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Summary. We define horizontal diffusion i&1 path space over a Riemannian manifold and
prove its existence. If the metric on the manifold is develgpunder the forward Ricci flow,
horizontal diffusion along Brownian motion turns out to kedth preserving. As application,
we prove contraction properties in the Monge-Kantorovidhimization problem for prob-
ability measures evolving along the heat flow. For constank diffusions, differentiating a
family of coupled diffusions gives a derivative processhwdt covariant derivative of finite
variation. This construction provides an alternative rodtto filtering out redundant noise.
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1 Preliminaries

The main concern of this paper is to answer the following joesGiven a second
order differential operatdr without constant term on a manifod and aC! path
u— ¢(u) taking values inM, is it possible to construct a one parameter family
X (u) of diffusions with generatok and starting poinky(u) = ¢ (u), such that the
derivative with respect ta is locally uniformly bounded?

If the manifold isR" and the generatdr a constant coefficient differential op-
erator, there is an obvious solution: the famiy(u) = ¢ (u) +Y;, wherey; is an
L-diffusion starting at 0, has the required properties. Bugzaly onR" with a non-
constant generator, the question becomes difficult.

In this paper we give a positive answer for elliptic operatoon general mani-
folds; the result also covers time-dependent elliptic gatoesL = L(t).



2 M. Arnaudon, K. A. Coulibaly, and A. Thalmaier

It turns out that the constructed family of diffusions s@tke ordinary differen-
tial equation in the space of semimartingales:

0uXe(U) = W(X(U))e(¢(u)), (1.1)

whereW(X(u)) is the so-called deformed parallel translation along tmeisertin-
galeX(u).

The problem is similar to finding flows associated to derxaftirocesses as stud-
ied in [7, 8, 9, 10, 14, 13] and [12]. However it is transverisathe sense that in
these papers diffusions with the same starting point areraefd along a drift which
vanishes at time 0. In contrast, we want to move the startaigt fout to keep the
generator. See Stroock [22], Chapt. 10, for a related coctsbin.

Our strategy of proof consists in iterating parallel cong$ for closer and closer
diffusions. In the limit, the solution may be considered asrdinite number of in-
finitesimally coupled diffusions. We call it horizontaldiffusion inC! path space.

If the generatot is degenerate, we are able to solve (1.1) only in the constant
rank case; by parallel coupling we construct a family ofudifbns satisfying (1.1) at
u= 0. In particular, the derivative of; (u) atu = 0 has finite variation compared to
parallel transport.

Note that our construction requires only a connection orfiber bundle gener-
ated by the “carré du champ” operator. In the previous aggt@f [11], a stochastic
differential equation is needed andhas to be the Le Jan-Watanabe connection as-
sociated to the SDE.

The construction of families df(t)-diffusions X (u) with d,X.(u) locally uni-
formly bounded has a variety of applications. In Stocha&tialysis, for instance,
it allows to deduce Bismut type formulas without filteringlumdant noise. If only
the derivative with respect toat u = 0 is needed, parallel coupling as constructed
in [4, 5] would be a sufficient tool. The horizontal diffusibowever is much more
intrinsic by yielding a flow with the deformed parallel tréaison as derivative, well-
suited to applications in the analysis of path space. Marefor anyu, the diffusion
X (u) generates the same filtrationX4$0), and has the same lifetime if the manifold
is complete.

In Section 4 we use the horizontal diffusion to establish latraztion property
for the Monge-Kantorovich optimal transport between philitg measures evolv-
ing under the heat flow. We only assume that the cost funcsi@rion-decreasing
function of distance. This includes all Wasserstein distagrwith respect to the time-
dependent Riemannian metric generated by the symbol ofehergtor(t). For a
generator which is independent of time, the proof could beexed using simple
parallel coupling. The time-dependent case however regiorizontal diffusion as
atool.

2 Horizontal diffusion in C! path space

Let M be a complete Riemannian manifold withits Riemannian distance. The
Levi-Civita connection oM will be denoted by



Horizontal diffusion in path space 3

Given a continuous semimartingafetaking values irM, we denote by dX =
dX its 1td differential and by gX the martingale part ofX. In local coordinates,

dDX:dX_(dX'—i-;I'Jk( )d<X], xK> ) 9 (2.1)

0 i

Wherel'jik are the Christoffel symbols of the Levi-Civita connectianM. In addi-
tion, if . . _
dX' = dM' +dA

whereM' is a local martingale and' a finite variation process, then

J
G X = dM' .

Alternatively, if
R(X) =RM(X) : Ty,M — T M

denotes parallel translation aloXg then

dx = R(X ( / Py(X 5xs)

dmxt = H(X) dNt
whereN; is the martingale part of the Stratonovich integral

t
/ P(X); 16X,
0

If X is a diffusion with generatdr, we denote byV(X) the so-called deformed
parallel translation alon¥. Recall thatW(X); is a linear maplx,M — Tx M, de-
termined by the initial conditiolV(X)p = |dT><OM and the covariant Itd stochastic
differential equation:

and

DW(X); = —:—ZLRict(W(X)t)dt—i-DW(x)lZdt. (2.2)
By definition we have
DW(X); = R(X)d (P.(X) W(X)), (2.3)

Note that the It6 differential (2.1) and the parallel tiatisn require only a con-
nection] on M. For the deformed parallel translation (2.2) however thaneation
has to be adapted to a metric.

In this Section the connection and the metric are indeperafaime. We shall
see in Section 3 how these notions can be extended to timeadept connections
and metrics.
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Theorem 2.1.LetR — M, u— ¢(u), be a C path in M and let Z be a vector field
on M. Further let X be a diffusion with generator

L=A/2+2Z,
starting at¢ (0), and lifetime&. There exists a unique family

U= (X (U)o

of diffusions with generator L, almost surely continuoug&in) and Ct in u, satisfy-
ing X(0) = X9, Xp(u) = ¢(u) and

0uXe(U) = W(X(U))e(¢(u))- (2.4)

Furthermore, the process(X) satisfies the & stochastic differential equation
X (u) = P& A X0+ Zog g (2.5)

where F3<‘( )

o,u' : TX[oM — Tx M denotes parallel transport along thé'Curve

0,u = M, Vv X(v).

Definition 2.2. We call t— (X (u))ycr the horizontal L-diffusion in &path space
CY(R,M) over X0, starting at¢.

Remark 2.3Given an elliptic generatdr, we can always choose a metgon M
such that
L=A/2+7Z

for some vector field whereA is the Laplacian with respect th Assuming thaiv
is complete with respect to this metric, the assumptionshefofem 2.1 are fulfilled.
In the non-complete case, a similar result holds with they dlifference that the
lifetime of X (u) then possibly depends an

Remark 2.4Even ifL = A/2, the solution we are looking for is not the flow of a
Cameron-Martin vector field: firstly the starting point he@ot fixed and secondly
the vector field would have to depend on the paramet@onsequently one cannot
apply for instance Theorem 3.2 in [14]. An adaptation of theopof the cited result
would be possible, but we prefer to give a proof using infsiiteal parallel coupling
which is more adapted to our situation.

Proof (of Theoren2.1).

Without loss of generality we may restrict ourselves to thget > 0.

A. Existence.Under the assumption that a solutiéfu) exists, we have for any
stopping timeT,

Wt (X(U)) (9 (U)) = WE(Xr 4. () (0% (W),
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fort € [0, (w) — T(w)[andw € {T < &}. Hered Xt := (dX)7 denotes the deriva-
tive processdX with respect tou, stopped at the random timE; note that by
Eq. (2.4),

(%) (u) =W(X(u))7(9(u)).

Consequently we may localize and replace the time inté®vdl[ by [0, T Ato] for
sometp > 0, wherert is the first exit time oX from a relatively compact open subset
U of M with smooth boundary.

We may also assume thidtis sufficiently small and included in the domain of
a local chart; moreover we can choagec |0,1] with [5° [|¢(u)| du small enough
such that the processes constructedifer|0, up| stay in the domait) of the chart.
At this point we use the uniform boundednes$\bbn [0, T Atg].

Fora > 0, we define by induction a family of procesge§’ (u) )i>o indexed by
u> 0 as follows:X%(0) = X X§(u) = ¢(u), and ifu € ]na, (n+ 1)a] for some
integern > 0, X% (u) satisfies the Itd equation

dXt" (U) = PX(a(nC{),X(a(u)dea (na) + tha(u) at, (26)

whereP,y denotes parallel translation along the minimal geodesimi to y. We

choosea sufficiently small so that all the minimizing geodesics argquely de-
termined and depend smoothly of the endpoints: sK€éu) is constructed from
X% (na) via parallel coupling (2.6), there exists a constant 0 such that

P (X% (u), X% (na)) < p(X§'(u), X' (na)) € < ||l €™ (2.7)

(see e.g. [16]).
The proces®X? (u) satisfies the covariant Itd stochastic differential emumt

DoX? (u) = Uyxa(u)Pxa (na), . dmX (nar)
+D5xa(u)2dt—%Rict(axa(U))dL (28)

(see [3] Eq. (4.7), along with Theorem 2.2).

Step 1 We prove that ifX andY are twoL-diffusions stopped aty := 7 Atg and
living in U, then there exists a constahsuch that

E | sup||W (X )t —W(Y)||?

t<To

<CE

sup|[ % —Yﬂ : (2.9)
t<to

Here we use the Euclidean norm defined by the chart.
Write - .
L= a”d”' + bjﬁj
with al = all fori,j € {1,...,dimM}.
For L-diffusionsX andY taking values irJ, we denote bN*, respectivelyN",
their martingale parts in the chdst Then Itd’s formula yields
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((NY)R = (N (N7 = (N)),
= (= Y9% - (6 - Yo)?
t
—2 [ (K=Y (N~ ()
t
—2 [ =¥ () - DY) ) s
0
Thus, forU sufficiently small, denoting byN* — NY|NX —NY) the corresponding
Riemannian quadratic variation, there exists a constant0 (possibly changing

from line to line) such that

E[(N* = NYIN* = NY) ]

<CE lsuplxt—\(tll2
t<to

rCyE | [ YO0 b0

to
< CE |sup||X —Y;||2 +C/ IE[sup|Xs—Ys|2 dt
t<19 0 s<T1p
<C(1+1)E |sup|X —Y[?|.
t<tg

Finally, again changin@, we obtain

E[(N*—NYIN* —N")5] <CE Ls;umxt ~Y?] . (2.10)
<To

Writing W(X) = P(X) (P(X)~*W(X)), a straightforward calculation shows that
in the local chart

dW(X) = — I (X)(dX,W(X))

_ %(dl‘)(X)(dX)(dX,W(X))

" %I’(X)(dX,I’(X)(dX,W(X)))

- %Rict(W(X))dt
+ Owx)Z k. (2.11)

We are going to use Eq. (2.11) to evaluate the differ&f¢é) — W(X). Along with
the already established bound (2.10), taking into acccati¥/(X), W(Y) and the

derivatives of the brackets &f andY are bounded i, we are able to get a bound
for

F(t):=E | sup |[W(Y)—W(X)|]?].

S<IAT
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Indeed, first an estimate of the type

sup||Xs—Y5H2

s<T7p

t
F(t) <GE +C2/ F(s)ds, 0<t<t,
JO

is derived which then by Gronwall's lemma leads to

F(t) <Ce2'E [suplxt _Yt”z} : (2.12)
t<to

Lettingt =tg in (2.12) we obtain the desired bound (2.9).
Step 2 We prove that there exis&> 0 such that for all € [0, ug],

E | supp? (Xt“(u),)q"/(u))] <Cla+a)? (2.13)

t<tg

From the covariant equation (2.8) f@iX” (v) and the definition of deformed
parallel translation (2.2),

1

DW(X) 1= > RIC (W(X); ) dt — Dy 120t
we have for(t,v) € [0, To] x [0, ug],
WX () 0X(0) = B0+ [ WOK () M P . G (),

or equivalently,

X (V) =W(X¥ (V) §(v)
t
+W(X (V) ./0 W(X® (V)5 Ooxe v)Pre va), . dmXS (Vo) (2.14)

with vg = na, where the integen is determined byha < v < (n+ 1)a. Conse-
quently, we obtain

PXE (. X ()
= [ (b (0% . 0x ) how

= / dp, W<><" V))t¢(V)aW(Xa'(V))t¢(V))>dv
+/ <dp (W (Xa(v))s1Df7xs"(V)P><s“(va),-dm)%a(Va)ao)>dv

< P <O’W / WX (v Doxe' (v Pxg’ (Var) dmxsa/(va/)> > dv.
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This yields, by means of boundedness pfahd deformed parallel translation, to-
gether with (2.12) and the Burkholder-Davis-Gundy inedjigsl,

E | supp? (X (u). X (u)

t<tg

< c'/(; & | supp? (xt“(v),xﬂ/(v))] dv

t<tg

u [ 7o 2
4 "B | [ Do B 05| o0

u [ 7o
c E_/O Ooxe'0Pee’ v,

/ H ds} dv.
From here we obtain

E [supp2 (Xt"( ) X ] < C/ [supp ’( M"'(V))] dv

t<to t<1g

+Ca2/OuIE [/Oro|0xs"(v)||2ds] dv
+Ca’2/(;uE UO'TO Hl?xsa/(V)Hz ds] av,

where we used the fact that foe T,M, 0O\P, . = 0, together with

p(XE(v). xE(vp)) <CB, B=a,a’,

see estimate (2.7).
Now, by Eq. (2.8) forDdX®, there exists a consta@ > 0 such that for all

v € [0, ug, .
E UOTOHa@(v)Hst} <cC.

Consequently,

<C/ [supp (),Xt"/(V))]dv

t<to

E | supp? (X7 (u), X (u)

t<tg

+2CC(a+a')?,

which by Gronwall lemma yields

E [supp2 (Xf'(U),Xt"’(U)) <C(a+a')?

t<to

for some constar@ > 0. This is the desired inequality.

Step 3 Recall that . _
L=a'a;+b'g;.
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Denoting by(a;j) the inverse ofa'l), we let[) be the connection with Christoffel
symbols

1
(P = =5 (@ +aj)b (2.15)
We are going to prove that dlldiffusions are.)’-martingales:
(i) On one hand[Y’-martingales are characterized by the fact that forkany

dxk+ %(I”)ikj d(X',xJ) is the differential of a local martingale. ~ (2.16)

(i) On the other hand,-diffusions satisfy the following two conditions:
dXX—b¥(X)dt is the differential of a local martingale, (2.17)

and o - )
d(X', X!y = (@ (X) +a" (X)) dt. (2.18)

From this it is clear that (2.15), (2.17) together with (29.&8ply (2.16).
From inequality (2.13) we deduce that there exists a ligipnocess
(X (U))o<t<ro, 0<u<up

such that for all € [0,up] anda > 0,

E | supp? (X (u), X% (u)) | <Ca?. (2.19)

t<tg

In other words, for any fixed € [0, u], the proces$X (U))ejo.r,] CONVErges
to (% (u))iejo,ry Uniformly in L? asa tends to 0. Since these processes [@re
martingales, convergence also holds in the topology of samingales ([2] Proposi-
tion 2.10). This implies in particular that for ame [0, Ug], the proceséX (u) )ie (0,1
is a diffusion with generatdr, stopped at timey.

Extracting a subsequenéey)x-o convergent to 0, we may assume that almost
surely, for all dyadia € [0, ug],

supp (X (u), X (u))

t<to

converges to 0. Moreover we can cho@gg)x>o of the formay = 2~ with (ny)k>o0
an increasing sequence of positive integers. Due to (2.&);an take a version of
the processe$, u) — X (u) such that

U= %™ (u)

is uniformly Lipschitz inu € Nax N0, up] with a Lipschitz constant independentof
andt. Passing to the limit, we obtain that a.s for any [0, 19, the map

ur— X (u)
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is uniformly Lipschitz inu € 2 N[0, up] with a Lipschitz constant independenttof
where? is the set of dyadic numbers. Finally we can choose a vergion o

(t,u) — X (u)

which is a.s. continuous ift, u) € [0, Tg] x [0, Up], and hence uniformly Lipschitz in
u € [0, ug].
Step 4 We prove that almost sureli (u) is differentiable inu with derivative

WX (u))e(¢ ().

More precisely, we show that in local coordinates, almostlgufor allt € [0, To],
u € [0,ug),

=X+ [ WX (P v (2.20)

From the construction it is clear that almost surely, fott &@l[0, 7o, u € [0, ug],

X =X+ [ W) (B(v) v

. /(;u (W(xak(v))t/:W(xak(v))s1maxgk(v>PX§k(v . XS (vak))
This yields
—xto—/uw X(V))e (¢ (V) dv
= X)X+ [ WX ) W) (V) v
+/0 ( W(XE(v /Wx"k( 1)s MDaxc P XS (vak))

The terms of right-hand-side are easily estimated, wheltesiestimates the constant
C may change from one line to another. First observe that

E | sup||[ % (u) — ><t“k<u>H2] <Caf.
t<tg

Using (2.9) and (2.19) we have

E |sup
t<tg

|} WO - Wixw)o av

|
<E [sup " WX () ) — WX () ||2dv]

t<to 0

<Caf,

E | sup|[W (X% (v)); - <X<v>>t||2] dv

t<to
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and finally

E |sup

t<to

| woxsw)

T

t
/o WOX(V)s "Dt ) Pt .. Ok (V)

t
X /OW(Xak(v))slDdXSak(v)PXsak(vak),.dm)%ak(vak)> dv
u
SC/ E |sup
0 t<to

<cf=|)]

<ca? ['s | [ loxsew) ] v

<Ca?.

2
]dv

2
‘ ds] dv (sincew ! is bounded)

Daxdi() Px§k<vak>,. ‘

where in the last but one inequality we usédP, . = 0 for anyv € TyM which implies
HDva,. H <Cp(x.y)?[IvI[%,

and the last inequality is a consequence of (2.8).
We deduce that

X (1) X0~ [ W) (9() v

2
E [sup ] <Caf.

t<to

Since this is true for anyy, using continuity inu of X (u), we finally get almost
surely for allt, u,

X(0) = X0+ [ WKW v) dv
Step 5 Finally we are able to prove Eq. (2.5):

dX (1) = Py A0+ Zy g .

Since a.s. the mappin@,u) — 9% (u) is continuous, the map — dX(u) is
continuous in the topology of uniform convergence in pralitgbWe want to prove
thatu+— dX(u) is continuous in the topology of semimartingales.

Since for a given connection on a manifold, the topology afarm convergence
in probability and the topology of semimartingale coinciatethe set of martingales
(Proposition 2.10 of [2]), it is sufficient to find a connectionT M for which X (u)
is a martingale for any. Again we can localize in the domain of a chart. Recall that
for all u, the proces¥(u) is a [’-martingale where? is defined in step 1. Then
by [1], Theorem 3.3, this implies that the derivative witlspect tou with values in
TM, denoted here byX(u), is a([)')°-martingale with respect to the complete lift
(O0)¢ of IV'. This proves thatl — dX(u) is continuous in the topology of semimartin-
gales.
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Remark 2.5Alternatively, one could have used that given a geneidtdhe topolo-
gies of uniform convergence in probability on compact setktae topology of semi-
martingales coincide on the spaceldfdiffusions. Since the processéX(u) are

diffusions with the same generator, the result could bevddras well.

As a consequence, Itd integrals commute with derivativiéls espect ta (see
e.g. [2], corollary 3.18 and lemma 3.15). We write it fornyadk

DoX = O,dX — %R(ﬁX,dX)dX. (2.21)
Since

dX (u) @ dX (u) = g~ 1(X(u)) dt
whereg is the metric tensor, Eq. (2.21) becomes
DAX = OydX — % Ricf(aX) dt
On the other hand, Eq. (2.4) and Eq. (2.2)\Myield
1 .
DX = -5 Ric?(dX)dt + OgxZdt.
From the last two equations we obtain
OudX = Oy Z dt.
This along with the original equation
dX® = dmX® + Zyo dit
gives
X (u) = P& A X0+ Zy o
where %
Pt ) T M — Ty M

denotes parallel transport along &curvev i— X (V).

B. UniquenessAgain we may localize in the domain of a chlrtLetting X (u)
andY (u) be two solutions of Eq. (2.4), then fétr,u) € [0, o[ x [0, ug] we find in local
coordinates,

U

(U)X = [ (W) -WXW) GW)de (2:22)

JO
On the other hand, using (2.9) we have

E [SUDIIYt(U) (W]

t<to

< c/ [supHYt (v)||2] dv (2.23)

from which we deduce that almost surely, for @ [0, o], X (u) = Y;(u). Conse-
quently, exploiting the fact that the two processes areicoats in(t, u), they must
be indistinguishable. O
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3 Horizontal diffusion along non-homogeneous diffusion
In this Section we assume that the elliptic generato function of time:L = L(t)

fort > 0. Letg(t) be the metric oM such that

L(t) = %At +2Z(t)

whereA! is theg(t)-Laplacian and(t) a vector field orM.
Let (X) be an inhomogeneous diffusion with generdt¢r). Parallel transport
P'(X); along theL(t)-diffusion X is defined analogously to [6] as the linear map

PY(X)t: Tx,M — Tx, M
which satisfies 1
DP!(X)e = —5 & (P' (X))t (3.1)

whereg denotes the derivative gfwith respect to time; the covariant differentii
is defined in local coordinates by the same formulab awith the only difference
that Christoffel symbols now depend tin

Alternatively, if J is a semimartingale ovét, the covariant differentiad!J may
be defined a®(0,J) = (0,D'J), where(0,J) is a semimartingale alon@,X;) in

M = [0,T] x M endowed with the connectidn defined as follows: if
s ¢(s) = (f(s),4(s))
is aC! path inM ands— (i(s) = (a(s),u(s)) € TM is C! path overd, then
ﬁm$::(a@y(mﬂ$@($)

where[' denotes the Levi-Civita connection associated(td. It is proven in [6]
thatP'(X); is an isometry fron{Tx,M, g(0, Xo)) to (Tx M, g(t, X%)).
The damped parallel translatigw (X); alongX; is the linear map

WH(X)t : TxgM — Tx M
satisfying
DW= ( S 20, ) - RIS X)) ) (3.2)
If Z= 0 andg(t) is solution to the backward Ricci flow:
g = Ric, (3.3)
then damped parallel translation coincides with the usagdlfel translation:
P{(X) =W!(X),

(see [6] Theorem 2.3). .
The 1td differential 'Y = d”' Y of anM-valued semimartingal€ is defined by
formula (2.1), with the only difference that the Christéfgmbols depend on time.
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Theorem 3.1.Keeping the assumptions of this Section, let
R—M, u— ¢(u),

be a ¢ path in M and let ¥ be an L(t)-diffusion with starting poinip(0) and
lifetime&. Assume thatM, g(t)) is complete for every t. There exists a unique family

U= (X (U)o
of L(t)-diffusions, which is a.s. continuous(inu) and Ct in u, satisfying
X(0) = X° and X%(u) = ¢ (u),
and solving the equation
0% (u) =W (X () (B (w). (3.4)

Furthermore, Xu) solves the & stochastic differential equation
™% (u) = P dPOX + Z(t, X (u)) ot (3.5)

where

p51§<-> {TyoM = Ty M

denotes parallel transport along the*@urve
0,u = M, v X(v),

with respect to the metric(g).
If Z=0and if gt) is given as solution to the backward Ricci flow equation, then
almost surely for all t,

1% (Wllgey = 1#(Wlgo) - (3.6)

Definition 3.2. We call
t— (X (u))uer

the horizontal I(t)-diffusion in C path space &R, M) over X, started atp.

Remark 3.3Eq. (3.6) says that iZ = 0 and ifg is solution to the backward Ricci
flow equation, then the horizontglt)-Brownian motion is length preserving (with
respect to the moving metric).

Remark 3.4Again if the manifold(M,g(t)) is not necessarily complete for &lla
similar result holds with the lifetime of (u) possibly depending on

Proof (of Theoren8.1). The proof is similar to the one of Theorem 2.1. We restrict
ourselves to explaining the differences.

The localization procedure carries over immediately; wekvwam the time inter-
val [0, T Ato].
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Fora > 0, we define the approximating proce§%(u) by induction as
xta(o) = xtoa Xg(u) = ¢(u)’
and ifu € Jna, (n+ 1)a] for some integen > 0, thenX“ (u) solves the Itd equation
dX (U) = Pl (nar) g (u ImX (N@0) + Z(t, X () it (3.7)

whereP}(,y is the parallel transport along the minimal geodesic froto y, for the
connectiorlt. N
Alternatively, lettingX® = (t,X%), we may write (3.7) as

A7 (U) = Bia (na) 0y G (n) + Z(XE () (3.8)

Wheref&y denotes parallel translation along the minimal geodesim# to y for the
connectioril.

Denoting byp(t, x,y) the distance from to y with respect to the metrig(t), I1td’s
formula shows that the procepst, X" (u), X% (na)) has locally bounded variation.
Moreover since locallg; p(t,x,y) < Cp(t,x,y) for x £y, we find similarly to (2.7),

p(t, X% (1), X7 (na)) < p(0,X§ (u), X5 (nar)) €' < || 1 0.

Since all Riemannian distances are locally equivalerg,ithplies

PO (), X (na)) < p(Xg' (u), Xg (na)) € < [|¢ | a € (3.9)

wherep =p(0, -, -).
Next, differentiating Eq. (3.8) yields

BauXE (u) = Dy 5 (1) Pa (nar).. Gk (n)
. 1. - y .
+ Dduf({a(u)Zdt - éR(duxta(u),dXta(u)) dxta(u).

Using the fact that the first component¥f (u) has finite variation, a careful com-
putation ofR leads to the equation
Dt au)ga (U) - I:lt;uxta(u) Pt a(na> i dm)(ta (nC{)

+ Dy Z(t ) — %(Rict)ﬁ (3uXC (u)) dt.

To finish the proof, it is sufficient to remark that in step 1, E410) still holds
true for X andY g(t)-Brownian motions living in a small open set, and that in
step 5, the map — dX(u) is continuous in the topology of semimartingales. This
last point is due to the fact that allX(u) are inhomogeneous diffusions with the
same generator, sdy, and the fact that the topology of uniform convergence on
compact sets and the topology of semimartingales coinaidé-diffusions. O
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4 Application to optimal transport

In this Section we assume again that the elliptic genelatoris aC* function of
time with associated metrggt):

L(t) = %At +2Z(t), te[o,T],

whereA! is the Laplacian associated ggt) andZ(t) is a vector field. We assume
further that for any, the Riemannian manifol@M, g(t)) is metrically complete, and
L(t) diffusions have lifetimeT .

Letting¢: [0,T] — R be a non-decreasing function, we define a cost function

C(taxvy):d)(p(tvxay)) (41)

wherep(t, -, -) denotes distance with respeciit).
To the cost functiorc we associate the Monge-Kantorovich minimization be-
tween two probability measures dh

Herlwv)= inf [ ctxydn(ey) (4.2)
ner(u,v) JMxM

where T (u,v) is the set of all probability measures dhx M with marginalsu
andv. We denote
Woa(b,v) = (Wora(u,v)) P (4.3)
the Wasserstein distance associated t00. For a probability measuye on M, the
solution of the heat flow equation associated to will be denoted byuR.
Define a sectiori('Z)’ € I (T*M © T*M) as follows: for anyx € M andu,v €
<M,

1
(0'2)(u,v) = > (9®)(TLZ,v) +9(t)(u,04Z)) -
In case the metric is independenttaindZ = gradv for someC? functionV onM,

then
(0'2)° (u,v) = OdV(u,v).

Theorem 4.1.We keep notation and assumptions from above.

a) Assume
Rict —g—2(C'2)’ >0, te[0,T]. (4.4)

Then the function
t— #ci(UR,VR)
is non-increasing oif0, T|.
b) If for some ke R,
Rict —g—2(0'2)” > kg, te[0,T], (4.5)
then we have for all p- 0

Wor(UR,VR) < e 2y 0(u,v), te[0,T].



Horizontal diffusion in path space 17

Remark 4.2Before turning to the proof of Theorem 4.1, let us mentiort thahe
caseZ = 0, g constantp = 2 andk = 0, item b) is due to [21] and [20]. In the case
whereg is a backward Ricci flow solutiory, = 0 andp = 2, statement b) foM
compact is due to Lott [18] and McCann-Topping [19]. For estens about?-
transportation, see [24].

Proof (of Theorerd.1). a) Assume that Ric-g— 2(00!Z)? > 0. Then for anyL (t)-
diffusion (%), we have

d(9(t)(W(X)t, W(X)1))
= g(t) (W(X)'U
= 9(t)(W(X),

T 2g(t) (mtwwza, = %(Rict>ﬁ<W<X>t>,W<X>t) dt

— (g+2(0'2) = Ric') (W(X);, W(X);) ok < 0.

(X)r) dt +2g(t) (D'W(X)1, W(X)r)

W
W(X);) dt

Consequently, for anty> 0,

WXt < [W(X)ollo = 1. (4.6)

Forx,y € M, letu— y(x,y)(u) be a minimalg(0)-geodesic fronx to y in time 1:
y(x,y)(0) = x andy(x,y)(1) = y. Denote byX*¥Y(u) a horizontaL (t)-diffusion with
initial conditiony(x,y).

Forn € IN(u,v), define the measurg onM x M by

m(AxB)= [ P{X¥(0) €A XV(1) € B}dn(xy).

whereA andB are Borel subsets dfl. Thenn; has marginalg/R andvR. Conse-
quently it is sufficient to prove that for any sugh

| Bl XO.XY W) dney) < [ coxydnixy). (@)
MxM MxM

On the other hand, we have a.s.,
1
pXY(0.XV (W) < [ax(w],cu
1
= [ WOy @) x|

< [ 70en) e focu
=p(O.xy),
and this clearly implies
c(t,XY(0),%*¥(1)) <c(0,xy) a.s,
and then (4.7).
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b) Under condition (4.5), we have

900 (WO WOX)) < —kglt) WOXW(X),).

which implies
IW(X)e[le < e/,

and then
P (£, XY(0),%¥(1)) < e 2p(0,xy).
The result follows. O

5 Derivative process along constant rank diffusion

In this Section we consider a generatasf constant rank: the imade of the “carré
du champ” operataf (L) € I (TM® TM) defines a subbundle @M. In E we then
have an intrinsic metric given by

90 = (MFLIEX) ™", xeM.

Let 0 be a connection o& with preserveg, and denote by’ the associated semi-
connection: iU € I (TM) is a vector field[J;U is defined only ifv € E and satisfies

OW = Oy, V + V.Ul

whereV € I (E) is such thaw,, = v (see [11], Section 1.3). We denote Bgx) the
drift of L with respect to the connectidn

For the construction of a flow df-diffusions we will use an extension af to
TM denoted by. Then the associated semi-connectidris the restriction of the
classical adjoint of (see [11] Proposition 1.3.1).

Remark 5.1It is proven in [11] that a connectidd always exists, for instance, we
may take the Le Jan-Watanabe connection associated to ahlvaskn vector bundle
homomorphism from a trivial bundlel x H to E whereH is a Hilbert space.

If X is anL-diffusion, the parallel transport
P(X)t: Exy — Ex

alongX; (with respect to the connecticﬁw) depends only ofl. The same applies for
the Itd differential ¢k = d”X;. We still denote by g its martingale part.
We denote by
P'(X)t : TxM — Tx M

the parallel transport along for the adjoint connectio(ﬁ)/, and byD'J the covari-
ant differential (with respect tg1)’) of a semimartingalé € TM aboveX; compare
(2.3) for the definition.
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Theorem 5.2.We keep the notation and assumptions from above.d-ké» fixed
pointin M and X(xp) an L-diffusion starting atx For x € M close to %, we define
the L-diffusion X(x), started at x, by

dX; (X) = Py xg) % () GmXt (X0) + Z(X¢(x)) dit (5.1)

wherelf’x,y denotes parallel transport (with respectfft) along the uniqué—geodesic
from xtoy. Then

D' TipX = Cp xZdt — % Ric! (Ty, X) dit (5.2)
where

d
Ric*(u) = Zﬁ(u,a)a, uec M,
i=

and(e)i—1,..4 an orthonormal basis of For the metric g.

Under the additional assumption thatZl” (E), the differentiaD' Ty, X does not
depend on the extensiah and we have

D'Ty,X = O xZdt — % Ric* (T, X) ct. (5.3)

Proof. From [3] Eq. 7.4 we have

5/TXOX = iTxOXISX((Xo),. det(X(J) + imeZdt

2 (R(TX.0X(10)) X (50) + 7T/ (0X (x0) T X. X 1))

— %T’/(Iﬁ/TXOX,dX)

whereT’ denotes the torsion tensor(af. Since for allx eM, E|v|5x,. =0ifve TuM,
the first term in the right vanishes. As a consequebtE, X has finite variation, and
T'(D'Ty,X,dX) = 0. Then using the identity

R(v,uju+ 0T (u,v,u) = Riv,u)u, u,veT,M,
which is a particular case of identity (C.17) in [11], we dhta
~ ~ 1.
D'Ty X = O xZdt — zR(TXOX,dX(xo))dX(xo).
Finally writing 3
R(Ty, X, dX (X0) )dX (Xo) = Ric* (T, X) dlt
yields the result. O

Remark 5.3In the non-degenerate casejs the Levi-Civita connection associated
to the metric generated Hy, and we are in the situation of Section 2. In the de-
generate case, in generaldoes not extend to a metric connectionidnHowever
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conditions are given in [11] (1.3.C) under whit(X) is adapted to some metric,
and in this caséy, X is bounded with respect to the metric.

One would like to extend Theorem 2.1 to degenerate diffissarconstant rank,
by solving the equation

0uX (u) = O x(wZdt — % Ric* (AyX (u)) dt.

Our proof does not work in this situation for two reasons. Tir& one is that in
general5/(x) is not adapted to a metric. The second one is the lack of amiality
of the type (2.7) sincel does not have an extensi@hwhich is the Levi-Civita
connection of some metric.

Remark 5.4WhenM is a Lie group and. is left invariant, theri] can be chosen as
the left invariant connection. In this cage)’ is the right invariant connection, which
is metric.

AcknowledgementThe first named author wishes to thank the University of Luxeuang for
support.

Note added in proofUsing recent results of Kuwada and Philipowski [17], theditian at

the beginning of Section 4 thaf(t) diffusions have lifetimer is automatically satisfied in
the case of a family of metricg(t) evolving by backward Ricci flow on g(0)-complete

manifold M. Thus our Theorem 4.1 extends in particular the result of Mu€Topping [19]
from compact to complete manifolds.
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