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Abstract: Projections via the action of a Hilbert Lie group of a class of semi-martingales
(given by It̂o fields) defined on Hilbert manifolds are investigated. Using Itô calculus,
we show that the drift term arising in the projected process can be interpreted in terms of
a regularised trace of the second fundamental form of the orbits. For group actions with
finite dimensional orbit space, we introduce a notion of strongly harmonic functions
resp. regularised Brownian motion, which project onto harmonic functions resp. onto
Brownian motion, whenever the orbits are minimal (in a regularised sense). We relate
this projection procedure of semi-martingales to the Faddeev-Popov procedure in gauge
field theory.

Introduction

We investigate here the interplay between the geometry of orbit spaces for a class of
infinite dimensional group actions, the projections of a class of semi-martingales from
the total space to the orbit space for such group actions and the Faddeev-Popov procedure
in gauge field theory. A cornerstone for building up links between these topics in the
fields of geometry, stochastic analysis and physics are heat-kernel operators which arise
in the regularisation procedure to define geometric notions such as minimality of orbits,
to describe projected processes and the so called “Faddeev-Popov" determinant in gauge
field theory [1, 2].

The heat-kernel regularisation methods involved have been studied and compared
with other regularisation procedures in [2]. The aim of the present work is to shed
light on the relationships between the three topics mentioned above, using apropriate
stochastic and geometric tools, which we define as we go along. We shall in particular
define the Stratonovich differential for a class of semi-martingales on Hilbert manifolds
and discuss how they project on a class of principal bundles defined by the action of a
Hilbert Lie group on a Hilbert manifold.
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Let us briefly describe the contents of this paper. We first generalise the notion of
Stratonovich differential to a class of semi-martingales defined by an Itô field on a
Hilbert manifold in the sense of [3], using a notion of weighted divergence for 1-forms.
We apply this framework to project such semi-martingales onto the space of orbits for
the action of a Hilbert Lie group on the Hilbert manifold.

We also write up an It̂o formula for this class of martingales which involves a
weighted trace of the Hessian. We show that smooth functions with vanishing weighted
trace of the Hessian transform martingales defined by an Itô field into martingales.

We then interpret the drift term arising in the projection of such semi-martingales
in terms of a regularised trace of the second fundamental form, already discussed in
[2]. We prove that for a group action with strongly minimal (in the sense of [2]) orbits,
semi-martingales defined by a class of Itô fields (a,A) (the choice of which depends
on the action of the group) project onto semi-martingales defined by the corresponding
projected It̂o field (ā, Ā).

When the space of orbits is a finite dimensional Riemannian manifold, we can
choose a family of It̂o fields entirely determined by the group action. They give rise
to a class of martingales which we call regularised Brownian motions associated to
the group action. We call smooth functions which transform these regularised Brownian
motions into martingales strongly harmonic functions. We prove that when the orbits are
strongly minimal, these regularised Brownian motions project onto Brownian motions
and invariant strongly harmonic functions onto harmonic functions on the manifold of
orbits.

We finally investigate a class of group actions arising in gauge field theories to
which we apply the above framework. As we go along, we shall illustrate the abstract
geometric framework with a toy model, given by the coadjoint action of a loop group
on the corresponding infinite dimensional Lie algebra. We shall also make comments
on the way as to the technical difficulties one comes across when investigating other
models such as Yang-Mills actions and actions of diffeomorphism groups on metric
spaces arising in string theory.

Similar techniques have already been applied before to give a stochastic interpreta-
tion of ill defined integrals on path space in the context of Yang-Mills theory [4]. The
corresponding processes were built directly on the orbit space there, whereas here we are
interested in the behavior of processes defined on the whole path space when projecting
them onto the orbit space. This projection procedure for a class of processes (which we
call renormalised Brownian motions) is relevent from the physical point of view since
it mimics the projection and renormalisation procedure for formal volume measure, an
essential ingredient of the Faddeev-Popov procedure in gauge field theory. Using re-
sults of [2] that relate the regularised trace of the second fundamental form of the orbits
to the horizontal variation of their (heat-kernel) regularised volume, we interpret the
projections of renormalised Brownian motions as a paradigma for the Faddeev-Popov
procedure. We discuss the choice of the underlying Riemannian structure on the manifold
P.

In what follows,P is an infinite dimensional Hilbert manifold modelled on a Hilbert
space (H,< ·, · >). We equipP with a smooth strong Riemannian structure given by
a positive symmetric two tensorg : TP × TP → TP which induces a scalar product
< ·, · >p on the tangent spaceTpP. We shall denote by∇ the corresponding Riemannian
connection.
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1. Some Tools for Stochastic Calculus on Hilbert Manifolds

1.1. Weighted divergence and weighted traces of Hessians.LetKp, p ∈ P be a family
of Hilbert spaces and

A(p) : Kp → TpP, p ∈ P
be a family of self-adjoint Hilbert Schmidt operators.

For a field of boundedk + 2-multilinear mapsB onTP, we can define the weighted
trace ofB as thek-multilinear map trAB defined by:

(trAB)(X1, · · · , Xk) =
∑
n∈IN

B(Aen, Aen, X1, · · · , Xk)

whereXi are vector fields onP, where forp ∈ P, (en(p))n∈IN is any complete orthonor-
mal basis ofKp and (Aen)(p) ≡ A(p)en(p). This infinite sum is well defined sinceA(p) is
a Hilbert-Schmidt operator onTpP. For fixedp ∈ P,

∑
n∈IN B(Aen, Aen, X1, · · · , Xk)

is independent of the choice of the orthonormal basis (en(p)) of Kp.
The covariant differential∇ on vector fields onP extends in the usual way (see e.g

[5]) to an endomorphism of the space of tensors onP, settingDT (X;X1, · · · , Xk) =
∇XT (X1, · · · , Xk). If T is a smooth covariantk-tensor, since the Riemannian struc-
ture onP is smooth, the mapDT is a smooth covariantk + 1-tensor which induces
a field of bounded multilinear maps onTP. In particular, for a smoothk-form onP,
Dα(·, ·, X1, · · · , Xk−1) is a field of bilinear bounded maps onTP and we can define its
weighted trace trA(Dα(·, ·, X1, · · · , Xk−1)) and a notion of weighted divergence which
generalises the finite dimensional notion (obtained by settingA(p) = I, see e.g [6], par.
3.135).

Definition . For a smoothk- form onP, the weighted divergence divAα is thek − 1-
form:

(divAα)(p)(X1, · · · , Xk−1) ≡ trA(Dα(·; ·, X1, · · · , Xk−1)).

If X is a smooth vector field onP, letX[ be the smooth one form onP defined by
X[(u)(p) =< X, u >p for any vectoru at pointp. We define its weighted divergence as
the real valued function onP:

divA(X) = trA(DXb).

We also define aweighted trace of the Hessianfor smooth vector-valued functions
which coincides in the finite dimensional case with the ordinary trace of the Hessian
when takingA(p) = I by:

trAHess(f ) = divA∇f

1.2. Semi-martingales defined by Itô fields .We shall consider semi-martingalesξt onP
defined by a locally Lipschitz Itô field (a,A) in the sense of [3] chap.4., i.eξt is locally
described as a solution of a stochastic equation

d∇ξ = A(ξ)dB + a(ξ)dt, (1.1)

whereB is aH-valued Wiener process (in factB takes its values in the completion ofH
with respect to a norm‖·‖− = ‖S(·)‖defined by an injective self-adjoint Hilbert-Schmidt
operatorS : H → H with densely defined inverse, see [3] p.6 and p.91),
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p 7→ a(p) ∈ TpP and p 7→ A(p) ∈ HS(H,TpP)

are locally Lipschitz maps (HS(H,K) denotes the space of Hilbert-Schmidt operators
from the Hilbert spaceH to the Hilbert spaceK). For the second map, this means that
for any local chart (U, φ), there is an open subsetV ⊂ U such that forp, p′ ∈ V ,

‖φ∗ ◦ A(p) − φ∗ ◦ A(p′)‖H.S ≤ c‖φ(p) − φ(p′)‖H
for some strictly positive constantc and where‖ · ‖H.S is the Hilbert-Schmidt norm on
operators defined onH.

Equation (1.1) is to be understood locally as follows. Letφ : U ⊂ P → H, be a
smooth local chart. LetS, T be two stopping times such thatS ≤ T , and on{S < ∞},
ξt(ω) belongs toU if t ∈ [S(ω), T (ω)[. Settingξφ ≡ φ(ξ), on the random interval [S, T [,
Eq. (1.1) reads:

dξφ = (φ∗ ◦ A)(φ−1(ξφ))dB + φ∗a(φ−1(ξφ))dt +
1
2

(trAHessφ)φ−1(ξφ)dt

(1.2)
= φ∗(d∇ξ) +

1
2

(trAHessφ)φ−1(ξφ)dt,

whereφ∗(d∇ξ) stands for (φ∗ ◦ A)(φ−1(ξφ))dB + φ∗a(φ−1(ξφ))dt.
The last term in the drift is well defined as the weighted trace of the Hessian of a

smoothH valued function onP. Equation (1.2) is a stochastic equation on the Hilbert
spaceH as described in [3] Eq. (2.29), Chapter 3.

The formal differentiald∇ξ written in (1.1) will be called the It̂o differential ofξ,
the termsA(ξ)dB anda(ξ)dt will be called respectively its martingale part and its drift.

We shall say that the semimartingaleξ defined by (1.1) is a martingale ifa ≡ 0.
Note that manifold-valued martingales correspond to local martingales if the manifold
is IR.

1.3. Stratonovich differentials and the Itô formula. Let α be any smooth one form on
P. The It̂o integral on the Hilbert spaceH ( see e.g [7] for It̂o integrals on Hilbert
spaces) defined via chartsφ on P and via time localizations with stopping times by∫

(φ−1∗)α(φ∗d∇ξ) is independent of the choice of the charts and the localizations and
yields an It̂o integral onP:∫

α(d∇ξ) =
∫

(φ−1∗α)(φ∗d∇ξ), (1.3)

whereφ∗(d∇ξ) is given by (1.2).
Generalising the definition of the Stratonovich differentialδξ for a diffusionξ on a

finite dimensional Riemannian manifold, solution of a stochastic differential equation
of the above type to the infinite dimensional case, we set:

Definition . The Stratonovich differentialδξ of ξ is caracterised by the following rela-
tion: ∫

α(δξ) =
∫
α(d∇ξ) +

1
2

∫
divA(ξ)(α)dt

whereα is a smooth 1-form onP.

Remark .Notice that this is the usual relation between Stratonovich and Itô differentials
for semi-martingales solution ofd∇ξ = A(ξ)dB +a(ξ)dt in the finite dimensional case.
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The Itô formula on Hilbert spaces [7] yields the Itô formula onP via (1.2). For a
smooth functionf onP and a semi-martingaleξ chosen as above, we have:

df (ξ) = df (d∇ξ) +
1
2

trAHess(f )(ξ)dt
(1.4)

= df (d∇ξ) +
1
2

divA∇f (ξ)dt

Remark .1) This type of It̂o formula was used by Asorey and Mitter [4] in the context
of Yang-Mills theory.

2) One clearly recovers the usual Itô formula in the finite dimensional case.

As a consequence, we have that for a smooth functionf and an It̂o field (0,A), the
following statements are equivalent:

i) for all p ∈ P, a martingale locally defined byd∇ξp = A(ξp)dB, ξp(0) = p transforms
into a local martingalef (ξp)

ii) for all p ∈ P, trAHessf (p) = 0.

The proof goes as in the finite dimensional case [8, 5.28].

2. Projecting Semi-Martingales

Let nowG be a (right-) semi-Hilbert Lie group (in the sense of [9], i.e. the usual definition
of a Hilbert Lie group holds up to the fact that only the multiplication on the right is
required to be smooth, see also [10] for a detailed discussion concerning the differential
structure on the group) acting smoothly onP on the right:

P × G → P
(p, g) 7→ p · g

in such a way thatX = P/G is a smooth manifold and the canonical projectionπ :
P → P/G yields a smooth principal fibre bundle. We shall assume that the Riemannian
structure onP is G-invariant so that it induces a Riemannian connection on the fibre
bundle:

TpP = HpP + VpP,
whereVpP is the vertical tangent space at pointp andHpP (the horizontal space) is
the orthogonal ofVpP. This induces also a Riemmannian metric onX, such that the
restriction ofπ∗ to each horizontal spaceHpP is an isometry. Its Levi-Civita connection
will be denoted by∇̄.

We shall also assume there is an orthogonal splitting ofH = H ′ ⊕H ′′ and that there
are fields of operatorsAh(p) : H ′ → HpP, Av(p) : H ′′ → VpP, such that

A(p) = Ah(p) ⊕ Av(p) (2.1)

A(p · g) = Rg∗A(p) g ∈ G, p ∈ P. (2.2)

Of course, sinceA(p) is Hilbert-Schmidt, so areAv(p) andAh(p), where the upper
indexes “h” and “v” stand for the horizontal part and the vertical part.
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2.1. The weighted trace of the second fundamental form.Let us define the second
fundamental form (see e.g [11, 12]):

Sp : VpP × VpP → HpP
(Y, Y ′) 7→ (∇ZZ

′)h(p),

whereZ,Z ′ are vertical vector fields such thatZ(p) = Y ,Z ′(p) = Y ′. This definition is
independent of the choice of the extensions ofY andY ′.

Since the Riemannian structure onP is smooth,Sp defines a bounded bilinear form
onVpP and we can define a weighted trace of the second fundamental form by trAvS.
SinceAv is right invariant, we haveRg∗Sp(Av(p)·,Av(p)·) = Sp·g(Av(p·g)·,Av(p·g)·),
andπ∗(trAvS(p)) is independent on the pointp chosen in the orbit ofπ(p) so that we
shall denote it byπ∗(trAvS)(π(p)).

Lemma 2.1. For A satisfying conditions (2.1) and (2.2) and a smooth1-form ᾱ on the
quotient spaceX, we have:

ᾱ(π∗(trAvS)) = divĀᾱ− divA(π∗(ᾱ)). (2.3)

Proof. Sinceᾱ is a 1-form onX, α ≡ π∗(ᾱ) defines a smooth 1-form onP. Let us first
notice that for right invariant horizontal vector fieldsU andV , we have:π∗(∇UV ) =
∇̄Ū V̄ (see e.g [11]). Hence, ifu andv are horizontal vectors at pointp ∈ P, letting
U , resp.V be right invariant horizontal vector fields extendingu, resp.v, we can write,
settingx = π(p) = p̄:

∇(π∗(ᾱ))(p)(u, v) = u(π∗(ᾱ)(V )) − π∗(ᾱ)(p)(∇UV )
= ū(ᾱ(V̄ )) − ᾱ(π∗(p)(∇UV ))
= ū(ᾱ(x)(V̄ )) − ᾱ(x)(∇̄Ū V̄ )
= ∇̄ᾱ(x)(ū, v̄).

Let nowu, v be vertical vectors at pointp andU , resp.V right invariant vertical fields
extendingu, resp.v. We have:

∇(π∗(ᾱ))(p)(u, v) = −(ᾱ(π∗∇UV ))(x) since V̄ = 0
= −ᾱ(x)(π∗Sp(u, v)).

Combining these two equalities, and using the fact thatA = Ah ⊕ Av, we find that:

trA(∇(π∗(ᾱ)))(p) = (trĀ∇̄ᾱ)(x) − ᾱ(x)(π∗(trAvS)),

so that

ᾱπ∗((trAvS)) = trĀ∇̄ᾱ− trA(∇(π∗(ᾱ)))
= divĀᾱ− divAπ∗(ᾱ). �

2.2. The projected semi-martingale.We investigate here how a semi-martingale defined
by an It̂o field (a,A), whereA satisfies conditions (2.1) and (2.2) projects onto the space
of orbits.
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Proposition 2.2. Under assumptions (2.1) and (2.2), the processξt defined by the locally
Lipschitz It̂o field(a,A) projects onto a processxt onX defined by the locally Lipschitz
Itô field(ā− 1

2π∗(trAvS),A). In other words, the projected processx is described as a
solution of the stochastic differential equation:

d∇̄x = Ā(x)dB̄ + ā(x)dt− 1
2
π∗(trAv(x)S)(x)dt,

whereB̄ is the orthogonal projection ofB onH ′, Ā is the canonical projection ofA,
Ā(x) = π∗A(p) = π∗Ah(p) with π(p) = x.

Proof. Let f be a smooth function onX. Applying the It̂o formula toξ for f ◦ π, we
have:

d(f (ξ̄)) = d(f ◦ π)(ξ) = d(f ◦ π)(d∇ξ) +
1
2

divAd(f ◦ π)dt

= d(f ◦ π)(A(ξ)dB + a(ξ)dt) +
1
2

divAd(f ◦ π)dt.

Using Lemma 2.1 applied to ¯α = df , this yields :

df (d∇̄ξ̄) = df (Ā(ξ̄)dB̄ + ā(ξ̄)dt)) +
1
2

(
divĀd(f )dt− df (π∗trAvS)dt

)
dt.

Choosingf to be thekth coordinateφk in a local chart (U, φ), and lettingk run in IN ,
we find that the It̂o differential of the projected process is of the typed∇̄ξ̄ = ĀdB̄ +
ādt− 1

2π∗trAvSdt. �

Corollary 2.3. For p ∈ P, let ξp be defined by a stochastic differential equation of the
type:

d∇ξp = A(ξp)dB, ξp(0) = p,

with the same assumptions as above. Then

1) for a smoothG-invariant functionf onP, there is an equivalence between i) and ii):
i) for anyp ∈ P f (ξp) is a local martingale,
ii)tr AHessf̄ (x) − df (π∗(trAvS)(x)) = 0, ∀x ∈ X;

2) The Stratonovich differential commutes with the canonical projection, i.e.δξ̄ = δξ,
where

∫
ᾱ(δξ) =

∫
π∗ᾱ(δξ).

Proof. 1) This follows from the shape of the projected processξ̄pt = xp̄t from which we
see thatf (ξp) = f̄ (xp̄) is a local martingale for allp ∈ P if and only if trAHessf̄ (x)−
π∗(trAvS)(x) = 0, ∀x ∈ X (see [8] (5.28)).

2) Let ᾱ be a smooth one form onX. We have, settingα = π∗ᾱ:∫
ᾱ(δξ̄) =

∫
ᾱ(d∇̄ξ̄) +

1
2

∫
divĀ(ᾱ)dt (definition of the Stratonovich differential)

=
∫
α(d∇ξ) − 1

2

∫
ᾱ(π∗(trAvS))dt +

1
2

∫
divĀ(ᾱ)dt by Prop. 2.2

=
∫
α(δξ) − 1

2

∫
divAαdt +

1
2

∫
divĀ(ᾱ)dt− 1

2
ᾱ(π∗(trAvS))dt

=
∫
α(δξ) by Lemma 2.1.
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3. Interplay with Geometry

3.1. A class of group actions .Let G, P be as in Sect. 2. We equip the groupG with a
family of equivalent Adg invariant Riemannian metrics indexed byp ∈ P. The scalar
product induced on the Lie algebraG by the Riemannian metric onG indexed byp will
be denoted by (·, ·)p. The closure ofG for these scalar products is independent ofp since
they are equivalent and we shall denote it byḠ.

We make additional assumptions on the group action imposing conditions on the
operatorτp defined by

τp : G → TpP
u 7→ d

dt (p · etu)
t=0
.

SinceG is dense in the Hilbert spacēG, the operatorτp is a densely defined operator
on Ḡ and we can therefore define its adjoint operatorτ∗

p w.r. to the scalar products (·, ·)p
and< ·, · >p. We make the following assumptions:

1) for anyp ∈ P, τpτ∗
p is a self adjoint operator on a dense subspace ofVpP

2) and that for anyε > 0, for anyp ∈ P, the operatore−ετpτ
∗
p is a Hilbert-Schmidt

operator onVpP,

3) the mapp → e−ετpτ
∗
p isC1.

Let ε > 0 and let us define forp ∈ P the operator:

Avε(p) = e− 1
2ετpτ

∗
p

acting onVpP. It is right invariant sinceτp·g = Rg∗τpAdg.
For p ∈ P, letAh(p) be a right invariant Hilbert-Schmidt operator acting onHpP.

The operator
Aε(p) ≡ Ah(p) ⊕Avε(p)

is also a right invariant Hilbert-Schmidt operator inTpP.
SinceP is a smooth Hilbert manifold, it is parallelisable [13] (we in fact only need

a local parallelisation). LetI(p) : H → TpP be a smooth field of isometries induced by
the parallelisation. We shall assume that the model spaceH splits into two orthogonal
spacesH = H ′ ⊕H ′′, that the family of isometriesI(p) is right invariant and splits into
a sum of isometriesI(p) = I ′(p)⊕I ′′(p) with I ′(p) : H ′ → HpP, I ′′(p) : H ′′ → VpP.

Let us set:
Aε ≡ Ah ⊕ Av

ε (3.1)

with
Ah ≡ Ah ◦ I ′, Av

ε ≡ Avε ◦ I ′′. (3.2)

For anyε > 0, the operatorAε satisfies conditions (2.1) and (2.2) of Sect. 2.

3.2. Strong minimality of orbits.We briefly recall here the notion of strong minimality
we introduced in [2] for a group action with the above properties.

Definition . The orbitOp is strongly minimal if and only if the family of pre-regularised
traces indexed byε > 0 of the second fundamental form of the orbit

(trε(S))(p) ≡ (trAv
ε
(S))(p) (3.3)

vanishes.
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Remark .1) Notice that the regularisationε introduced via the operatorAvε is entirely
determined by the group action.

2) The coadjoint action of a loop group on the corresponding loop algebra as described
in [14] gives rise to strongly minimal orbits as was pointed out in [2] Appendix 1.

From Proposition 2.2 easily follows:

Proposition 3.1. Whenever the orbits of the group action in the above class are strongly
minimal, any semi-martingale defined by an Itô field of the type(a,Aε), with ε > 0
andAε as in (3.1), projects onto a semi-martingale defined by the projected Itô field
(ā, Ā = Āh).

3.3. The case when the orbit space is finite dimensional.When the orbit space is a finite
dimensional Riemannian manifold, we can setAh(p) = I for p ∈ P, and we have only
to assume thatI ′(p)I ′(p)∗ is equal to the identity ofHpP for all p ∈ P and remove
the assumption thatI ′(p) is injective. The family of It̂o fields (0,Aε) then defines a one
parameter family of martingales entirely determined in law by the group action which
we shall call a family ofregularised Brownian motions associated to the group action.

We shall call astrongly harmonic functionon P, a smooth function that takes any
regularised Brownian motion onto a martingale.

From the above results follows that:

Proposition 3.2. Whenever the orbit space is finite dimensional and the orbits of the
action are strongly minimal,

1) a regularised Brownian motion projects onto a Brownian motion on the orbit space,

2) a strongly harmonicG-invariant function projects onto a harmonic function on the
orbit space.

Proof. 1) This follows from Proposition 3.1, since hereAh(p) = I.

2) f is strongly harmonic whenever for any regularised Brownian motionξε, f (ξεt ) =
f̄ (ξ̄εt ) is a martingale, which holds wheneverf̄ is harmonic, by Corollary 2.3, 1.

This proposition generalises similar well known results in the finite dimensional case,
see e.g [15, 16].

Before we give an example to illustrate this proposition, let us first describe the
general geometric framework in which examples will fit in naturally.

4. Projections of Martingales as a Paradigma for the Faddeev–Popov Procedure
in Gauge Field Theory

The group actions arising from the action of the gauge group on the path space in gauge
field theory fit in the class of actions described in Sect. 3.1 and give rise to what we
called regularisable fibre bundles in [2]. The fibre bundles arising in gauge theories can
be equipped with both weak and strong Riemannian structures which we now describe.

4.1. The geometric setting for a class of gauge field theories.We present a geometric
framework which reflects the essential features of gauge field theory. This is to be seen
as a simplified model of gauge field theory which we shall use below to describe a
paradigma for the Faddeev-Popov procedure in gauge field theory. Some examples of
actions which fit in the framework described in this section are:
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– the action arising in string theory of the group of diffeomorphisms homotopic to
identity of a compact Riemann surface of genus larger than 1 on the manifold of
metrics of this surface,

– the action arising in Yang-Mills theory of automorphisms of a principal bundle built
on a compact Riemannian manifold on the manifold of irreducible connections on
this bundle,

– the (coadjoint) action arising in the representation of loop groups of pinned Lie group
valued loops on the space of loops with values in the corresponding Lie algebra.

We shall illustrate the abstract setting with this last example since it offers a good
toy model.

Let M be a smooth compact boundaryless Riemannian manifold. For a smooth
vector bundleV onM with finite dimensional fibres, we can define the Sobolev spaces
Hk(V), k ∈ IN using a partition of unity (see [17]). LetE andF be two smooth vector
bundles onM with finite dimensional fibres. In gauge field theory, the path spaceP is
a smooth Hilbert manifold modelled onHk(E), for somek > 1 + 1

2dimM,k ∈ IN . The
gauge groupG is a right semi-Hilbert Lie group (i.e. it has the properties of a Hilbert
group up to the fact that only multiplication on the right is smooth, see [9]) modelled on
Hk+1(F ). We shall assume that bothE andF are equipped with a fibre metric in such
a way thatP is equipped with a smooth weak Riemannian structureg0 which induces
anL2 scalar product< ·, · >p,0 on TpP and thatG is equipped with a right invariant
family of equivalentL2 scalar products (·, ·)p,0 indexed byp. The closures ofG w.r.t
these scalar products coincide and will be denoted byḠ.

Let the operatorτp : G → TpP be a differential operator. We shall assume it is
injective.

A toy model: the coadjoint action of loop groups. We shall give only the general features
of the model here and refer the reader to [14] and [2] for a detailed description. Let
G be a connected compact Lie group,g its Lie algebra. We setP = L2([0, 1], g) and
G = {g ∈ H1([0, 1], G), g(0) = g(1) = e}. G acts onP via a smooth free action (also
called coadjoint action):

G × P → P
(g, γ) → gγg−1 − g′g−1.

The orbit space is the Lie groupG and the map

π : L2([0, 1], g) → G
γ → g(1) with g−1g = γ, g(0) = e

yields a fibre bundle structure onL2([0, 1], g) with structure groupG. The action is
isometric for the natural Riemanian metric onP induced by a fixed Ad invariant inner
product ong.

For a loopp ∈ P, the operatorτp is given by

{u ∈ H1([0, 1], g), u(0) = u(1) = 0} → L2([0, 1], g)
u → [u, p] − u′.

This operator is clearly a first order differential operator which is injective, the action
being free.

One can show [2] (Appendix A) that the orbits for this coadjoint action are strongly
minimal inL2([0, 1], g).
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Remark .Let us at this point make a few comments about the other two examples we
have in mind.

One can see the toy model described above as a one dimensional Yang-Mills (dual)
action. It is therefore natural to enquire about Yang-Mills actions for manifolds of di-
mension 2,3 and 4. These were investigated in [18]. Strong minimality of orbits holds for
smooth irreducible connections when the Lie group but otherwise, one can only hope for
minimality (and not strong minimality) of orbits of a certain class of smooth irreducible
connections. Going from strongly minimal to minimal requires a limit procedure which
motivates paragraph 3 of this section.

Another example of group action arising in string theory is the action of a group
of diffeomorphisms on a manifold of Riemannian metrics, for which the problem (yet
unsolved) of deciding which of the orbits are minimal is made difficult by the fact that,
unlike the above two models, the Riemannian structure on the groupG (here a group of
diffeomorphisms) depends on the parameterp ∈ P, namely on a metric chosen on the
manifoldM .

A comment on the choice of Riemannian structureP andG. Let us denote for the moment
by τ∗0

p the adjoint ofτp w.r. to theL2 scalar products (·, ·)p,0 and< ·, · >p,0.

In the context of gauge field theory, the operatorsτ∗0

p τp arise as positive self adjoint
elliptic operators onM of order 2. Their coefficients are not smooth in general, but they
are regular enough to recover the properties of elliptic operators with smooth coefficients
we shall use below (for details concerning this point, see [19, 20, 9]).

In particular, we shall asume that the scalar products onHk(F ) defined by

(·, ·)p,k ≡ (·, ·)p,0 + ((τ∗0

p τp)
k
2 ·, (τ∗0

p τp)
k
2 ·)p,0

induce a strong Riemannian structure onG which we shall denote byhk, as is the case
when the coefficients of the elliptic operator are smooth [17].

Sinceτ∗0

p τp is a self adjoint elliptic operator onC∞(F ), the range R(τp), resp. the
kernel Kerτ∗0

p are closed w.r.to theL2 scalar products< ·, · >p,0, resp. (·, ·)p,0 as well
as in theHk topology (see e.g [21], Sect. 6 and [20] (3.1.5) for a discussion in the
Yang-Mills case ) and we have theL2 orthogonal splitting

TpP = R(τp) ⊕ Ker(τ∗0

p ), (4.1)

where the orthogonal sum is taken w.r.to the scalar products< ·, · >p,0.
We now specialize to a class of gauge theories with finite dimensional orbit space.

In particular Kerτ∗
p is finite dimensional. This assumption is in particular satisfied for

the toy model described above.
We make the assumption that the scalar products onTpP defined by

< ·, · >p,k≡< ·, · >p,0 + < (τpτ
∗0

p )
k
2 ·, (τpτ∗0

p )
k
2 · >p,0

induce a strong Riemannian structure onP which we shall denote bygk.
The adjoint of the operatorτp w.r. to the induced scalar products< ·, · >p,k and

(·, ·)p,k coincide withτ∗0

p . Indeed, we have foru ∈ G andh ∈ TpP:
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< τpu, h >p,k = < (τpτ
∗0

p )
k
2 τpu, (τpτ

∗0

p )
k
2 h >p,0 + < τpu, h >p,0

= < τp(τ
∗0

p τp)
k
2 u, (τpτ

∗0

p )
k
2 h >p,0 + < τpu, h >p,0

= ((τ∗0

p τp)
k
2 u, τ∗0

p (τpτ
∗0

p )
k
2 h)p,0 + (u, τ∗

ph)p,0
= (u, τ∗0

p h)p,k

We shall henceforth uniformise the notation denoting byτ∗
p the adjoints w.r. to the scalar

products induced by the scalar products< ·, · >p,0 and< ·, · >p,k.
The orthogonal splitting (4.1) onP also holds w.r.to the scalar products< ·, · >p,k.

Since the spaces Imτp and Kerτ∗
p are closed in theHk topology, (4.1) yields a connection

associated to the metricgk. We shall henceforth not specify which of the metrics we
choose to define horizontality.

As a heat-operator built from a self adjoint elliptic operator on a compact boundary-
less manifold, the operatore−ετ∗

p τp (resp.e−ετpτ
∗
p ) is trace-class (see [17]) and hence

Hilbert-Schmidt. An easy computation shows that its trace taken w.r.to (·, ·)p,0 (resp.
< ·, · >p,0) coincides with its trace taken w.r.to (·, ·)p,k (resp.< ·, · >p,k ). We will
therefore not specify which of the two scalar products we choose to define these traces.

Back to the toy model. Combining this with Proposition 3.2 yields that regularised
Brownian motion on the loop algebraL2([0, 1], g) projects onto Brownian motion on
the Lie groupG via the coadjoint action since the orbits are strongly minimal.

Remark .A similar statement holds for Yang-Mills action when the Lie groupG is
abelian since the orbits are also strongly minimal in that case.

4.2. Minimal orbits as orbits with extremal volume.In Sect. 3.2, we defined a notion of
strong minimality without specifying the underlying Riemannian structure onP. The
aim of this section is to show that one can choose either the metricgk or the metricg0.

Let us first briefly recall the generalisation of Hsiang’s theorem relating minimality
of orbits with the extremality of their volume, which we wrote down in [2] using heat-
kernel regularisation methods. In [2], the underlying Riemannian structure was chosen
strong or weak, as long as it induced a connection onP with the usual properties. We
choose here the connection described by (4.1) and any of the two metricsg0 or gk.

We introduced in [2] a notion of heat-kernel pre-regularised volume of an orbitOp,
p ∈ P, setting forε > 0:

volε(Op) = exp[−1
2

∫ +∞

ε

t−1 tre−t(τ∗
p τp)dt] (4.2)

which, by the above discussion, is independent of whether one chooses the scalar prod-
ucts< ·, · >0 or< ·, · >p,k to define the trace.

In the context of gauge field theories, we can apply the results of [2] (i.e. assumptions
(2.1)–(2.5 bis) of [2] are fulfilled in that context, see the discussion that follows (2.5
bis)) choosing any of the two metricsgk org0, and we see that whenever the Riemannian
structure onG is independent ofp, the following relations between a horizontal direc-
tional derivative of the pre-regularised volumes and the regularised second fundamental
form hold:

< trkεS
k, X >p,k= −δX log volε(Op), (4.3)
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< tr0
εS

0, X >p,0= −δX log volε(Op) (4.3bis)

for any horizontal vectorX at any pointp ∈ P and whereSk (resp.S0) is the second
fundamental form defined using the Levi-Civita connection associated to the Riemannian
metricgk (resp.g0).

From this follows that for any horizontal vectorX, we have:

< trkεS
k, X >p,k=< tr0

εS
0, X >p,0

Hence, since< ·, · >p,k and< ·, · >p,0 coincide horizontally, we have:

trkεS
k = tr0

εS
0.

Remark .1) From this follows that the notion of strong minimality does not depend
on whether one chooses thegk or theg0 structure. Moreover relations (4.3) and (4.3
bis) tell us that an orbitOp is strongly minimal whenever its pre-regularised volume
volε(Op) is extremal among other orbits.

2) When applied to the coadjoint loop group action on the corresponding Lie algebra,
relation (4.3) tells us that all orbits in the “toy model” have extremal pre-regularised
volume.

3) As was pointed out above, the assumption on the independence w.r.to the parameter
p of the Riemannian structure onG excludes the case of string theory where the
parameterp is a metric on a finite dimensional manifoldM which arises in the
definition of the scalar products on the Lie algebraG given by the space of smooth
vector fields onM .

As a consequence, when the Riemannian structure onG is independent ofp, we have
the following:

Proposition 4.1. Whenever the orbits have constant pre-regularised volume, the process
defined by a locally Lipschitz Itô field(a,Aε), withAε as in (3.1), projects onto a process
defined by the projected Itô field(ā, Āh) which is independent ofε.

Proof. This follows directly from Proposition 3.1 and (4.3). Let us stress here that the
regularised trace of the second fundamental form that appears in the drift is the one
(trkεS

k) taken w.r.to the metricgk. �

4.3. Projected renormalised Brownian motions.The pre-regularised volume volε(Op)
diverges whenε goes to zero. Using the asymptotic expansion for heat-kernels of elliptic
operators on compact manifolds (see [17] and [2] for a more detailed description of these
asymptotic expansions), we have:

tr(e−ετ∗
p τp ) '0

∞∑
j=−J

bj(p)ε
j
2

(recall that the operator is of order 2) for some real valued coefficientsbj(p),J = dimM .
We can then define a notion of heat-kernel regularised volume volreg(Op) and a notion
of regularised trace of the second fundamental form which boils down to taking the
ε → 0 limit after having got rid of the divergences of the corresponding pre-regularised
volumes and traces. This regularisation was compared in [2] with the zeta-regularisation
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method. A minimal orbit is an orbit the second fundamental form of which has vanishing
regularised trace. A strongly minimal orbit is minimal [2].

Let us takeP/G finite dimensional and compact and let us investigate the projections
of families indexed byε of renormalised Brownian motions and their limit whenε goes
to zero. Byfamily of renormalised Brownian motionsassociated to the group action, we
mean a family of processes (ξε) such that for allε, ξε is defined by a locally Lipschitz Itô
field (− 1

2

∑−1
j=−J gradbj

j ε
j
2 − 1

4gradb0logε,Aε) with Aε = Ah +Av
ε , Av

ε as described in

(3.2), and for allp ∈ P, Ah(p) = I ′(p) : H ′ → HpP defined on an Euclidian spaceH ′,
not necessarily injective and such thatI ′(p)I ′(p)∗ is the identity ofHpP. We assume
furthermore that there exists aH ′-valued Brownian motionB′ such that for allε, the
horizontal and martingale part ofd∇ξε is I ′(ξε)dB′.

Proposition 4.2. Let us assume thatG is equipped with a fixed Riemannian metric(·, ·)k
independent ofp ∈ P. Let(ξεt ) be a family of renormalised Brownian motions associated
to the group action, such that for allε, ξε0 = p0 ∈ P. If the following assumptions are
fulfilled:

1) The gradients of the coefficientsbj(p) in the heat-kernel expansion ofe−tτ∗
p τp are

Lipschitz and invariant under the action of the group.

2) There is a constantC > 0 such that:

supp∈P‖grad trFp(t)‖ ≤ Ct,

whereFp(t) = tre−tτ∗
p τp − ∑1

j=−J bj(p)t
j
2 .

3) The mapsp 7→ grad log volε(Op) −
−1∑
j=−J

grad
bj(p)
j

ε
j
2 − 1

2
gradb0(p)logε andp 7→

grad log volreg(Op) are locally Lipschitz.

Then the projected processxεt ≡ ξεt satisfiesxε0 = p̄0 and

d∇̄xεt = I ′(xt)dB′
t +

1
2

grad log volεOxt
dt

−1
2

−1∑
j=−J

grad
bj(xt)
j

ε
j
2 dt− 1

4
gradb0(xt)logεdt

= I ′(xt)dB′
t − 1

2
trεS

xtdt− 1
2

−1∑
j=−J

grad
bj(xt)
j

ε
j
2 dt− 1

4
gradb0(xt)logεdt

and converges inL2 uniformly on compact sets (i.e for anyT > 0,E[supt≤T d
2(xεt , xt)]

converges to zero) to the solution starting atp̄0 of the stochastic equation:

d∇̄xt = I ′(xt)dB′
t +

1
2

grad log volregOxt
dt.

If the fibres are minimal, the limit process is a Brownian motion.

Remark .The uniform upper bound onP in assumption 2) is in fact a uniform upper
bound on the quotient since everything isG invariant. This uniform upper bound re-
quirement is in particular fulfilled when the quotient manifold is compact and the map
p 7→ tre−tτ∗

p τp isC1.
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Proof. We shall setBp = τ∗
p τp and refer the reader to [2] for notations.

(i) Let us first prove that the drift term of the processxεt converges uniformly to that
of xt, namely1

2grad log volreg(Op).

SettingAε = − ∫ +∞
ε

e−tBp

t dt:

grad log volε(Op) −
−1∑
j=−J

gradbj
j

ε
j
2 − 1

2
gradb0logε− gradb1ε

1
2

=
1
2

grad (trAε −
1∑

j=−J,j 6=0

2bj
j
ε

j
2 − b0logε)

= −
1∑

j=−J,j 6=0

gradbj
j

− 1
2

grad
∫ 1

ε

Fp(t)
t

dt− 1
2

grad
∫ ∞

1
tr
e−tBp

t
dt

by (1.9) in [2]

with Fp(t) = tre−tBp − ∑1
j=−J bjt

j
2 .

Furthermore:

‖gradFp(t)
t

‖ ≤ C

by assumption 2) of the proposition. Hence grad
∫ 1
ε
Fp(t)
t dt =

∫ 1
ε

gradFp(t)
t dt and

converges uniformly to
∫ 1

0
gradFp(t)

t dt in p. Thus grad log volε(Op) − ∑−1
j=−J

gradbj

j ε
j
2 − 1

2 gradb0 logε converges uniformly inp to grad log volreg(Op) (by
(1.6) of [2]).

(ii) Let us now show the uniformL2 convergence on compact sets of the processesxεt
to the processxt. We first show that proving this convergence property boils down
to proving theL2 convergence on compact sets of a diffusion onIRn defined by
dyε = A(yε)dB′ + aε(yε)dt andyε(0) = y0 ∈ IRn to a diffusion onIRn locally
defined bydy = A(y)dB′ +a(y)dt andyε(0) = y0, whereA, aε anda are Lipschitz
andaε converges uniformly toa. Indeed, we can choosen large enough forX to
be embedded inIRn via an embeddingu : X → IRn. Using the compactness of
X, we extendu−1 to a mapψ defined on a neighborhood ofu(X) so that it makes
sense to look at the processyε = u(xε) as defined by the stochastic differential
equation:

dyε = I ′
u(yε)dB

′ + αuε (yε)dt, yε(0) = y0 = u(p̄0)

with I ′
u = u∗ ◦ I ′ ◦ ψ, and settingp = ψ(y),

αuε (y) = u∗

−1
2

trSpε − 1
2

−1∑
j=−J

grad
bj
j

(p)ε
j
2 − 1

4
gradb0(p)logε


+

1
2

tr(Hessu)(p)

which shows that the embedded processu(xε) is a diffusion inIRn. SinceI ′ is
Lipschitz, so isI ′

u. The driftαuε is Lipschitz by assumption 3) using the fact that
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gradbj and trSpε = −grad logVolε(Op) are Lipschitz. From the first part of the proof
follows thatαuε converge uniformly toαu defined by

αu = −1
2
u∗trregS

ψ(y) +
1
2

tr(Hessu)(ψ(y)).

Note that the second trace is a finite dimensional one. Henceyε is a diffusion
process onIRn locally defined by a stochastic equation of the form

dyε = A(yε)dB
′ + aε(yε)dt, yε(0) = y0, (∗)

whereA, aε are Lipschitz andaε converges uniformly toa Lipschitz.

(iii) Let us now prove the required convergence property for a diffusion processyε in
IRn of the type (∗). We shall denote by (·, ·)IRn the scalar product inIRn, by‖ ·‖IRn

the corresponding norm. SinceA is Lipschitz, there is a constantC > 0, such
that tr(A(x) − A(y))∗(A(x) − A(y)) ≤ C‖x − y‖2

IRn and‖a(x) − a(y)‖2
IRn ≤

C‖x− y‖2
IRn . We have

‖yε(t) − y(t)‖2

≤ 2‖
∫ t

0
(A(yε(s)) −A(y(s)))dB′

s‖2 + 2‖
∫ t

0
(aε(yε(s)) − a(y(s)))ds‖2

with y defined bydy = A(y)dB′ + a(y)dt andy(0) = y0.

Setfε(T ) = E(supt≤T ‖yε(t) − y(t)‖2). We want to boundfε(T ) from above. Using
Doob’s inequality for martingales, we obtain the following estimate:

E(supv≤t‖
∫ v

0
(A(yε(s)) −A(y(s)))dB′

s‖2

≤ 4E(‖
∫ t

0
(A(yε(s)) −A(y(s)))dB′

s‖2)

≤ 4
∫ t

0
E

[
tr(A(yε(s)) −A(y(s)))∗(A(yε(s)) −A(y(s)))

]
ds

≤ 4C
∫ t

0
E

[‖yε(s) − y(s)‖2
IRn

]
ds.

On the other hand

E(supv≤t‖
∫ v

0
(aε(yε(s))−a(y(s)))ds‖2) ≤ E

(
supv≤t

∫ v

0
‖aε(yε(s))− a(y(s))‖2ds

)
≤

∫ t

0
E

(‖aε(yε(s)) − a(y(s))‖2
)
ds

≤ 2
∫ t

0
E(‖aε(yε(s)) − a(yε(s)))‖2

IRn )ds

+ 2
∫ t

0
E(‖a(yε(s)) − a(y(s))‖2

IRn )ds

≤ 2th(ε) + 2C
∫ t

0
E(‖yε(s) − y(s)‖2

IRn )ds,

whereh(ε) = supx‖aε(x) − a(x)‖2
IRn is a function tending to zero at zero arising from

the uniform convergence ofaε to a.
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Finally, we find that fort ≤ T ,

fε(t) ≤ 4Th(ε) + 12C
∫ t

0
E(‖yε(s) − y(s)‖2

IRn )ds

≤ 4Th(ε) + 12C
∫ t

0
fε(s)ds,

which, using Gromwald’s lemma yields:

fε(T ) ≤ 4Th(ε)e12CT ,

which shows thatfε(T ) goes to zero whenε → 0.

(iv) We have shown thatE(Supt≤T ‖u(xε)(t) − u(x)(t)‖2
IRn ) tends to zero whenε → 0

from which follows thatE(Supt≤T d(xε(t), x(t))2) tends to zero, sinceX being
compactd(·, ·) and‖u(·) − u(·)‖IRn are equivalent. �

Remark .1) For group actions with strongly minimal orbits such as the toy model
described above, the limit procedure (ε → 0) which is carried out in the above
proposition is unecessary and Proposition 4.2 boils down to Proposition 3.2. However,
this limit procedure is necessary in the case of Yang-Mills actions for example for
which minimal orbits are in general not strongly minimal.

2) The drift of the “renormalised” projected processxt is expressed here in terms of
the logarithmic variation of the volume. However, it can just as well be written in
terms of the trace of the second fundamental form using (4.3). The proof above
uses regularisation methods for regularised determinants from which we deduce a
regularised trace of the second fundamental form. Because relation (4.3) does not
hold when the metric on the group varies (see [2]), the proof of this proposition
does not apply to the case of diffeomorphisms acting on metrics. However, since
the conclusion of the proposition only involves the trace of the second fundamental
form and not the variation of volume of orbits, the proof should extend to the case of
diffeomorphisms acting on metrics, a setting which one of the authors (S. Paycha) is
investigating together with S. Rosenberg.

4.4. Conclusions.This last proposition gives, in some restrictive setting, a stochastic
interpretation of the formal procedure (the “Faddeev-Popov procedure”) used in gauge
field theory, by which one projects a formal volume measure defined on the path space
onto the orbit space. Via a regularisation procedure for the Jacobian operator that arises
from this projection, in gauge field theory one interprets the projected volume measure
as one with formal density given by a regularised “Faddeev-Popov” determinant. This
subintends a limit procedure that brings the family of pre-regularised jacobian determi-
nants detε, ε > 0 to regularised jacobian determinants detreg, by adding divergent terms
(this procedure is also referred to as a “renormalisation procedure”) that compensate
the divergences of the pre-regularised determinants. The above proposition clarifies this
formal “renormalisation procedure” from a stochastic point of view, when the orbit space
is finite dimensional and compact.

We hope to have convinced the reader that the heat-kernel regularisation approach
in gauge field theory, although not so widely used as the zeta function regularisation
approach, is natural both from a geometric and stochastic point of view. It helps clarify
the formal reduction procedure used in the functional quantisation of gauge theory to
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“reduce” the measures defined on the path space to measures on the orbit space for
the action of the gauge group. It also leads to natural geometric notions on infinite
dimensional manifolds, such as minimality which are of interest for their own sake.
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