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This paper proves that the separation convergence toward the uniform distribution abruptly occurs at times around
ln(n)/n for the (time-accelerated by 2) Brownian motion on the sphere with a high dimension n. The arguments
are based on a new and elementary perturbative approach for estimating hitting times in a small noise context.
The quantitative estimates thus obtained are applied to the strong stationary times constructed in (Arnaudon,
Coulibaly-Pasquier and Miclo (2020)) to deduce the wanted cut-off phenomenon.
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1. Introduction

Consider the Brownian motion X := (X(t))t≥0 on the sphere Sn+1 ⊂ Rn+2 of dimension n + 1 ≥ 2,
time-accelerated by a factor 2, so the generator of X is the Beltrami-Laplacian � on Sn+1. Starting
from a point, the time marginal laws of X spread over Sn+1 and approach the uniform distribution
in large times. A traditional question is to estimate corresponding speeds of convergence, or mixing
times, especially for large n. The answer depends on the way the difference between the time marginal
and the uniform distribution is measured. Saloff-Coste (1994) proved that for the total variation, the
mixing time is equivalent to ln(n)/(2n) and furthermore a cut-off phenomenon occurs (see also Méliot
(2014) for extensions). In contrast to the more traditional setting of discrete-time Markov chains, there
is no difficulty with very small mixing times in the framework of continuous time, since time can be
scaled by any positive factor. If we were working with finite state spaces, general arguments based on
reversibility, see (1.5) in Hermon, Lacoin and Peres (2016), associated with the cut-off in total variation,
would show that for the separation discrepancy the mixing time asymptotically belongs to the interval
[ln(n)/(2n), ln(n)/n]. This observation would imply at once the upper bound on τn in Theorem 2 below.
The convergence of X to the uniform distribution can be brought back to a one-dimensional question,
by considering its radial part (with respect to the starting point), since its “angular part” is at once
at equilibrium by symmetry. One-dimensional diffusions are quite close to birth and death processes,
so we can expect from the results of Diaconis and Saloff-Coste (2006) and Ding, Lubetzky and Peres
(2010) that a cut-off phenomenon equally occurs in the separation sense. Our goal here is to check that
this is indeed the case and that this abrupt convergence occurs at times round ln(n)/n. Our proof is based
on two ingredients: (1) the resort to the strong stationary times for X presented in Arnaudon, Coulibaly-
Pasquier and Miclo (2020) and (2) quantitative estimates on the hitting times for one-dimensional
diffusion processes, obtained via elementary calculus (and a very restricted dose of stochastic calculus).
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This alternative point of view on cut-off differs from the traditional approach based on spectral analysis
and could be extended to other situations where less spectral information is available. A more general
purpose of this paper is to advertise the resort to strong stationary times for diffusion processes, subject
which has been much less investigated than its finite state space counterpart, maybe because such finite
times may not exist in full generality.

Without loss of generality, we can assume that X starts from x0 := (1,0,0, ...,0) ∈ Sn+1 ⊂ Rn+2. It was
seen in Coulibaly-Pasquier and Miclo (2021) that X can be algebraically intertwined with a Markov
process D := (D(t))t≥0 taking values in the closed balls of Sn+1 centered at x0, starting at {x0} and
absorbed in finite time in the whole set Sn+1. Denote

τn := inf{t ≥ 0 : D(t) = Sn+1}

the absorption time. More precisely, the algebraic intertwining relation means that the commutation
relation LΛ = Λ� holds (when applied to functions belonging to the domain of �, see Coulibaly-
Pasquier and Miclo (2021)), where L is the generator of the absorbed process D and Λ is the Markov
kernel from the state space D of D (i.e. the set of all closed balls of Sn+1 centered at x0) to Sn+1 which
associates to any B ∈ D, Λ(B, ·) the normalized uniform law over B.

In Arnaudon, Coulibaly-Pasquier and Miclo (2020), this algebraic intertwining relation was extended
into a probabilistic intertwining relation which is a coupling of X and D so that

• at any time t ≥ 0, the conditional law of X(t) knowing the trajectory D([0, t]) := (D(s))s∈[0,t] is
given by Λ(D(t), ·),

• D is progressively measurable with respect to X , in the sense that for any t ≥ 0, D([0, t]) depends
on X only through X([0, t]).

In general, such couplings are not unique, and in Arnaudon, Coulibaly-Pasquier and Miclo (2020)
several couplings of X and D were constructed (two of them are recalled in Corollary 2 below). Due to
these couplings and to general arguments from Diaconis and Fill (1990), τn is a strong stationary time
for X , meaning that τn and X(τn) are independent and X(τn) is uniformly distributed over Sn+1. As a
consequence, see Diaconis and Fill (1990), we have

∀ t ≥ 0, s(L(X(t)),Un+1) ≤ P[τn ≥ t],

where the left hand side is the separation discrepancy between the law of X(t) and the uniform distri-
bution Un+1 over Sn+1. Recall that the separation discrepancy between two probability measures μ and
ν defined on the same measurable space is given by

s(μ,ν) = ess sup
ν

1 − dμ
dν
,

where dμ/dν is the Radon-Nikodym density of μ with respect to ν.

Remark 1. Note that for any t ∈ [0, τn), the “opposite pole” (−1,0,0, ...,0) does not belong to the
support of Λ(D(t), ·). It follows from an extension of Remark 2.39 of Diaconis and Fill (1990) that τn
is even a sharp strong stationary time for X , meaning that

∀ t ≥ 0, s(L(X(t)),Un+1) = P[τn ≥ t].

Thus the understanding of the convergence in separation of X toward Un+1 amounts to understanding
the distribution of τn. From the bibliographical survey given above, it can be expected that τn is of
order ln(n)/n.
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In confirmation of the above observation, a first purpose of this note is to prove the following result.

Theorem 1. For all n large, we have E[τn] ∼ ln(n)/n.

Let us go further by showing a cut-off phenomenon, namely that in the scale ln(n)/n, the random
variable τn is in fact close to its mean E[τn]. This property can be written under several forms, see e.g.
the review of Diaconis (1996) or the book Levin, Peres and Wilmer (2009) (both in the context of finite
Markov chains). We consider the following simple formulation:

Theorem 2. For any r > 0, we have

lim
n→∞

P

[
τn > (1 + r) ln(n)

n

]
= 0 and lim

n→∞
P

[
τn < (1 − r) ln(n)

n

]
= 0.

As an immediate consequence of Remark 1 and Theorem 2, we get

Corollary 1. For any r > 0, we have

lim
n→∞
s

(
L

(
X
(
(1 + r) ln(n)

n

) )
,Un+1

)
= 0 and lim

n→∞
s

(
L

(
X
(
(1 − r) ln(n)

n

) )
,Un+1

)
= 1.

For any t ≥ 0, denote R(t) the Riemannian radius of D(t) in Sn+1, so that R(0) = 0 and

τn = inf{t ≥ 0 : R(t) = π}. (1)

It was seen in Coulibaly-Pasquier and Miclo (2021) that R := (R(t))t≥0 solves the stochastic differential
equation

∀ t ∈ (0, τn), dR(t) =
√

2dB(t) + bn(R(t))dt, (2)

where (B(t))t≥0 is a standard Brownian motion in R and the mapping bn is given by

∀ r ∈ (0, π), bn(r) := 2
sinn(r)∫ r

0 sinn(u) du
− n

cos(r)
sin(r) . (3)

It is not difficult to check, see e.g. (37) of the Supplementary Material (Arnaudon, Coulibaly-Pasquier
and Miclo (2024)), which is an equivalent as x → 0+, that as r goes to 0+, bn(r) ∼ (n + 2)/r , and this
is sufficient to ensure that 0 is an entrance boundary for R, so that starting from 0, it will never return
to 0 at positive times.

In the following corollary we present two intertwinings, which were constructed in Arnaudon,
Coulibaly-Pasquier and Miclo (2020) Theorems 3.5 and 4.1.

Corollary 2. Let (Xt )t≥0 be a Brownian motion in Sn+1 started at x0. For x ∈ Sn+1\{x0,−x0}, denote
by N(x) the unit vector at x normal to the circle with radius ρ(x0, x) where ρ is the distance in the
sphere, pointing towards x0: N(x) = −∇ρ(x0, ·)(x).

(i) Full coupling. Let D1(t) be the ball in Sn+1 centered at x0 with radius R1(t) solution started at 0
to the Itô equation

dR1(t) = −
√

2〈N(Xt ),dXt〉 + n [2 cot(ρ(x0,Xt )) − cot(R1(t))] dt . (4)

This evolution equation is considered up to the hitting time τ(1)n of π by R1(t).
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(ii) Full decoupling, reflection of D on X. Let D2(t) be the ball in Sn+1 centered at x0 with radius
R2(t) solution started at 0 to the Itô equation

dR2(t) = −
√

2dWt + 2dLR2
t (ρ(x0, ·))(X) − n cot(R2(t)) dt, (5)

where (Wt )t≥0 is a real-valued Brownian motion independent of (Xt )t≥0 and LR2
t [ρ(x0,X)] is the

local time at 0 of the process R2 − ρ(x0,X). These considerations are valid up to the hitting time
τ
(2)
n of π by R2(t).

Let D(t) be the ball in Sn+1 centered at x0 with radius R(t), defined in (2), and let τn be the stopping
time defined in (1). Then we have:

(iii) for i = 1,2 X
τ
(i)
n

is uniformly distributed in Sn+1,

(iv) the pairs (τ(1)n ,(D1(t))t∈[0,τ(1)n ]), (τ
(2)
n ,(D2(t))t∈[0,τ(2)n ]) and (τn,(D(t))t∈[0,τn ]) have the same law.

In particular τ(1)n and τ(2)n satisfy Theorems 1 and 2.

The terms full coupling and full decoupling come from the facts that in (i), D1 and X are always in
interaction, due to the term 〈N(Xt ),dXt〉 in (4), while in (ii), this interaction is restricted to the times
where X encounters the boundary of D2, due to the term dLR2

t (ρ(x0, ·))(X) in (5). Heuristically, in
(i) the motions of the boundary and the “radial part” (with respect to the skeleton) of X tend to be
synchronous, while in (ii) they are independent as long as X is not on the boundary of D2. We refer to
Arnaudon, Coulibaly-Pasquier and Miclo (2020) for more details.

Heuristically speaking, the mapping bn is mainly of order n (see Lemma 1, except that close to π/2,
the order is rather

√
n, see Proposition 2 and Lemma 2), thus renormalizing time by a factor 1/n, we end

up with a small noise diffusion, so large deviation estimates could lead to the desired result. Indeed,
in the next section we will show that ln(n)/n is an equivalent of the time needed to go from 0 to π for
the dynamical system obtained by removing the Brownian motion in (2). But instead of subsequently
resorting to the large deviation theory, which cannot be directly applied here due to the existence of
two scales 1/n and 1/

√
n mentioned above, we present in Section 3 an alternative direct perturbative

argument to estimate hitting times, leading to curious optimization problems over surrogates of the
drift. The latter are approximatively solved in Section 4, leading to the proofs of Theorems 1 and 2. The
additional material section justifies the resort to surrogates, by showing that the cut-off phenomenon
cannot be deduced by only working with the initial drift.

2. Corresponding dynamic systems

In the spirit of the small noise approach alluded to above, we give here a heuristic justification of the
ln(n)/n term by forgetting the Brownian motion in (2). Nevertheless the following computations are
not disconnected from our main goal, as they will be re-used later on.

The dynamical system associated to (2) is defined by{
x0 = 0
�xt = bn(xt ),

(6)

up to the deterministic time Tn when it hits π (Proposition 2 below will imply in particular that
(xt )t∈[0,Tn ] is increasing and that Tn is finite). The goal of this section is to show the following be-
havior for this hitting time:
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Theorem 3. For large n we have Tn ∼ ln(n)/n.

This bound can serve as an “explanation” for the quantity ln(n)/n as Theorem 1 will be obtained via
perturbative arguments around this result. The proof of Theorem 3 consists of the two matching lower
and upper bounds separately presented in the next subsections. In both cases, bn will be replaced by
more manageable drifts.

2.1. The upper bound

Our goal here is to show one “half” of Theorem 3. This inequality will be used for a similar bound on the
mixing time, which is interesting in a sampling context, since it serves as a guarantee for convergence.

Proposition 1. We have lim supn→∞ nTn/ln(n) ≤ 1.

In order to prove Proposition 1, we replace bn by a simpler drift b̃n ≤ bn, whose corresponding
hitting time T̃n of π will furnish a time satisfying T̃n ≥ Tn. Here is the first step in this direction:

Lemma 1. For any x ∈ (0, π), we have bn(x) ≥ n| cot(x)|.

Proof. First consider the case where x ∈ [π/2, π). Since sinn(x) ≥ 0 and
∫ x

0 sinn(u) du ≥ 0, we get

bn(x) ≥ −n
cos(x)
sin(x) = n| cot(x)|.

Next consider the case where x ∈ (0, π/2]. Define for such fixed x,

∀ 0 ≤ v ≤ x, f (v) := sin(x − v) − sin(x) + cos(x)v.

We compute

f ′(v) = − cos(x − v) + cos(x) ≤ 0,

and since f (0) = 0, we deduce that sin(x − v) ≤ sin(x) − cos(x)v, for any 0 ≤ v ≤ x. It follows that∫ x

0

(
sin(u)
sin(x)

) n
du =

∫ x

0

(
sin(x − v)

sin(x)

) n
dv ≤

∫ x

0
(1 − cot(x)v)n dv

≤
∫ x

0
exp(−n cot(x)v) dv =

1
n cot(x) [1 − exp(−n cot(x)x)].

Coming back to bn, we get

bn(x) ≥ 2n cot(x) 1
1 − exp(−n cot(x)x) − n cot(x) = n cot(x)

(
2

1 − exp(−n cot(x)x) − 1
)

= n cot(x)1 + exp(−n cot(x)x)
1 − exp(−n cot(x)x) ≥ n cot(x) = n| cot(x)|.



1012 M. Arnaudon, K. Coulibaly-Pasquier and L. Miclo

The previous bound has the drawback to vanish at x = π/2, which is problematic for the hitting time
of π. So we need another lower bound for bn:

Proposition 2. There exists a constant c̃ > 0 such that for all n large enough,

∀ x ∈ (0, π), bn(x) ≥ c̃
√

n.

Fix some A > 0 and note that for x ∈ (0, π) outside [π/2 − A/
√

n, π/2 + A/
√

n], we have

| cot(x)| ≥ | cos(x)| ≥ cos
(
π

2
− A
√

n

)
∼ A

√
n
. (7)

It follows from Lemma 1 that to prove Proposition 2, it sufficient to investigate the behavior of bn(x)
on [π/2 − A/

√
n, π/2 + A/

√
n]. We begin with the point π/2:

Lemma 2. For large n, we have bn (π/2) ∼ 2
√

2n/π.

Proof. By definition, for any n ∈ N we have bn (π/2) = 2/ιn, with

ιn :=
∫ π/2

0
sinn(u) du.

By integration by part, it appears that this quantity satisfies,

∀ n ≥ 2, ιn =
n − 1

n
ιn−2,

from which we get that for n large, ιn ∼
√
π/(2n), and we deduce the wanted equivalent.

For the other points x ∈ [π/2 − A/
√

n, π/2 + A/
√

n] (with n > 4A2/π2), we are to systematically
consider the change of variables

a :=
√

n
(
x − π

2

)
∈ [−A,A]. (8)

We need the following ingredients.

Lemma 3. With the parametrization (8), we get for large n, uniformly over a ∈ [−A,A],

cos(x) ∼ − a
√

n
, sinn(x) ∼ e−a

2/2 and In(x) ∼ h(a)
√

n
,

where

∀ x ∈ [0, π], In(x) :=
∫ x

0
sinn(u) du and ∀ a ∈ R, h(a) :=

∫ a

−∞
e−u

2/2 du.

Proof. Writing x = π
2 +

a√
n

as in (8), the first equivalent is obtained via an immediate expansion around
π/2. For the second equivalent, note that, keeping using the same change of variables in the sequel,

sinn(x) =
(√

1 − cos2(x)
) n
= exp

(
n
2

ln
(
1 − cos2

(
π

2
+

a
√

n

) ) )
∼ exp

(
−n

2
cos2

(
π

2
+

a
√

n

) )
∼ e−a

2/2.
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For the last equivalent, write

In(x) =
∫ π/2

0
sinn(y) dy +

∫ x

π/2
sinn(y) dy.

From the previous computation, especially its uniformity, we deduce∫ x

π/2
sinn(y) dy ∼

∫ a

0
e−v

2/2 dv
√

n
.

From the proof of Lemma 2 we have for large n,∫ π/2

0
sinn(y) dy ∼

√
π

2n
=

1
√

n

∫ 0

−∞
e−v

2/2 dv,

and thus finally the wanted equivalent.

We can now come to the

Proof of Proposition 2. Recalling the definition of bn given in (3) and the change of variables (8), we
deduce from Lemma 3 that uniformly for a ∈ [−A,A],

bn(x) ∼
√

nβ(a), (9)

with

∀ a ∈ R, β(a) := 2
e−a

2/2

h(a) + a. (10)

This mapping will be precisely investigated in Section 4, but for the moment just note that by continuity
we can choose A > 0 sufficiently small so that

∀ a ∈ [−A,A], β(a) ≥ β(0)
2
=

√
2
π
.

Proposition 2 then follows from this bound and (7), for any given c̃ ∈ (0,
√

2/π ∧ A).

The previous lower bounds on bn lead us to introduce a new function b̃n on (0, π) via

∀ x ∈ (0, π), b̃n(x) :=
{

c̃
√

n if x ∈ [π/2 − A/
√

n, π/2 + A/
√

n]
n| cot(x)| otherwise.

Our interest in b̃n is its simplicity and the fact that bn ≥ b̃n. Indeed, it is the primary ingredient in the

Proof of Proposition 1. Replacing (6) by {
x̃0 = 0
�̃xt = b̃n(x̃t ),

(11)

defined up to the time T̃n it hits π, we get Tn ≤ T̃n, for any ∈ N. Proposition 1 is an immediate conse-
quence of this bound and of the next lemma.
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Lemma 4. For n large, we have T̃n ∼ ln(n)/n.

Proof. We decompose T̃n into T̃ (1)
n + T̃ (2)

n + T̃ (3)
n where

T̃ (1)
n := inf

{
t ≥ 0 : x̃t =

π

2
− A
√

n

}

T̃ (2)
n := inf

{
t ≥ 0 : x̃

T̃
(1)
n +t
=
π

2
+

A
√

n

}

T̃ (3)
n := inf{t ≥ 0 : x̃

T̃
(1)
n +T̃

(2)
n +t
= π},

for any fixed A > 0. Let us analyse each of these times separately
• For t ∈ [0,T̃ (1)

n ), we rewrite the second equation of (11) as

sin(x̃t )
cos(x̃t )

�̃xt = n, i.e. − d
dt

ln(cos(x̃t )) = n.

Integrating between 0 and T̃ (1)
n we get

nT̃ (1)
n = ln(cos(0)) − ln

(
cos

(
π

2
− A
√

n

) )
= − ln

(
cos

(
π

2
− A
√

n

) )
.

For large n, we have cos
(
π/2 − A/

√
n
)
∼ A/

√
n, and it follows that

− ln
(
cos

(
π

2
− A
√

n

) )
∼ ln(n)

2
,

and as a consequence T̃ (1)
n ∼ ln(n)/(2n).

• For t ∈ (T̃ (1)
n ,T̃ (1)

n + T̃ (2)
n ), (11) writes �̃xt = c̃

√
n, and we get

T̃ (2)
n =

π
2 +

A√
n
− ( π2 − A√

n
)

c̃
√

n
=

2 A√
n

c̃
√

n
=

2A
c̃n
.

• For t ∈ (T̃ (2)
n + T̃ (2)

n ,T̃ (1)
n + T̃ (2)

n + T̃ (3)
n ), by symmetry of b̃ through [0, π/2 − A

√
n] � x �→ π − x ∈

[π/2 + A/
√

n, π], we have

T̃ (3)
n = T̃ (1)

n ∼ ln(n)
2n

.

Putting together these estimates, we deduce the desired result.

Remark 2. In a similar spirit, if we were interested in total variation instead of separation, we would
rather be considering the time for the dynamical system (x̃t )t≥0 to go from 0 to π/2, since from the con-
centration of measure phenomenon, “most the mass of the sphere is around the (generalized) equator”.
From the previous computation, it appears that this time is of order ln(n)/(2n), this gives a heuristic
explanation for the fact that the mixing times in total variation and in separation differ by a factor 2.
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2.2. The lower bound

Our goal here is to show the second “half” of Theorem 3:

Proposition 3. We have lim infn→∞ nTn/ln(n) ≥ 1.

As in the previous section, we are to replace bn by a simpler drift bn ≤ b̂n, whose corresponding
hitting time T̂n of π will furnish a time satisfying T̂n ≤ Tn. We start by noting that from (9), we deduce
at once

Lemma 5. For any A > 0, we can find a constant ĉA > 0 such that for all n large enough,

∀ a ∈ [−A,A], bn

(
π

2
+

a
√

n

)
≤ ĉA

√
n.

Fix A > 0. Here is an analogue of Lemma 1.

Lemma 6. There exists a quantity ε(A) > 0 such that for all n sufficiently large, depending on A,

∀ x ∈ (0, π) \ (π/2 − A/
√

n, π/2 + A/
√

n), bn(x) ≤ (1 + ε(A))n| cot(x)|.

Furthermore, we have

lim
A→+∞

ε(A) = 0. (12)

Proof. Two cases are treated separately:
• For fixed x ∈ [π/2 + A/

√
n, π), we have on one hand,

sinn(x) ≤ sinn
(
π/2 +

A
√

n

)
∼ e−A

2/2,

for n large, and on the other hand

In(x) ≥ In(π/2) ∼
√

π

2n
,

(where In was defined in Lemma 3). It follows that for n sufficiently large, we have

bn(x) ≤ 3

√
2
π

e−A
2/2√n + n| cot(x)|.

Furthermore we have for large n,

| cot(x)| ≥
����cot

(
π/2 +

A
√

n

) ���� ∼ A
√

n
.

It follows that for n large enough,

3

√
2
π

e−A
2/2√n ≤ 4

√
2
π

e−A
2/2

A
n| cot(x)|,
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implying bn(x) ≤ (1 + ε+(A))n| cot(x)|, with

ε+(A) := 4

√
2
π

e−A
2/2

A
.

• For fixed x ∈ (0, π/2 − A/
√

n], we have

In(x) ≥
∫ x

0
cos(u) sinn(u) du =

sinn+1(x)
n + 1

,

so that

bn(x) ≤
2(n + 1)
sin(x) − n cot(x).

Introduce xA ∈ (0, π/4) so that 1 ≤ (1 + 1/A) cos(xA). For any x ∈ (0, xA], we have cos(x) ≥ cos(xA)
and thus

bn(x) ≤
(

2(n + 1)
n

(
1 +

1
A

)
− 1

)
n cot(x) ≤

(
1 +

3
A

)
n cot(x),

for n large enough. Denote ηn := 1/
√

n and assume that n is sufficiently large so that ηn ≤ xA. For
x ∈ [xA, π/2 − A/

√
n], we have

In(x) ≥
∫ x

x−ηn
sinn(u) du ≥ 1

cos(x − ηn)

∫ x

x−ηn
cos(u) sinn(u) du

=
1

cos(x − ηn)

[
sinn+1(u)

n + 1

] x
x−ηn

=
1

cos(x − ηn)

[
sinn+1(x)

n + 1
− sinn+1(x − ηn)

n + 1

]

=
cos(x)

cos(x − ηn)

[
1 −

(
sin(x − ηn)

sin(x)

) n+1
]

sinn+1(x)
(n + 1) cos(x) .

Note that

min
{

cos(x)
cos(x − ηn)

: x ∈ (xA, π/2 − A/
√

n)
}
=

cos(π/2 − A/
√

n)
cos(π/2 − A/

√
n − ηn)

,

and the right hand side converges toward A/(A+ 1) for large n. We also have

max
{(

sin(x − ηn)
sin(x)

) n
: x ∈ (xA, π/2 − A/

√
n)
}
=

(
sin(π/2 − A/

√
n − ηn)

sin(π/2 − A/
√

n)

) n
,

and the right hand side converges toward e−(A+1)2/2eA
2/2 = e−(A+1/2) for large n. It follows that for n

sufficiently large,

In(x) ≥
A

A+ 2
(1 − e−A) sinn+1(x)

(n + 1) cos(x) ,

and we deduce that for x ∈ [xA, π/2 − A/
√

n)],

bn(x) ≤
(
2

A+ 2
A(1 − e−A)

− 1
)

n cot(x) = (1 + ε−(A))n cot(x),
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with

ε−(A) := 2
2 + Ae−A

A(1 − e−A)
.

The wanted bound follows with ε(A) := ε−(A) ∨ ε+(A), satisfying (12).

The two previous upper bounds on bn lead us to introduce a new function b̂n on (0, π) via

∀ x ∈ (0, π), b̂n(x) :=
{

ĉA
√

n if x ∈ [π/2 − A/
√

n, π/2 + A/
√

n]
(1 + ε(A))n| cot(x)| otherwise,

satisfying bn ≤ b̂n. Replacing (6) by {
x̂0 = 0
�̂xt = b̂n(x̂t ),

(13)

defined up to the time T̂n it hits π, we get Tn ≥ T̂n for any n ∈ N. By decomposing T̂n into T̂ (1)
n + T̂ (2)

n +

T̂ (3)
n , where T̂ (1)

n , T̂ (2)
n and T̂ (3)

n are defined as in the proof of Lemma 4, with the dynamical system
(x̃t )t≥0 replaced by (x̂t )t≥0, we get via similar estimates,

lim
n→∞

n
ln(n) T̂n = 1 + ε(A).

We deduce that for any A > 0,

lim inf
n→∞

n
ln(n)Tn ≥ 1 + ε(A),

and letting A go to +∞, we deduce

lim inf
n→∞

n
ln(n)Tn ≥ 1.

In conjunction with Proposition 1, this bound ends the proof of Theorem 3.

3. Perturbative arguments for absorption

We present here general and very simple perturbative arguments for the expectation and the concentra-
tion of a hitting time.

Consider a diffusion X := (X(t))t≥0 on [0, π] whose evolution is given on (0, π) by the stochastic
differential equation

dX(t) =
√

2dB(t) + 1
ϕ′(X(t))dt, (14)

where ϕ : [0, π] → R+ is twice continuously differentiable and increasing on [0, π] and such that 0 is an
entrance boundary (ensured by lim infx→0+ x/ϕ′(x) ≥ 1), and where (B(t))t≥0 is a standard Brownian
motion. We start with X0 = 0 and the above diffusion is defined up to the hitting time τ of π. By the
above assumptions τ is a.s. finite and our first objective here is to give a simple upper bound of E[τ] in
terms of ϕ.
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Lemma 7. Assume that min[0,π] ϕ′′ > −1. Then we have

E[τ] ≤ ϕ(π) − ϕ(0)
1 +min[0,π] ϕ′′

.

Proof. Due to entrance boundary assumption, the process X stays in (0, π] at any positive time and by
Itô’s formula, we have for t ∈ (0, τ)

dϕ(X(t)) = ϕ′(X(t))dX(t) + ϕ
′′(X(t))

2
d 〈X〉 t

=
√

2ϕ′(X(t))dB(t) + dt + ϕ′′(X(t))dt .

Thus integrating between 0 and τ, we get

ϕ(Xτ) − ϕ(0) =
∫ τ

0
ϕ′(X(t)) dB(t) +

∫ τ

0
1 + ϕ′′(X(t)) dt . (15)

Taking the expectation, we deduce

ϕ(π) − ϕ(0) = E
[∫ τ

0
1 + ϕ′′(X(t)) dt

]
≥

(
1 + min

[0,π]
ϕ′′

)
E[τ],

which implies the desired bound.

The above arguments equally lead to a reverse bound:

Lemma 8. Assume that max[0,π] ϕ′′ > −1. Then we have

E[τ] ≥ ϕ(π) − ϕ(0)
1 +max[0,π] ϕ′′

.

These two results will be the unique insertion into the field of stochastic calculus needed to deduce
Theorem 1. They will be reinforced by Lemmas 9 and 10 below to get Theorem 2. We would like to
apply them with ϕ′ = 1/bn, but as we will see in the Supplementary Material (Arnaudon, Coulibaly-
Pasquier and Miclo (2024)), this is not a good idea. It is better to first slightly improve the bounds of
Lemmas 7 and 8. Consider

Ψ+(ϕ) :=

{
ψ ∈ C2([0, π],R+) : ψ′ ≥ ϕ′, min

[0,π]
ψ′′ > −1 and lim sup

x→0+
ψ′(x)/x ≤ 1

}
.

For any ψ ∈ Ψ+(ϕ), which should be seen as a surrogate of ϕ, consider the diffusion starting with
Y (0) = 0 and satisfying

dY (t) =
√

2dB(t) + 1
ψ′(Y (t))dt, (16)

up to the hitting time σ of π. The definition of Ψ+ ensures that 0 is an entrance boundary and that
τ ≤ σ. Applying Lemma 7 to the diffusion (Y (t))t∈[0,σ], we get

E[σ] ≤ ψ(π) − ψ(0)
1 +min[0,π] ψ′′ ,
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and we deduce the upper bound

E[τ] ≤ E[σ] ≤ inf
ψ∈Ψ+(ϕ)

ψ(π) − ψ(0)
1 +min[0,π] ψ′′ . (17)

To evaluate the right hand side seems an interesting optimisation problem. We will not investigate it
here in general, but we will see that for our particular problem it leads to the right equivalent (while
only considering ψ = ϕ ∈ Ψ+ does not). Similarly, introduce

Ψ−(ϕ) :=

{
ψ ∈ C2([0, π],R+) : ψ′ ≤ ϕ′, max

[0,π]
ψ′′ > −1 and lim sup

x→0+
ψ′(x)/x ≤ 1

}
.

Then we have

E[τ] ≥ sup
ψ∈Ψ−(ϕ)

ψ(π) − ψ(0)
1 +max[0,π] ψ′′ . (18)

Both (17) and (18) will enable us to get the equivalent given in Theorem 1 for the expectation of
the strong stationary time τn, by exhibiting two appropriate families of surrogates (ψ+,n)n∈Z+ and
(ψ−,n)n∈Z+ , respectively from Ψ+ and Ψ− and with min[0,π] ψ′′

+,n and max[0,π] ψ′′
−,n going to zero as n

goes to infinity.
By going a little further, it is possible to deduce the cut-off phenomenon of Theorem 2: instead of

using that the expectation of a martingale is zero, as in Lemmas 7 and 8, we can evaluate its variance
via its bracket. It leads to the following result for the hitting time τ of π by the diffusion (14) starting
from 0.

Lemma 9. Assume that ϕ(0) = 0 and min[0,π] ϕ′′ > −1/3. Then we have for any r > 0,

P

[
τ >

ϕ(π)
1 +min[0,π] ϕ′′

(1 + r)
]
≤ 1

r2ϕ2(π)(1 + 3 min[0,π] ϕ′′)

∫ π

0
(ϕ′(u))3 du.

Proof. From (15), we deduce

(1 + min
[0,π]

ϕ′′)τ ≤ ϕ(π) + Z, (19)

where Z := −
∫ τ

0 ϕ′(X(t)) dB(t), so that

P

[
τ >

ϕ(π)
1 +min[0,π] ϕ′′

(1 + r)
]
= P

[ (
1 + min

[0,π]
ϕ′′

)
τ > ϕ(π)(1 + r)

]
≤ P[Z > ϕ(π)r]

≤ 1
(ϕ(π)r)2

E[Z2] = 1
(ϕ(π)r)2

E

[∫ τ

0
(ϕ′(X(s)))2 ds

]
.

Let us evaluate the last expectation as we have done for E[τ]. Denote γ the function on [0, π] satisfying
γ(0) = 0 and

∀ x ∈ [0, π], γ′(x) := (ϕ′(x))3,

so that, taking into account that γ′′ = 3(ϕ′)2ϕ′′,

(ϕ′)2 = γ′′ + γ′/ϕ′ − 3(ϕ′)2ϕ′′ ≤ γ′′ + γ′/ϕ′ − 3
(
min
[0,π]

ϕ′′
)
(ϕ′)2.



1020 M. Arnaudon, K. Coulibaly-Pasquier and L. Miclo

It follows that(
1 + 3

(
min
[0,π]

ϕ′′
) )
E

[∫ τ

0
(ϕ′(X(s)))2 ds

]
≤ E

[∫ τ

0
[γ′′ + γ′/ϕ′](X(s)) ds

]
= E

[
γ(Xτ) − γ(X0) −

∫ τ

0
γ′(X(s)) dB(s)

]
= γ(π).

The wanted result follows.

Replacing (19) by (1 +max[0,π] ϕ′′)τ ≥ ϕ(π) + Z , the same arguments show:

Lemma 10. Assume that ϕ(0) = 0 and min[0,π] ϕ′′ > −1/3. Then we have for any r > 0,

P

[
τ <

ϕ(π)
1 +max[0,π] ϕ′′

(1 − r)
]
≤ 1

r2ϕ2(π)(1 + 3 min[0,π] ϕ′′)

∫ π

0
(ϕ′(u))3 du.

The comparison with diffusions of the form (16) leads to the following extensions of the two previous
lemmas: for any ψ ∈ Ψ+(ϕ), such that min[0,π] ψ′′ > − 1

3 ,

P

[
τ >

ψ(π) − ψ(0)
1 +min[0,π] ψ′′ (1 + r)

]
≤ 1

r2(ψ(π) − ψ(0))2(1 + 3 min[0,π] ψ′′)

∫ π

0
(ψ′(u))3 du, (20)

and for any ψ ∈ Ψ−(ϕ), such that min[0,π] ψ′′ > − 1
3 ,

P

[
τ <

ψ(π) − ψ(0)
1 +max[0,π] ψ′′ (1 − r)

]
≤ 1

r2(ψ(π) − ψ(0))2(1 + 3 min[0,π] ψ′′)

∫ π

0
(ψ′(u))3 du. (21)

4. Construction of appropriate surrogates

We come back to the diffusion defined in (2). We would like to apply the bounds of the previous
section with ϕ′n = 1/bn, for given n ∈ N. It leads us to construct appropriate surrogates ψn ∈ Ψ+(ϕn)
and ψn,− ∈ Ψ−(ϕn), whose corresponding bounds will imply Theorems 1 and 2.

As suggested by the computations of Section 2, it is important to understand the behavior of bn at
the scale 1/

√
n: fix any A > 0 and consider the change of variable x = π/2+ a/

√
n for a ∈ [−A,A]. Here

is a first result about the mapping β defined in (10):

Lemma 11. There exists a unique a0 ∈ R such that β′(a0) = 0. Furthermore, we have a0 > 0.

Proof. We compute

∀ a ∈ R, β′(a) = −2
ae−a

2/2

h(a) − 2
e−a

2

h2(a)
+ 1.

Denote X := e−a
2/2/h(a), so that β′(a) = 0 is equivalent to the equality 2aX+2X2−1 = 0. Furthermore

we compute

∀ a ∈ R, β′′(a) = −2X[1 − a2 − 3aX − 2X2].
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It follows that if a ∈ R is such that β′(a) = 0, then

β′′(a) = 2aX(a + X). (22)

We examine separately three cases:
• If a > 0, then β′′(a) > 0, namely the critical point a is a local minimum.
• If a = 0, we verify directly that

β′(0) = −2
1

h2(0)
+ 1 = − 4

π
+ 1 < 0.

• If a < 0, let us show that a + X > 0. Indeed, for u < a < 0, we have 1/u > 1/a and thus

h(a) =
∫ a

−∞

u
u

e−u
2/2 du <

1
a

∫ a

−∞
ue−u

2/2 du = −1
a

e−a
2/2, (23)

implying a + X > 0. We deduce from (22) that β′′(a) < 0, i.e. the critical point a is a local maximum.
Since two different local minima (respectively maxima) are necessarily separated by a local maximum
(resp. minimum), we deduce there is at most one point a in (0,+∞) (resp. (−∞,0)) satisfying β′(a) = 0.
Note that as a goes to +∞ we have β(a) ∼ a and that as a goes to −∞, β(a) ∼ −a. The latter relation
comes from the fact that (23) is well known to be an equivalent for h(a) as a →−∞ (this is proven by
an integration by parts). It follows that coming from −∞ and going to +∞, β cannot have first a local
maximum. Since β must have at least one local minimum, it appears finally that β has a unique critical
point a0, which is a local minimum. We also infer that a0 > 0.

As a consequence of β′′(a0) > 0, seen in the above proof, we get:

Lemma 12. There exists ε0 > 0 sufficiently small so that the following quantities are finite for any
ε ∈ (0,ε0):

a+(ε) := min{a > a0 : β′(a)/β2(a) = ε}

a−(ε) := max{a < a0 : β′(a)/β2(a) = −ε}.

In the sequel ε0 > 0 is fixed as in the above lemma. Define

φ(a) :=
1
|a| (24)

and for ε ∈ (0,ε0), consider

m+(ε) := sup
{
m > a+(ε) :

1
β(a+(ε))

− ε(m − a+(ε)) = φ(m)
}

m−(ε) := inf
{
m < a−(ε) :

1
β(a−(ε))

+ ε(m − a−(ε)) = φ(m)
}
.

For ε0 chosen sufficiently small, m+(ε) and m−(ε) are respectively a maximum and a minimum as
illustrated by Figure 1. More rigorously concerning m+(ε), note that 1/β is always below φ and the
mapping R � m �→ 1

β(a+(ε)) − ε(m − a+(ε)) is the graph of the tangent line to 1/β at a+(ε). For ε > 0
sufficiently small, this tangent is almost horizontal and hits the graph of φ restricted to (0,+∞). Since
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Figure 1. The mappings φ and 1/β are respectively in blue and red. The half-tangents with slope −ε and ε are in
green.

the value of the tangent goes to −∞ for large values of the abscissa a, the tangent hits φ at a last value
of a, which is defined to be m+(ε). A similar reasoning is valid for m−(ε).

The following observation will be important:

Lemma 13. We have

lim
ε→0+

m+(ε) = +∞ and lim
ε→0+

m−(ε) = −∞.

Proof. Fix any M > 2β(a0). Taking into account that limε→0+ a+(ε) = a0, for ε > 0 sufficiently small,
we have

1
β(a+(ε))

− ε(M − a+(ε)) >
1

2β(a0)
> φ(M).

It follows there exists m ∈ (M,1/(a+(ε)ε) + a+(ε)) such that

1
β(a+(ε))

− ε(m − a+(ε)) = φ(m),

and we deduce lim infε→0+ m+(ε) ≥ M , and finally the first desired divergence.
The second one is obtained in the same way.
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For any ε ∈ (0,ε0), consider the function θε defined on R by

∀ a ∈ R, θε(a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ(a) if a < m−(ε) or a > m+(ε)
1

β(a−(ε))
+ ε(a − a−(ε)) if a ∈ [m−(ε),a−(ε)]

1
β(a+(ε))

− ε(a − a+(ε)) if a ∈ [a+(ε),m+(ε)]

1/β(a) if a ∈ [a−(ε),a+(ε)].

Next results will show θε stays between 1/β and φ and has a small derivative, as it can be guessed from
Figure 1. Up to a regularization, it will serve as the derivative of a convenient surrogate.

Lemma 14. We have |θ ′ε(a)| ≤ ε for any a ∈ R \ {m−(ε),m+(ε)}. In particular, we get

lim
ε→0+

sup
R\{m−(ε),m+(ε)}

|θ ′ε | = 0.

Proof. By construction, θε is differentiable on R, except maybe at m−(ε) and m+(ε), where the left
and right derivates may differ. By definition of a−(ε) and a+(ε) in Lemma 12, we have

∀ a ∈ [a−(ε),a+(ε)], |θ ′ε(a)| = |(1/β)′(a)| ≤ ε.

Furthermore, note that

∀ a ∈ (m−(ε),a−(ε)] � [a+(ε),m+(ε)), |θ ′(a)| = ε.

Finally, we have

∀ a > m+(ε), |θ ′ε(a)| = |φ′(a)| = 1
a2 ,

so that

∀ a > m+(ε), |θ ′ε(a)| ≤
1

m2
+(ε)

,

and similarly

∀ a < m−(ε), |θ ′ε(a)| ≤
1

m2
−(ε)

.

We deduce |θ ′ε(a)| ≤ max(1/m2
−(ε),1/m2

+(ε),ε). To conclude the desired bound, note that at m+(ε), we
have −ε ≤ φ′(m+(ε)) ≤ 0, since after m+(ε), φ is above the line of slope −ε passing through φ(m+(ε)).
Thus we get 1/m2

+(ε) ≤ ε. Similarly we have 1/m2
−(ε) ≤ ε and the claimed result follows.

Let us check that for ε > 0 small enough, θε remains above 1/β.

Lemma 15. There exists ε1 ∈ (0,ε0) such that for any ε ∈ (0,ε1), we have θε ≥ 1/β.

Proof. To simplify the notation, let us write q := 1/β and let us work on [a0,+∞), similar arguments
are valid on (−∞,a0]. For ε ∈ (0,ε0), define

c+(ε) := min
{
m > a+(ε) :

1
β(a+(ε))

− ε(m − a+(ε)) = φ(m)
}
.
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On [a0,+∞), it is clear from the definition of θε that θε ≥ q, except maybe on [a+(ε),c+(ε)] (note that
on (c+(ε),m+(ε)), θε ≥ φ ≥ q). We have already seen that limε→0+ a+(ε) = a0, and we have

lim
ε→0+

c+(ε) = c+(0), (25)

where c+(0) = 1/q(a0) is the unique positive solution a of φ(a) = q(a0). We compute that

∀ a ∈ R, q′(a) = 1
2
− (1 + a2

2
)q2(a), (26)

from which, we get

∀ a ∈ R, q′′(a) = −aq2(a) − 2(1 + a2

2
)q(a)q′(a). (27)

Thus we can find ε2 > 0 such that

∀ a ∈ [a0,a0 + ε2], q′′(a) ≤ q′′(a0)
2

= −a0
q2(a0)

2
< 0.

Let ε3 > 0 be such that for ε ∈ (0,ε3), we have a+(ε) ∈ (a0,a0 + ε2/2). By the strict concavity of q on
[a0,a0 + ε2], the affinity of θε on [a + (ε),m+(ε)] and the fact that θ ′ε(a+(ε)) = q′(a+(ε)), we deduce
that for ε ∈ (0,ε3),

∀ a ∈ [a+(ε),m+(ε) ∧ (a0 + ε2)], θε(a) ≥ q(a).

Furthermore, up to reducing ε3 > 0, we can assume that m+(ε) > a0 + ε2. It remains to consider the
situation on the segment [a0 + ε2,c+(ε)]. Taking into account (25) and the fact that the slope of θε
tends to zero as ε→ 0+, to show that θε ≥ q on [a0 + ε2,c+(ε)] (for ε ∈ (0,ε1) for some ε1 ∈ (0,ε3)),
it is sufficient to show that q′ < 0 on (a0,+∞). By contradiction, assume there exists a1 > a0 such that
q′(a1) = 0. From (27), we deduce that

q′′(a1) = −a1q2(a1) < 0.

From the fact that q′(a0) = 0 and q′′(a0) = −a0q2(a0) < 0, there must exist a2 ∈ (a0,a1) with q′(a2) = 0
and q′′(a2) ≥ 0. This is in contradiction with the fact that q′′(a2) = −a2q2(a2) < 0.

Consider the fonction fn given by

∀ x ∈ [0, π] \ {π/2}, fn(x) :=
| tan(x)|

n
.

We have for large n and for any given a � 0, fn(x) ∼ φ(a)/
√

n, with φ defined in (24). Fix ε ∈ (0,ε1),
where ε1 is as in Lemma 15, and take A > 0 large enough, so that −A < m−(ε) and A > m+(ε). For
n ≥ A2, define the mapping ξn on [0, π] satisfying ξn(0) = 0 and

∀ x ∈ (0, π), ξ ′n(x) :=

{
1√
n
θε (a) if a ∈ [−A,A]

fn(x) otherwise,
(28)

(recall that a =
√

n(x − π/2)). The function ξn may not be strictly differentiable at π/2 − A/
√

n and
π/2 + A/

√
n (the above formulas giving the right derivative at −A and the left derivative at A), nor
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twice differentiable at π/2−m−(ε)/
√

n and π/2+m+(ε)/
√

n. But outside these four points, ξn is twice
differentiable. Convoluting ξn with an approximation of the Dirac mass at 0 and taking into account
Lemma 14, we construct an increasing function ψn twice differentiable on (0, π) such that for n large
enough,

bn ≥ (1 − ε) 1
ψ′
n

(29)

sup
(0,π)

|ψ′′
n | ≤ ε(1 + ε). (30)

Furthermore, the computations of Lemma 4 show that for large n, ξn(π) ∼ ln(n)/n, thus for n large
enough,

ψn(π) − ψn(0) ≤ (1 + ε) ln(n)
n

. (31)

Taking into account that for ε > 0 small enough, we have for n large enough, ψn,+ := ψn/(1 − ε) ∈
Ψ+(ϕn), we deduce from (17)

lim sup
n→∞

n
ln(n)E[τn] ≤

1 + ε
1 − ε − ε(1 + ε)

(where τn is the strong stationary time defined in (1)) and letting ε go to zero, we conclude to the bound

lim sup
n→∞

n
ln(n)E[τn] ≤ 1. (32)

To get a reverse bound, it is sufficient to apply (18) with appropriate surrogates ψn,− ∈ Ψ−(ϕn). Inspired
by the computations of Section 2.2, we first find A0 > 0 in Lemma 6 such for any A > A0 the quantity
ε(A) > 0 is well-defined there. Given ε > 0, the above arguments are still valid, except that (29) and
(31) can respectively be replaced by

bn ≤ (1 + ε)1 + ε(A)
ψ′
n

ψn(π) − ψn(0) ≥ (1 − ε) ln(n)
n

, (33)

for any A > A′
0, for some A′

0 ≥ A0 and for any n ≥ n0 (depending on A′
0). It follows in particular that

for n large enough, ψn,− := ψn/[(1 + ε(A))(1 + ε)] ∈ Ψ−(ϕn) and we deduce from (18),

lim inf
n→∞

n
ln(n)E[τn] ≥

1 − ε
(1 + ε)(1 + ε(A)) − ε(1 + ε) .

Letting ε go to zero and A to to +∞, we deduce lim infn→∞ nE[τn]/ln(n) ≥ 1. In conjunction with (32),
this ends the proof of Theorem 1.

To end this section, let us show Theorem 2. We begin by its first convergence, where r > 0 is fixed
from now on. For ε > 0 sufficiently small, consider again the mapping ψn,+ ∈ Ψ+(ϕn) defined above.
According to (20), we have for any r > 0,

P

[
τn >

ψn,+(π) − ψn,+(0)
1 +min[0,π] ψ′′

n,+

(1 + r/2)
]
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≤ 4
r2(ψn,+(π) − ψn,+(0))2(1 + 3 min[0,π] ψ′′

n,+)

∫ π

0
(ψ′

n,+(u))3 du.

Up to choosing ε > 0 even smaller, (30) and (31) ensure that for all n sufficiently large, we have

ψn,+(π) − ψn,+(0)
1 +min[0,π] ψ′′

n,+

(1 + r/2) < (1 + r) ln(n)
n

,

implying

P

[
τn > (1 + r) ln(n)

n

]
≤ 4

r2(ψn,+(π) − ψn,+(0))2(1 + 3 min[0,π] ψ′′
n,+)

∫ π

0
(ψ′

n,+(u))3 du.

Thus the first convergence of Theorem 2 is a consequence of (33) and

Lemma 16. We have

lim
n→∞

n2

ln2(n)

∫ π

0
(ψ′

n,+(u))3 du = 0.

Proof. The above convergence is equivalent to

lim
n→∞

n2

ln2(n)

∫ π

0
(ψ′

n(u))3 du = 0. (34)

Since differentiation and convolution commute and convolution is a contraction in Lp , for p ≥ 1 (recall
that ψ′

n > 0), (34) is itself implied by

lim
n→∞

n2

ln2(n)

∫ π

0
(ξ ′n(u))3 du = 0. (35)

Coming back to Definition (28), we write∫ π

0
(ξ ′n(u))3 du =

∫
(0,π)\[π/2−A/

√
n,π/2+A/

√
n]
(ξ ′n(u))3 du +

∫
[π/2−A/

√
n,π/2+A/

√
n]
(ξ ′n(u))3 du

=
1
n3

∫
(0,π)\[π/2−A/

√
n,π/2+A/

√
n]
| tan(u)|3 du +

1
n2

∫ A

−A
θ3
ε(a) da.

Note that the first term of the right hand side is equal to

2
n3

∫ π/2−A/
√
n

0
tan3(u) du =

2
n3

∫ π/2

A/
√
n

cot3(u) du ≤ 2
n3

∫ π/2

A/
√
n

1
u3 du

=
1
n3

[
− 1

u2

] π/2

A/
√
n

≤ 1
n3

n
A2 =

1
(An)2

,

and thus

n2

ln2(n)
1
n3

∫
(0,π)\[π/2−A/

√
n,π/2+A/

√
n]
| tan(u)|3 du ≤ 1

(A ln(n))2
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converging toward 0 for large n. Similarly we have

n2

ln2(n)
1
n2

∫ A

−A
θ3
ε(a) da =

1

ln2(n)

∫ A

−A
θ3
ε(a) da

converging toward 0 for large n and ending the proof of (35).

The proof of the second convergence of Theorem 2 follows a similar pattern, via (21) applied to
ψn,− ∈ Ψ−(ϕn). Indeed, r ∈ (0,1) being fixed, we first find A > 0 sufficiently large and ε > 0 sufficiently
small so that for all large enough n,

ψn,−(π) − ψn,−(0)
1 +min[0,π] ψ′′

n,−
(1 − r/2) > (1 − r) ln(n)

n
,

and we get

P

[
τn < (1 − r) ln(n)

n

]
≤ 4

r2(ψn,−(π) − ψn,−(0))2(1 + 3 min[0,π] ψ′′
n,−)

∫ π

0
(ψ′

n,−(u))3 du.

This bound implies the second convergence of Theorem 2 via the analogue of Lemma 16, where ψn,+
is replaced by ψn,−, and which is proven in exactly the same way. We also deduce the following conse-
quences from the proof of Lemma 16:

Corollary 3. For any x ∈ Sn+1, let Xx := (Xx
t )t≥0 be the Brownian motion on the sphere Sn+1 (time-

accelerated by a factor 2), starting with Xx
0 = x. There exist C > 0 and n0 ∈ N such that for all r > 0

and for all n ≥ n0, ����L (
Xx

(1+r) ln(n)
n

)
− μ
Sn+1

����
tv
≤ C

r2 ln2(n)

∀ y ∈ Sn+1, P(n+1)
(1+r) ln(n)

n

(x, y) ≥
(
1 − C

r2 ln2(n)

)
1

vol(Sn+1)
,

where ‖ · ‖tv stands for the total variation norm, L(Xx
t ) is the law of Xx

t , μ
Sn+1 is the uniform measure

in Sn+1, and P(n+1)
t (·, ·) is the heat kernel density at time t > 0 associated to the Laplacian on Sn+1.

Proof. From the computations in the proof of Lemma 16, there exist a constant C depending on the
quantity max{

∫ A

−A θ
3
ε(a) da, 1

A2 }, and n0 ∈ N such that for all n ≥ n0,

P

[
τn > (1 + r) ln(n)

n

]
≤ C

r2 ln2(n)
.

The first conclusion follows, since����L (
Xx

(1+r) ln(n)
n

)
− μ
Sn+1

����
tv
≤ s

(
L

(
Xx

(1+r) ln(n)
n

)
, μ
Sn+1

)
≤ P

[
τn > (1 + r) ln(n)

n

]
.

The second conclusion follows by definition of the separation discrepancy, since for all y ∈ Sn+1 and
t > 0,

1 − P(n+1)
t (x, y)vol(Sn+1) ≤ s(L(Xx

t ), μSn+1 ).
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troduced above is discussed there.
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