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We prove a Euler-Poincaré reduction theorem for stochastic processes taking val-
ues on a Lie group, which is a generalization of the reduction argument for the
deterministic case [J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and
Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied
Mathematics (Springer, 2003)]. We also show examples of its application to SO(3)
and to the group of diffeomorphisms, which includes the Navier-Stokes equation on
a bounded domain and the Camassa-Holm equation. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4893357]

I. INTRODUCTION

Two approaches of stochastic perturbation of Geometric Mechanics seem to be known today.
In one of them, inspired by Bismut4 and developed by Ortega and Lázaro-Camı́,17 the Lagrangian
of the system is randomly perturbed. We shall advocate here the other approach, sometimes known
as “stochastic deformation,” where the Lagrangian is, essentially, the classical one but evaluated on
underlying stochastic processes and their mean derivatives. This perspective was initially motivated
by the quantization of classical systems6, 22, 24 and a probabilistic version of Feynman’s path integral
approach. More recently,1, 7 also inspired by Yasue,23 the Navier-Stokes equation was derived as a
solution of a stochastic variational principle of this type. We showed that the Navier-Stokes equation
can be viewed as the drift part of a semi-martingale which is a critical point of the functional
whose Lagrangian is given by the kinetic energy expressed via a generalized time derivative. In our
stochastic variational program there is no external noise perturbing Navier-Stokes equations: only
the flows describing the position of the fluid particles are random.

This formulation of the Navier-Stokes equations extends naturally to the viscous case of Arnold’s
characterization of the motion in incompressible fluid dynamics (Euler’s equations) as geodesic flows
on the group of volume-preserving diffeomorphisms.2

Actually, Arnold also suggested a general framework for geodesic flows of Euler type, to be
formulated on groups. Euler hydrodynamical equations turn out to be a particular case of Euler-
Poincaré equations obtained in Geometric Mechanics via the celebrated Euler-Poincaré reduction
principle. Formulated on general Lie groups, reduction methods (cf. Ref. 18) had an extraordinary
development, from the mathematical point of view, notably in relation with geometry and dynamical
systems, but also from the point of view of applications as well as in numerical analysis. Different
Lie groups, both finite and infinite-dimensional, give rise to a number of equations, from the
most paradigmatic ones describing the motion of a rigid body to the Euler’s, Burgers, KdV or
magnetohydrodynamic equations, for instance.
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In this paper, we establish a stochastic Euler-Poincaré reduction theorem on a general Lie
group. Such theorem is the analog of the classical one, defined now for paths which are realizations
of stochastic processes. Their mean velocity or drift satisies a perturbation of the Euler-Poincaré
equations with an extra term, generally dissipative, associated to the randomness of the underlying
trajectories. One example is precisely Navier-Stokes equations on torus or Euclidean space, see,
e.g., Ref. 7. But our theorem, also formulated on abstract Lie groups, allows to obtain many more
equations: for example, the Navier-Stokes equations on domains and the Camassa-Holm equations.

The rest of the paper is organized as follows: in Sec. II, we introduce the definition and properties
of semi-martingales on a general Lie group; the stochastic reduction theorem on a Lie group will be
derived in Sec. III, and in Sec. IV, we will consider some applications of this reduction theorem.

II. SEMI-MARTINGALES IN A GENERAL LIE GROUP

The stochastic variational principle associated to the Navier-Stokes equations derived in
Refs. 7 and 1 was formulated on a space of volume-preserving homeomorphisms, which is a
(infinite dimensional) topological group endowed with a right-invariant metric, the same space used
in the Arnold’s formulation of Euler equations.

In the present work we consider a stochastic variational principle on a general Lie group G,
endowed with a left-invariant (or right-invariant) metric.

For the stochastic analysis background of this work we refer to Ref. 10 or 14.
From now on, for simplicity, the words martingale and semi-martingale denote a time continu-

ous L2 integrable martingale and time continuous L2 integrable semi-martingale, respectively. The
domain of our action functionals will be a set of semi-martingales. As they are not of bounded
variation with respect to time, we cannot use a classical derivative in time, but will replace it by a
generalized mean derivative D

dt .
In a Euclidean setting the definition of the generalized time derivative corresponds to a derivative

regularized by a conditional expectation with respect to the past filtration at each time. More precisely,
given a semi-martingale ξ ( · ) with respect to an increasing filtration F. and taking values in the
Euclidean space (or torus) the generalized derivative is defined by

Dξ (t)

dt
:= lim

ε↓0
E

[ξ (t + ε) − ξ (t)

ε
|Ft

]
. (2.1)

In particular, as the conditional expectation of the martingale part vanishes, the generalized derivative
coincides with the derivative of the bounded variation part of the semi-martingale (its drift). We
refer the reader to Refs. 6, 22, and 24 for detailed introduction to the property of such generalized
derivative on Euclidean space.

On a general manifold M a martingale can only be defined after fixing a linear connection ∇
(see Refs. 10 and 14). More precisely, a M-valued semi-martingale ξ ( · ) is a ∇-martingale, if for
each f ∈ C∞(M),

M f
t := f (ξ (t)) − f (ξ (0)) − 1

2

∫ t

0
Hess f (ξ (s))

(
dξ (s), dξ (s)

)
is aR1-valued local martingale with respect to the filtration F., where Hess f (x) : Tx M × Tx M → R
is defined by

Hess f (x)
(

A1, A2

)
:= Ã1 Ã2 f − ∇ Ã1

Ã2 f, ∀A1, A2 ∈ Tx M, (2.2)

the vector fields Ã j , j = 1, 2 on M being smooth and such that Ãi (x) = Ai .
When M is a finite dimensional manifold Hess f = ∇d f is the covariant derivative of the

(differential) tensor field df by the connection ∇. For an infinite dimensional group the tensor field
df or ∇df does not always exist due to divergence of infinite series, but the definition (2.2) is valid
at least for smooth cylinder functions f. This is why we use here definition (2.2).
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So for a M-valued semi-martingale ξ ( · ) it is natural to extend definition (2.1) to a ∇-generalized
derivative as follows. If for each f ∈ C∞(M),

N f
t := f (ξ (t)) − f (ξ (0)) − 1

2

∫ t

0
Hess f (ξ (s))

(
dξ (s), dξ (s)

) −
∫ t

0
A(s) f (ξ (s))ds

is a R1-valued local martingale, where the random time dependent vector A(t) belongs to Tξ (t)M a.s.,
we define

D∇ξ (t)

dt
:= A(t). (2.3)

In fact, if M is a finite dimensional manifold with a connection ∇, there is an equivalent definition
to (2.3). For simplicity, we assume that ξ ( · ) is a M-valued semi-martingale with a fixed initial point
ξ (0) = x and that a stochastic parallel translation //. : TxM → Tξ ( · )M along ξ ( · ) is associated to
the connection ∇. We have ∇◦dξ (t)(//tv) = 0 for any v ∈ Tx M , where ◦dξ (t) denotes Stratonovich
differentiation. Then η(t) := ∫ t

0 //−1
s ◦ dξ (s) is a TxM valued semi-martingale. As in (2.1), we take

the derivative of the bounded variation part as follows:

Dη(t)

dt
:= lim

ε↓0
E

[η(t + ε) − η(t)

ε
|Ft

]
,

which is a TxM valued process. Then we define

D∇ξ (t)

dt
:= //t

Dη(t)

dt
.

This definition is the same as (2.3) (see, for instance, Ref. 10).
From now on G will denote a Lie group endowed with a left invariant metric 〈 , 〉 and a left

invariant connection ∇. Unless explicitly stated ∇ is a general connection, not necessarily the Levi-
Civita connection with respect to 〈 , 〉. We let G := TeG; here e is the unit element of G; in particular,
TeG can be identified with the Lie algebra of G.

Taking a sequence of vectors Hi ∈ G , i = 1, 2, . . . , k, and a non-random map u(·) ∈ C1([0, T ]; G )
for some constant T > 0, consider the following Stratonovich SDE in the group G,

dg(t) = Te Lg(t)

( ∑
i

Hi ◦ dW i
t − 1

2

k∑
i=1

∇Hi Hi dt + u(t)dt
)
, . . . , g(0) = e, (2.4)

where TaLg(t) : TaG → Tg(t)aG is the differential of the left translation Lg(t)(x) := g(t)x, ∀x ∈ G at the
point a ∈ G, and where Wt is a Rk valued Brownian motion.

By Itô’s formula and definition (2.3) we can see that

D∇ g(t)

dt
= Te Lg(t)u(t).

In fact, the term 1
2

∑
i ∇Hi Hi corresponds to the contraction term which is the difference between

the Itô and the Stratonovich stochastic integral.
In particular, if {Hi} is an orthonormal basis of G , ∇ is the Levi-Civita connection, u(t) = 0

for each t, and ∇Hi Hi = 0 for each i, then g( · ) is the Brownian motion on G whose generator is the
Laplace-Beltrami operator.

Note that if Hi = 0 for each i, then D∇ g(t)
dt is the ordinary derivative with t, which does depend

on the connection ∇.

Remark: By the standard theory, SDE (2.4) is, a priori, only defined on a finite dimensional Lie
group. But in some special cases of infinite dimensional groups such as, for example, the group of
diffeomorphism on torus, SDE (2.4) still defines a semi-martingale even when we take an infinite
number of Hi, see the discussion in Refs. 1, 8, and 7. As explained below, in those references the
corresponding generalized derivative for the semi-martingale is taken as (2.1) in the pointwise sense,
and a connection on the group of diffeomorphisms is not used.
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III. THE STOCHASTIC EULER-POINCARÉ REDUCTION THEOREM ON A LIE GROUP

A. The kinetic energy case (stochastic geodesics)

Let S (G) denote the collection of all the G-valued semi-martingales. From now on we fix a
constant T > 0 and define a stochastic action functional J∇, 〈 , 〉 on S (G) as follows:

J∇,〈 , 〉(ξ (·)) := 1

2
E

[ ∫ T

0

〈
Tξ (t) Lξ (t)−1

D∇ξ (t)

dt
, Tξ (t) Lξ (t)−1

D∇ξ (t)

dt

〉
dt

]
, ∀ξ (·) ∈ S (G). (3.1)

Notice that the action functional J∇, 〈 , 〉 depends on the choice of the inner product 〈 , 〉 and the choice
of the connection ∇, and that Tξ (t)Lξ (t)−1

D∇ξ (t)
dt ∈ G for each t.

The Lagrangian of this action functional corresponds to the (generalized) kinetic energy. In
Subsection III B we consider more general Lagrangians.

For each non-random curve v(·) ∈ C1([0, T ]; G ) satisfying v(0) = v(T ) = 0, let eε,v(·) ∈
C1([0, T ]; G) be the flow generated by εv(·) in G, namely, the solution of the following deter-
ministic time dependent differential equation on G:{

d
dt eε,v(t) = εTe Leε,v (t)v̇(t),

eε,v(0) = e,
(3.2)

We say that a G-valued semi-martingale g( · ) is a critical pointof the action functional J∇, 〈 , 〉 if
for any v(·) ∈ C1([0, T ]; G ) satisfying v(0) = v(T ) = 0,

d J∇,〈 , 〉(gε,v(.))

dε

∣∣∣
ε=0

= 0, (3.3)

where gε,v(t) := g(t)eε,v(t), t ∈ [0, 1].
For the variation of eε,v the following lemma holds:

Lemma 3.1. We have

d

dε
eε,v(t)

∣∣
ε=0 = v(t),

d

dε
e−1
ε,v(t)

∣∣
ε=0 = −v(t).

Proof. In the proof we omit the index v in eε,v for simplicity. If D̂
dt denotes the covariant derivative

on G via the Levi-Civita connection, then

D̂

dt

d

dε
eε(t) = D̂

dε

d

dt
eε(t) = D̂

dε

(
εTe Leε(t)v̇(t)

) = Te Leε(t)v̇(t) + ε
D̂

dε

(
Te Leε(t)v̇(t)

)
.

Let X (t) := d
dε

eε(t)
∣∣
ε=0; taking ε = 0 above, and noting that e0(t) = e for each t, we derive

d

dt
X (t) = v̇(t).

Then, as v(0) = 0, we deduce that X (t) = v(t).
Since eε(t)e−1

ε (t) = e for each ε, differentiating with respect to ε we obtain d
dε

e−1
ε (t)= −Te Re−1

ε (t)

Teε(t) Le−1
ε (t)

deε(t)
dε

, where TR is the differential of right translation. Hence we have

d

dε
e−1
ε (t)

∣∣
ε=0 = −v(t).

�
From now on, for each u, v ∈ G , we define ∇uv ∈ G by ∇uv := ∇U (x)V (x)

∣∣∣
x=e

, where U(x),

V (x) are the left invariant vector fields (or right invariant if the metric and connection are right
invariant) such that U(e) = u, V (e) = v.
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We now present the stochastic Euler-Poincaré reduction theorem in the kinetic energy case, a
sufficient and necessary condition for the critical points of J∇, 〈 , 〉.

Theorem 3.2. Suppose that G is a Lie group with a left invariant metric 〈 , 〉 and a left invariant
connection ∇. The G-valued semi-martingale g( · ) defined by (2.4) is a critical point of J∇, 〈 , 〉 if and
only if the non-random curve u(·) ∈ C1([0, T ]; G ) satisfies the following equation:

d

dt
u(t) = ad∗

ũ(t)u(t) + K (u(t)), (3.4)

where

ũ(t) := u(t) − 1

2

∑
i

∇Hi Hi , (3.5)

for each u ∈ G , ad∗
u : G → G is the adjoint of adu : G → G with respect to the metric 〈 , 〉,

〈ad∗
u v, w〉 = 〈v, aduw〉 ∀u, v, w ∈ G , (3.6)

and the operator K : G → G is defined as follows:

〈K (u), v〉 = −
〈
u,

1

2

∑
i

(∇adv Hi Hi + ∇Hi (adv Hi )
)〉

, ∀u, v ∈ G . (3.7)

Proof. In the proof, we omit the index v in eε,v(·) and in gε,v(·) for simplicity. As gε(t) = g(t)eε(t),
by Itô formula we have

dgε(t) =
∑

i

Te Lgε(t) H ε
i (t) ◦ dW i

t + Te Lgε(t)

(
Ade−1

ε (t)
( − 1

2
∇Hi Hi + u(t)

))
dt

+ Te Lgε(t)
(
Teε(t) Le−1

ε (t)ėε(t)
)
dt,

(3.8)

where H ε
i (t) := Ade−1

ε (t) Hi . From the definition of eε(t), we know that Teε(t) Le−1
ε (t)ėε(t) = εv̇(t). Then

for each f ∈ C∞(G),

N f
t := f (gε(t)) − f (gε(0)) − 1

2

∫ t

0
Hess f (gε(s))

(
dgε(s), dgε(s)

)
− 1

2

∑
i

∫ t

0
Te Lgε(s)

(∇H ε
i (s) H ε

i (s)
)

f (gε(s))ds

−
∫ t

0
Te Lgε(s)

(
Ade−1

ε (s)
( − 1

2
(
∑

i

∇Hi Hi ) + u(s)
) + εv̇(s)

)
f (gε(s))ds

is a local martingale.
By the definition of generalized derivative above,

Tgε(t)Lg−1
ε (t)

D∇ gε(t)

dt

=
∑

i

1

2
∇H ε

i (t) H ε
i (t) + Ade−1

ε (t)
( − 1

2
(
∑

i

∇Hi Hi ) + u(t)
) + εv̇(t).

Using Lemma 3.1

d

dε

(
Ade−1

ε (t)
( − 1

2
(
∑

i

∇Hi Hi ) + u(t)
))∣∣∣

ε=0

= −adv(t)
( − 1

2
(
∑

i

∇Hi Hi ) + u(t)
) = ad(

− 1
2 (

∑
i ∇Hi Hi )+u(t)

)v(t).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.210.215.16 On: Sun, 21 Jun 2015 19:45:05



081507-6 Arnaudon, Chen, and Cruzeiro J. Math. Phys. 55, 081507 (2014)

Notice that H 0
i (t) = Hi for every t and that, by Lemma 3.1, d H ε

i (t)
dε

∣∣
ε=0 = −adv(t) Hi . We obtain

d

dε
∇H ε

i (t) H ε
i (t)

∣∣
ε=0 = −∇adv(t) Hi Hi − ∇Hi (adv(t) Hi ).

Recall that Tg(t)Lg(t)−1
D∇ g(t)

dt = u(t). We derive

d J∇,〈 , 〉(gε(.))

dε

∣∣
ε=0 = E

∫ T

0

〈 d

dε

(
Tgε(t)Lg−1

ε (t)
D∇ gε(t)

dt

)∣∣
ε=0, u(t)

〉
dt

=
∫ T

0

〈
u(t), v̇(t) + ad(

− 1
2 (

∑
i ∇Hi Hi )+u(t)

)v(t) − 1

2

∑
i

(∇adv(t) Hi Hi + ∇Hi (adv(t) Hi )
)〉

dt

=
∫ T

0

〈 − u̇(t) + ad∗
ũ(t)u(t) + K (u(t)), v(t)

〉
dt,

(3.9)

where in the second step we could drop the expectation E since u(t), v(t) are non-random and in
the last step we used integration by parts with respect to time and the condition v(0) = v(T ) = 0.
Definitions (3.5)–(3.7) were also used.

By definition, g( · ) is a critical point of J∇, 〈 , 〉 if and only if d J∇,〈 , 〉(gε,v(.))
dε

∣∣
ε=0 = 0 for each

v ∈ C1([0, T ]; G ). The result follows from (3.9), which implies Eq. (3.4) since v is arbitrary. �
Remark 1. If Hi = 0, then K(u) = 0 and Eq. (3.4) reduces to the standard Euler-Poincaré

equation, see, for example, Refs. 3 and 18.

Remark 2. As we can deduce from the computation, since u(t) is assumed to be non-random,
for each ε, the expression Tgε(t) Lg−1

ε (t)
D∇ gε(t)

dt is non-random and does not depend on the initial
point g(0), this is why we can take the test vector curves v(t) to be non-random here. For the case
u ∈ C1([0, T ]; G ) to be adapted and random, we must take test vectors v ∈ C1([0, T ]; G ) to be
adapted and random. The above proof still holds and we can obtain Eq. (3.4) which holds almost
surely in the underlying probability space.

Remark 3. The critical equation (3.4) depends on the metric, connection and the choice of
{Hi}. The term K(u) defined by (3.7) depends on the metric, the connection, and the choice of {Hi}
whereas ad* depends on the metric only.

Remark 4. If G is the group of diffeomorphisms on the torus the SDE (2.4) becomes Eq. (4.4)
of Sec. IV. We can check that the Itô formula (3.8) holds by direct computation. Then the proof of
Theorem 3.2 is still valid, and the conclusion is true in this case. See Sec. IV B for more details.

B. The general form of the stochastic Euler-Poncaré reduction

As mentioned above, we can also consider the critical point of an action functional J induced by
some more general Lagrangian function. In fact, suppose l : G → R is a function whose (functional)
derivative δl

δw
: G × G ∗ → R exists in the following sense

d

dε
l
(
u + εv

)∣∣∣
ε=0

=G ∗
( δl

δw
(u), v

)
G

, ∀ u, v ∈ G ,

where G ∗ is the dual space of G and G ∗
(
·, ·

)
G

denotes the pairing of G ∗ and G .

We define the action functional J∇, l on S (G) as follows:

J∇,l (ξ (·)) := E
[ ∫ T

0
l
(

Tξ (t) Lξ (t)−1
D∇ξ (t)

dt

)
dt

]
, ∀ ξ (·) ∈ S (G).
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With the same formulation as (3.3), we still say that a G-valued semi-martingale g( · ) is a critical
pointof J∇, l if for every v(·) ∈ C1([0, T ]; G ) with v(0) = v(T ) = 0,

d J∇,l (gε,v(.))

dε

∣∣∣
ε=0

= 0,

where gε,v(t) := g(t)eε,v(t), t ∈ [0, 1], and eε,v is defined by (3.2).
Then following the same computation in Theorem 3.2, we obtain

d J∇,l (gε(.))

dε

∣∣
ε=0 = E

∫ T

0

d

dε
l
(

Tgε(t) Lg−1
ε (t)

D∇ gε(t)

dt

)∣∣∣
ε=0

dt

=
∫ T

0
G ∗

( δl

δw

(
u(t)

)
, v̇(t) + adũ(t)v(t) − 1

2

∑
i

(∇adv(t) Hi Hi + ∇Hi (adv(t) Hi )
))

G
dt

=
∫ T

0
G ∗

(
− d

dt

( δl

δw

(
u(t)

)) + ad∗
ũ(t)

δl

δw

(
u(t)

) + K
( δl

δw

(
u(t)

))
, v(t)

)
G

dt,

(3.10)

where ũ(t) is defined by (3.5), ad∗
u : G ∗ → G ∗, u ∈ G is the dual of adu in the following sense

G ∗
(

ad∗
u μ, v

)
G

=G ∗
(
μ, aduv

)
G

, u, v ∈ G , μ ∈ G ∗,

and K : G ∗ → G ∗ is defined by

G ∗
(

K (μ), v
)

G
=G ∗

(
μ,−1

2

∑
i

(∇adv(t) Hi Hi + ∇Hi (adv(t) Hi )
))

G
, v ∈ G , μ ∈ G ∗.

Note that here the definition of ad* and K are slightly different from that in (3.6) and (3.7) since we
do not fix a metric 〈, 〉 on G .

From the arguments above (notably (3.10)) we have the following result on the characterization
of critical points of an action functional induced by a general Lagrangian.

Theorem 3.3. The G-valued semi-martingale g( · ) with the form (2.4) is a critical point of J∇, l

if and only if the following equations for u(t) holds

− d

dt

( δl

δw

(
u(t)

)) + ad∗
ũ(t)

δl

δw

(
u(t)

) + K
( δl

δw

(
u(t)

)) = 0. (3.11)

In particular, if we choose l(u) = 〈u,u〉
2 for a metric 〈, 〉 on G , we obtain Eq. (3.4).

C. The right invariant case

For a Lie group G with a right invariant metric and right invariant connection, we can define
a composition map � by a � b := ba, ∀a, b ∈ G. Then the original metric and connection are
left invariant under the composition � and we can also define the semi-martingale g( · ), the action
functional J(g( · )) and the perturbed semi-martingales gε,v using the composition �. For example,
one can check that the semi-martingale g( · ) in (2.4) is changed to the following one

dg(t) = Te Rg(t)

( ∑
i

Hi ◦ d Bi
t − 1

2

k∑
i=1

∇Hi Hi dt + u(t)dt
)
, (3.12)

where TeRg(t) is the differential of right translation with g(t) at the point x = e. The action functional
J in (3.1) is defined by right translation if we use the composition � on G. We also say that g( · ) is a
critical point if d

dε

(
J∇,〈 , 〉(gε,v)

)∣∣
ε=0 = 0 for each v ∈ C1([0, T ]; G ) with v(0) = v(T ) = 0. By the

same procedure as above, we can derive the following theorem on a Lie group with right invariant
metric and connection.

Theorem 3.4. Suppose that G is a Lie group with a right invariant metric 〈 , 〉 and a right
invariant connection ∇. The G-valued semi-martingale g( · ) defined in (3.12) is a critical point of

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.210.215.16 On: Sun, 21 Jun 2015 19:45:05



081507-8 Arnaudon, Chen, and Cruzeiro J. Math. Phys. 55, 081507 (2014)

J∇, 〈 , 〉 if and only if u(·) ∈ C1([0, T ]; G ) satisfies the following equation,

d

dt
u(t) = −ad∗

ũ(t)u(t) − K (u(t)), (3.13)

where ũ and K : G → G are defined in (3.5) and (3.7), respectively.

As the same procedure, for a general Lagrangian the right-invariant version of Eq. (3.11) will
be

d

dt

( δl

δw

(
u(t)

)) + ad∗
ũ(t)

δl

δw

(
u(t)

) + K
( δl

δw

(
u(t)

)) = 0.

Under some special conditions, the operator K(u) defined in (3.7) coincides with the de Rham-Hodge
operator on the Lie group. More precisely we have the following result:

Proposition 3.5. Suppose that G is a Lie group with a right invariant metric 〈 , 〉, and ∇ is the
(right invariant) Levi-Civita connection with respect to 〈 , 〉. If we assume that ∇Hi Hi = 0 for each
i, we have

K (u) = −1

2

∑
i

(∇Hi ∇Hi u + R(u, Hi )Hi
)
, ∀u ∈ G ,

where R is the Riemannian curvature tensor with respect to ∇. In particular, if {Hi} is an orthonor-
mal basis of G , then K (u) = − 1

2�u := − 1
2

(
�u + Ric(u)

)
, where �u := �U(x)|x = e for the right

invariant vector fields U (x) := Te Rx u, ∀u ∈ G , x ∈ G.

Proof. Notice that for each v ∈ G ,

∇adv Hi Hi + ∇Hi (adv Hi )

= −∇[v,Hi ] Hi − ∇Hi [v, Hi ]

= −∇[v,Hi ] Hi − ∇Hi (∇v Hi − ∇Hi v)

= −∇[v,Hi ] Hi − ∇v∇Hi Hi − ∇[Hi ,v] Hi − R(Hi , v)Hi + ∇Hi ∇Hi v

= R(v, Hi )Hi + ∇Hi ∇Hi v.

(3.14)

In the first step above, we used the property advu = −[v, u] for every u, v ∈ G if we view u, v as
right invariant vector fields on G. In the second step we used the fact that ∇ is torsion free and in the
third the definition of the Riemannian curvature tensor. Finally, we used the assumption ∇Hi Hi = 0.

Then by (3.7), for each u, v ∈ G ,

〈K (u), v〉 = −1

2

〈
u,

∑
i

(∇adv Hi Hi + ∇Hi (adv Hi )
)〉

= −1

2

〈
u,

∑
i

(
R(v, Hi )Hi + ∇Hi ∇Hi v

)〉
= −1

2

〈∑
i

(∇Hi ∇Hi u + R(u, Hi )Hi
)
, v

〉
,

where in the last step we used the property 〈∇uv,w〉 = −〈v,∇uw〉 for u, v, w ∈ G since ∇ is
Riemannian with respect the metric 〈 , 〉; we also used the symmetric property of the curvature
tensor R.

Since v is arbitrary, we get

K (u) = −1

2

∑
i

(∇Hi ∇Hi u + R(u, Hi )Hi
)
.

If {Hi} is an orthonormal basis of G , define the right invariant vector fields
H̃i (x) := Te Rx Hi , U (x) := Te Rx u, ∀x ∈ G. Then �U(x) = ∑

i ∇2U (x)(H̃i (x), H̃i (x)) =∑
i

(∇H̃i
∇H̃i

U (x)−∇∇H̃i
H̃i

U (x)
)
, hence �u = �U (x)|x=e = ∑

i

(∇Hi ∇Hi u − ∇Hi Hi u
)=
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∑
i ∇Hi ∇Hi u since ∇Hi Hi = 0. Also notice that

∑
i R(u, Hi )Hi = Ric(u), so we have

K (u) = − 1
2

(
�u + Ric(u)

) �.

IV. SOME APPLICATIONS

A. The rigid body (SO(3))

To describe the motion of a rigid body, the configuration space is the space of matrices
G = SO(3), see Refs. 3 and 18. Then TeG = so(3), the space of 3 × 3 skew symmetric matri-
ces. Take a basis of so(3), namely,

E1 =

⎛⎜⎝ 0 0 0

0 0 −1

0 1 0

⎞⎟⎠ , E2 =

⎛⎜⎝ 0 0 1

0 0 0

−1 0 0

⎞⎟⎠ , E3 =

⎛⎜⎝ 0 −1 0

1 0 0

0 0 0

⎞⎟⎠ .

This basis satisfies the following relations:

[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2. (4.1)

For v ∈ so(3) with the form v =
⎛⎝ 0 −v3 v2

v3 0 −v1

−v2 v1 0

⎞⎠, v j ∈ R1, j = 1, 2, 3, we have v

= v1 E1 + v2 E2 + v3 E3. We define v̂ ∈ R3 to be the unique element such that vη = v̂ × η for
each η ∈ R3; in fact, it easy to check that v̂ := (v1, v2, v3).

Take I = (I1, I2, I3) such that Ij > 0, j = 1, 2, 3 and define an inner product in so(3) as follows:

〈v, v〉I :=
3∑

j=1

I jv
2
j , ∀v ∈ so(3) with v̂ = (v1, v2, v3).

We extend 〈 , 〉I to SO(3) by left translation, then we get a left invariant metric, which we still write as
〈 , 〉I. In particular, if Hi = 0 for each i in the semi-martingale (2.4), then g(t)−1 dg(t)

dt = u(t), and û(t)
is the angular velocity vector. In the definition of the Lagrangian in (3.1), if we choose the metric
to be 〈 , 〉I, then the Lagrangian is the kinetic energy with moment of inertia I. See the discussion in
Refs. 3 and 18.

Let ∇I be the Levi-Civita connection with respect to 〈 , 〉I. By (4.1) and the formula for the
Levi-Civita connection, we derive

∇ I
E1

E1 = 0, ∇ I
E1

E2 = 1

2

(
1 + I2 − I1

I3

)
E3, ∇ I

E2
E1 = 1

2

( − 1 + I2 − I1

I3

)
E3,

∇ I
E2

E2 = 0, ∇ I
E2

E3 = 1

2

(
1 + I3 − I2

I1

)
E1, ∇ I

E3
E2 = 1

2

( − 1 + I3 − I2

I1

)
E1,

∇ I
E3

E3 = 0, ∇ I
E3

E1 = 1

2

(
1 + I1 − I3

I2

)
E2, ∇ I

E1
E3 = 1

2

( − 1 + I1 − I3

I2

)
E2.

(4.2)

Take Hi := 1√
Ii

Ei for i = 1, 2, 3 in SDE (2.4); {Hi }3
i=1 is an orthonormal basis of so(3). By (4.1)

and (4.2), for each v ∈ so(3) with v̂ = (v1, v2, v3),∑
i

(∇ I
adv Hi

Hi + ∇ I
Hi

(adv Hi )
) = 1

I1 I2 I3

(
(I2 − I3)2v1 E1 + (I3 − I1)2v2 E2 + (I1 − I2)2v3 E3

)
.

Then by (3.7), for every u ∈ so(3) with û = (u1, u2, u3),

K (u) = −1

2

1

I1 I2 I3

(
(I2 − I3)2u1 E1 + (I3 − I1)2u2 E2 + (I1 − I2)2u3 E3

)
.
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From Ref. 18, we know for each u ∈ so(3) with û = (u1, u2, u3), the adjoint of ad with respect to
〈 , 〉I has the following expression:

ad∗
u (u) = u2u3(I2 − I3)

I1
E1 + u3u1(I3 − I1)

I2
E2 + u1u2(I1 − I2)

I3
E3.

Replacing in Eq. (3.4), if the semi-martingale g( · ) in (2.4) is a critical point of J∇ I ,〈 , 〉I
, and writing

û(t) = (u1(t), u2(t), u3(t)), the vector û satisfies the following equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
I1u̇1(t) = (I2 − I3)u2(t)u3(t) − (I2−I3)2

2I2 I3
u1(t),

I2u̇2(t) = (I3 − I1)u1(t)u3(t) − (I3−I1)2

2I1 I3
u2(t),

I3u̇3(t) = (I1 − I2)u1(t)u2(t) − (I1−I2)2

2I1 I2
u3(t).

Remark. These equations are perturbations of the standard Euler-Poincaré equations. In particular,
as in the argument in Proposition 3.5, the extra term is the Hodge Laplacian operator applied to u(t)
on (the Lie algebra) so(3). Hence the above equation may also be viewed as a version of the viscous
Euler-Poincaré equation.

More generally, using properties (4.1) and (4.2), we can compute Eq. (3.4) for the critical point
of functional J∇ I ′ ,〈 , 〉I

where I, I ′ ∈ R3 may be different. In particular, for I′ = (1, 1, 1), by (4.2),
∇ I ′

Ei
E j + ∇ I ′

E j
Ei = 0 for each i, j, which implies that K(u) = 0 for each u ∈ so(3) for the metric

〈 , 〉I and the connection ∇ I ′
. Therefore in this case, Eq. (3.4) is the same as the standard Euler-

Poincaré equation. Nevertheless, we stress that, even for this classical motion, we have associated
the deterministic velocity trajectories to Lagrangian paths which are random.

B. Equations of fluid dynamics (volume preserving diffeomorphisms on the torus)

We shall discuss the two dimensional torusT 2 for simplicity, although the torus of any dimension
or even a more general compact Riemannian manifold can be considered as well. Let

Gs
V := {g := T 2 → T 2 is a volume preserving bijection map,g, g−1 ∈ H s},

where Hs is the sth order Sobolev space. If s > 2 the space Gs
V is an C∞ infinite dimensional Hilbert

manifold (see Ref. 11). The composition operation on Gs
V will be the composition of T 2 maps. If s

> 2, Gs
V is also a topological group (not quite a Lie group since left translation is not smooth), see

Ref. 11, and

gs
V := TeGs

V = {X ∈ H s(T 2; TT 2), π (X ) = e, divX = 0}
is the “Lie algebra” of Gs

V , where e is the identity map in T 2.
We consider the inner products 〈 , 〉0 and 〈 , 〉1 on gs

V defined as follows:

〈X, Y 〉0 :=
∫
T 2

〈X (x), Y (x)〉x dx, ∀X, Y ∈ gs
V ,

〈X, Y 〉1 :=
∫
T 2

〈X (x), Y (x)〉x dx +
∫
T 2

〈∇ X (x),∇Y (x)〉x dx, ∀X, Y ∈ gs
V ,

where 〈 , 〉, ∇ are the standard metric and corresponding Levi-Civita connection on T 2 (∇ coincides
with the ordinary derivative on T 2). We extend 〈 , 〉0, 〈 , 〉1 to right invariant metrics on Gs

V by right
translation, which we still write as 〈 , 〉0 and 〈 , 〉1.

By Theorems 9.1 and 9.6 in Ref. 11, there exists a right invariant Levi-Civita connection ∇0

with respect to 〈 , 〉0. In particular,

∇0
X Y = Pe

(∇X Y
)
, ∀X, Y ∈ gs

V , (4.3)

where ∇ is the Levi-Civita connection on T 2 and Pe is the orthogonal projection (with respect to
L2) onto gs

V = {X ∈ H s(TT 2), divX = 0}, determined by the Hodge decomposition H s(TT 2) :=
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gs
V

⊕
d H s+1(T 2). From now on, for X ∈ gs

V when we use ∇ we view X ∈ TT 2 as a vector field on
T 2 and when we use ∇0 we view X as an element in gs

V .
We want to make some remarks about the SDE (3.12) and its perturbation on the infinite

dimensional group Gs
V . We take Hi ∈ gs

V , 1 � i � m, u ∈ C1([0, 1]; gs
V ); then, as in Ref. 7, we

consider the SDE on Gs
V as follows:

dg(t, θ ) =
∑

i

Hi (g(t, θ )) ◦ dW i
t + ũ(t, g(t, θ ))dt, g(0, θ ) = θ, (4.4)

where ũ(t) := u(t) − ∑
i

1
2∇0

Hi
Hi . We assume that Hi and u are regular enough so that g(t, ·) ∈ Gs

V
for each t, see, e.g., the standard theory of stochastic flows in Ref. 16. Notice that Hi(g(t, · ))
= TeRg(t)Hi, and therefore (4.4) can be viewed as the SDE (3.12) on the infinite dimensional group
Gs

V .
Consider a smooth cylindrical function F(g) := f(g(θ1), g(θ2), . . . g(θ l)), ∀g ∈ Gs

V , where
f ∈ C∞(

(T 2)l
)

and θ j ∈ T 2, 1 ≤ j ≤ l. Applying Itô’s formula to Eq. (4.4) we get

F(g(t)) − F(g(0)) = N F
t +

∑
i

l∑
j,k=1

∫ t

0
Hi, j (g(s, θ j ))

(
Hi,k(g(s, θk)) f

(
g(s, θ1), . . . , g(s, θl)

))
ds

+
l∑

k=1

∫ t

0
ũk(s, g(s, θk)) f

(
g(s, θ1), . . . , g(s, θl)

)
ds

= N F
t +

∑
i

∫ t

0

(
Te Rg(s) Hi

)(
Te Rg(s) Hi

)
F(g(s))ds +

∫ t

0

(
Te Rg(s)ũ

)
F(g(s))ds, (4.5)

where Hi, kf :=〈Hi, ∇kf 〉, ∇k denotes the gradient with the kth variable of f (x1, . . . , xl ) ∈ C∞(
(T 2)l

)
,

and the term ũk f has the same meaning. The term

N F
t :=

∑
i

∫ t

0

(
Te Rg(s) Hi

)
F(g(s))dW i

s

is a martingale. If we fix the connection ∇0, by (2.2), (4.4), and (4.5), we have

Hess0 F
(
g(t)

)(
dg(t), dg(t)

) =
∑

i

Hess0 F
(
g(t)

)(
Te Rg(t) Hi , Te Rg(t) Hi

)
dt

=
∑

i

((
Te Rg(t) Hi

)(
Te Rg(t) Hi

)
F(g(t))dt − ∇0

Te Rg(t) Hi
(Te Rg(t) Hi )F(g(t))dt

)
.

Hence, by definition (2.1), we have Tg(t) Rg(t)−1
D∇0

g(t)
dt = u(t), which is the same as in the finite

dimensional case.
Next, we consider the variations of g(t); the flow eε,v defined by (3.2) in Gs

V is the solution of
the equation, { deε,v (t,θ)

dt = εv̇(t, eε,v(t, θ ))

eε,v(0, θ ) = θ,

where v ∈ C1([0, 1]; gs
V ) with v(0) = v(T ) = 0. Notice that it coincides with the perturbation taken

in Ref. 7. For gε(t, θ ) := eε,v(t)g(t)(θ ) = eε,v(t, g(t, θ )), by Itô’s formula we get

dgε(t, θ ) =
∑

i

(
Tg(t,θ)eε(t, g(t, θ ))

)
Hi (g(t, θ )) ◦ dW i

t

+ (
Tg(t,θ)eε(t, g(t, θ ))

)
ũ(t, g(t, θ ))dt + εv̇(t, gε(t, θ ))dt

=
∑

i

(Adeε(t) Hi )(gε(t, θ )) ◦ dW i
t + (Adeε(t)ũ(t))(gε(t, θ ))dt + εv̇(t, gε(t, θ ))dt,

(4.6)
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where we omit the index v in eε,v for simplicity, Txeε(t, x) denotes the differential of the map
eε(t, .) at the point x ∈ T 2, and in the second step above we use the property (Adeε(t) Hi )(θ )
= (

Te−1
ε (t,θ)eε(t, e−1

ε (t, θ ))
)
Hi (e−1

ε (t, θ )).
Notice that Eq. (4.6) corresponds to (3.8) on Gs

V (right invariant metric case). Hence from
Eq. (4.6) and the same procedure of the analysis for g(t) above, we derive the following equality:

Tgε(t) Rgε(t)−1
D∇0

gε(t)

dt
=

∑
i

1

2
∇0

H ε
i (t) H ε

i (t) + Adeε(t)ũ(t) + εv̇(t),

where H ε
i (t) = Adeε(t) Hi . Then we can take the derivative with respect to ε of Tgε(t) Rgε(t)−1

D∇0
gε(t)

dt
and the proof of Theorem 3.4 can still be applied to this case, which means that Theorem 3.4 still
holds on the infinite dimensional group Gs

V .
We choose some suitable basis of gs

V as in Ref. 7. We consider such basis indexed by k in a
subset of Z2 having an unique representative of the equivalence class defined by the relation k � k′

if k + k′ = 0. More precisely we choose the vectors {Ak, Bk}∞k=1 of the following form:

Ak(θ ) = λ(|k|)(A1
k(θ ), A2

k(θ )), with A1
k(θ ) = k2cos(k · θ ), A2

k(θ ) = −k1cos(k · θ ),

Bk(θ ) = λ(|k|)(B1
k (θ ), B2

k (θ )), with B1
k (θ ) = k2sin(k · θ ), B2

k (θ ) = −k1sin(k · θ ),

where θ = (θ1, θ2) ∈ T 2, k = (k1, k2) ∈ Z2, k · θ = k1θ1 + k2θ2 and λ(|k|) is a constant depending
only on |k| = |k1| + |k2|. Since ∇Ak Ak = 0, ∇Bk Bk = 0 ∀k (see the proof of Lemma 2.1 in
Ref. 7), the SDE (4.4) becomes

dg(t, θ ) =
∑

k

(
Ak(g(t, θ )) ◦ dW k,1

t + Bk(g(t, θ )) ◦ dW k,2
t

) + u(t, g(t, θ ))dt, g(0, θ ) = θ. (4.7)

If we assume u(t, ·) ∈ TT 2 to be regular enough and λ(|k|) decaying to 0 fast enough as |k| tends
to infinity, then a weak solution of (4.7) exists, see Ref. 7. Moreover, the Stratonovich and the Itô
integrals in the equation coincide.

Note that in the proof of Theorem 3.2, when {Ak, Bk} is an infinite sequence, if λ(|k|) decays to
0 fast enough as |k| tends to infinity, we can change the derivation with respect to ε and the infinite
sum in indices k and the conclusion of the theorem is true. But for simplicity, from now on we
assume that u( · , · ) is regular enough, and {Ak, Bk} is a finite sequence, i.e., there exists an integer
m > 0, such that λ(|k|) = 0 for each k with |k| > m. Furthermore, by the proof of Theorem 2.2 in
Ref. 7, we have the following characterization:∑

|k|�m

(
Ak Ak f + Bk Bk f

) = ν� f, ∀ f ∈ C2(T 2), (4.8)

where ν := 1
2

∑
k�m λ2(|k|)k2

1.
So the infinite dimensional (projected) Laplacian, when computed on smooth cylindrical func-

tions with only one variable, coincides with the usual Laplacian on the torus.

Proposition 4.1. The semi-martingale g( · , · ) in (4.7) is a critical point of the action functional
J∇0,〈 , 〉0

(see (3.1) for definition), if and only if, for some function p, u satisfies the following
Navier-Stokes equation on time interval t ∈ [0, T],{

∂u
∂t = −u · ∇u + ν

2 �u + ∇ p(t)

divu = 0.
(4.9)

The semi-martingale g( · , · ) in (4.7) is a critical point of the action functional J∇0,〈 , 〉1
if

and only if, for some function p, u satisfies the viscous Camassa-Holm equation on time interval
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t ∈ [0, T], ⎧⎪⎪⎨⎪⎪⎩
∂v
∂t = −u · ∇v − ∑2

j=1 v j∇u j + ν
2 �v + ∇ p(t),

v = u − �u,

divu = 0.

(4.10)

Proof. In order to apply Theorem 3.4, we just need to give an explicit expression of ad∗
u (u) and

K(u) in (3.6) and (3.7) for the different metrics and connections.
For each X ∈ H s(TT 2) and Y ∈ gs

V ,

〈Pe X, Y 〉0 =
∫
T 2

〈(Pe X )(x), Y (x)〉dx =
∫
T 2

〈X (x), Y (x)〉dx .

Therefore, for each u, v ∈ gs
V regular enough,

〈u,∇0
adv Ak

Ak + ∇0
Ak

(adv Ak)〉0 =
∫
T 2

〈u, Pe
(∇adv Ak Ak + ∇Ak (adv Ak)

)〉dx

= −
∫
T 2

〈u, (∇[v,Ak ] Ak + ∇Ak [v, Ak])〉dx .

Note that ∇ is the Levi-Civita connection on T 2, ∇Ak Ak = 0, and the Riemannian curvature on T 2

is zero; by the same computation as in (3.14) we have

∇[v,Ak ] Ak + ∇Ak [v, Ak] = −∇Ak ∇Ak v.

An analogous identity holds for Bk, so combining the computations above,∑
k

〈u,∇0
adv Ak

Ak + ∇0
Ak

(adv Ak) + ∇0
adv Bk

Bk + ∇0
Bk

(adv Bk)〉0

=
∑

k

∫
T 2

〈u,∇Ak ∇Ak v + ∇Bk ∇Bk v〉dx

=
∫
T 2

〈u, ν�v〉dx =
∫
T 2

〈ν�u, v〉dx = 〈ν�u, v〉0,

where in the second step above we used property (4.8), in the third the integration by parts formula
on T 2, and the last step is due to the fact that �u ∈ gs

V for u ∈ gs
V regular enough. So by definition

(3.7), we have K (u) = − ν
2 �u for the metric 〈 , 〉0 and the connection ∇0.

Another proof of this equality was given in Ref. 8, using the characterization of K in Proposition
3.5 and a direct computation of the operator K via the computation of the Ricci tensor for the
Levi-Civita connection with respect to the metric 〈 , 〉0.

From Ref. 3 or 18, for the metric 〈 , 〉0, we have ad∗
u (u) = Pe(∇uu) = Pe(u · ∇u).

As a result the reduced Euler-Poincaré equation (3.13) for J∇0,〈 , 〉0
is the Navier-Stokes

equation (4.9). The pressure term p is derived by a standard L2 duality argument.
Now we consider the metric 〈 , 〉1. For each X ∈ H s(TT 2) and Y ∈ gs

V ,

〈Pe X, Y 〉1 =
∫
T 2

〈(Pe X )(x), Y (x)〉dx +
∫
T 2

〈∇(Pe X )(x),∇Y (x)〉dx

=
∫
T 2

〈X (x), Y (x)〉dx +
∫
T 2

〈∇ X (x),∇Y (x)〉dx .

Notice also that 〈u,�v〉1 = 〈�u, v〉1 for u, v ∈ gs
V , due to the integration by parts formula on T 2.

So we can follow the same steps as we did for the metric 〈 , 〉0 above, and obtain K (u) = − ν
2 �u for

the metric 〈 , 〉1 and connection ∇0 (the connection is still ∇0 here).
From Theorem 3.2 in Ref. 19 (notice that the definition of Laplacian in Ref. 19 has a different

sign from the Laplacian here), and since Pe(1 − �)− 1 = (1 − �)− 1Pe on TT 2, for the metric

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.210.215.16 On: Sun, 21 Jun 2015 19:45:05



081507-14 Arnaudon, Chen, and Cruzeiro J. Math. Phys. 55, 081507 (2014)

〈 , 〉1, we have

ad∗
u (u) = (1 − �)−1

(
Pe

(
u · ∇(u − �u) +

2∑
j=1

(u j − �u j )∇u j

))
.

Combining the above together, the reduced Euler-Poincaré equation (3.13) for J∇0,〈 , 〉1
is the viscous

Cassama-Holm equation (4.10). �
Concerning the result of the above theorem on the Navier-Sokes equation, it was first derived

in Ref. 7 and later generalized to incompressible Brownian flows in compact manifolds (examples
of such flows are known, more generally, in compact symmetric spaces), where the same formula as
(4.8) is valid if we replace the Laplacian by the Laplace-Hodge operator (cf. Ref. 1, Theorem 2.2.).
The appearance of this operator is actually an illustration of Proposition 3.5.

For the standard Camassa-Holm equation we refer to Refs. 5 and 13, for viscous Camassa-Holm
equation we refer to Refs. 12 and 21. Our result is new for this equation.

Remark 1. The generalized derivative in Refs. 1 and 7 for stochastic processes is essentially
taken in the pointwise sense, and the choice of a connection on the space Gs

V is not needed. Although
this is adapted to the reduction for a solution of the Navier-Stokes equation, it seems not possible to
be applied to the viscous Camassa Holm equation, and that it is necessary to define the generalized
derivative associated with a connection on Gs

V as we do in this article.

Remark 2. For simplicity we assume here that u is regular, so that u is the classical solution of
the corresponding PDE. But to check the proof of Theorem 3.2, we only need the test vectors v to
be regular enough and under such cases, a less regular u is still a weak solution.

Remark 3. We can define a Hn metric as 〈X, Y〉n := ∫ ∑n
i=0〈∇ i X (x),∇ i Y (x)〉dx for each

X, Y ∈ gs
V , the corresponding critical equation (3.13) for J∇0,〈 , 〉n

is as follows:{
∂u
∂t = −ad∗

u (u) + ν
2 �u,

divu = 0,

where the duality in ad* here is defined by (3.6) for the metric 〈 , 〉n.

Remark 4. For the volume-preserving diffeomorphisms group on higher dimensional torus, we
can also choose a suitable basis of the corresponding Lie algebra, see Ref. 9. Then we can get the
Navier-Stokes and viscous Camassa-Holm equation in higher dimensional torus by the stochastic
reduction procedure above.

Remark 5. In fact, in Refs. 12 and 21, the following “second grade fluid equation” is studied⎧⎪⎪⎨⎪⎪⎩
∂v
∂t = −u · ∇v − ∑2

j=1 v j∇u j + ν
2 �v + ∇ p(t)

v = u − α�u

divu = 0,

(4.11)

where α ≥ 0 is a non-negative constant. In particular, when α = 0, it is the Navier-Stokes equation,
and when α = 1 it reduces to (4.10). Following the same procedure as in the proof of Proposition
4.1, we can verify that the semi-martingale g( · , · ) in (4.7) is a critical point of the action functional
J∇0,〈 , 〉α , if and only if u satisfies the Eq. (4.11), where 〈 , 〉α is a metric on gs

V defined by

〈X, Y 〉α :=
∫
T 2

〈X (x), Y (x)〉x dx + α

∫
T 2

〈∇ X (x),∇Y (x)〉x dx, ∀X, Y ∈ gs
V .
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C. Navier-Stokes equation on a bounded domain

Suppose D is a smooth bounded open domain on R2, and denote the boundary and the closure
of D by ∂D and D̄, respectively. As in Ref. 11, let

Gs
V (D) := {g : D̄ → D̄ is a volume preserving map, g(x) ∈ ∂ D for every x ∈ ∂ D, g, g−1 ∈ H s}.

If s > 2, then Gs,D
V is a C∞ topological group with the composition operation defined as the composi-

tion of maps from D̄ to D̄. In particular, for Gs,0
V (D) := {g ∈ Gs

V (D) : g(x) = x for every x ∈ ∂ D},
then the “Lie algebra” for Gs,0

V (D) is as follows:

gs,0
V (D) := TeGs,0

V (D)

= {X ∈ H s(D̄; T D̄), π (X ) = e, divX = 0, X (x) = 0 for every x ∈ ∂ D}.
One can consider other subgroups of Gs

V (D) with specified boundary conditions and the “Lie
algebras” of such subgroups will be the vector fields on D with adequate boundary conditions.

By the same procedure, we can also consider the SDE on Gs,0
V (D) as follows:

dg(t, θ ) =
∑

i

Hi (g(t, θ )) ◦ dW i
t + u(t, g(t, θ ))dt, g(0, θ ) = θ, θ ∈ D̄,

where we assume that Hi, u(t) ∈ gs,0
V (D) are regular enough.

In the deterministic case, i.e., when Hi = 0, such framework is adopted in Ref. 11 to study the
geodesic spray on Gs,0

V (D) as a characterization of the Euler equation on D with specific boundary
condition. But for the stochastic case, different from the case for volume preserving maps on torus
introduced in Sec. IV B, it seems not possible to find suitable sequences of vector fields Hi ∈ gs,0

V (D)
which ensure that the generator of the above SDE is the Laplacian operator, due to the restriction on
the boundary value.

So here we need to adopt an alternative way to formulate the stochastic reduction for the Navier-
Stokes equation on D. By Corollary 3.2 in Ref. 15, given u ∈ C1([0, T ]; gs,0

V (D)), for every t, there
exists an extension ū(t) ∈ H s(R2) of u(t) such that u(t, x) = ū(t, x) for every x ∈ D, divū(t) = 0, and
ū(t) has compact support in R2. Then for a fixed ν > 0, taking H1(x) = (

√
ν, 0), H2(x) = (0,

√
ν),

u = ū in SDE (4.4), we consider

dg(t, θ ) =
2∑

i=1

Hi (g(t, θ )) ◦ dW i
t + ū(t, g(t, θ ))dt, g(0, θ ) = θ, θ ∈ R2. (4.12)

Since, by the proof of Corollary 3.2 in Ref. 15, there exists a compact set K ⊆ R2, such that
supp ū(t) ⊆ K for every t ∈ [0, T], we can view ū(t) as a vector field on a torus (not necessarily
with periodicity 1), and SDE (4.12) can also be viewed as a SDE on the space of diffeomorphisms
on such torus. Hence, taking s sufficiently big to ensure the needed regularity for ū(t), and for every
v ∈ C1([0, T ]; gs

V ), we can repeat the computation in Sec. IV B and define the perturbed stochastic

Lagrangian paths gε,v(t, θ ) as well as the generalized derivative D∇0 gε,v

dt , where ∇0 is the Levi-Civita
connection on Gs

V with respect to the metric 〈 , 〉0 defined by (4.3). Therefore, the action functional
J∇0,〈 , 〉0

(defined by (3.1)) is well defined for every gε,v(·).

Proposition 4.2. The vector field u ∈ C1([0, T ]; gs,0
V (D)) is a solution of the Navier-Stokes

equation on D, ⎧⎪⎪⎨⎪⎪⎩
∂u(t,x)

∂t = −u(t, x) · ∇u(t, x) + ν
2 �u(t, x) + ∇ p(t, x), x ∈ D,

divu(t, x) = 0, x ∈ D,

u(t, x) = 0, x ∈ ∂ D

(4.13)

if and only if for every v ∈ C1([0, T ]; C∞
0 (D)) satisfying divv = 0 and v(0) = v(T ) = 0, we have

d J∇0,〈 , 〉0
(gε,v̄(.))

dε

∣∣∣
ε=0

= 0, (4.14)
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where C∞
0 (D) denotes the set of smooth functions whose supports are compact sets contained in D,

and v̄ ∈ C∞
0 (R2) is the extension of v such that v̄(x) = v(x) for every x ∈ D and v̄(x) = 0 for every

x �∈ D.

Proof. As in the computations in Theorem 3.2, and Sec. IV B, for every v ∈ C1([0, T ]; C∞
0 (D))

with divv = 0, v(0) = v(T ) = 0 and any extension ū of u with compact support,

d J∇0,〈 , 〉0
(gε,v̄(.))

dε

∣∣∣
ε=0

=
∫ T

0

∫
R2

〈
ū(t, x),

∂v̄(t, x)

∂t
+ [ū(t, x), v̄(t, x)] +

2∑
i=1

1

2
∇Hi ∇Hi v̄(t, x)

〉
dxdt

=
∫ T

0

∫
D

〈
− u(t, x)

∂t
− u(t, x) · ∇u(t, x) + ν

2
�u(t, x), v(t, x)

〉
dxdt,

where, in the last step, we use the integration by parts formula, the property that v̄ = 0 for every x �∈
D, and the boundary condition u(t, x) = 0, v(t, x) = 0 for every x ∈ ∂D and v(0) = v(T ) = 0. Hence
by Proposition 1.1, Sec. 1.4 in Ref. 20 we know that u is a solution to (4.13) if only if (4.14) is true.

In particular, the result does not depend on the choice of extension of u. �
Remark 1. Comparing with the case of the Navier-Stokes equation on torus (see, e.g., Proposition

4.1), the solution of the Navier-Stokes equation on a bounded domain with no-slip boundary condition
is characterized as the drift of a semi-martingale which can be seen as a critical point under some
perturbation. This perturbation is not exactly generated by the “Lie algebra” gs

V (i.e., gs,0
V (D)) for

the action functional J∇0,〈 , 〉0
.

Remark 2. If we consider the action functional J∇0,〈 , 〉1
associated with the connection ∇0 and

inner product 〈 , 〉1, with similar arguments to those in Propositions 4.1 and 4.2, we will obtain a
characterization of the Camassa-Holm equation on a smooth bounded domain D.
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