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Abstract: Projections viathe action of a Hilbert Lie group of a class of semi-martingales
(given by 16 fields) defined on Hilbert manifolds are investigated. Usidgchlculus,

we show that the drift term arising in the projected process can be interpreted in terms of
a regularised trace of the second fundamental form of the orbits. For group actions with
finite dimensional orbit space, we introduce a notion of strongly harmonic functions
resp. regularised Brownian motion, which project onto harmonic functions resp. onto
Brownian motion, whenever the orbits are minimal (in a regularised sense). We relate
this projection procedure of semi-martingales to the Faddeev-Popov procedure in gauge
field theory.

Introduction

We investigate here the interplay between the geometry of orbit spaces for a class of
infinite dimensional group actions, the projections of a class of semi-martingales from
the total space to the orbit space for such group actions and the Faddeev-Popov procedure
in gauge field theory. A cornerstone for building up links between these topics in the
fields of geometry, stochastic analysis and physics are heat-kernel operators which arise
in the regularisation procedure to define geometric notions such as minimality of orbits,
to describe projected processes and the so called “Faddeev-Popov" determinant in gauge
field theory [1, 2].

The heat-kernel regularisation methods involved have been studied and compared
with other regularisation procedures in [2]. The aim of the present work is to shed
light on the relationships between the three topics mentioned above, using apropriate
stochastic and geometric tools, which we define as we go along. We shall in particular
define the Stratonovich differential for a class of semi-martingales on Hilbert manifolds
and discuss how they project on a class of principal bundles defined by the action of a
Hilbert Lie group on a Hilbert manifold.
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Let us briefly describe the contents of this paper. We first generalise the notion of
Stratonovich differential to a class of semi-martingales defined bydaafidid on a
Hilbert manifold in the sense of [3], using a notion of weighted divergence for 1-forms.
We apply this framework to project such semi-martingales onto the space of orbits for
the action of a Hilbert Lie group on the Hilbert manifold.

We also write up an & formula for this class of martingales which involves a
weighted trace of the Hessian. We show that smooth functions with vanishing weighted
trace of the Hessian transform martingales defined bydafidlid into martingales.

We then interpret the drift term arising in the projection of such semi-martingales
in terms of a regularised trace of the second fundamental form, already discussed in
[2]. We prove that for a group action with strongly minimal (in the sense of [2]) orbits,
semi-martingales defined by a class @ fields @,.4) (the choice of which depends
on the action of the group) project onto semi-martingales defined by the corresponding
projected 1 field (a, A).

When the space of orbits is a finite dimensional Riemannian manifold, we can
choose a family of & fields entirely determined by the group action. They give rise
to a class of martingales which we call regularised Brownian motions associated to
the group action. We call smooth functions which transform these regularised Brownian
motions into martingales strongly harmonic functions. We prove that when the orbits are
strongly minimal, these regularised Brownian motions project onto Brownian motions
and invariant strongly harmonic functions onto harmonic functions on the manifold of
orbits.

We finally investigate a class of group actions arising in gauge field theories to
which we apply the above framework. As we go along, we shall illustrate the abstract
geometric framework with a toy model, given by the coadjoint action of a loop group
on the corresponding infinite dimensional Lie algebra. We shall also make comments
on the way as to the technical difficulties one comes across when investigating other
models such as Yang-Mills actions and actions of diffeomorphism groups on metric
spaces arising in string theory.

Similar techniques have already been applied before to give a stochastic interpreta-
tion of ill defined integrals on path space in the context of Yang-Mills theory [4]. The
corresponding processes were built directly on the orbit space there, whereas here we are
interested in the behavior of processes defined on the whole path space when projecting
them onto the orbit space. This projection procedure for a class of processes (which we
call renormalised Brownian motions) is relevent from the physical point of view since
it mimics the projection and renormalisation procedure for formal volume measure, an
essential ingredient of the Faddeev-Popov procedure in gauge field theory. Using re-
sults of [2] that relate the regularised trace of the second fundamental form of the orbits
to the horizontal variation of their (heat-kernel) regularised volume, we interpret the
projections of renormalised Brownian motions as a paradigma for the Faddeev-Popov
procedure. We discuss the choice of the underlying Riemannian structure on the manifold
P.

In what follows,P is an infinite dimensional Hilbert manifold modelled on a Hilbert
space {, < -,- >). We equipP with a smooth strong Riemannian structure given by
a positive symmetric two tensgr: TP x TP — TP which induces a scalar product
< -,- >ponthetangent spadgP. We shall denote by the corresponding Riemannian
connection.
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1. Some Tools for Stochastic Calculus on Hilbert Manifolds

1.1. Weighted divergence and weighted traces of Hessiagisk,,, p € P be a family
of Hilbert spaces and
Alp) K, = T,P, peP

be a family of self-adjoint Hilbert Schmidt operators.
For a field of bounded + 2-multilinear map$3 on’T"P, we can define the weighted
trace of B as thek-multilinear map tu B defined by:

(traB)(Xy, -+, Xi) = Y B(Aen, Aen, X1, -+, Xx)
neN

whereX; are vector fields o, where fop € P, (e,,(p))ne v IS @any complete orthonor-
mal basis of{,, and e, )(p) = A(p)en(p). Thisinfinite sumis well defined sincl(p) is

a Hilbert-Schmidt operator dfj, P. For fixedp € P, > - B(Ae,, Aen, X1, - -+, Xi)
is independent of the choice of the orthonormal basiéx)) of K.

The covariant differential/ on vector fields orP extends in the usual way (see e.g
[5]) to an endomorphism of the space of tensorsgrsetting DT'(X; Xq,---, Xi) =
VxT(Xq, --,Xy). If T is a smooth covariant-tensor, since the Riemannian struc-
ture onP is smooth, the ma@T is a smooth covariant + 1-tensor which induces
a field of bounded multilinear maps darfP. In particular, for a smoottk-form on P,
Da(-, -, X1, -, Xi_1) is afield of bilinear bounded maps @i and we can define its
weighted trace tf(Da(-, -, X1, - - -, Xx—1)) and a notion of weighted divergence which
generalises the finite dimensional notion (obtained by setifpy = I, see e.g [6], par.
3.135).

Definition . For a smoothk- form onP, the weighted divergence diw is thek — 1-
form:
(divaa)()(X1, -+, Xi—1) = tra(Dal; -, X, -+, Xg-1))-

If X is a smooth vector field oR, let X° be the smooth one form g defined by
X°(u)(p) =< X, u >, for any vector at pointp. We define its weighted divergence as
the real valued function o®:

diva(X) = tr4(DX?).

We also define aveighted trace of the Hessiarfor smooth vector-valued functions
which coincides in the finite dimensional case with the ordinary trace of the Hessian
when takingA(p) = I by:

tryHesgf) =divaVf

1.2. Semi-martingales defined by fields . We shall consider semi-martingalgson P
defined by a locally Lipschitz @tfield (a, .A) in the sense of [3] chap.4., isgis locally
described as a solution of a stochastic equation

dVe = A(€)dB + a(f)dt, (1.1)

whereB is aH-valued Wiener process (in faBttakes its values in the completion Bf
with respecttoanorr||— = ||S(-)|| defined by aninjective self-adjoint Hilbert-Schmidt
operatorS : H — H with densely defined inverse, see [3] p.6 and p.91),
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p— a(p) € T,P and p— A(p) € HS(H,T,P)

are locally Lipschitz mapsH S(H, K) denotes the space of Hilbert-Schmidt operators
from the Hilbert spacé/ to the Hilbert spacé(). For the second map, this means that
for any local chart¥, ¢), there is an open subsgétc U such that fop, p’ € V,

16 0 AW) — ¢« 0 AW 1.5 < cllé@) — 6@l

for some strictly positive constantand wherg| - || ;7 s is the Hilbert-Schmidt norm on
operators defined of .

Equation (1.1) is to be understood locally as follows. betU € P — H, be a
smooth local chart. Le$, T be two stopping times such théit< T, and on{S < oo},
&(w) belongstd/ if ¢ € [S(w), T'(w)[. Settingé, = ¢(£), onthe random intervaly], 17,
Eqg. (1.1) reads:

déy = (dx 0 A) P~ HEp)AB + prald™H(Ep))dt + %(UAHGSSb)qﬁ_l(&)dt

1.2
= ¢ (dVE) + %(thHeS3b)¢_1(§¢)dt, (2

whereg..(dV €) stands for ¢, o A)(¢p~1(€y))dB + dra(p~1(Ep))dt.

The last term in the drift is well defined as the weighted trace of the Hessian of a
smoothH valued function orP. Equation (1.2) is a stochastic equation on the Hilbert
spaceH as described in [3] Eq. (2.29), Chapter 3.

The formal differentiall ¢ written in (1.1) will be called the & differential ofé,
the termsA(£)d B anda(€)dt will be called respectively its martingale part and its drift.

We shall say that the semimarting&lelefined by (1.1) is a martingale if = 0.

Note that manifold-valued martingales correspond to local martingales if the manifold
is IR.

1.3. Stratonovich differentials and thé lformula. Let o be any smooth one form on

‘P. The 16 integral on the Hilbert spacH ( see e.g [7] for b integrals on Hilbert
spaces) defined via chargson P and via time localizations with stopping times by
[0 ) a(9.dV €) is independent of the choice of the charts and the localizations and
yields an 16 integral onP:

/ a(d7e) = / (6~ 0)(6.d79), (1.3)

whereg, (dV€) is given by (1.2).

Generalising the definition of the Stratonovich differendi@for a diffusion¢ on a
finite dimensional Riemannian manifold, solution of a stochastic differential equation
of the above type to the infinite dimensional case, we set:

Definition . The Stratonovich differentidl¢ of ¢ is caracterised by the following rela-

tion:
/ a(6¢) = / a(dvE) +% / div ey (@)dt

wherea is a smooth 1-form ofP.

Remark . Notice that this is the usual relation between Stratonovich andifferentials
for semi-martingales solution @ ¢ = A(¢)dB + a(£)dt in the finite dimensional case.
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The I formula on Hilbert spaces [7] yields théformula onP via (1.2). For a
smooth functionf on P and a semi-martingalechosen as above, we have:

1
— v 41
df(€) = df (™) + SwaHess()(€)dt L.4)

= df(d¥E) + SavaV F(Q)r

Remark .1) This type of I6 formula was used by Asorey and Mitter [4] in the context
of Yang-Mills theory.

2) One clearly recovers the usud formula in the finite dimensional case.

As a consequence, we have that for a smooth fungtiand an 16 field (0, .A), the
following statements are equivalent:

i) forallp € P,amartingale locally defined k¥ £» = A(£P)dB, £2(0) = p transforms
into a local martingalg (£P)

ii) forall p € P, tryHess (p) = 0.
The proof goes as in the finite dimensional case [8, 5.28].

2. Projecting Semi-Martingales

Let nowG be a (right-) semi-Hilbert Lie group (in the sense of [9], i.e. the usual definition
of a Hilbert Lie group holds up to the fact that only the multiplication on the right is
required to be smooth, see also [10] for a detailed discussion concerning the differential
structure on the group) acting smoothly Bron the right:

PxG — P
P9 —p-g

in such a way that{ = P/G is a smooth manifold and the canonical projection
P — P /G yields a smooth principal fibre bundle. We shall assume that the Riemannian
structure orP is G-invariant so that it induces a Riemannian connection on the fibre
bundle:
T,P=H,P+V,P,

whereV,,P is the vertical tangent space at pojnand H,P (the horizontal space) is
the orthogonal of/},P. This induces also a Riemmannian metric¥nsuch that the
restriction ofr, to each horizontal spadé, P is an isometry. Its Levi-Civita connection
will be denoted byv.

We shall also assume there is an orthogonal splitting of H’ & H'' and that there
are fields of operatord”(p) : H' — H,P, A°(p) : H" — V,P, such that

Alp) = A"(p) © A" () (2.1)

Alp-9) = Ry« Alp) g€ G,peP. (2.2)

Of course, sinced(p) is Hilbert-Schmidt, so arel”(p) and.A"(p), where the upper
indexes ‘h" and “v” stand for the horizontal part and the vertical part.
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2.1. The weighted trace of the second fundamental fobmt us define the second
fundamental form (see e.g [11, 12]):

S? 1 V,P x V,P — H,P
Y, Y') = (V22" (p),

whereZ, Z' are vertical vector fields such thd{p) = Y, Z’(p) = Y”. This definition is
independent of the choice of the extension¥aindY”’.

Since the Riemannian structure Bris smooth,S? defines a bounded bilinear form
on VP and we can define a weighted trace of the second fundamental form-4y. tr
SinceA" isrightinvariant, we hav&,, SP (A" (p)-, A®(p)-) = SP9(A"(p-g)-, A (p-9)"),
and,(tr 4» S(p)) is independent on the poiptchosen in the orbit ofr(p) so that we
shall denote it byr, (tr 4».S) (7 (p)).

Lemma 2.1. For A satisfying conditions (2.1) and (2.2) and a smob#form o’ on the
guotient spaceX, we have:

alm (tr 40.5)) = div g — div(r*(a)). (2.3)

Proof. Sincea'is a 1-form onX, o = 7*(a) defines a smooth 1-form d®. Let us first
notice that for right invariant horizontal vector fieldsandV, we haver,(VyV) =
ViV (see e.g [11]). Hence, if andv are horizontal vectors at poipt € P, letting
U, resp.V be right invariant horizontal vector fields extendimgesp.v, we can write,
settingz = w(p) = p:
Y (@)@)w, v) = u(r*(@)(V) - 7 (@E)(Vu V)

= w(a(V)) = alr. (0)(Yu V)

= w(a(w)(V) — a(@) (Vi V)

= Va(z)(u, v).

Let nowu, v be vertical vectors at pointandU, resp.V right invariant vertical fields
extendingu, resp.v. We have:

V(@* (@) (p)(u, v) = — (a7 VyV))(x) since V=0
= —a(x)(m S (u, v)).

Combining these two equalities, and using the fact that A" & A?, we find that:
tr4(V(m* (@))(p) = (trgVa)(z) — alw)(m(tra- S)),
so that

am((tranS)) = triVa —tra(V(r*(a)
= div o — divar* (). O

2.2. The projected semi-martingald/e investigate here how a semi-martingale defined
by an I© field (a, .A), whereA satisfies conditions (2.1) and (2.2) projects onto the space
of orbits.
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Proposition 2.2. Underassumptions (2.1) and (2.2), the procgsefined by the locally
Lipschitz 16 field(a, .A) projects onto a process; on X defined by the locally Lipschitz
Ito field(a — %m (tr 4~ S), A). In other words, the projected processs described as a
solution of the stochastic differential equation:

d¥z = A(x)dB + a(z)dt — %w*(tr 40y S) (@) dt,
w_hereE is the orthogonal projection aB on H’, A'is the canonical projection ofl,
A(z) = . A(p) = m. A" (p) with 7(p) = z.
Proof. Let f be a smooth function oX. Applying the 16 formula to¢ for f o 7, we
have:
— 1.
d(f(©) = d(f o m)(€) = d(f o m)(d &) + SdVad(f o m)dt
=d(f o m)(A(£)dB + a(£)dt) + %divAd(f o m)dt.

Using Lemma 2.1 applied to = df, this yields :

Af(d¥ €) = df (A()dB + a(€)dt)) + % (div gd(f)dt — df (m.tr.40 S)dt) dt.

Choosingf to be thek! coordinatep,, in a local chart {/, ), and lettingk run in IV,
we find that the B differential of the projected process is of the typé¢ = AdB +
adt — Sm.tr 40 Sdt. O

Corollary 2.3. For p € P, let£P be defined by a stochastic differential equation of the

type:
dver = A(EP)dB, £(0) =p,

with the same assumptions as above. Then

1) for a smoottG-invariant functionf onP, there is an equivalence between i) and ii):
i) foranyp € P f(&P) is a local martingale,
itrHessf (r) — df (m«(tr 4+ S)(x)) =0, V€ X;

2) The Stratonovich differential commutes with the canonical projectiorﬁgie.ﬁ,
where [ a(6€) = [ 7 al(88).

Proof. 1) This follows from the shape of the projected proc{é’ss xf from which we

see thaif (€¥) = f(«?)is alocal martingale for ai € P if and only if trzHessf (x) —
e (tr 40 9)(x) =0, Vx € X (see [8] (5.28)).

2) Leta be a smooth one form ol . We have, setting = 7*a:
/ a(5€) = / a(dve) + % / div z(@)dt  (definition of the Stratonovich differential)
= / a(dv€) — % / Al (tr AUS))dt+% / div g(a)dt by Prop. 2.2
= / a(5€) — % / div Aadt+% / div z(@)dt — %&(ﬂ*(tr a0 S))dt
= /a(ég) by Lemma 2.1.
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3. Interplay with Geometry

3.1. A class of group actionsLet G, P be as in Sect. 2. We equip the groGpwith a
family of equivalent Ag invariant Riemannian metrics indexed py= P. The scalar
product induced on the Lie algeb@eby the Riemannian metric d@ indexed byp will
be denoted by (-),,. The closure of; for these scalar products is independeni since
they are equivalent and we shall denote itthy

We make additional assumptions on the group action imposing conditions on the
operatorr, defined by

T G - T,P
U — %(p . et“)t:O.
Sinceg is dense in the Hilbert spaé the operator, is a densely defined operator

ong and we can therefore define its adjoint operafow.r. to the scalar products (),
and< -,- >,. We make the following assumptions:

1) foranyp € P, 7,7, is a self adjoint operator on a dense subspade, B

2) and that for any: > 0, for anyp € P, the operatoe 7" is a Hilbert-Schmidt
operator oV, P,

3) the mapp — e ™7 is C1L,
Lete > 0 and let us define fgy € P the operator:

Al(p) = e 2=

acting onV,P. Itis right invariant since,., = R,.7,Adg.
Forp € P, let A"(p) be a right invariant Hilbert-Schmidt operator acting BpP.

The operator
A(p) = A"(p) @ AL(p)

is also a right invariant Hilbert-Schmidt operatoriP.

SinceP is a smooth Hilbert manifold, it is parallelisable [13] (we in fact only need
alocal parallelisation). Lef(p) : H — T,,P be a smooth field of isometries induced by
the parallelisation. We shall assume that the model spaseplits into two orthogonal
spacedd = H' @& H”, that the family of isometrie&(p) is right invariant and splits into
asum of isometried(p) = Z'(p) & Z" (p) withZ'(p) : H' — H,P,Z"(p) : H" — V,/P.

Let us set:

A=A o A (31)
with
A =Ah o7 AV = AVoT". (3.2)
For anye > 0, the operator. satisfies conditions (2.1) and (2.2) of Sect. 2.

3.2. Strong minimality of orbitsWe briefly recall here the notion of strong minimality
we introduced in [2] for a group action with the above properties.

Definition . The orbitO, is strongly minimal if and only if the family of pre-regularised
traces indexed by > 0 of the second fundamental form of the orbit

(tr=(SNP) = (traz(S) (@) (33)

vanishes.
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Remark .1) Notice that the regularisatianintroduced via the operatot? is entirely
determined by the group action.

2) The coadjoint action of a loop group on the corresponding loop algebra as described
in [14] gives rise to strongly minimal orbits as was pointed out in [2] Appendix 1.

From Proposition 2.2 easily follows:

Proposition 3.1. Whenever the orbits of the group action in the above class are strongly
minimal, any semi-martingale defined by aa field of the typda, A.), withe > 0
and.A. as in (3.1), projects onto a semi-martingale defined by the projectefielid

(@, A=A").

3.3. The case when the orbit space is finite dimensionéien the orbit space is a finite
dimensional Riemannian manifold, we can 4é(p) = I for p € P, and we have only
to assume that’(p)Z’(p)* is equal to the identity off, P for all p € P and remove
the assumption tha&t'(p) is injective. The family of 1d fields (Q A4.) then defines a one
parameter family of martingales entirely determined in law by the group action which
we shall call a family ofegularised Brownian motions associated to the group action
We shall call astrongly harmonic functiomn P, a smooth function that takes any
regularised Brownian motion onto a martingale.
From the above results follows that:

Proposition 3.2. Whenever the orbit space is finite dimensional and the orbits of the
action are strongly minimal,

1) aregularised Brownian motion projects onto a Brownian motion on the orbit space,

2) a strongly harmoni&-invariant function projects onto a harmonic function on the
orbit space.

Proof. 1) This follows from Proposition 3.1, since he#é&(p) = I.

2) f.is strongly harmonic whenever for any regularised Brownian magiorf (&5) =
f(&) is a martingale, which holds whenevgis harmonic, by Corollary 2.3, 1.

This proposition generalises similar well known results in the finite dimensional case,
see e.g [15, 16].

Before we give an example to illustrate this proposition, let us first describe the
general geometric framework in which examples will fit in naturally.

4. Projections of Martingales as a Paradigma for the Faddeev—Popov Procedure
in Gauge Field Theory

The group actions arising from the action of the gauge group on the path space in gauge
field theory fit in the class of actions described in Sect. 3.1 and give rise to what we
called regularisable fibre bundles in [2]. The fibre bundles arising in gauge theories can
be equipped with both weak and strong Riemannian structures which we now describe.

4.1. The geometric setting for a class of gauge field theogs.present a geometric
framework which reflects the essential features of gauge field theory. This is to be seen
as a simplified model of gauge field theory which we shall use below to describe a
paradigma for the Faddeev-Popov procedure in gauge field theory. Some examples of
actions which fit in the framework described in this section are:
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— the action arising in string theory of the group of diffeomorphisms homotopic to
identity of a compact Riemann surface of genus larger than 1 on the manifold of
metrics of this surface,

— the action arising in Yang-Mills theory of automorphisms of a principal bundle built
on a compact Riemannian manifold on the manifold of irreducible connections on
this bundle,

— the (coadjoint) action arising in the representation of loop groups of pinned Lie group
valued loops on the space of loops with values in the corresponding Lie algebra.

We shall illustrate the abstract setting with this last example since it offers a good
toy model.

Let M be a smooth compact boundaryless Riemannian manifold. For a smooth
vector bundley on M with finite dimensional fibres, we can define the Sobolev spaces
H*(V), k € IN using a partition of unity (see [17]). Lé&tand.F be two smooth vector
bundles on\/ with finite dimensional fibres. In gauge field theory, the path sgace
a smooth Hilbert manifold modelled di*(€), for somek > 1+1dimM, k € IN. The
gauge groufs is a right semi-Hilbert Lie group (i.e. it has the properties of a Hilbert
group up to the fact that only multiplication on the right is smooth, see [9]) modelled on
H**Y(F). We shall assume that bothand F are equipped with a fibre metric in such
a way thatP is equipped with a smooth weak Riemannian structgrerhich induces
an L? scalar produck -, >, on7T,P and thatg is equipped with a right invariant
family of equivalentZ? scalar products(-),, o indexed byp. The closures 0§ w.r.t
these scalar products coincide and will be denoted by

Let the operator, : G — T,P be a differential operator. We shall assume it is
injective.

A toy model: the coadjoint action of loop groufse shall give only the general features

of the model here and refer the reader to [14] and [2] for a detailed description. Let
G be a connected compact Lie growpits Lie algebra. We seP = L?([0, 1], g) and

G = {g € HY([0,1],G), g(0) = g(1) = e}. G acts onP via a smooth free action (also
called coadjoint action):

GxP—="P
(9. —gvg t—dg "

The orbit space is the Lie group and the map

m: L([0,1],9) — G . )
v — g(Q)withg™"g =1, g(0)=e

yields a fibre bundle structure af?([0, 1], g) with structure groupG. The action is
isometric for the natural Riemanian metric ninduced by a fixed Ad invariant inner
product ong.

For a loopp € P, the operator, is given by

{u € HY(0,1],9),u(0) =u(1) = 0} — L*([0,1],9)

u— [u,p] — .

This operator is clearly a first order differential operator which is injective, the action
being free.

One can show [2] (Appendix A) that the orbits for this coadjoint action are strongly
minimal in L2([0, 1], g).
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Remark .Let us at this point make a few comments about the other two examples we
have in mind.

One can see the toy model described above as a one dimensional Yang-Mills (dual)
action. It is therefore natural to enquire about Yang-Mills actions for manifolds of di-
mension 2,3 and 4. These were investigated in [18]. Strong minimality of orbits holds for
smooth irreducible connections when the Lie group but otherwise, one can only hope for
minimality (and not strong minimality) of orbits of a certain class of smooth irreducible
connections. Going from strongly minimal to minimal requires a limit procedure which
motivates paragraph 3 of this section.

Another example of group action arising in string theory is the action of a group
of diffeomorphisms on a manifold of Riemannian metrics, for which the problem (yet
unsolved) of deciding which of the orbits are minimal is made difficult by the fact that,
unlike the above two models, the Riemannian structure on the @gdhpre a group of
diffeomorphisms) depends on the parameter P, namely on a metric chosen on the
manifold M.

A comment on the choice of Riemannian struciiendG. Let us denote for the moment
by 7';;0 the adjoint ofr,, w.r. to theL? scalar products (-), o and< -, - >, o.

In the context of gauge field theory, the operatquoyp arise as positive self adjoint
elliptic operators orl/ of order 2. Their coefficients are not smooth in general, but they
are regular enough to recover the properties of elliptic operators with smooth coefficients
we shall use below (for details concerning this point, see [19, 20, 9]).

In particular, we shall asume that the scalar product&6(F) defined by

WO NE 0k
('7 ')p,k = ('7 ')p,O + ((Tp Tp) zy (Tp Tp) 2 ')p,O
induce a strong Riemannian structure@nvhich we shall denote by,, as is the case
when the coefficients of the elliptic operator are smooth [17].
Sincergorp is a self adjoint elliptic operator of*°(F), the range Rf{,), resp. the
kernel Keﬁ-;‘0 are closed w.r.to thé? scalar products: -, - >, o, resp. (, ), 0 as well

as in theH* topology (see e.g [21], Sect. 6 and [20] (3.1.5) for a discussion in the
Yang-Mills case ) and we have tle orthogonal splitting

T,P = R(r,) @ Ker(r"), (4.1)

where the orthogonal sum is taken w.r.to the scalar products >, o.

We now specialize to a class of gauge theories with finite dimensional orbit space.
In particular Ker, is finite dimensional. This assumption is in particular satisfied for
the toy model described above.

We make the assumption that the scalar products,ghdefined by

0, k 0, k
<oy p k=< S0+ < (p7, )2 (7, )2 >p0

induce a strong Riemannian structuremvhich we shall denote by;.
The adjoint of the operatat, w.r. to the induced scalar products -, - >, ;. and

(-, )p.k COINcide WithT;jo. Indeed, we have far € G andh € T,P:
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0, k 0
< pu, h >y = < (17, )%Tpu, (Tp7, )2 h >p0t < Tpu,h >p0
Ok Ok
=< 7—P(Tp Tp) 2 U, (Tpr )2 h >p,0 + < TpU, h >p,0
0 Lk 0 0\ k
= )7 u, 7 (17 )7 h)po * (u, T h)po

= (u, 7 )y

We shall henceforth uniformise the notation denoting;byhe adjoints w.r. to the scalar
products induced by the scalar products, - >, 0 and< -,- >, 1.

The orthogonal splitting (4.1) oR also holds w.r.to the scalar produets, - >, .
Since the spaces pand Ker; are closed in thél* topology, (4.1) yields a connection
associated to the metrig.. We shall henceforth not specify which of the metrics we
choose to define horizontality.

As a heat-operator built from a self adjoint elliptic operator on a compact boundary-
less manifold, the operater "> (resp.c—°»7») is trace-class (see [17]) and hence
Hilbert-Schmidt. An easy computation shows that its trace taken w:r4g ¢ (resp.
< -,- >p0) coincides with its trace taken w.r.ta (), (resp.< -,- >, ). We will
therefore not specify which of the two scalar products we choose to define these traces.

Back to the toy modelCombining this with Proposition 3.2 yields that regularised
Brownian motion on the loop algebiz([0, 1], g) projects onto Brownian motion on
the Lie groupG via the coadjoint action since the orbits are strongly minimal.

Remark .A similar statement holds for Yang-Mills action when the Lie graulds
abelian since the orbits are also strongly minimal in that case.

4.2. Minimal orbits as orbits with extremal volumia Sect. 3.2, we defined a notion of
strong minimality without specifying the underlying Riemannian structur@oihe
aim of this section is to show that one can choose either the mgtdcthe metricgo.

Let us first briefly recall the generalisation of Hsiang’s theorem relating minimality
of orbits with the extremality of their volume, which we wrote down in [2] using heat-
kernel regularisation methods. In [2], the underlying Riemannian structure was chosen
strong or weak, as long as it induced a connectiorPanith the usual properties. We
choose here the connection described by (4.1) and any of the two mgtdcg;,.

We introduced in [2] a notion of heat-kernel pre-regularised volume of an Oghit
p € P, setting fore > 0:

+oo
vols(Op)=exp[f% / = tre =) dt] (4.2)

which, by the above discussion, is independent of whether one chooses the scalar prod-
ucts< -,- >gor < -,- >, to define the trace.

In the context of gauge field theories, we can apply the results of [2] (i.e. assumptions
(2.1)—(2.5 his) of [2] are fulfilled in that context, see the discussion that follows (2.5
bis)) choosing any of the two metrigg or go, and we see that whenever the Riemannian
structure orG is independent of, the following relations between a horizontal direc-
tional derivative of the pre-regularised volumes and the regularised second fundamental
form hold:

<trksk X >, = —dxlog vol_(0,), (4.3)
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< tr2%8% X >, 0= —dxlog vol_(O,) (4.3bis)

for any horizontal vectoX at any pointp € P and whereS* (resp.S°) is the second
fundamental form defined using the Levi-Civita connection associated to the Riemannian
metric g, (resp.go).

From this follows that for any horizontal vectaf, we have:

<trFSF X >, =< 1?80 X >,
Hence, since< -, - >, and< -, - >, g coincide horizontally, we have:
trk sk = 1950

Remark .1) From this follows that the notion of strong minimality does not depend
on whether one chooses thgor thego structure. Moreover relations (4.3) and (4.3
bis) tell us that an orbiD,, is strongly minimal whenever its pre-regularised volume
vol.(O,) is extremal among other orbits.

2) When applied to the coadjoint loop group action on the corresponding Lie algebra,
relation (4.3) tells us that all orbits in the “toy model” have extremal pre-regularised
volume.

3) As was pointed out above, the assumption on the independence w.r.to the parameter
p of the Riemannian structure dB excludes the case of string theory where the
parameterp is a metric on a finite dimensional manifold which arises in the
definition of the scalar products on the Lie algeBrgiven by the space of smooth
vector fields on\/.

As a consequence, when the Riemannian structui® anindependent gp, we have
the following:

Proposition 4.1. Whenever the orbits have constant pre-regularised volume, the process
defined by alocally Lipschitziffield(a, .A.), with A, asin (3.1), projects onto a process
defined by the projecteddfield (a, .A") which is independent af

Proof. This follows directly from Proposition 3.1 and (4.3). Let us stress here that the
regularised trace of the second fundamental form that appears in the drift is the one
(trk S*) taken w.r.to the metrig,. O

4.3. Projected renormalised Brownian motioriBhe pre-regularised volume y¢0,,)
diverges whem goes to zero. Using the asymptotic expansion for heat-kernels of elliptic
operators on compact manifolds (see [17] and [2] for a more detailed description of these
asymptotic expansions), we have:

(e ™) =0 ) bi(p)e’

J==J

(recall that the operator is of order 2) for some real valued coefficke(i} J = dimM.

We can then define a notion of heat-kernel regularised volume6l,,) and a notion

of regularised trace of the second fundamental form which boils down to taking the
¢ — 0 limit after having got rid of the divergences of the corresponding pre-regularised
volumes and traces. This regularisation was compared in [2] with the zeta-regularisation
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method. A minimal orbit is an orbit the second fundamental form of which has vanishing
regularised trace. A strongly minimal orbit is minimal [2].

Let us takeP /G finite dimensional and compact and let us investigate the projections
of families indexed by of renormalised Brownian motions and their limit whegoes
to zero. Byfamily of renormalised Brownian motioassociated to the group action, we
mean afamily of process@eq such that for alk, £° is defined by a locally Lipschitzt
field (—3 Y2, grade? — gradiloge, A.) with A. = A" + A?, A? as described in
(3.2),and foralp € P, Ah(p) T'(p) : H — H,P defined on an Euclidian spaé#,
not necessarily injective and such tfap)Z’(p)" is the identity ofH,P. We assume
furthermore that there existsi’-valued Brownian motiorB’ such that for alk, the
horizontal and martingale part @V ¢° is Z/(¢°)d B’

Proposition 4.2. Let us assume th& is equipped with a fixed Riemannian mefric)
independentai € P. Let(£;) be afamily of renormalised Brownian motions associated
to the group action, such that for all 5 = po € P. If the following assumptions are
fulfilled:

1) The gradients of the coefficierityp) in the heat-kernel expansion of s> are
Lipschitz and invariant under the action of the group.
2) There is a constan® > 0 such that:

sup,epllgrad tre, (1) < Ct,

whereF,(f) = tre ™" — ST b(p)tE.
S (p) 1
3) The mapg — grad log vol(O,) — Z grad——= J Egradbo(p)log»s andp —
j=—J
grad log vol..,(O,) are locally Lipschitz.

Then the projected process$ = & satisfiess§ = po and

dﬁxf =7'(x,)dB; + }grad log volLO,, dt
—1
—= Z gradb i) 4 g fgradbo(xt)logsdt
]—fJ

-1
=7'(x,)dB] — EtrESZ‘”dlﬁ Z gradb 5@ 4y —gradbo(:ct)logedt

j——J

and converges ifi? uniformly on compact sets (i.e for afiy> 0, E[supE<Td2(xt )]
converges to zero) to the solution startingpgtof the stochastic equation:

d¥z, = T'(z4)d By + égrad log vo)..,O,,dt.

If the fibres are minimal, the limit process is a Brownian motion.

Remark . The uniform upper bound of in assumption 2) is in fact a uniform upper
bound on the quotient since everything@sinvariant. This uniform upper bound re-
quirement is in particular fulfilled when the quotient manifold is compact and the map
pitre 7 is OL.
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Proof. We shall setB,, = 7,7, and refer the reader to [2] for notations.

(i)

(ii)

Let us first prove that the drift term of the processconverges uniformly to that
of x, namelyzgrad log VOl (Op).

SettingA. = — [ <" dt:

t

-1

grad log vol(O,) — Z &,dbjel — %gradbologs — gradbls%

j==J

1 .
= %grad (td. — > &;75% — bologe)

j==J,j70 J
1
Z grad) 1 rad/ 50 4 fgrad/
j=—J,570

by (1.9) in [2]

J

: — 1 A
with F(t) = tre=*Pr — 370 ; b;t7.
Furthermore:
gradr,(t)

t

by assumption 2) of the proposition. Hence gfadvp—dt jl gradF 9" gt and
converges uniformly tofO wdt in p. Thus grad log VQ|(Op) — Zjij
grac%s% — % gradhy loge converges uniformly irp to grad log vol.,(O,) (by
(1.6) of [2]).

Let us now show the uniforni? convergence on compact sets of the processes
to the process;. We first show that proving this convergence property boils down
to proving theL? convergence on compact sets of a diffusion/®h defined by
dy. = A(y.)dB' + a.(y:)dt andy.(0) = yo € IR" to a diffusion onIR" locally
defined bydy = A(y)dB’ + a(y)dt andy,. (0) = yo, whereA, a, anda are Lipschitz
anda. converges uniformly ta. Indeed, we can chooselarge enough foX to

be embedded ifR" via an embedding : X — IR". Using the compactness of
X, we extend: ! to a mapy defined on a neighborhood o X) so that it makes
sense to look at the procegs = u(z.) as defined by the stochastic differential
equation:

dy. = I;(ye)dB/ + O‘g(ya)dta Y=(0) = yo = u(po)

with Z, = u, o I’ o 1), and setting = 1 (y),

| <C

-1

a(y) = us (1trS§ _ 15 grad¥ et — 1gradb0(p)loge)
2 2 Jj 4

j==J
+ %tr(HeSSM)(p)

which shows that the embedded proceés.) is a diffusion inIR". SinceZ’ is
Lipschitz, so isZ),. The drifta¥ is Lipschitz by assumption 3) using the fact that
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gradb; and tiS? = —grad logVoL(O,,) are Lipschitz. From the first part of the proof
follows thatay converge uniformly tey,, defined by

at = _%u*trregsw(y) + %tr(Hesw)(w(y))

Note that the second trace is a finite dimensional one. Hgnds a diffusion
process ordR™ locally defined by a stochastic equation of the form

dy. = A(ys)dB/ +ac(ye)dt, Y(0) = yo, ()

whereA, a. are Lipschitz and.. converges uniformly ta Lipschitz.

(i) Let us now prove the required convergence property for a diffusion prageiss
IR" of the type ). We shall denote by (-) g~ the scalar productifR™, by || - || g~
the corresponding norm. Sincé is Lipschitz, there is a constait > 0, such
that tr(A(z) — A(y))*(A(z) — A®)) < Cllz — yl%. and|la(z) — a@)|F- <
Cllz — yl|%~- We have

y=(t) — y(t)]|?
t t
<2 / (A(y-(s)) — Aly(s))dB.|2+2] / (a:-(5)) — a(y(s))ds]?
0 0
with y defined bydy = A(y)dB’ + a(y)dt andy(0) = yo.

Setf.(T) = E(Sup<||y-(t) — y()||?). We want to bound.(T") from above. Using
Doob’s inequality for martingales, we obtain the following estimate:

E(sup,,| /o (A(y=(s)) — A(y(s)dB, |2
< a5 /0 (Alye(s)) — A@(s))dBLIP)
t
<4 /0 B [tr(A(-(s)) — A(s))*(Aw=(s)) — AGu(s))] ds

<4 /0 B [[l9-(5) — () 200 ds.

On the other hand
E(sup,,| / (a2 (o)) —alu())ds|?) < E (sun,gt / ||a5(ya(s»—a(y<s))||2ds>
0 . 0
< / B (la:(y-(s)) — a(u()|P) ds
0 t
<2 / B(la-(y=(5)) — a(u=())|3en)ds
0 t
+2 / E(la(u-(s)) — a(y(s))]5)ds
0 t
< 2th(e) + 2 /0 E(lye(s) — y(s)|300)ds,

whereh(e) = sup, |la- () — a(z)||%- is a function tending to zero at zero arising from
the uniform convergence af to a.
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Finally, we find that fort < T,

t
f-(t) < 4Th(e) + 12C /0 E(|lye(s) — y(s)|[7rn)ds

< A4Th(e) + 12C /t fe(8)ds,
0

which, using Gromwald’s lemma yields:

fo(T) < 4Th(e)e**7,

which shows thaf.(T") goes to zero whea — 0.

(iv) We have shown thaE(Sup . ||u(x.)(t) — u(z)(t)||%-) tends to zero whea — 0
B<r R

from which follows thatE(SugSTd(xE(t),x(t))z) tends to zero, sinc& being
compacti(-, -) and||u(-) — u(-)|| g~ are equivalent. O

Remark .1) For group actions with strongly minimal orbits such as the toy model

2)

described above, the limit procedure  0) which is carried out in the above
proposition is unecessary and Proposition 4.2 boils down to Proposition 3.2. However,
this limit procedure is necessary in the case of Yang-Mills actions for example for
which minimal orbits are in general not strongly minimal.

The drift of the “renormalised” projected processis expressed here in terms of

the logarithmic variation of the volume. However, it can just as well be written in
terms of the trace of the second fundamental form using (4.3). The proof above
uses regularisation methods for regularised determinants from which we deduce a
regularised trace of the second fundamental form. Because relation (4.3) does not
hold when the metric on the group varies (see [2]), the proof of this proposition
does not apply to the case of diffeomorphisms acting on metrics. However, since
the conclusion of the proposition only involves the trace of the second fundamental
form and not the variation of volume of orbits, the proof should extend to the case of
diffeomorphisms acting on metrics, a setting which one of the authors (S. Paycha) is
investigating together with S. Rosenberg.

4.4. Conclusions.This last proposition gives, in some restrictive setting, a stochastic
interpretation of the formal procedure (the “Faddeev-Popov procedure”) used in gauge
field theory, by which one projects a formal volume measure defined on the path space
onto the orbit space. Via a regularisation procedure for the Jacobian operator that arises
from this projection, in gauge field theory one interprets the projected volume measure
as one with formal density given by a regularised “Faddeev-Popov” determinant. This
subintends a limit procedure that brings the family of pre-regularised jacobian determi-
nants det, e > O to regularised jacobian determinants,dgtby adding divergent terms

(this procedure is also referred to as a “renormalisation procedure”) that compensate
the divergences of the pre-regularised determinants. The above proposition clarifies this
formal “renormalisation procedure” from a stochastic point of view, when the orbit space
is finite dimensional and compact.

We hope to have convinced the reader that the heat-kernel regularisation approach

in gauge field theory, although not so widely used as the zeta function regularisation
approach, is natural both from a geometric and stochastic point of view. It helps clarify
the formal reduction procedure used in the functional quantisation of gauge theory to
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“reduce” the measures defined on the path space to measures on the orbit space for
the action of the gauge group. It also leads to natural geometric notions on infinite
dimensional manifolds, such as minimality which are of interest for their own sake.
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