)

=
∫ t

s

[
φs,v(μ1) − φs,v(μ0)

]
(dx̂)Kμ0,μ1

s,v,t (g)(x, x, x̂) dv

with Kμ0,μ1
s,v,t := 2Iμ0,μ1

s,v,t +J μ0,μ1
s,v,t .

For any n ≥ 2 and m ≥ 0 we have∥∥Kμ0,μ1
s,v,t

∥∥
Cn+1

m (R2d )→Cn
m+2(R

3d )
≤ cm,n(t)ρm∨2(μ0,μ1).

We conclude that(
φs,t (μ1) − φs,t (μ0)

)⊗2 = (μ1 − μ0)
⊗2(Dμ0φs,t )

⊗2 + (μ1 − μ0)
⊗3Rμ1,μ0φs,t

with the operator

Rμ1,μ0φs,t (g)(x, x, x̂)

:=
∫ t

s

[∫
P μ0

s,v (x̂, dz)Kμ0,μ1
s,v,t (g)(x, x, z)

+
∫
�s,v

�s,u(μ1)
(
d(u, y)

)
bμ0
s,u(x̂, y)′Lμ0,μ1

s,u,v,t (g)(x, x, y)

]
dv.

In the above display, Lμ0,μ1
s,u,v,t stands for the integral operator operator

Lμ0,μ1
s,u,v,t (g)(x, x, y) =Pφs,u(μ0)

u,t

(∇x3K
μ0,μ1
s,v,t (g)(x, x, ·))(y).

We also check that

‖Rμ1,μ0φs,t‖Cn+2
m (R2d )→Cn

m+3(R
3d )

≤ cm,n(t)ρm+2(μ1,μ2).

This ends the proof of the lemma. �

PROOF OF THE ESTIMATE (2.15). For any x = (x1, x2) ∈ R2d we set σ(x1, x2) :=
σ(x2, x1). In this notation, for any matrix valued function h(x) = (hi,j (x))1≤i,j≤d we have
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the tensor product formula

(Dμ1,μ0φs,t )
⊗2(h)(x)

= (
Pμ0

s,t

)⊗2
(h)(x) +

∫
�s,t

�s,v(μ1)
(
d(u, y)

)[
I
μ0
s,u,t (h)(x, y) + I

μ0
s,u,t (h)

(
σ(x), y

)]
+
∫
�s,t×�s,t

�s,u(μ1)
(
d(u, y)

)
�s,v(μ1)

(
d(v, z)

)
J
μ0
s,u,v,t (h)(x, y, z)

with the matrix valued functions I
μ0
s,u,t (h) and J

μ0
s,u,v,t (h) given for any (u, y) ∈ �n

s,t and
(v, z) ∈ �m

s,t by the formula

I
μ0
s,u,t (h)(x, y) := B

μ0
s,u(x1, y)

(
Pφs,un (μ0)

un,t ⊗Pμ0
s,t

)
(h)(yn, x2),

J
μ0
s,u,v,t (h)(x, y, z) := [

B
μ0
s,u(x1, y) ⊗B

μ0
s,v(x2, z)

](
Pφs,un(μ0)

un,t ⊗Pφs,vm(μ0)
vm,t

)
(h)(yn, zm).

Using (3.7) we have

∇Pμ
s,t (g) = P [2,1],μ

s,t (g) +P [2,2],μ
s,t (∇g)

from which we check the formula

∇yn

(
Pφs,un (μ0)

un,t ⊗Pφs,vm(μ0)
vm,t

)
(h)(yn, zm)

= [
P [2,1],φs,un (μ0)

un,t ⊗Pφs,vn (μ0)
vn,t

]
(h)(yn, zm) + [

P [2,2]φs,u(μ0)
un,t ⊗Pφs,vm(μ0)

vm,t

]
(∇x1h)(yn, zm).

By symmetry arguments, we also have

∇zm

(
Pφs,un(μ0)

un,t ⊗Pφs,vm(μ0)
vm,t

)
(h)(yn, zm)

= [
P [2,1],φs,vm(μ0)

vm,t ⊗Pφs,un (μ0)
un,t

]
(h)(zm, yn)

+ [
P [2,2],φs,vm(μ0)

vm,t ⊗Pφs,un (μ0)
un,t

]
(∇x1h)(zm, yn).

Using (3.11) for any differentiable matrix valued function h(x1, x2) such that ‖h‖∨‖∇x1h‖ ≤
1 we have the uniform estimate∥∥∇yn

(
Pφs,un (μ0)

un,t ⊗Pφs,vm(μ0)
vm,t

)
(h)(yn, zm)

∥∥≤ c1e
−λ1[(t−un)+(t−vm)].

In the same vein, we have

B
μ0
s,u(x, y) = B

[1],μ0
s,u (x, y)

= E
[∇Xμ0

s,u1
(x)b[2]

u1

(
y1,X

μ0
s,u1

(x)
)]

× ∏
1≤l<n

E
[∇X

φs,ul
(μ0)

ul,ul+1 (yl)b
[2]
ul+1

(
yl+1,X

φs,ul
(μ0)

ul,ul+1 (yl)
)]

.

Using the gradient and the Hessian estimates (3.2) and (3.3) for any 1 ≤ k ≤ n we check that∥∥∇yk
B

μ0
s,u(x1, y)

∥∥≤ c2
∥∥b[2]∥∥n

2e
−λ1(un−s).

Combining the above estimates with (3.29) we check that∥∥∇ynI
μ0
s,u,t (h)(x, y)

∥∥
≤ c3

∥∥b[2]∥∥n
2

[
e−λ1(un−s)e−λ1[(t−un)+(t−s)] + e−λ1[(un−s)]e−λ1[(t−un)+(t−s)]]

≤ c4
∥∥b[2]∥∥n

2e
−2λ1(t−s).
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In addition, for any 1 ≤ k < n we have∥∥∇yk
I
μ0
s,u,t (h)(x, y)

∥∥
≤ c5

∥∥b[2]∥∥n
2e

−λ1(un−s)e−λ1[(t−un)+(t−s)] ≤ c5
∥∥b[2]∥∥n

2e
−2λ1(t−s).

We conclude that

(A.4) sup
1≤k≤n

∥∥∇yk
I
μ0
s,u,t (h)(x, y)

∥∥≤ c
∥∥b[2]∥∥n

2e
−2λ1(t−s).

Arguing as above, for any 1 ≤ k < n we have∥∥∇yk
J
μ0
s,u,v,t (h)(x, y, z)

∥∥
≤ c1

∥∥b[2]∥∥m+n
2 e−λ1(un−s)e−λ1(vm−s)e−λ1[(t−un)+(t−vm)] ≤ c2

∥∥b[2]∥∥m+n
2 e−2λ1(t−s).

In addition, for k = n we have∥∥∇ynJ
μ0
s,u,v,t (h)(x, y, z)

∥∥
≤ c3‖∇x2b‖m+n

2

[
e−λ1(un−s)e−λ1(vm−s)e−λ1[(t−un)+(t−vm)]

+ e−λ1(un−s)e−λ1(vm−s)e−λ1[(t−un)+(t−vm)]].
This implies that

(A.5) sup
1≤k≤n

∥∥∇yk
J
μ0
s,u,v,t (h)(x, y, z)

∥∥≤ c
∥∥b[2]∥∥m+n

2 e−2λ1(t−s).

On the other hand, we have the decomposition[
(Dμ1,μ0φs,t )

⊗2 − (Dμ0φs,t )
⊗2](h)(x)

=
∫
�s,t

[
�s,v(μ1) − �s,v(μ0)

](
d(u, y)

)
K

μ0,μ1
s,u,t (h)(x, y)

with the matrix valued function

K
μ0,μ1
s,u,t (h)(x, y) := I

μ0
s,u,t (h)(x, y) + I

μ0
s,u,t (h)

(
σ(x), y

)
+
∫
�s,t

�s,v(μ1)
(
d(v, z)

)
J
μ0
s,u,v,t (h)(x, y, z)

+
∫
�s,t

�s,v(μ0)
(
d(v, z)

)
J
μ0
s,v,u,t (h)(x, z, y).

Using the estimates (A.4) and (A.5), for any (u, y) ∈ �n
s,t we check that

(A.6)

sup
1≤k≤n

∥∥∇yk
K

μ0,μ1
s,u,t (h)(x, y)

∥∥
≤ c1

∥∥b[2]∥∥n
2e

−λ1(t−s)[e−λ1(t−s) + (
e‖b[2]‖2(t−s) − 1

)
e−λ1(t−s)]

≤ c2
∥∥b[2]∥∥n

2e
−λ1(t−s)e−λ1,2(t−s).

Using the decomposition (A.3) we also check that

[
(Dμ1,μ0φs,t )

⊗2 − (Dμ0φs,t )
⊗2](h)(x) =

∫ t

s

[
φs,v(μ1) − φs,v(μ0)

]
(dz)K

μ0,μ1
s,v,t (h)(x, z) dv
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with the matrix valued function

K
μ0,μ1
s,v,t (h)(x1, x2, x3)

= K
μ0,μ1
s,v,t (h)(x1, x2, x3) +

∫
�s,v

�s,u(μ1)
(
d(u, y)

)
K

μ0,μ1
s,u,v,t (h)

(
x1, x2, (y, x3)

)
+
∫
�v,t

�v,u

(
φs,v(μ0)

)(
d(u, y)

)
K

μ0,μ1
s,v,u,t (h)(x1, x2, x3, y)

+
∫
�s,v×�v,t

ϒ
μ1,μ0
s,t

(
(v, z), d

(
(u, y), (u, y)

))
K

μ0,μ1
s,u,v,u,t (h)

(
x1, x2, (y, x3, y)

)
.

Using (A.6) we find the uniform estimates

(A.7)

∥∥∇x3K
μ0,μ1
s,v,t (h)(x1, x2, x3)

∥∥
≤ c1

[
e−2λ1,2(t−s) + (

e‖b[2]‖2(t−s) − 1
)
e−λ1(t−s)e−λ1,2(t−s)]≤ c2e

−2λ1,2(t−s).

On the other hand, using (4.4) and (2.5) we have[
φs,t (μ1) − φs,t (μ0)

]
(f ) = (μ1 − μ0)P

μ0
s,t (f ) + (μ1 − μ0)Qμ1,μ0

s,t (∇f ).

Thus, recalling that

Qμ1,μ0
s,t (∇f )(z) :=

∫
�s,t

�s,u(μ1)
(
d(u, y)

)
bμ0
s,u(z, y)′Pφs,u(μ0)

u,t (∇f )(y)

we check that [
(Dμ1,μ0φs,t )

⊗2 − (Dμ0φs,t )
⊗2](h)(x)

=
∫

(μ1 − μ0)(dz)

∫ t

s
P μ0

s,v

(
K

μ0,μ1
s,v,t (h)(x, ·))(z) dv

+
∫

(μ1 − μ0)(dz)

∫ t

s

∫
�s,v

�s,u(μ1)
(
d(u, y)

)
× bμ0

s,u(z, y)′Pφs,u(μ0)
u,v

(∇x3K
μ0,μ1
s,v,t (h)(x, ·))(y) dv

This implies that

(∇ ⊗ ∇)D2
μ0,μ1

φs,t (f )(x1, x2) − (∇ ⊗ ∇)D2
μ0

φs,t (f )(x1, x2)

=
∫

(μ1 − μ0)(dx3)

∫ t

s
L

μ1,μ0
s,u

(
S

[2,1],φs,u(μ0)
u,t (∇f )

+ S
[2,2],φs,u(μ0)
u,t

(∇2f
))

(x1, x2, x3) du

with the tensor integral operator

L
μ1,μ0
s,t (h)(x1, x2, x3)

:=
∫ t

s
P μ0

s,v

(
K

μ0,μ1
s,v,t (h)(x1, x2, ·))(x3) dv

+
∫ t

s

∫
�s,v

�s,u(μ1)
(
d(u, y)

)
bμ0
s,u(x3, y)′Pφs,u(μ0)

u,v

(∇x3K
μ0,μ1
s,v,t (h)(x1, x2, ·))(y) dv.

On the other hand, using (5.10)

(μ1 − μ0)
⊗2D2

μ1,μ0
φs,t (f ) − (μ1 − μ0)

⊗2D2
μ0

φs,t (f )

=
∫
[0,1]3

∫ t

s
E
(〈∇x3L

μ1,μ0
s,u

(
S

[2,1],φs,u(μ0)
u,t (∇f )

+ S
[2,2],φs,u(μ0)
u,t

(∇2f
))

(Yε), (Y1 −Y0)
⊗3〉)dudε
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with the interpolating path

ε = (ε1, ε2, ε3) �→ Yε := (
Y

1
0 + ε1

(
Y

1
1 − Y

1
0
)
, Y

2
0 + ε2

(
Y

2
1 − Y

2
0
)
, Y

3
0 + ε3

(
Y

3
1 − Y

3
0
))

and

(Y1 −Y0)
⊗3 := (

Y
1
1 − Y

1
0
)⊗ (

Y
2
1 − Y

2
0
)⊗ (

Y
3
1 − Y

2
0
)
.

In the above display, (Y
i

1, Y
i

0)i=1,2,3 stands for independent copies of a pair of random vari-
ables (Y0, Y1) with distribution (μ0,μ1).

Using the commutation formula (3.5) we check that

∇x3L
μ1,μ0
s,t (h)(x1, x2, x3)

:=
∫ t

s
Pμ0

s,v

(∇x3K
μ0,μ1
s,v,t (h)(x1, x2, ·))(x3) dv

+
∫ t

s

∫
�s,v

�s,u(μ1)
(
d(u, y)

)
B

μ0
s,u(x3, y)Pφs,u(μ0)

u,v

(∇x3K
μ0,μ1
s,v,t (h)(x1, x2, ·))(y) dv.

Using (A.7) for any differentiable matrix valued function h(x1, x2) such that ‖h‖∨‖∇x1h‖ ≤
1 and for any ε ∈]0,1[ we check that∥∥∇x3L

μ1,μ0
s,t (h)(x1, x2, x3)

∥∥
≤ c1e

−2λ1,2(t−s)

[∫ t

s
e−λ1(v−s) dv +

∫ t

s

(
e‖b[2]‖2(v−s) − 1

)
e−λ1(v−s) dv

]
≤ c2e

−2λ1,2(t−s).

On the other hand, we have

∇x1

[
S

[2,1],μ
s,t (∇f ) + ∇x1S

[2,2],μ
s,t

(∇2f
)]

(x1, x2)

= b[1,1,2]
s (x1, x2)∇Dμφs,t (f )(x1) + b[2,2,1]

s (x2, x1)∇Dμφs,t (f )(x2)

+ ∇3Dμφs,t (f )(x1)b
[2]
s (x1, x2)

′ + b[2,2]
s (x2, x1)∇2Dμφs,t (f )(x2)

+ ∇2Dμφs,t (f )(x1) 
 b[1,2]
s (x1, x2)

with the 
-tensor product[∇2Dμφs,t (f )(x1) 
 b[1,2]
s (x1, x2)

]
k,i,j

= ∑
1≤l≤d

[∇2Dμφs,t (f )(x1)k,lb
[1,2]
s (x1, x2)

′
l,i,j + b[1,2]

s (x1, x2)
′
k,j,l∇2Dμφs,t (f )(x1)

′
l,j

]
.

Using (5.3) we check that∥∥∇x1

[
S

[2,1],μ
s,t (∇f ) + ∇x1S

[2,2],μ
s,t

(∇2f
)]∥∥≤ ce−λ(t−s) sup

k=1,2,3

∥∥∇kf
∥∥ for some λ > 0.

We conclude that for any function f ∈ C3(Rd) s.t. supk=1,2,3 ‖∇kf ‖ ≤ 1.∣∣(μ1 − μ0)
⊗2D2

μ1,μ0
φs,t (f ) − (μ1 − μ0)

⊗2D2
μ0

φs,t (f )
∣∣

≤ ce−λ(t−s)
W2(μ0,μ1)

3 for some λ > 0.

The last assertion comes from the formula

1

2
(μ1 − μ0)

⊗2D2
μ1,μ0

φs,t = 1

2
(μ1 − μ0)

⊗2D2
μ0

φs,t + (μ1 − μ0)
⊗3D3

μ0,μ1
φs,t . �
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PROOF OF THEOREM 2.6. We extend the operators Dk
μ1,μ0

φs,t introduced in Theo-
rem 2.4 to tensor functions f = (fi)i∈[n] by considering the tensor function with entries

(A.8) Dk
μ1,μ0

φs,t (f )i = Dk
μ1,μ0

φs,t (fi).

By Theorem 2.4 we have

(A.9)

[
φs,u(μ1) − φs,u(μ0)

](
bu

(
Xμ0

s,u(x), ·))
=
∫

(μ1 − μ0)(dy)d[1],μ1,μ0
s,u

(
Xμ0

s,u(x), y
)

=
∫

(μ1 − μ0)(dy)d[1],μ0
s,u

(
Xμ0

s,u(x), y
)

+ 1

2

∫
(μ1 − μ0)

⊗2(dz)d[2],μ1,μ0
s,u

(
Xμ0

s,u(x), z
)

=
∫

(μ1 − μ0)(dy)d[1],μ0
s,u

(
Xμ0

s,u(x), y
)

+ 1

2

∫
(μ1 − μ0)

⊗2(dz)d[2],μ0
s,u

(
Xμ0

s,u(x), z
)

+
∫

(μ1 − μ0)
⊗3(dz)d[3],μ1,μ0

s,u

(
Xμ0

s,u(x), z
)

with the functions

d
[1],μ1,μ0
s,t

(
X

μ0
s,t (x), y

) := Dμ1,μ0φs,t

(
bt

(
X

μ0
s,t (x), ·))(y),

d
[2],μ1,μ0
s,t

(
X

μ0
s,t (x), (z1, z2)

) := D2
μ1,μ0

φs,t

(
bt

(
X

μ0
s,t (x), ·))(z1, z2),

d[3],μ1,μ0
s,u

(
Xμ0

s,u(x), (z1, z2, z3)
) := D3

μ1,μ0
φs,t

(
bt

(
X

μ0
s,t (x), ·))(z1, z2, z3).

We also write d
[k],μ
s,t instead of d

[k],μ,μ
s,t . Using (2.12) and (4.13) we check that∥∥∇yd
[1],μ1,μ0
s,t

(
X

μ0
s,t (x), y

)∥∥≤ c1e
−λ(t−s)

as well as

(A.10)
∥∥(∇z1 ⊗ ∇z2)d

[2],μ1,μ0
s,t

(
X

μ0
s,t (x), z1, z2

)∥∥≤ c2e
−λ(t−s) for some λ > 0.

Using (2.15) we also have

(A.11)

∣∣∣∣∫ (μ1 − μ0)
⊗3(dz)d

[3],μ1,μ0
s,t

(
X

μ0
s,t (x), z

)∣∣∣∣
≤ c3e

−λ(t−s)
W2(μ0,μ1)

3 for some λ > 0.

On the other hand, we have the second order expansions[∇X
φs,u(μ0)
u,t

](
Xμ1

s,u(x)
)′ − [∇X

φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′

=
∫ 1

0

[∇2X
φs,u(μ0)
u,t

](
Xμ0

s,u(x) + ε
(
Xμ1

s,u(y) − Xμ0
s,u(x)

))′[
Xμ1

s,u(x) − Xμ0
s,u(x)

]
dε

= [∇2X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′[

Xμ1
s,u(x) − Xμ0

s,u(x)
]

+
∫ 1

0
(1 − ε)

[∇3X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)

+ ε
(
Xμ1

s,u(y) − Xμ0
s,u(x)

))′[
Xμ1

s,u(x) − Xμ0
s,u(x)

]⊗2
dε.
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In the same vein, we have

bu

(
Xμ1

s,u(x), y
)− bu

(
Xμ0

s,u(x), y
)

=
∫ 1

0
b[1]
u

(
Xμ0

s,u(x) + ε
(
Xμ1

s,u(x) − Xμ0
s,u(x)

)
, y
)′[

Xμ1
s,u(x) − Xμ0

s,u(x)
]
dε

= b[1]
u

(
Xμ0

s,u(x), y
)′[

Xμ1
s,u(x) − Xμ0

s,u(x)
]

+
∫ 1

0
(1 − ε)b[1,1]

u

(
Xμ0

s,u(x) + ε
(
Xμ1

s,u(x) − Xμ0
s,u(x)

)
, y
)′[

Xμ1
s,u(x) − Xμ0

s,u(x)
]⊗2

dε.

This implies that

X
μ1
s,t (x) − X

μ0
s,t (x)

=
∫ t

s

[∇X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′[

φs,u(μ1) − φs,u(μ0)
](

bu

(
Xμ0

s,u(x), ·))du

+ ∑
k=2,3

R
[k],μ0,μ1
s,t (x)

with the second order remainder term

R
[2],μ0,μ1
s,t (x)

:=
∫ t

s

[∇2X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′[

Xμ1
s,u(x) − Xμ0

s,u(x)
]

× [
φs,u(μ1) − φs,u(μ0)

](
bu

(
Xμ0

s,u(x), ·))du

+
∫ t

s

[∇X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′[

φs,u(μ1) − φs,u(μ0)
]

× (
b[1]
u

(
Xμ0

s,u(x), ·)′)[Xμ1
s,u(x) − Xμ0

s,u(x)
]
du

and the third order remainder term

R
[3],μ0,μ1
s,t (x)

:=
∫ 1

0

∫ t

s

[∇2X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′[

Xμ1
s,u(x) − Xμ0

s,u(x)
]

× [
φs,u(μ1) − φs,u(μ0)

](
b[1]
u

(
Xμ0

s,u(x) + ε
(
Xμ1

s,u(x) − Xμ1
s,u(x)

)
, ·)′)

× [
Xμ1

s,u(x) − Xμ0
s,u(x)

]
dε du

+
∫ 1

0
(1 − ε)

∫ t

s

[∇X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′

× [
φs,u(μ1) − φs,u(μ0)

](
b[1,1]
u

(
Xμ0

s,u(x) + ε
(
Xμ1

s,u(x) − Xμ1
s,u(x)

)
, ·)′)

× [
Xμ1

s,u(x) − Xμ0
s,u(x)

]⊗2
dudε

+
∫ 1

0
(1 − ε)

∫ t

s

[∇3X
φs,u(μ0)
u,t

](
Xμ0

s,u(x) + ε
(
Xμ1

s,u(y) − Xμ1
s,u(x)

))′
× [

Xμ1
s,u(x) − Xμ0

s,u(x)
]⊗2[

φs,u(μ1) − φs,u(μ0)
](

bu

(
Xμ1

s,u(x), ·))dudε.

Combining (3.4) with (2.4) and (2.17) for any k = 1,2 we check the uniform estimate

(A.12)
∥∥R[k],μ0,μ1

s,t (x)
∥∥≤ ce−λ(t−s)

W2(μ0,μ1)
k for some λ > 0.

We check (2.19) using (A.10) and (A.9).
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Using (5.3) we also have the estimate∥∥∇yDμ0X
μ0
s,t (x, y)

∥∥≤ c3e
−λ(t−s) for some λ > 0.

Observe that[
φs,u(μ1) − φs,u(μ0)

](
b[1]
u

(
Xμ0

s,u(x), ·)′)
=
∫

(μ1 − μ0)(dy)d[1,1],μ1,μ0
s,u

(
Xμ0

s,u(x), y
)

=
∫

(μ1 − μ0)(dy)d[1,1],μ0
s,u

(
Xμ0

s,u(x), y
)+ 1

2

∫
(μ1 − μ0)

⊗2(dz)d[2,1],μ1,μ0
s,u

(
Xμ0

s,u(x), z
)

with the matrix valued functions

d
[1,1],μ1,μ0
s,t

(
X

μ0
s,t (x), y

) := Dμ1,μ0φs,t

(
b

[1]
t

(
X

μ0
s,t (x), ·)′)(y),

d
[2,1],μ1,μ0
s,t

(
X

μ0
s,t (x), z1, z2

) := D2
μ1,μ0

φs,t

(
b

[1]
t

(
X

μ0
s,t (x), ·)′)(z1, z2).

We also write d
[1,1],μ
s,t instead of d

[1,1],μ,μ
s,t . Observe that

R
[2],μ0,μ1
s,t (x)

= 1

2

∫
(μ1 − μ0)

⊗2(dz)

∫ t

s

[∇2X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′
D[2,1]

μ0
Xμ0

s,u(x, z) du

+ 1

2

∫
(μ1 − μ0)

⊗2(dy)

∫ t

s

[∇X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′
D[1,1]

μ0
Xμ0

s,u(x, z) du

+ R
[3,2],μ0,μ1
s,t (x)

with

R
[3,2],μ0,μ1
s,t (x)

= 1

2

∫
(μ1 − μ0)

⊗3(dy)

×
∫ t

s

[∇2X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′
Dμ0X

μ0
s,u(x, y1)d

[2],μ1,μ0
s,u

(
Xμ0

s,u(x), (y2, y3)
)
du

+ 1

2

∫
(μ1 − μ0)

⊗3(dy)

×
∫ t

s

[∇X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′
d[2,1],μ1,μ0
s,u

(
Xμ0

s,u(x), (y2, y3)
)
Dμ0X

μ0
s,u(x, y1) du

+
∫ t

s

[∇2X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′R[2],μ0,μ1

s,u (x)
[
φs,u(μ1) − φs,u(μ0)

](
bu

(
Xμ0

s,u(x), ·))du

+
∫ t

s

[∇X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′[

φs,u(μ1) − φs,u(μ0)
](

b[1]
u

(
Xμ0

s,u(x), ·)′)R[2],μ0,μ1
s,u (x) du.

Observe that

(A.13)
∥∥R[3,2],μ0,μ1

s,t (x)
∥∥≤ ce−λ(t−s)

W2(μ0,μ1)
3 for some λ > 0.

This yields the second order decompositionn (2.20) with the remainder term

Rμ1,μ0
s,t (x) := R

[3],μ0,μ1
s,t (x) + R

[3,2],μ0,μ1
s,t (x)

+
∫

(μ1 − μ0)
⊗3(dz)

∫ t

s

[∇X
φs,u(μ0)
u,t

](
Xμ0

s,u(x)
)′
d[3],μ1,μ0
s,u

(
Xμ0

s,u(x), z
)
du.

The end of the proof of is now a consequence of the estimates (A.11), (A.12) and (A.13). The
proof of the theorem is completed. �
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