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Abstract: We introduce a class of regularisable infinite dimensional principal fibre
bundles which includes fibre bundles arising in gauge field theories like Yang-Mills
and string theory and which generalise finite dimensional Riemannian principal fibre
bundles induced by an isometric action. We show that the orbits of regularisable bundles
have well defined, both heat-kernel and zeta function regularised volumes. We introduce
a notion ofu-minimality (v € R) for these orbits which extend the finite dimensional
one. Our approach uses heat-kernel methods and yields both “heat-kernel” (obtained via
heat-kernel regularisation) and “zeta function” (obtained via zeta function regularisation)
minimality for specific values of the paramejerFor each of these notions, we give an
infinite dimensional version of Hsiang’s theorem which extends the finite dimensional
case, interpreting-minimal orbits as orbits with extremal{regularised) volume.

0. Introduction

This article is concerned with the notions of regularisability and minimality of orbits
for an isometric action of an infinite dimensional Lie groGpon an infinite dimen-
sional manifoldP. Our study is based on heat-kernel regularisation methods but it
involves a larger class including zeta function regularisations. The ones we consider are
parametrised by: € R; we recover the zeta function regularisation by setfing ~,

the Euler constant and the heat-kernel regularisation by setting.

Notions of regularisability and minimality for actions of infinite dimensional Lie
groups on infinite dimensional manifolds have already been studied by other authors
(see [KT, MRT]) in a particular context and using zeta function regularisation methods.
We recover these notions for=+.

We shall introduce a class of principal fibre bundles called (q@sp)regularisable
fibre bundles which generalise to the infinite dimensional case finite dimensional Rie-
mannian principal fibre bundles arising from a free isometric action. We show that the
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fibres of these (resp. pre-)regularisable bundles have a well defined regularised (resp.
preregularised) volume which issBaux differentiable. This class of (pre-) regularisable
fibre bundles includes some infinite dimensional principal bundles arising from gauge
field theories such as Yang-Mills and string theory.

We introduce the notion of strong minimality apgdminimality usingu- regular-
isation, all of which extend the finite dimensional notion and coincide in the finite
dimensional case. However;minimality depends on the choice of the parametean
particular zeta function minimality{ = ~) does not in general coincide with heat-kernel
minimality (« = 0).

We show that if the metric on the structure group is fixedresp. strongly) minimal
fibres of a (resp. pre-)regularisable principal fibre bundle coincide with the ones with
extremalu-(resp. pre-)regularised volume among orbits of the same type for the group
action. This gives an infinite dimensional version of Hsiang’s theorem on (pre-) regu-
larisable principal fibre bundles with structure group equipped with a fixed Riemannian
metric, which we extend (adding a term which reflects the variation of the metric on the
structure group) to any (pre-)regularisable principal bundle.

Starting from a systematic review of the notionsiefregularised determinants in
Sect. 1, in Sect. 2 we introduce the notions of regularisable principal fibre bundle, ( resp.
pre-) regularisability angi- (resp. strong) minimality of orbits, relating (resp. strong)
minimality with the Gateaux-differentiability of: (resp. pre-)regularised determinants
interpreted as volumes of fibres. In Sect. 3, we compare these notions for different
values ofu:.. The relations we set up between the regularised mean curvature vector and
the directional gradients of the regularised determinants yield an infinite dimensional
version of Hsiang's theorem.

To avoid making this article any longer than it already is, we chose not to treat
examples in detail here. Let us just however point out some examples the results in this
article can be applied to.

When applied to theoadjoint action of a loop groupone recovers some results
concerning regularisability and minimality of fibres studied in [KT].

The notion of minimality investigated in this article also applies to the study of
orbits of aYang-Mills action(see e.g [FU, KR, MV] for the corresponding geometric
setting). A notion of zeta function minimality in the Yang Mills context had already been
suggested in [MRT1]. Our heat-kernel approach leads to a slightly different definition;
when the underlying manifold is of dimension 4, only if the irreducible connections
are Yang-Mills, do the different notions of minimality (in particular zeta function and
heat-kernel) coincide.

Let us stress that in both the examples mentioned here, theBpeesp. the grouf®
are modelled on a space of sections of a vector buiydiesp.F with finite dimensional
fibres on a closed finite dimensional manifdifiandG acts onP by isometries.

The case ofliffeomorphisms acting on metriahich has been investigated carefully
in [MRT2] is also very interesting since it relates to string theory. One could show, in a
similar way to the Yang-Mills case, that the bundi¢_; — M _;/Diff o (see [FT, T])
arising in bosonic string theory ( wheye!_; is the manifold of smooth Riemannian
metrics with curvature-1 on a compact boundaryless Riemannian surface of genus
greater than 1 and Diffis the group of smooth diffeomorphisms of the surface which
are homotopic to zero), is also a regularisable fibre bundle so that most results of this
paper can be applied to this fibre bundle. Unlike the case of Yang-Mills theory, its
structure group Diff is not equipped with a fixed Riemannian structure but with a
family of Riemannian metrics which is parametriseddoy M _1; this example was
our initial motivation when considering the general case of a structure group equipped
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with a family of metrics indexed by. Investigating carefully the geometry of the orbits
in this particular example leads to interesting questions concerning the geometry of some
associated determinant bundles [PR].

In this particular example, minimality of the fibres is still equivalent to extremality
of the volumes of the fibres since the additional term arising from the varying metric on
the group (see Proposition 2.2) vanishes.

The geometric notions developed in this paper play a important role when projecting
a class of semi-martingales defined on the total manifold onto the orbit space for a
certain class of infinite dimensional group actions. The regularisation based on heat-
kernel methods used here yields natural links between the geometric and the stochastic
picture, which we investigate in [AP2]. The stochastic picture described in [AP2] leads
to a stochastic interpretation of the Faddeev-Popov procedure used in gauge field theory
to reduce a formal volume measure on path space to a measure on the orbit space, the
formal density of which is a regularised “Faddeev—Popov” determinant.

1. Regularised Determinants

In this section, we recall some basic facts about regularised determinants, comparing
different regularisation methods. Although the results presented here are in some way
wellknown (see e.g [BGV]) and frequently used in the physics literature, the presentation
we offer is maybe a little unusual, since it involves defining a one parameter family of
regularised limits (parametrised lyc R). Zeta function regularisation corresponds to
1 =, the Euler constant, heat-kernel regularisation to 0.

Let us firstintroduce some notations. For a functien f(t), defined on an interval
of R*™* containing ]0 1], we shall writef(t) ~q iji_J ajt% +blogt, a; € R,b € R,
J, K € N,m e N*, if

K
F) =Y ajtw +blogt+O(t) ¥V 0<t<1. (1.1)
Jj==J

Let us callC this class of functions an@, the subclass of functiong € C with no
logarithmic divergence at zero (ife= 0). In the following, we shall always assume that
J >m.

Functions in the clas8 arise naturally as primitives of functions in the clégsas
shown in the following

Lemma 1.1. If f is a differentiable function on an intervalof R containing]0, 1] with
K

derivative f' € Co, thenf € C. More precisely, iff’(t) = Z ajt%? + O(t%), then

j=—J
K+m _
f)y= 3" atn + plogt+ O ) with a; = Za;_,, for j 7 0and 8 = a_,
and for] _s;)ﬁwg;o € R.
K+m
Proof. Letussey(t) = f()— > waj_nt™ —a_nlogt. Sincey'(t) = O ),
j=—J+m,j70

for0 < s < t < 1we can estimatg(t) — g(s)| < Ot [t —s| < Ct'w and this yields
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the existence of the limit Iiong(t) = ap. Using the same estimate fer= 0 then yields
t—
theresult. O

In similar way to [BGV], we set the following:

Definition. For f € C, u € R, and with the notations of (1.1):

K .
Limi_of(t) = lim | f(t) - > ajtn —blogt | — ub, (1.2)

j==J
which we call theu-regularised limit of f at point zero.

Remark. Although the parameter might seem artificial at this stage, it will prove to

be useful when comparing heat-kernel regularisations and zeta-function regularisations.
A similar parametey. arises in the work of Bismut and Freed on determinant bundles
where similar regularisations are needed [BF]. Further analogies between the gauge
orbit picture discussed here and the determinant bundles picture are discussed in [P]. Of
course, for a function in the cla€sg, this limit does not depend on the parameter

Let (A:),t €]0, 1] be a one parameter family of trace-class operators on a separable
Hilbert spaceH (in particular tr(4,) is finite) such that — trA; is a function in the class
C, then for any € R we can define thg-regularised limit traceof A = (A¢, t €]0, 1])
by
trt, A= Liml' jtrA,;. (1.3)

reg

This regularised limit trace depends of course on the whole one parameter family
and on the choice of the parameteWhenever the context we are working in allows no
ambiguity on the choice qi, we shall sometimes leave the explicit mentioruajut.

We now introduce a family of heat-kernel operators which play a fundamental role
in this paper. For this we define far > 0 a functionh. : R™ — R by h.()\) =

oo, —tA
7/ ¢ . dt. Notice thath. is C>°, non decreasing and{)’(\) = A~te~=*. Writing

he(\)—loge = — [~ th—ff e dt+f€1 2dt, we find that the functioa — %.(X)

. . . 5 t t
lies inC for fixed A\. Moreover we have:

Lim® o he(N) = logh — pn +7, 1.4)

11—t oo ,—t

wherey = efo i At is the Euler constant. For a strictly positive self-adjoint
operatorB on a Hilbert spacéd, we can definé:.(B) which yields a one parameter
family of operators§.(B), e > 0).

Definition. Let B be a strictly positive self-adjoint operator on a separable Hilbert
space. Whenever the one parameter fariily= (h.(B),e €]0,1]) has a regularized
limit trace, for anyu € R, we shall callu-regularised determinantdet’,  (B) of B the
expression:

detﬁegB = oeg®B) = Liml Ml he(B) (1.5)
In the following, we give conditions under which we can define the heat-kernel

regularized determinant of an operaf®r But before that, let us state an easy lemma
which will prove to be useful for what follows.
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Lemma 1.2. Let B be a strictly positive self-adjoint operator on a separable Hilbert
space such that

1) e—¢Bistrace class for any > 0.
2) The functiore — tr(e=¢) lies in the clas€ with (b, j > —J) as coefficients in
the expansion (1.1).
Then the operato3 has a heat-kernel regularised determinant and we have for
weR
deﬁeg B= eLim:HDtrhE(B)

_ e(_ Z;Z:],L];O 771;7j _‘/‘100 trefttB dt—f;)l ydt)—ubo (16)

with
m—1 )
Ft)=tre P — > bt (1.7)
j=—J

—tB
dt is trace-class. Since

Proof. One easily shows thatl, = h.(B) = —/ ‘

all the terms involved are positive, we can exchange the integral and sum symbols

so that tAd, = —f€°° tre_tt'B dt. Let us check that the familyA.,e €]0,1]) has a

regularized limit trace. The map — trA, is differentiable and fromtr(e—t5) =

0 .
Zf:_ijt# + O(t%) follows that%trAt ~p Z bj+mti. Applying Lemma
j==J—m
1.1to f(t) = tr(A4;) shows that the one parameter famiy= (A4.) has a finite regu-
larised limit trace #,,(A) = Lim!_ytrA.. By (1.5) this in turn yields thaB has ay-

E—)O
regularised determinant dgfB = e es 4. Since trd; = — I tre_;B dt, integrating
£ petweere and 1 yields

m—1 ) m—1 1 o} —tB
bi b; F(t
trA. — Z % % _ bologe = — Z &—/ th—/ & dr.
T J = J e 1 t
J ,J70 j=—J,570
(1.8)
Sincem > 1, we have
L mb,; ™l b
. i L — i _ j L
lim (trA. - Z e bologe) = lim (trA. .Z e — byloge)
j==J j=—J,j70

which combined with (1.8) and using (1.5) yields (1.6). [

The following lemma gives a class of operators which fit in the framework described
above.

Lemma 1.3. Let B be a strictly positive self adjoint elliptic operator of order > 0
on a compact boundaryless manifold. For any 0, e—<7 is trace class and3 has a
well definedu-regularised determinant.
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Proof. We shall show that the assumptions of Lemma 1.2 are fulfilled.

Condition 1) in Lemma 1.2 follows from the fact that a strictly positive s.a elliptic
operator on a compact boundaryless manifold has purely discrete speatrian(
An > 0, )\, =~ Cn®, forsomeC > 0,a > 0 (see e.g [G], Lemma 1.6.3). Indeed, from
this fact easily follows that &= =3~ e~=*= is finite.

Conditions 2) of Lemma 1.1 follow from the fact that for a s.a elliptic operator
B of orderm on a compact manifold of dimension d without boundary; tf ~q
Zszfd ajt# for any K > 0 (this follows for example from Lemma 1.7.4 in [G]).
Applying Lemma 1.1, we can therefore define the heat-kernel regularised determinant
of B. O

The above definition extends to a class of positive self-adjoint operators which satisfy
requirements 1) and 2) of Lemma 1.2 and have possibly non zero kernel. Requirement 1)
of the lemma implies that this kernel is finite dimensional. Bgt be the orthogonal
projection onto the kernel of the operaf®acting ond and letus sell - = (I — Pg)H.

Let us consider the restrictidsf = B/H~. Itis easily seen that the operatsf satisfies
requirements of Lemma 1.2 with coefficieb}s= b, for j 7 0 andby = bo—dim(KerB).
Formula (1.6) extends tB8’ with adapted changes in the coefficients.

Let us at this stage see how the zeta-function regularised determinant fits into this
picture. We refer the reader to [BGV, G] for a precise description of the zeta-function
regularisation procedure and only describe the main lines of this procedure here.

Recall that for a strictly positive self adjoint operaf®acting on a separable Hilbert
space with purely discrete spectrum given by the eigenvaligsi( € N) with the
property\,, > Cn®,C > 0,a > 0 for large enough, we can define the zeta function
of B by:

1
= A8 Res > —.
¢s(s) zn: 5 s€eC, > =

Furthermore¢ g (s) admits a meromorphic continuation on the whole plane (see e.g [G],
Lemma 1.10.1) which is regular at= 0 and one can define the zeta function regularised
determinant ofd by

det(B) = e <2, (1.9)

Remark. From the definition, easily follows that in the finite dimensional case the zeta-
function regularised and the ordinary determinants coincide.

The following lemma compares the zeta function anekgularisations.

Lemma 1.4. Let B be a strictly positive self-adjoint densely defined operator on a
Hilbert spaceH such that

1) B has purely discrete spectru,,),en With A, > Cn®,C > 0,« > 0 for large
enoughn,
2) The functiorr — tre—<? lies inCo.

Then forp € R,
5001 et B = dett, (B), (1.10)

wherey = Iimn_>oo(1+% +oo+ % —logn) is the Euler constant. In particuladet: B =
det) B

reg— "
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Remark. A proof of this result for, = 0 and the Laplace operator on a compact Rie-
mannian surface without boundary can be found in [AJPS].

Proof. Before starting the proof, let us recall that the function Gamma is defined by
I'(z) = ;’O %tf‘dt for 0 < Rez. MoreoverI'(z) ! is an entire function and we have

o0
M)t =z [J(a+ Z)e= , wherev is the Euler constant. From this follows that in
n
n=1

a neighborhood of zero, we have the asymptotic exparidg)T! = s + ys2 + O(s3).

Using the Mellin transform of the functioh™* = F(s)*l/ t>~te~t dt we can
0
write:

1 0o
I'(s)Cp(s) = / t*re =Bt + / t*~re"Bdt. (1.11)
0 1

Notice that the last expression on the r.h.s converges fer ReR, R > 0 for, set-
ting Cr = sup,sups,t™te 2, we have [ tf-le=n < Cp [Fe it =
2C kA te~ 27 which is the general term of a convergent series.
As before we set
m—1 )
Ft)=tre P = > bt (1.12)
j=—J

Using (1.11) and (1.12), we can write for= C with large enough real part, Re- %

m—1 oo 1
b.:
¢(s) =T(s)7t E yi is +/l tS*ltre*thH/o t~1E(t)dt

j=—J m

This equality then extends to an equality of meromorphic functions en>Re with
poless = —Z. Using the asymptotic expansion of the inverse of the Gamma function
I'(s)~* around zero, we have

m—1 ) 00 1
C(s) = (s +ys2 + O(s%)) Z »bj +/ tsfltre*tht+/ t*7IR@)dt |,
gj==J % ts 1 0
which yieldsby = (5(0). Moreover
m—1 b 0o 1
Ch(s) = (1 + 2ys + O(s?)) Z S / t* " Yre tBdt + / LR (t)dt
j=—J mts N 0
m—1 b 1 o0
+(s + 52+ O(s%)) —Z 4 / t* LR @)In(t)dt+ / In(¢)t*~re B dt
=ACED )

Letting s tend to zeros > 0, since the divergent ternﬁé and—s% arising in each of
the terms of this last sum compensate, we get

m—1

b YF@ < tre—tB
GO =+ | > e [T [T
ag ot v
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Hence, comparing with the expression ofiiet3 given in (1.5), for any: € R we find
log det.(B) = —(5(0) = —¢B(0)y +log detl’,,(B) + u(p(0) and hence the equality of
thelemma. O ‘

Remarks.1) In the finite dimensional case with dfih= d, since lim_gtre =% =d =
(g(0), from the result of Lemma 1.4 and the fact that the zeta function regularised
determinant coincides with the ordinary one, it follows that/for R:

det,, B = e?0 "1 det B = /0" detB, (1.13)

where detB denotes the ordinary determinanBofor i = v, det].,B = detB =
deth.

2) LetM be a Riemannian manifold of dimensidandB a positive self-adjoint elliptic
operator with smooth coefficients acting on sections of a vector bandte)/ with
finite dimensional fibres of dimensidn We know by [G] Theorem 1.7.6 (a) that
(p(0) = 0 if n is odd. However, in general the coefficiep$(0) is a complicated
expression given in terms of the jets of the symbol of the operator B. In the following
we shall be concerned with the dependencesdD) on the geometric data given on
that manifold.

2. Regularisable Principal Fibre Bundles

The aim of this section is to describe a class of principal fibre bundles for which we
can define a notion of regularised volume of the fibres and for which these regularised
volumes have differentiability properties.

LetP be a Hilbert manifold equipped with a (possibly weak) right invariant Rieman-
nian structure. The scalar product induced/@® by this Riemannian structure will be
denoted by -, - >,. We shall assume this Riemannian structure induces a Riemannian
connection denoted By and an exponential map with the usual properties. In particular,
for all po, exp,, yields a diffeomorphism of a neighborhood of 0 in the tangent space
T, P onto a neighborhood gf, in the manifoldP.

Let G be a Hilbert Lie group (in fact a Hilbert manifold with smooth right multipli-
cation is enough here, see e.g. [T]) acting smoothlyPoon the right by an isometric
action

O:GxP—-7P,

SN (2.0)

(9:9) = p-g.

Letforp € P,
TG — TP,
2.0bis
we Lpoemy (2.001%)
d t=0

wheregG denotes the Lie algebra &f.

We shall assume that the actiéhis free (so that, is injective onG) and that it
induces a smooth manifold structure on the quotient spa€& and a smooth principal
fibre bundle structure given by the canonical projection? — P/G.

Let us furthermore equip the gro@with a smooth family of equivalent (possibly
weak) Ad, invariant Riemannian metrics indexedpy P. The scalar product induced
on G by the Riemannian metric a@ indexed byp € P will be denoted by ( -),,. Since
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the metrics are all equivalent, the closuregoiv.r.t (-, -),, does not depend gnand we
shall denote it by

Sinceg is dense inH, 7, is a densily defined operator dii and we can define its
adjoint operator, w.r. to the scalar products (), and< -, >,,.

We shall assume thaf; 7, has a self-adjoint extension on a dense donian; 7,,)
of H.

Definition. The orbit of a poinp, is volume preregularisable if the following assump-
tions 1) and 2) on the operatot, 7, are satisfied:

*

1) Assumption on the spectral properties-gfrpo. The operatoe™ “"» "™ is trace class
for anye > 0 and for any vectorX at pointpg, there is a neighborhood, of pg on
the geodesip,, = exp,,xX such that for allp € Zp, e "> "7 is trace class.

2) Regularity assumptions. We shall assume that the mapsr, andp — 7,7, are
Gateaux differentiable and that for amy> 0, the functiorp — tre ‘"> » is Gateaux
differentiable at poinipy. We furthermore assume that thét@aux-differentials at
pointpg in the directionX of these operators are related as follows:

Sx (tre=7277) = —etr(dx (T p)e TP 7). (2.1)

Moreover, for any vectoX at pointpg, there are constant§’ > 0, v > 0 and a
neighborhood/, of po on the geodesip,; = exp,,xX such that for any € Io:

tre P < et (2.2)
and
Miy(t) = SURe 1|15y (T mo)e ™7 7o (23)
is finite and a decreasing function in B
Here||| - |||oc denotes the operator norm ghinduced by(-, -),, X is a local vector

field defined in a neighborhood pf by X (p,) = exp, .. (xX)(X).

The orbitO,, is called volume-regularisable if dim Kefr;, is constant on some
neighborhood ofjy on any geodesic containing and if the following assumption
is satisfied:

3) Assumption on the asymptotic behavior of the heat-kernel traces. Both the functions
t — tre > ™ andt — Sxtre » ™ lie in the classCy (see Sect. 1). There is an
integerm > 0 and a family of mapg — b;(p),j € {—J,---,m — 1} which are
Gateaux differentiable in the directioli at pointpg such that

m—1 )
tre 7 g Y b(p)e (2.4)
j==J
in a neighborhood, of pg on the geodesip = exp,,xX, and

m—1

Sxtre T g 3 Oxb(p)en. (2.5)
j==J
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m—1 )
Furthermore, setting,(t) = tre~""»™ — > " b;(p)t™, for any vectorX at point
5==J
po, there is a constank > 0, and a neighborhood, of py, on the geodesie —
Pr = €XP, kX such that:

SUR 1, 10 Fp()loe < K2 (2.5bis)

A principal bundle as described above with all its orbits volume-preregularisable
(resp. volume- regularisable) will be called preregularisable (resp. regularisable).

Remark. Since the Riemannian structureBris right invariant and the one daiis Ad,
invariant, the above assumptions do not depend on the point chosen in the orbit for we
haver,., = R,, ,Ad,.

Most fibre bundles we shall come across are not only preregularisable but also
regularisable so that the notion of preregularisabiblity might seem somewhat artificial.
However, in the case of the coadjoint action of loop groups mentioned in the introduction,
it is sufficient to verify the conditions required for preregularisability in order to prove
a certain minimality of the orbits, namely strong minimality, a notion which will be
defined in the following and which implies minimality.

Natural examples of regularisable fibre bundles arise in gauge field theories (Yang-
Mills, string theory). In gauge field theorigB,andg are modelled on spaces of sections
of vector bundle€ and F based on a compact finite dimensional maniféfdand
the operators,, 7, arise as smooth families of Laplace operators on forms. As elliptic
operators on a compact boundaryless manifold, they have purely discrete spectrum which
satisfies condition 1) (see [G] Lemma 1.6.3) and (2.4) (see [G], Lemma 1.7.4.b)). By
classical results concerning one parameter families of heat-kernel operators, they satisfy
(2.1) (see [RS], Proposition 6.1) and (2.2) (see proof of Theorem 5.1 in [RS]). Since
dx B, is also a partial differential operator, by [G], Lemma 1.8.¢tre=5» satisfies
(2.5). Assumptions on the &eaux-differentiability and assumptions (2.3 ), (2.5 bis)
are fulfilled in applications. Indeed, the parametds a geometric object such as a
connection, a metric on/ and choosing these objects regular enough (of diEséor
k large enough) ensures that the maps> 7,, p — 7,75, p — tre !> 77, etc., are
regular enough for they involve these geometric quantities and their derivatives, but no
derivative of higher order.

Remark.In the context of gauge field theories, the underlying Riemannian structure
w.r.to which the traces (arising in (2.2)-(2.5 bis)) are taken are weaRiemannian
structures, the ones that also underlie the theory of elliptic operators on compact mani-
folds. In [AP2], we discuss how far this weak Riemannian structure could be replaced
by a strong Riemannian structure, in order to set up a link between this geometric picture
and a stochastic one developed in [AP2].

Notation. We shall set with the notations of Sect. 1,4dor O andp € P det.(Bp) =
exptr(he(Bp)).

Proposition 2.1. LetO,, be a volume-preregularisable orbit such that for any geodesic
containingpo, there is a neighborhood @ on this geodesic on whiet 7, is injective.

1) det(r,7,) is well defined for any > 0 and forp in a neighborhood opo on any
geodesic containingo.
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2) The mapp — det(r,7,) is Gateaux-differentiable at poinpo, the operator

+00

6X(7-;7-p)e‘”57pdt is trace class for any in a neighborhood of, on any

gseodesic 0po. For any tangent vectak at pointpg, we have:

dx log det(r,7) = / tr (5XT;Tp)e*tT£oTpodt
T o (2.6a)
= tl’/ (5XT;Tp)e_tTPOTP°dt.

3) If the orbit O,, is moreover volume-regularisable, for apye R, the mapp —
det. (1, 7,) is Gateaux differentiable in all directions at poipb, and forp in a
geodesic neighborhood ¢, the mape — dx log det_(7, 7,) lies in the clas<.
For 1 € R,

Y
Lim._,

m—1 oo —trr 1
TP OxF,(t
= ¥ ﬁaxbj_/ Sx <tre . >dt—/ Xt”()dt—uéxbo-
1 0

=470 7
(2.6b)

dx log det(r,7,) = dx log def., 7,7,

Proof. We setB,, = 7,7, and as beforejet.(B,) = exptrh.(B)).

1) By the first assumption for volume-preregularisable orbits, we knowethiat» is

trace class so that by Lemma 1.1 sois = log h.(B,). Hence det(B,) = e is
well defined.

2) Letus show the first equality in (2.6 a). Assumption 2) for volume-preregularisability
yields that for any € Ip and anyt > ¢ > 0 [tr(6 5,y Bpe 77)| < CMIO(%)e‘%“.
Here, we have used the fact that(U'V)| < |||U|||trV| for any bounded op-
erator U and any trace class operatbr applied toU = 5);@)3,,6*%3% and

V = e 2P Hence, by the Lebesgue dominated convergence theorem, the map
p > [Zt7Mre~tPrdt is Gateaux-differentiable in the directioki at pointpo and

Sx / tLtretBrdt = / t Lo xtre "t Brdt
£ IS
= / tr((0x By)eBro)dt,
1>

using (2.2). Using the fact that log déB,) = —/ t~Ytre=*Br dt then yields the

first equality in (2.6 a).
The second equality in (2.6 a) and the fact that we can swap the trace and the integral
follow from the estimate:

_ =& _1
116 Bpe™ Fro|lle < [[|0x Bpe = Pro||]og]|Je™ 2 Fro]| |1
< O||l6x Bpe @ Prol[| e,
valid fort > ¢, using Assumption (2.2). We finally obtain by dominated convergence:
+0o0 +00
tr/ 5XBpe*thodt:/ trox Bye 'Brodt.
g g

(+)
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3) Letus first check that the map— det. B, is Gateaux differentiable at poipy in
the directionX. By (1.5), we have

m—1

b 0o —tB, 1
log det,,, B, =~ > Y@ [T g B,
J 1 t o 1
j=—J,j70

The firstterm on the r.h.s. is&eaux differentiable in the direction by the assump-
tion on the mapg — b;(p). The second term on the r.h.s. ifwBaux differentiable
by the result (applied ta = 1) of part 2 of this proposition which tells us that
p — det(B,) is Gateaux differentiable. The &eaux differentiability of the last
term follows from the local uniform upper bound (2.5 bis).

We now check (2.6 b). The map— log det(B,) — -2 o mjbﬂ' e# — bologe

is Gateaux differentiable in the directiofi and we can write

m—1 J
bi;em
5x (logdet(B,) — > 25" _pyloge)
a7 )
0o —tB m—1 b i
:5x(—/ tré n Lt — Z moi¢ —bologe)
© j==J,570
m—1
b; > ety YE(t _
=dx | — Z m—?—/ tre dt—/ ﬁdt asin (1.8)
=t t e !
m—1 oo 7th 1 F t
= — Z 5ij@.—/ 5xtre dt—/ (Sxﬁdt,
j=—ag0 t c t

whichtendstd x log det.., B, by (1.6) and dominated convergence. Here we have used
—tB,
dt =

the results of point 2) of the proposition appliectte 1 to writed x / tr
1

/1 Sx tre"*Prdt and (2.5 bis) to write fgl 50 gt = fsl aBWOg O

Remark. These results extend to the case when instead of assuming tha injective
locally aroundg, one considers orbits of an action at poimg$or which the dimension of
the kernel ofr, is constant on some neighborhooggbn each geodesic starting at point
po. For this, one should replace def, and def.,77, by det77, and def,,77,.
This extension is useful for the applications mentioned in the introduction.

A naive generalisation of the finite dimensional notion of volume to volume of infinite
dimensional orbits would give infinite quantities. But for volume-preregularisable or
regularisable orbits, one can define a notion of preregularisgeregularised volume

(» € R), which justifies a posteriori the term “volume-preregularisable or volume-
regularisable orbits” for these orbits. Singg, = R,.7,Ad, and since the metric oG

is Ad, and that orP right invariant, for any: > 0, we have de(7,.,7,.4) = det(r;7;,)

so that it makes sense to set the following definitions:
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Definition. 1) Let O, be a volume-preregularisable orbit, thewol.(O,) =
\/det(r;7,) defines a one parameter family of preregularised volumes,of

2) LetO, beavolume-regularisable orbit, thenfore R,vol?’, (O,) = ,/det., (7;7,)
defines theu-regularised volume ab,,.

3) LetO, be a volume-regularisable orbit, thewol:(O,) = /det(7;7,)" defines the
zeta function regularised volume ©%,.

From Lemma 1.4 it follows that
vol¢(0,) = e %@ vol, (0,), 2.7)

where~y is the Euler constant arig(p) = CT;TP(O) — dim Ker(r,7,) is the coefficient
arising from the heat-kernel asymptotic expansionrpf, given by (2.4). In finite
dimensions, whedimH = d andG is a compact Lie group equipped with the Haar

measurelvol, this yieldsvol”, (0,) = e~ detr,| / |det Ad4dvol(g)|.
el

reg

As a consequence of Proposition 2.1:

Proposition 2.2. For any i € R, the u-(resp. pre)-regularised volume of a volume-
(pre)regularisable orbiD,, is Gateaux-differentiable at the poipt

Let us now introduce a notion of extremality of orbits which generalises the corre-
sponding finite dimensional notion [H].

Definition. A strongly extremal orbit is a volume-preregularisable orbit, the prereg-
ularised volume of which is extremal, i@, is strongly extremal if x vol.(O,) = Ofor
any horizontal vectoX at pointp and anye > 0.

For a givenu € R, a u- extremal orbit of a preregularisable bundle is an orbit, the
p-regularised volume of which is extremal, i voly, (O,) = 0 for any horizontal
vector X at pointp.

Notice that wheneve(. . (0) — dim(Ker(r;7,)) does not depend op, the ex-
tremality of the volume of an orbit does not depend on the parameterom (2.7) it
also follows that this notion generalises the finite dimensional notion of extremality of
the volume of the fibre.

3. Minimal Orbits as Orbits with Extremal Volume

We shall consider a preregularisable principal fibre buflle: P/G. By assumption,
the bundle is equipped with a Riemannian connection given by a family of horizontal
spacedd,,p € P such that

T,P=H,®V,,

whereV/, is the tangent space to the orbit at pgireind the sum is an orthogonal one.
For a horizontal vectoX at pointp, we define the shape operator

HX . Vp — Vp
Y = =(VyX)"(p),
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where the subscript denotes the orthogonal projection omfpand)? is a horizontal
vector field with valueX atp. Similarly, we define the second fundamental form:

SP:V, x V, — H,
YY) = (VyY')(p),

whereY’, Y are vertical vector fields such the(p) = Y, Y’/(p) = Y’. These definitions
are independent of the choice of the extension¥ gf andY”.

An easy computation shows that the shape operator and the second fundamental
form are related as follows:

<Hx(Y),Y' >,=< SP(Y,Y'), X >, . (3.1)

Note that this explicitly shows th&{ x only depends oX and not on the extensiak
of X. SinceS? is symmetric, so i${x.

As in the finite dimensional case, one can define the notion of totally geodesic orhit,
an orbitO,, being totally geodesic whenever the second fundamental $8raanishes.

Definition. The orbitO, of a pointp € P will be calledpreregularisable if for any
horizontal vectorX at p, Ve > 0,

e Cler
H =e 2o Hye 25777 (3.2

is trace class. A preregularisable orlait, will be calledstrongly minimal if moreover
foranyq € O, and X a horizontal vector at poing, trH5, = 0Ve > 0.

Remarks.1) The preregularisability of the orbits ( namely5, trace class) is auto-
matically satisfied if the manifol@® is equipped with a strong smooth Riemannian
structure, since in that case the second fundamental form is a bounded bilinear form
and its weighted trace is well defined (see also [AP2] where this is discussed in
further detail).

2) Since on a preregularisable bundle, the Riemannian structyPei®right invariant
and the one oS is Ad, invariant, the notion of (pre)regularisability and (strong)
minimality of the orbit does not depend on the point chosen on the orbit.

3) Notice that ifH x is trace class, as in the finite dimensional case, strong minimality
implies thatt#{ x = 0 and hence ordinary minimality. The fact that strong minimality
implies minimality in the finite dimensional case motivates the choice of the adjective
“strong”.

4) This preregularised shape operdttiy and the second fundamental form are related
as follows:

<HE(Y),Y' >,=< SP(e Y, e YY) X >,

Sincer,7, is an isomorphism of the tangent space to the fiy®,, H5, vanishes
whenever the second fundamental form vanishes and an orbit is totally geodesic
whenever this regularised shape operator vanishes on the orbit forzserfe

Definition. A preregularisable orbitD,, will be said to be regularisable if furthermore,
the one parameter famiff{5;, ¢ €]0, 1] admits a regularised limit-trace (as defined in
Sect. 1). Fou € R, we denote byr#, Hx its u-regularised limite trace.

reg
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Definition. For a giveny € R, a regularisable orbitO,, will be called— minimal if

tr.,Hx = O0for any horizontal vectoX at pointp.

Remarks.1) As we shall see later on, for different values (ofthe notions ofu-
minimality do not coincide in general.

2) Inthe finite dimensional case, the one parameter fahiijyadmits a regularised limit
trace given by the ordinary trace:ffHx = tr{x andu- minimality is equivalent
to the finite dimensional notion of minimality.

3) A strongly minimal preregularisable orlgit, is p-regularisable ang-minimal for
anyu € R.

The notion of minimality of orbits for group actions in the infinite dimensional case
has been discussed in the literature before. King and Terng in [KT] introduced a notion
of regularisability and minimality for submanifolds of path spaces using zeta-function
regularisation methods. They show zeta function regularisability and minimality for
the orbits of the coadjoint action of a (based) loop group on a space of loops in the
corresponding Lie algebra. One can check that these orbits are also regularisable and
strongly minimal (hence minimal) within our framework .

A notion of zeta function regularisability and minimality was discussed by Maeda,
Rosenberg and Tondeur in [MRT1] (see also [MRT2]) in the case of orbits of the gauge
action in Yang-Mills theory. In fact, it can be seen as a particular examplefhimality
for p = , the Euler constant.

Let us introduce some notations. LBt — P /G be a preregularisable principal
fibre bundle and letI?),.c be a set of eigenvectors of 7, in G corresponding to the
eigenvaluesX?),,cn counted with multiplicity and in increasing order. gtbe a fixed
point in P and letZ? be the isometry fromd, (-, -),) into (G, (-, -),) which takes the
orthonormal setq°),, of eigenvectors of ) 7;,, to the orthonormal set of eigenvectors
(T%),, of 7;7,. Notice thatZo = I.

Lemma 3.1. Let P — P/G be a preregularisable principal fibre bundle. Lgs € P
be a point at which the map — 77 u is Gateaux-differentiable for any € G. Let
X be a horizontal vector apg. We shall consider eigenvalueg that correspond to
eigenvectors that do not belongg Kerr, 7;,, .

1) The mapp — A are Gateaux-differentiable in the directioli at pointpg, x A\ =
+o0
x(rym T2 T andis Ioghe (M) = [ (B (rymde ™ oo, T,
g

2) Furthermore,we have

_ e [jp
<HXUn’ poTm

. ” 1
TP >, e (5 I2 TP, T, = 50x logh(A),  (35)

where we have sét? = |7, 72|17, TP.
3) If the Riemannian structure d@his fixed (independent @), thendxZ7 is antisym-
metric and

1 oo * —trrT r7 7
E/ (6x(1y7p)e T TP TP)odt = — < HGUP, UP >,
3 (3.6)

1 1 -
= EéX log k. (\) = 5/\1710 15)(/\%676)‘5'0,
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Proof. As before, we shall sd8,, = 7, 7;,. Sincepy is fixed, we drop the indepo in Z
and denote this isometry . Notice thatZ? = I. As before, we denote b¥f),.cn the
orthonormal set of eigenvectors gf 7, which correspond to the eigenvalues ), en

in increasing order and counted with multiplicity. We shallBgt= 7,72, T? = 7, TP,
1) UsingtherelationsP-, Z7-), = (-, -)po, ZP(T%°) = T2, ZP*IP = I, we can write\?, =

2)

3)

(BpTE,TP), = (B,ZPTr, IPTI0),, and the map — A is Gateaux differentiable
in all directions at poinpg sincep — B, p — ZP are Gateaux-differentiable by
assumption on the bundle. Furthermore

dx(BpTP, TP), = 6x(IP* ByZPTE, TF°),,

= (OxBp)TR, TRo)pe + (Ox (T77) Bpo T30, Ti0)po+

+ (IPO*BPO((SXIP)TT?O’ Trzy,)o)po

= ((6x Bp)TE°, TE0), + AP([ZP°" 6 x (ZP) + (6 xZP™)IP°)TF°, TE°) o
SinceZ?P*Z?P = I, we haved x IP*IP0 + IPo*§x TP = 0 so that finally\? is Gateaux-
differentiable and x A2, = ((0x Bp)TE°, T2)p,-
Using the local uniform estimate (2.3), and with the same notations, we have for

1 P

102y (Bp)eFProTee, TEo) || < MIO(Qt)e*%”"“ so that the map — log h.(A?)
is Gateaux-differentiable at poipt in the directionX and

Sx logh.(\2) = —dx / t e PrTR, TR dt
+0o
= ( / Sx (Bp)e ™ "ProTlo, TI),, dt.
1>

By definition ofh. we have:
dx log he(A}) = (Ioghe)' (A7)x AL
= (AP) LA 5 AP,
On the other hand

Sx AP =6y < TP TP >,= 2 < 6x(r,I°)TP°, TP >,

n» - n n ' n

=2<O0xTP, TP >, +2 < 1,0xIPTH, TP >,
= =2 < VX, T >p, +2 < 10 x TP TR, T >,
= —2< Vin X, T >, +2 < 7,05 TPTE, T2 >,

n o rTn

= —2\P0 < H UPO, UP0 >, +2\P(5x IPTF, TF0),,.,

where for the third equality, we have used the fact tlﬁtbeing right invari-
ant, [[2, X] = 0. Hencedy logh.(\2) = —2¢~N < MU, UR >,
+2e7 A (0xZPTE TP),,, which yields 2).

On one hand, since the scalar product on the Lie algebra is fixed, weé have C

(6xZP)* . On the other hand, sinéB*Z? = [, we have—xZ? C dxZIP* so that
the second term in the I.h.s of (3.5) vanishes. [
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Definition. We shall call an orbiO,,, of a preregularised bundle aorbit of type (7)
whenever the following conditions are satisfied:

1) The map — Z7 is Gateaux-differentiable at point.

2) The operatos XIgoe’”goTPO is trace class for anyg € P ande > 0.

3) Foranyp € P, tr (Igoe’”;oTPO) is Gateaux-differentiable at pointy € P and
SxAr(ZE e~ TroTr0) = tr(§x TP ¢~ Tr0"r0).

Whenever the Riemannian structure®rs independent gf, any orbit satisfying con-
dition 1) is of typg(7), for in that case the traces involved in 2) and 3) vanishZ}
being an antisymmetric operator.

Proposition 3.2. Let? — P /G be a preregularisable principal fibre bundle. Then

1) Any orbit of typg(7) is preregularisable. More precisely, @,, is an orbit of type
(7), for any horizontal vectoX at pointpo, the operatorH5; is trace class, the map
p — vol.(O,) is Gateaux differentiable in the directioN at pointpg and

trH — dxtr(Z2 e “70"™) = —§x log voL.(O,)

1

oo / * —tr* T (37)
= _E/g tr[ox(r,mp)e "ro'ro]dt.

2) If the Riemannian structure of is independent gf, the orbit of any poinpg is a
preregularisable orbit and

trH% = —dx log vol.(0,) = f%/ tr’[6X(T;Tp)e’”;ofpl)]dt, (3.7bis)

wheretr’ means we have restricted to the orthogonal of the kernej of, andvol.
means that we only consider eigenvali@ghat correspond to eigenvectors that do
not belong tdaZf Kerr, 7, .

Remarks.1) Infinite dimensions, for a compact connected Lie group acting via isome-
tries on a Riemannian manifofd of dimensiond, we have for any > 0 and using
the various definitions of the volumes, including fhx@olume, i € R:
liLno dxlog vol_(O,) = éx log vol', O,
= 0x log volO,,.

Hence going to the limi¢ — 0 on either side of (3.7 bis) we find:

trHx = —dx log volO,,.
If the Gateaux-differentiability involved is@*- Gateaux-differentiability, this yields

trS? = —grad log voD,,

This leads to a well known result, namely (Hsiang's theorem [H]) that the orbits of
G whose volume are extremal among nearby orbits is a minimal submaniféld of
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2) Equality (3.7) tells us that whenever the Riemannian structu@isindependent of
p (as in the case of Yang-Mills theory), strongly minimal orbits of a preregularisable
principal fibre bundle are pre-extremal orbits. This gives a weak (in the sense that we
only get a sufficient condition for strong minimality and not for minimality) infinite
dimensional version of Hsiang’s [H] theorem.

3) If both the spectrum of; 7, and the Riemannian structure Gnare independent of
p, as in the case of Yang-Mills theory in the abelian case (where the spectrum only
depends on a fixed Riemannian structure on the manibidthe orbits are strongly
minimal (see also [MRT 1] par.5).

Proof of Proposition 3.2We setB,, = 7, 7,,. For the sake of simplicity, we assume that
B, is injective on its domain, the general case then easily follows.

1) From the preregularisability of the principal bundle follows (see Proposition 2.1) that
the mapp — det(B,) is Gateaux-differentiable in the directiok at pointpg and

dxlog det_(B,) = / dttr(éXBpe*tBP). On the other hand, by Lemma 3.1

1, [r° P
5 </ dt(5XBp€7th)TrZ;a )y — e (OxZPTR, T°)po
22 (+)

= —(HxUZ, Uf)p-
The fibre bundle being preregularisable, by the results of Proposition 2.0, the first
term on the left-hand side is the general term of an absolutely convergent series.

On the other hand, the orbit being of typg)( the series with general term given
by g=er’ (0xIPTE, TPo),, is also absolutely convergent. Hence the right-hand side

of (*) is absolutely convergent arl%; is trace class sincd(,) ey is a complete
orthonormal basis of Im,,

—/ dttr(6x Bye =57) = trH% — dxlog VoI”°(B,) = —dxlog det_(B,),

which then yields (3.7).

2) This follows from the above and point 3) of Lemma 3.1 and holds for any oxbit
of a regularisable fibre bundle since it does not invalyg,,.

O

The following proposition gives an interpretation gf{yH  in terms of the variation
of the regularised volume of the orbit.

Proposition 3.3. Thefibres of aregularisable principal fibre bundle with structure group
equipped with a fixed (p-independent) Riemannian metric are regularisable.

1) For a givenu € R, orbits areu- minimal whenever they afe- extremal.

More precisely, for any poingg € P and any horizontal vectok at pointpp, the
one parameter famil§{5, has a limit tracetr®, ‘H x and

reg

tr'., Hx = —dx log vok’, (Op)

m—1 1 0o
1 b; Ox F,(t “
= — E Ox ](p) +/ X p( )dt +/ t715x tre e TP dt — [L(sxbé)
250 4 S 1

(3.8)
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For i’ € R,

trHx =t Hx + (i — 1)dxbp, (3.9)

where as beforéj = by — dimKerB.

2)

Orbits are-minimal whenever

: 1 h ?
lim =5 [T / 7Y e AR + (s — 1) Moxbo(p)di
s— 0 An0

exists for any horizontal field& at pointp. Furthermore, setting: = , the Euler
constant, we have

tr), Hx = _% lim I'(s)~? / £EY " e TP Rax A dt + (s — 1) o x bo(p)
55— 0 Ang0
(3.10)
If moreover x by, = 0for any horizontal vectoX at pointpy, if an orbitis g-minimal
for one value of., it is for any value ofu.

Remarks.1) From (3.9) follows that unles&xby = 0, u-minimality depends on the

2)

choice of the parameter.

2) In the case of a compact connected Lie group acting via isometries on a finite
dimensional Riemannian manifofd of dimensiond, the various notions of mini-
mality coincide sinceéo = d, vol;..,(O,) = vol(O,) (this being the ordinary volume)

and (1.10) yields:

trS? = —grad log volQ,),

whereS? is the second fundamental form. It tells us that the orbit§ ahe volume
of which are extremal among nearby orbits is a minimal submanifol@.of his
proposition therefore gives an infinite dimensional version of Hsiang’s theorem [H].

A zeta function formulation of Hsiang’s theorem in infinite dimensions was already
discussed in [MRT1] in the context of Yang-Mill's theory. However, there was an
obstruction due to the factég(p) in the zeta-function regularisation procedure which
does not appear here (see also [MRT2]). A formula similar to (3.10) (but using zeta
function regularisation) can be found in [GP] (see in [GP] formula (3.17) combined
with formula (A.3)).

Proof of Proposition 3.3As before, we se;, = 7,7 7;,. and we shall assume for simplicity
that B, is injective; the proof then easily extends to the case when the dimension of the
kernel is locally constant on each geodesic contaiping

1)

Since the fibre bundle is regularisable, we know by Proposition 2.1 that the map
p — det..4(B)) is Gateaux-differentiable in the directiok. Let us now check that
‘H5 has a regularized limit trace, applying Lemma 1.1. For this, we first investigate
the differentiability of the mag — trH5,. By the result of Proposition 3.2, we

oo —tB,
have tHS, = > dtdx tre

easily follows from the shape of the middle expression.

= 7%5)( log det(B,). The differentiability ine
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Setting as beforé),(t) = tre=t8r — Z;’if, bjt%, we have furthermore

1
—itr?—li{ = —Es‘léx tre~<Br
m—1
1 F g 1 j—m
=—§(SX p&‘()_é E 5xbj83m .

=7

From the regularisability of the fibre bundle follows tlft&tF"T(E)| < K forsomeK >0
and 0< ¢ < 1 (see assumption (2.5 bis)) which in turn implies that

0 s ! i Oxbjeme™
- X =0 —5 X0j4+mE™ .
Oe 2j:7!]7m

Setting f(e) = tr(H%) in Lemma 1.1, we can define the regularised limit trace

-1

1 . .1 5xb; 4 1
trit  Hx + E,uf;xbo = l@o(trHX ts ; Jm ; Lem + écSXbo loge)
=
1 — b
= lim —> | dx log det(B,) — > mdx-Lew —dxbologe | by (3.7 bis)
e—0 2 = ]

-1
o 1 mbj J
= lim — >4y (Iog det(B,) — > e —bo Ioge)

Jj==J

reg

= —%6;( log det”’, (B,) by (1.5)

m—1 } 1 0o )
=1 > mOxb; +/ a2 F2 () +/ £ Y5 xtre™ 5™ di] by (2.6 b)
2T 0 t :

2) It is well known that the expressioR(s)~* [;* t*71>", e~ is finite for Res
large enough and that it has a meromorphic continuation to the whole plane. Since
I'(s) = (s — L)I'(s — 1), we have for with large enough real part:

o0 1 oo
(s)L [ 51N 5 APt = (s — 1)1 / s—1 —tAPs yp
(s) /Ot En:e SxAPdt = (s — 1) foop ), ! En:e Sx AP dt

— -1 1 OOs—Z —tB.
§— 0

see assumption (2.2) and Lemma 3.1
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m—1 1
1 J
=—(s—- 1)t / tm 728 badt +
(s — 1) FE_:J 0 A

o 1
+/ tS_Z(SX tre " *Br ¢ +/ 5XFp(t)ts_2dt> by (2.5)
1 0

=—(s—1)1 1 mil, ! Sxb;
I'(s —1) Jyg_1

j=—J m

)

fe'e) 1
+/ 5725y tr e—thdt+/ 5725 x Fy(t)dt
1 0

where we have sekb),(t) = tre=¢8» — Z}”:j, b;(p)t# . Hence, sincd(s)™! =
s +7s2+ 0(s% arounds = 0, going to the limits — 1, we find:

lim [(s) ™t / 7Y e nax A dt + (s — 1) o xbo(p)] =
Sﬂl 0 n

m—1
. 1 °
= lim (=1 — vs + O(s?)) E - 0xb; +/ 715y tre tBedt
s—0 =70 TJTI +s 1

1
+/ t5 75 Fy(t)dt — ’yéxbo]
0

=dx deﬂeg(Bp) —~vdxby by formula (1.6) (withy = 0) and (2.6 b)
= -2tr (T)egHX — vdxbo,

where lim_o [~ t*"*0x tre=*Brdt = [° t~20x tr e~*Prdt holds using estimate
(*) arising in the proof of Proposition 2.0 and lymg fol t5 7L x Fp(t)dt+s 26 xbo =
fol t=16x F,(t)dt by (2.5 bis) and using dominated convergence.

The rest of the assertions of 2) then easily follow.
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