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Abstract
We introduce a novel concept of coarse extrinsic curvature for Riemannian submani-
folds, inspired by Ollivier’s notion of coarse Ricci curvature. This curvature is derived
from the Wasserstein 1-distance between probability measures supported in the tubu-
lar neighborhood of a submanifold, providing new insights into the extrinsic curvature
of isometrically embedded manifolds in Euclidean spaces. The framework also offers
a method to approximate the mean curvature from statistical data, such as point clouds
generated by a Poisson point process. This approach has potential applications inman-
ifold learning and the study of metric embeddings, enabling the inference of geometric
information from empirical data.
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1 Introduction

Synthetic lower bounds on Ricci curvature is a powerful tool in the study of classi-
cal geometric analysis and metric measure spaces. Ollivier’s notion of Coarse Ricci
Curvature is distinct in that it approximates the curvature itself, rather than merely
providing a lower bound. By selecting as test measures weighted localized volume
measures, supported on a ball of radius ε, theWasserstein 1-distance between two such
measures reveals the generalized Ricci tensor; applying to random geometric graphs
sampled from a Poisson point process with non-uniform intensity leads to similar
conclusions [2].

Inspired by the concept of coarse Ricci curvature, in this article we seek a suitable
notion of extrinsic curvature for embedded manifolds. With manifold learning appli-
cations in mind, we initially work with curves and surfaces and subsequently define
a concept of coarse extrinsic curvature for general embedded manifolds. This notion
captures the inner product between the mean curvature and the second fundamental
form in a principal curvature direction. It may prove useful for studying embedded
metric spaces and could be relevant in manifold learning contexts.

Let M be a smooth manifold isometrically embedded in another Riemannian man-
ifold. We propose a family of test measures {μσ,ε

x , x ∈ M}, where σ, ε are small
parameters, whose ‘derivative’ in the 1-Wasserstein distance with respect to variation
of the point x describes some kind of curvature.

This consideration leads to a novel concept of coarse curvature in the setting of
Riemannian submanifolds. Within the applicable range of the parameters, we have an
approximation of the mean curvature and the second fundamental form, providing a
valuable tool for evaluating these extrinsic curvatures. In more practical applications,
we can take test measures built from statistical data and simulations; for instance
through the empirical measures of point cloud samples. There is scope for extending
to metric embeddings of metric spaces.

In contrast to the intrinsic Riemannian curvature, which characterizes the geom-
etry of a manifold independently of its embedding, the second fundamental form of
submanifolds is an extrinsic concept. It provides a means for describing the shape of a
submanifold in relation to its ambient space, offering views into its bending properties.
For instance, a surface embedded in R3 is locally isometric to a plane if and only if its
second fundamental form vanishes.

The extrinsic curvature of M , isometrically embedded in N , is expressed by the
second fundamental form, which we recall to be defined as the bilinear form

IIx (w,w) ..= ∇N
w W (x) − ∇M

w W (x), (1.1)
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where W is an arbitrary vector field on M with W (x) = w. Letting m denote the
dimension of M , the mean curvature is defined as the vector field

H(x) ..=
m∑

i=1

∇N
ei ei (x) − ∇M

ei ei (x).

Here (ei )mi=1 is an arbitrary local orthonormal frame on a neighbourhood of x in M .
Note that we omit the factor of 1/m that usually appears in this definition in the
literature in order to simplify the statement of our results. It is a standard fact that both
IIx (w,w) and H(x) are vectors which are perpendicular to the submanifold M . We
refer to e.g. [19, Chapter 5] for a detailed treatment of these objects. For instance, one
of the examples we consider below is that of a planar curve γ with radius of osculating
circle R(α). A simple computation shows that in this case

‖H(γ (α))‖ = ‖IIγ (α)(γ̇ (α), γ̇ (α))‖ = 1

R(α)
,

where ‖·‖ is the Euclidean magnitude.
There exists a considerable body of literature on description of submanifold prop-

erties by tubular volume, of which we name a few representatives. The early work of
Weyl [32] proved the classical tube formula for submanifolds embedded in Euclidean
spaces, which is an expansion with respect to the width of the tubular volume and
its coefficients are geometric invariants of the submanifold. Federer [10] introduced
the notion of boundary measures, which lead to generalization of the tube formula
to compact subsets of Euclidean spaces. More recent works of Chazal et al. [5, 6]
studied geometric inference via point cloud approximations to boundary measures
using Monte Carlo methods. For a comprehensive treatment on properties of tubular
neighbourhoods, we refer to the monograph [16]. The approach in our present work
differs from the above in that it gives a local and directional information about the
second fundamental form, and also the mean curvature.

Notions of synthetic Ricci curvature were motivated by the study of geometry of
metric measure spaces and were pioneered by the seminal works [4, 23, 30], see also
the survey [22]. In a metric measure space, a global lower bound on the synthetic
Ricci curvature leads to properties of the metric measure space which are analogous
to the Riemannian setting, such as the Poincaré and log-Sobolev inequalities, the con-
centration of measure phenomenon, and closure under measured Gromov–Hausdorff
convergence [1, 8, 28]. We note also the related direction of the works [4, 31].

To our understanding, there has not been a notion of a synthetic extrinsic curvature.
Our notion of coarse extrinsic curvature is inspired by coarseRicci curvature ofOllivier
[25], which is defined in the Riemannian setting through the expansion of the 1-
Wasserstein distance of two uniform measures supported on geodesic balls of a small
radius, the radius being the variable of expansion [25, Example 7], see also the survey
[26]. This is different from the abovementioned syntheticRicci curvature lower bounds
in that it puts a precise number on the value of curvature at a point. Moreover, it can
be applied to general metric spaces by choosing a family of measures indexed by
points in the space for the evaluation of the 1-Wasserstein distance. Coarse Ricci
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curvature can be computed explicitly for a number of examples on graphs, where the
measures are provided by a Markov chain. We adopt and modify Ollivier’s approach
to the submanifold setting by choosing suitable measures for the expansion of the 1-
Wasserstein distance, showing that this yields a geometricallymeaningful information.

As an immediate application of our result, we venture into the setting of [2, 18] to
explore retrieval of curvature information from point clouds generated by a Poisson
point process. In the first of the mentioned works, Hoorn et al. proved that Ollivier’s
coarse Ricci curvature of random geometric graphs sampled from a Poisson point
process with increasing intensity on a Riemannian manifold converges in expectation
at every point to the classical Ricci curvature of the manifold. This was extended in
the second mentioned work to weighted Riemannian manifolds. In the present work,
we show that coarse extrinsic curvature can recover the mean curvature in expectation
at a point. In this case, it is not necessary to impose a graph structure to connect points
of the sample.

In the context of deep learning, it is noteworthy that computational algorithms
for effectively computing optimal transport maps have been proposed, as discussed
in [17, 29]. Additionally, relevant work in the fields of manifold learning and inverse
problems is worthmentioning. One particularly interesting inverse problem is whether
an embedded manifold can be learned from a set of samples x j + ξ j where x j belongs
to a submanifold M ⊂ R

m+p and ξ j are independent Gaussian random variables on
R
m+p. The reconstruction of embedded manifolds has been studied in [9, 11, 12, 27].

An algorithm for constructing an embedded submanifold is provided in [13]. Although
manifold learning is still in its early stages,manifold approximation and reconstruction
have a longer history, we point out some more recent publications on this topic [3, 7,
7, 14, 15].

Main results

In our setting, M is an m-dimensional compact Riemannian manifold embedded iso-
metrically in a Euclidean space Rm+k and Mσ is the local σ -tubular neighbourhood
of M in Rm+k , defined for σ sufficiently small as

Mσ = {x + v : x ∈ M, v ∈ TxM
⊥, ‖v‖ � σ

}
.

For any compact subset U ⊂ M , the projection mapping from its tubular neighbour-
hood

π : Uσ → U , π(z) ..= argminx∈U‖z − x‖

is well-defined for all σ > 0 sufficiently small, with the same notation for Uσ as
above.

Denote by expM,x : TxM → M the exponential mapping in M with base point x .
Fix a point x0 ∈ M , a unit tangent vector v ∈ Tx0M and denote y ..= expM,x0(δv)

for δ > 0. Fix a constant ε0 > 0 smaller than the uniform injectivity radius of some
fixed compact neighbourhood of x0 in M . Assume δ, ε < ε0/3 so that Bε(x0)∪ Bε(y)
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lie within the uniform injectivity radius away from x0 and assume σ is small enough
so that the projection π is well-defined on the σ -tubular neighbourhood of the ε0-
geodesic ball at x0 in M . These requirements on the parameters δ, ε, σ will henceforth
be encapsulated in the assumption that they are “sufficiently small”. This ensures that
all locally defined maps are well-defined, in particular the projection map (smallness
of σ ) and the Fermi coordinates (smallness of δ and ε) used later on.

As our test measures, we choose the probability measures

μσ,ε
x (A) = μ(π−1(BM

ε (x)) ∩ A ∩ Mσ )

μ(π−1(BM
ε (x)) ∩ Mσ )

for all A ∈ B(Rm+k),

where BM
ε (x) denotes the ε-geodesic ball at x in M . Note that these measures are sup-

ported on compact subsets of Mσ . We seek to obtain the expansion of W1(μ
σ,ε
x0 , μ

σ,ε
y )

with respect to the parameters δ, σ and ε.
To relate theWasserstein distance to the second fundamental form, we first localize

to a tubular neighbourhood of a fixed open set on the submanifold. We expand the
densities of the test measures in Fermi coordinates, and for the subsequent computa-
tions we rely on a crucial observation developed in Sect. 2.2: if T is an approximate
transport map from μ

σ,ε
x0 to μ

σ,ε
y , in a sense defined later, then W1(μ

σ,ε
x0 , μ

σ,ε
y ) is close

to W1(μ
σ,ε
x0 , T∗μσ,ε

x0 ). The remaining task involves proposing a concrete approximate
transport map, which is at the same time close enough to optimal.

When dealing with test measures on an embedded manifold, accounting for the
effect of the bending of the submanifold in the ambient space becomes crucial. The
proposed transportmap is thus formulated in terms of the Fermi frame along γ , adapted
to the submanifold M in a way that separates tangent and normal coordinate directions
at every point.

We give a rough outline of the proposed transport map, made precise in Sect. 2.4.
In terms of Fermi coordinates, if α = (α1, . . . , αm) represent submanifold tangent
directions with α1 being associated with the direction of γ , and if β = (β1, . . . , βk)

represent the normal directions, an initial proposal informed by the circle example
(Sect. 3.1) was

(α, β) �→ (δ − α1, α2, . . . , αm, β1, . . . , βk).

This can be construed as translation by δ in the direction of the first coordinate,
together with reflection in the first coordinate. From studying the planar curve example
(Sect. 3.2), it turned out that an additional bending correction needs to be put on top
of the β components of the transport by adding terms involving the derivative of the
mean curvature. Favourably, such a correction contributes to the final estimate of the
Wasserstein distance only at the fourth order and higher, and hence does not interfere
with themean curvature term,whichwill appear at third order of the expansion. The test
measures are first expressed in Fermi coordinates in Sect. 2.3. The proposed transport
map is then presented in Sect. 2.4, where we prove that it is indeed an approximate
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transport map of degree 3, i.e.

d(T∗μσ,ε
x0 )

dμ
σ,ε
y

(φ(α, β)) = 1 + O(δ3).

This precision is sufficient for obtaining the 1-Wasserstein distance approximation
(see Sect. 2.2):

W1(μ
σ,ε
x0 , μσ,ε

y ) = W1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) + O(δ4).

From here the strategy is to construct a test function f : B2δ(x0) ⊂ R
m+k → R with

Lipschitz norm approximately 1 and satisfying the estimate

f (T z) − f (z) = ‖T z − z‖ + O(δ4) = O(δ),

which allows us to estimate the distance between the original measure and its transport
by means of the relation

W1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) =
∫

( f (T z) − f (z)) dμσ,ε
x0 (z) + O(δ4).

On the whole, we find that the Wasserstein distance between the initial measure μ
σ,ε
x0

and the target measure μ
σ,ε
y is approximated by

∫
M ‖T z − z‖dμ

σ,ε
x0 up to O(δ4) (see

Lemma 2.25), which is explicitly computable as an expansion in δ, σ and ε with
geometric quantities as coefficients.

Using the above tools, in Sect. 3 we thus compute the expansion ofW1(μ
σ,ε
x0 , μ

σ,ε
y ),

beginning with the case of a planar curve:

Proposition 1.1 Let γ be a smooth unit speed curve in R
2 such that γ (0) = x0 and

γ (δ) = y. For all δ, ε, σ > 0 sufficiently small with σ ∨ ε � δ/4, it holds that

W1(μ
σ,ε
x0 , μσ,ε

y ) = ‖x0 − y‖
(
1 − ε2

6R2 + σ 2

3R2

)
+ O(δ4)

where R is the radius of the osculating circle of the curve at x0.

This expansion can be rearranged as

1 − W1(μ
σ,ε
x0 , μ

σ,ε
y )

‖x0 − y‖ = ε2

6R2 − σ 2

3R2 + O(δ3).

We refer to the quantity on the left as the coarse extrinsic curvature of γ between x0
and y at scales σ, ε. A version of this result for spatial curves is presented in Theorem
3.10. In Theorem 3.16, we then proceed to study the case of coarse extrinsic curvature
along a geodesic on a surface embedded in R3.

This work culminates with the most general form:
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Theorem 4.1 Let M be an isometrically embedded submanifold of Rm+k , and γ a
unit speed geodesic in M such that γ (0) = x0 and γ (δ) = y. Let (e j )mj=1 be an
orthonormal basis of Tx0M with e1 = γ̇ (0) and assume that IIx0(e1, e j ) = 0 for all
j = 2, . . . ,m. Then for every σ, ε, δ > 0 sufficiently small with σ ∨ ε � δ/4 it holds
that

W1(μ
σ,ε
x0 , μ

σ,ε
y ) = ‖y − x0‖

(
1 +

(
σ 2

k + 2
− ε2

2(m + 2)

)
〈IIx0 (e1, e1), H(x0)〉

)
+ O(δ4).

The assumption on the second fundamental form is necessary for optimality of
our proposed transport map up to sufficient order and can always be satisfied for
submanifolds of codimension 1, in particular surfaces embedded in R

3, by choosing
the basis of principal curvature directions. Further commentary is provided in Remark
4.2.

To interpret such expansions in terms of mean curvature, we can remove the direc-
tionality of the above result caused by transport in the direction of γ . Denoting the
square norm of the mean curvature vector as

‖H(x0)‖2 =
k∑

i=1

〈H(x0),ni (x0)〉2

for an arbitrary orthonormal basis (ni (x0))ki=1 of the normal space Tx0M
⊥ ⊂ Tx0N ,

we deduce the following:

Corollary 1.2 Let (e j )mj=1 be an orthonormal basis of Tx0M, and for j = 1, . . . ,m,
let y j = expM,x0(δe j ). Assume that IIx0(ei , e j ) = 0 for i �= j . Then for all σ, ε, δ > 0
sufficiently small with σ ∨ ε � δ/4 it holds that

m∑

j=1

(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y j )

‖x0 − y j‖
)

=
(

ε2

2(m + 2)
− σ 2

k + 2

)
‖H(x0)‖2 + O(δ3).

Observe that the left side of the equation is independent of the choice of orthonor-
mal basis (e j )mj=1 because the norm on the right side is basis-invariant. Moreover,
the assumption on the second fundamental form always holds for submanifolds of
codimension 1 (see Remark 4.2).

In Proposition 5.4, we deduce that the coarse extrinsic curvature of suitable test
measures on Poisson point clouds sampled from the tubular neighbourhood retrieves
the same extrinsic geometric information consistent with Theorem 4.1.

One key ingredient in the proofs of the above theorems is the geometric approximate
transport map introduced in Definition 2.18, defined by means of Fermi coordinates
(as per Definition 2.14) adapted to the submanifold. Test measures in these coordi-
nates encode information about the second fundamental form of the submanifold. The
proposed map is verified to be an approximate transport map between the test mea-
sures with sufficient order of accuracy, as specified and motivated in Sect. 2.2. The
optimality up to fourth order is proved by choosing a concrete test function for the
Wasserstein lower bound by the Kantorovich–Rubinstein duality.
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In the resulting expansion of the Wasserstein distance, the second fundamental
form at the fixed point x0 appears at third order, and its derivatives appear at fourth
and higher orders. As a consequence, information about the second fundamental form
at a point can be retrieved in a suitably scaled limit of coarse curvature. Please see the
discussion below for an example.

Discussion

We illustrate this work using the following prototypical example. Let γ : (−δ0, δ0) →
R
2 be a smooth, unit speed planar curve, and n : (−δ0, δ0) → R

2 a unit normal vector
field along γ , unique up to sign. Denote by R(α) ..= 1

‖γ̈ (α)‖ the radius of the osculating
circle at the point γ (α). To detect the extrinsic curvature at x0 ..= γ (0), captured here
by R(0), we define test probability measures centered at nearby points y ..= γ (δ)

indexed by δ > 0.
Denote μ the Lebesgue measure on R

2, M ..= γ ((−δ0, δ0)) as the image of the
curve, and Mσ0 as a small enough tubular neighbourhood of M so that the orthogonal
projection π : Mσ0 → M is well-defined. Denote

Bσ,ε(y) ..= {z ∈ R
2 : ‖z − π(z)‖ < σ, dγ (y, π(z)) < ε

}

where dγ is the distance along γ . Define for σ, ε > 0 with σ ∨ ε � δ/4, the Borel
measure on R

2,

μσ,ε
y (A) ..= μ(A ∩ Bσ,ε(y))

μ(Bσ,ε(y))
.

We compare these in 1-Wasserstein distance to the initial measure, i.e. when δ = 0
and is denoted μ

σ,ε
x0 . The Wasserstein distance has the form:

W1(μ
σ,ε
x0 , μσ,ε

y ) = ‖x0 − y‖
(
1 − ε2

6R(0)2
+ σ 2

3R(0)2

)
+ O(δ4).

Rearranging this expansion yields

1 − W1(μ
σ,ε
x0 , μ

σ,ε
y )

‖x0 − y‖ = 1

R(0)2

(
ε2

6
− σ 2

3

)
+ O(δ3). (1.2)

From this point, depending on the application, we may consider three different
regimes for the parameters ε and σ as y converges to x0. We recall the asymptotic
notation σ = �(δ) means there exist c,C, δ0 > 0 such that for all δ < δ0,

cδ < σ(δ) < Cδ,

and σ = o(δ) means lim δ→0
σ(δ)

δ
= 0.

123



Coarse extrinsic curvature of Riemannian submanifolds Page 9 of 65    24 

(i) lim δ→0
ε(δ)
σ (δ)

= C �= √
2 for some known constant C > 0, i.e. the decay of both

σ and ε is controlled. In this case,

1

R(0)2
= lim

δ→0
− 6

(C2 − 2)σ 2

(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y )

‖x0 − y‖
)

,

(ii) σ = �(δ) and ε = o(δ), i.e. the decay of σ is controlled, while the parameter
of support size ε vanishes fast. In this case,

1

R(0)2
= lim

ε=o(σ ),σ=�(δ)
δ→0

− 3

σ 2

(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y )

‖x0 − y‖
)

,

(iii) ε = �(δ) and σ = o(δ), i.e. the decay of ε is controlled, while the size of the
tubular neighbourhood σ vanishes fast. In this case,

1

R(0)2
= lim

σ=o(ε),ε=�(δ)
δ→0

6

ε2

(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y )

‖x0 − y‖
)

.

The requirements σ = �(δ) and ε = �(δ) in the respective cases are in place to
ensure the remainder term O(δ3) in (1.2) does not explode upon division by σ 2 (resp.
ε2) in the limit as δ → 0.

In light of the above discussion, we may define the coarse extrinsic curvature
between x0 and y at scales ε, σ > 0 as:

κσ,ε(x0, y) ..= 1 − W1(μ
σ,ε
x0 , μ

σ,ε
y )

‖x0 − y‖ . (1.3)

This quantity can be estimated from point cloud data and used for geometric inference.
In summary, this work focuses on Riemannian submanifolds embedded isometri-

cally in Euclidean spaces with the aim of producing a reasonable measurement for the
bending energy. This bending energy can also be estimated from point clouds obtained
from sampling. One of the novel ingredients is the construction of a test function for
using the Kantorovich–Rubinstein duality to obtain a lower bound for theWasserstein
distance in this setting.

The outline of this work is as follows. In Sect. 2, we establish geometric prelimi-
naries pertaining to the volumes of tubular neighbourhoods and present approximate
transport maps as a novel tool for approximating the 1-Wasserstein distance. In Sect. 3,
we give description of coarse extrinsic curvature for a planar curve, space curve and
a 2-surface embedded in R3. The coarse extrinsic curvature of a general submanifold
of arbitrary codimension is studied in Sect. 4. We present several immediate corollar-
ies to our results with practical applications in Sect. 5. Although the cases of curves
and surfaces in Sect. 3 are just instances of the general result in Sect. 4, they provide
value in understanding this general case. Sections3 and 4 can be read separately after
reading Sect. 2, which contains all preliminaries.
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2 Preliminaries

We prove a formula for volume growth of tubular neighbourhoods of submanifolds,
leading to a disintegration of the ambient volumemeasure adapted to the submanifold.
This formula is subsequently utilized to derive explicit formulas for such disintegration
in Fermi coordinates, considering cases such as a planar curve, space curve, and a
surface in Sect. 3, and general Riemannian submanifolds in Sect. 4.

Following the geometric preliminaries, we introduce the notion of an approximate
transport map, enabling the computation of Wasserstein distances up to a sufficiently
high degree of error. Subsequently, we define the test measures to be transported
and their representation in Fermi coordinates. Finally, we propose a transport map to
evaluate the Wasserstein distance of these test measures.

2.1 Ambient volume disintegration

We begin with a simple lemma on evolution of probability densities. We denote P(X)

as the space of probability measures on a measurable space (X,M). The notation
μ � ν denotes the fact that the measure μ is absolutely continuous with respect to
the measure ν.

Lemma 2.1 Consider (μt )t�0 ⊂ P(X) such that μt � μs for all s � t . Let ht : X →
R, t � 0, be a family of functions with t �→ ht (x) locally integrable, and such that
d
ds

∣∣
s=0

dμt+s
dμt

(x) = ht (x) for every t � 0. Then

dμt

dμ0
(x) = e

∫ t
0 hs (x)ds .

Proof The change of density at any t � 0 satisfies

d

ds

∣∣∣∣
s=0

dμt+s

dμt
(x) = d

ds

∣∣∣∣
s=0

dμt+s
dμ0

(x)
dμt
dμ0

(x)
= ht (x)

implying

d

ds

∣∣∣∣
s=0

dμt+s

dμ0
(x) = ht (x)

dμt

dμ0
(x)

which has the unique solution dμt
dμ0

(x) = e
∫ t
0 hs (x)ds by standard ODE theory. ��

Notation 2.2 Throughout this article, M is a compact Riemannian manifold of dimen-
sion m, isometrically immersed in a Riemannian manifold N of dimension n. Set
k ..= n − m. Let σ0 > 0 be a fixed number smaller than half the reach of M in N .
The reach is defined as the maximal number r such that each point within a distance r
from M has a unique orthogonal projection to M , π : Mσ0 → M . The projection map
is well-defined within the ‘reach’.
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Let U ⊂ M be a sufficiently small open neighbourhood such that there exists
an orthonormal frame of unit normal vector fields (n1, . . . ,nk) on U and a one-
parameter family of vector fields {(ei (s))mi=1 : s ∈ (−σ0, σ0)} such that (ei (s))mi=1 is
an orthonormal frame on ψs(U ) for every s ∈ (−σ0, σ0), and s �→ ei (s) is smooth
for every i = 1, . . . ,m. The latter can be constructed by taking the pushforward of
an arbitrary initial orthonormal frame by ψs , denoted by (Dei (0)ψs)

m
i=1, and applying

the Gram–Schmidt orthonormalization procedure.

Definition 2.3 Let n ∈ �(TU⊥) be a unit normal vector field, and define the normal
flow ψ : M×(−2σ0, 2σ0) → N by

ψt (x) ..= expN ,x (tn(x))

where expN ,x : Tx N → N denotes the exponential mapping on N . Denote by //N
t the

parallel transport with respect to the Levi-Civita connection ∇N along t �→ ψt (x) for
a fixed x ∈ M , and note that ∂

∂t ψt (x) = //N
t n(x).

For every t ∈ (−2σ0, 2σ0), ψt is a diffeomorphism onto its image, and t �→ ψt (x)
is smooth with non-vanishing derivative for every x ∈ M . Equip every ψt (M) with
the Riemannian metric inherited from the ambient space. The mean curvature of the
leaf ψs(U ) is then given by

H(ψs(x)) =
m∑

i=1

∇N
ei ei (ψs(x)) − ∇M

ei ei (ψs(x)).

In particular, for any unit normal vector field n on U ,

〈H(ψs(x)), //N
s n(x)〉 =

m∑

i=1

〈//Ns n(x),∇N
ei ei (ψs(x))〉.

The following lemma shows //N
t n stays normal to the leaves ψt (U ) as t changes.

Lemma 2.4 The vector field //N
t n(x) is normal to ψt (U ) for every t ∈ (−σ0, σ0), i.e.

〈Deiψt , //N
t n〉 = 0 for any local tangent frame (ei )mi=1 on M.

Proof For every t ∈ (−σ0, σ0), ψt being a diffeomorphism implies that if (ei )mi=1 is a
frame onU , then (Deiψt )

m
i=1 is a frame on ψt (U ), not necessarily orthonormal. Then

d

dt
〈Deiψt , //N

t n〉 =
〈
DN

∂t
Dei ψt , //N

t n
〉

=
〈
∇N
ei

∂

∂t
ψt , //N

t n
〉

= 〈∇N
ei

//N
t n, //N

t n
〉

= 1

2
Dei 〈//Nt n, //N

t n〉

= 1

2
Dei 1 = 0,
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where on the second line we used that ∂
∂t ψt (x) = //N

t n(x). The initial condition
ψ0 = id gives 〈Dei ψ0,n〉 = 〈ei ,n〉 = 0, so we may conclude that //N

t n is normal to
all tangent directions on ψt (U ) for all t . ��

The action of push-forwards of volume forms on any orthonormal basis of tangent
vectors is characterized by the determinant of the mapping which we make precise
below. LetM1, M2 beRiemannianmanifolds of the same dimensionm,ψ : M1 → M2
a diffeomorphism, (ei )mi=1 an orthonormal frame on an open setU1 ⊂ M1 and (ẽi )mi=1
an orthonormal frame on an open setU2 ⊂ M2, and (ei )mi=1, (ẽ

i )mi=1 the corresponding
coframes characterized by ei (e j ) = δij , ẽ

i (ẽ j ) = δij . Below, by the determinant of

Dψ−1(x) : TxM2 → T�−1(x)M1 we mean that of the matrix representing the map in
these bases:

det Dψ−1 =
∑

σ∈Sm

m∏

i=1

sign(σ )ei
(
ψ−1∗ ẽσ(i)

)
.

By the rules of differential forms acting on tangent vectors, for all x ∈ U2,

ψ∗(e1∧ · · · ∧em)(x)(ẽ1(x), . . . , ẽm(x))

= (e1(x)∧ · · · ∧em(x))(ψ−1∗ ẽ1(x), . . . , ψ
−1∗ ẽm(x))

=
∑

σ∈Sm

m∏

i=1

sign(σ )ei (x)
(
ψ−1∗ ẽσ(i)(x)

)

= det Dψ−1.

Since linear maps are determined by their values on basis vectors, we may deduce

ψ∗(e1∧ · · · ∧em)(x) = det Dψ−1(x) ẽ1∧ · · · ∧ ẽm(x). (2.1)

With the above notation we return to the exponential map ψt (x) ..= expN ,x (tn(x)).

Proposition 2.5 (Change of volume) For every t ∈ (−σ0, σ0),

det Dψt (x) = exp

(
−
∫ t

0
〈H(ψs(x)), //N

s n(x)〉 ds
)

, (2.2)

and hence the volume of the image of any Borel measurable A ⊂ U can be expressed
as

volψt (M)(ψt (A)) =
∫

A
exp

(
−
∫ t

0
〈H(ψs(x)), //N

s n(x)〉 ds
)
dvolM (x) (2.3)

where volψt (M) is the Riemannian volume on ψt (M).
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Proof First, we extend the mapψ : (−σ0, σ0)×U → N to ψ̃ : (−σ0, σ0)×Uσ0 → N
by the flow condition

ψ̃s(ψt (x)) ..= ψt+s(x)

for all s and t in (−σ0, σ0). This determines ψ̃ uniquely because {ψt (U )}t∈(−σ0,σ0) is a
foliation of the tubular neighbourhoodUσ0 . Then on every leaf ψt (U ) of the foliation,
we have ψ̃0 = id. If (ei )mi=1 and (ẽi )mi=1 are orthonormal coframes on ψt+s(U ) and
ψt (U ) respectively, the change of variable formula for volume forms (2.1) states that

(ψ̃−s)∗ e1∧ · · · ∧en = (det Dψ̃s) ẽ
1∧ · · · ∧ ẽn .

Then for every A ⊂ U Borel measurable and s ∈ (−σ0, σ0),

volψt+s (M)(ψt+s(A)) = volψt+s (M)(ψ̃s(ψt (A)))

= ((ψ̃−s)∗volψt+s (M)

)
(ψt (A))

=
∫

ψt (A)

det Dψ̃s(x) dvolψt (M)(x)

using respectively the flow property, definition of the push-forward of a measure,
and the change of variable formula with volψt+s (M) = e1∧ · · · ∧em and volψt (M) =
ẽ1∧ · · · ∧ ẽm .

Denoting by D
∂s the covariant derivative along s �→ ψ̃s , the Jacobi formula for the

derivative of determinants gives

∂

∂s

∣∣∣∣
s=0

vol(ψt+s(A)) =
∫

ψt (A)

∂

∂s

∣∣∣∣
s=0

det Dψ̃s(x) dvolψt (M)(x)

=
∫

ψt (A)

trace

((
∂

∂s

∣∣∣∣
s=0

〈
Dei (t)ψ̃s(x), e j (t + s)(x)

〉)

i, j=1,...,m

)
dvolψt (M)(x)

=
m∑

i=1

∫

ψt (A)

〈
D

∂s

∣∣∣∣
s=0

Dei (t)ψ̃s(x), ei (t)(x)

〉
dvolψt (M)(x)

=
m∑

i=1

∫

ψt (A)

〈
∇N
ei (t)

∂

∂s

∣∣∣∣
s=0

ψ̃s(x), ei (t)(x)

〉
dvolψt (M)(x)

= −
m∑

i=1

∫

ψt (A)

〈
∂

∂s

∣∣∣∣
s=0

ψ̃s(x),∇N
ei (t)

ei (t)(x)

〉
dvolψt (M)(x)

= −
m∑

i=1

∫

A

〈
∂

∂s

∣∣∣∣
s=0

ψt+s(x),∇N
ei (t)

ei (t)(ψt (x))

〉
d(ψ−1

t )∗volψt (M)(x).
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From the second to third line, the other term coming from the product rule applied on
the bracket does not contribute to the trace, because for i = j ,

〈
Dei (t)ψ̃0,

D

dt
ei (t)

〉
=
〈
ei (t),

D

dt
ei (t)

〉
= 1

2

∂

∂t
〈ei (t), ei (t)〉 = 0

using that ψ̃0(x) = x so Dψ̃0 = id. From the fourth to fifth line, we used normality
of the flow 〈 ∂

∂s |s=0ψ̃s(x), ei (t)(x)〉 = 0, and on the last line applied ∂
∂s ψ̃s(ψt (x)) =

∂
∂sψt+s(x) from definition of the extension ψ̃ , before pulling the integral from ψt (A)

back to A.
Hence the evolved volume measure pulled back to U satisfies the dynamics

∂

∂s

∣∣∣∣
s=0

d(ψ−1
t+s)∗volψt+s (M)

d(ψ−1
t )∗volψt (M)

(x) = −
m∑

i=1

〈
∂

∂t
ψt (x),∇N

ei (t)
ei (t)(ψt (x))

〉

= − 〈H(ψt (x)), //N
t n(x)〉,

(2.4)

which together with the initial condition d(ψ0)
−1∗ volψ0(M) = dvolM implies

det Dψt (x) = d(ψ−1
t )∗volψt (M)

dvolM
(x) = exp

(
−
∫ t

0
〈H(ψs(x)), //N

s n(x)〉 ds
)

by Lemma 2.1, setting ht to be the right-hand side of (2.4). Equation (2.3) is then
simply the change of variable formula for the map ψt . ��
Remark 2.6 The formula of Proposition 2.5 can be extended from the neighbourhood
U to all of M by a partition of unity argument, nonetheless the local formulation is
sufficient for our purpose.

We proceed to derive a disintegration of the ambient volume measure adapted to a
submanifold of arbitrary codimension, at the cost of specialising to the case N = R

n .
Note that the covariant derivative∇R

n
then becomes the plain derivative denoted by D.

Notation 2.7 Let (n j )
k
j=1 be a local orthonormal frame for T M⊥ on U and denote

Bk
σ0

⊂ R
k the centered Euclidean ball of radius σ0. Define the map

ψ : U × Bk
σ0

→ π−1(U ) ⊂ R
n

ψ(x, β) = x +
k∑

j=1

β jn j (x),
(2.5)

which gives the k-dimensional foliation {ψ(U , β) : β ∈ Bk
σ0

} ofπ−1(U )with leaves of
dimensionm. Extend (n j )

k
j=1 and (ei )mi=1 smoothly to π−1(U ) so that the restrictions

to the submanifold ψ(U , β) are an orthonormal frame in the tangent space and the
normal space, respectively, for every β ∈ B̃k

σ0
.
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Denote n(x, β) = ∑k
j=1

β jn j (x)
‖β‖2 which was shown in Lemma 2.4 to be normal to

each leaf ψ(U , β). Then the mean curvature of ψ(U , β) in the direction n(x, β) is

〈H(ψ(x, β)),n(x, β)〉 =
〈
n(x, β),

m∑

i=1

∇R
m+k

ei ei (ψ(x, β))

〉
.

Denote also the components of mean curvature in each of the directions of the normal
frame,

H j (ψ(x, β)) ..= 〈n j (x), H(ψ(x, β))〉 =
〈
n j (x),

m∑

i=1

∇R
m+k

ei ei (ψ(x, β))

〉

so that

‖β‖〈H(ψ(x, β)),n(x, β)〉 =
k∑

j=1

β j H
j (ψ(x, β)).

Remark 2.8 The collection of submanifolds {ψ(U , β) : β ∈ B̃k
σ0

} is indeed a foliation
of π−1(U ) ⊂ R

m+k (see e.g. the definition of foliation in [21]). The leaves are disjoint
submanifolds of dimension m. Defining

F : (p1, . . . , pm, β1, . . . , βk) �→ ξ(p1, . . . , pm) +
k∑

j=1

β jn j (ξ(p1, . . . , pm))

where ξ : O ⊂ R
m → U is an arbitrary chart on U , we have by definition that

ψ(U , β) = F({β}),

so each leaf is a level set of F and thus F is a flat chart for the foliation.

Proposition 2.9 (Disintegration) The ambient volume measure on π−1(U ) ⊂ R
n

disintegrates with respect to the submanifold and the normal frame (n j )
k
j=1 as

volRn (A) =
∫

U
volM (dx)

∫

B̃k
σ0

dβ1 . . . dβk1A(ψ(x, β))e− ∫ 10
∑k

j=1 β j H j (ψ(x,sβ))ds(2.6)

for any Borel measurable set A ∈ B(π−1(U )) in the tubular neighbourhood.

Proof We apply the change of coordinates by the map defined by (2.5), which at every
(x, β) has block-triangular derivative with respect to the orthonormal bases

(
e1(x), . . . , em(x), ∂β1(x), . . . , ∂βk (x)

)
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and

(
e1(ψ(x, β)), . . . , em(ψ(x, β)),n1(x), . . . ,nk(x)

)

in the domain and codomain respectively, since

〈∂βi ψ(x, β), e j (x, β)〉 = 〈ni (x), e j (ψ(x, β))〉 = 0.

Hence the determinant can be computed as

det Dψ = det(〈Deiψ, e j 〉) det(〈∂βi ψ,n j 〉)
= det(〈Deiψ, e j 〉) det(δij )
= det(〈Deiψ, e j 〉)

for which we have the right-hand side of (2.2).
Denoting (ei )mi=1, (n

i )ki=1 the coframes characterized by ei (e j ) = δij and n
i (n j ) =

δij ,

volRn (A) =
∫

π−1(U )

1A(z)e1∧ · · · ∧em∧n1∧ · · · ∧nk(z)

=
∫

U
e1∧ · · · ∧em(x)

∫

Bk
σ0

dβ1 . . . dβk1A(ψ(x, β))|det Dψ(x, β)|

=
∫

U
volM (dx)

∫

Bk
σ0

dβ1 . . . dβk1A(ψ(x, β))

× exp

(
−
∫ ‖β‖2

0

〈
H

(
ψ

(
x,

sβ

‖β‖
))

,n
(
x,

sβ

‖β‖
)〉

ds

)

on the second line using the change of variable formula and on the third line plugging

in the determinant expression (2.2) with n(x, β) =∑k
j=1

β jn j (x)
‖β‖ and t = ‖β‖2. The

final expression is obtained by the substitution s′ = s
‖β‖ so that

∫ ‖β‖2

0

〈
H

(
ψ

(
x,

sβ

‖β‖
))

,n
(
x,

sβ

‖β‖
)〉

ds =
∫ 1

0
‖β‖〈H(ψ(x, s′β)),n(x, s′β)〉 ds′

=
∫ 1

0

k∑

j=1

β j H
j (ψ(x, s′β)) ds′. ��

Corollary 2.10 (Codimension 1) If M has codimension 1 then the ambient volume
measure on π−1(U ) can be written in terms of the disintegration

volRn (A) =
∫

U

∫ σ

−σ

1A(ψ(x, β))e− ∫ β
0 〈H(ψ(x,β ′),n(x,β ′)〉dβ ′

dβ volM (dx), (2.7)
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for all A ∈ B(π−1(U )), where volM (dx) is the volume measure of the submanifold
M and H(ψ( · , β)) is the mean curvature on the Riemannian submanifold ψ(U , β).

2.2 Approximate transport maps

In the sequel, we work with transport maps which are only optimal up to sufficiently
high degree for asymptotically small diameter of support of the test measures. We
present a result which justifies the use of such transport maps.

Let X be a Polish space, P(X) the set of probability measures, define

P1(X) ..=
{

μ ∈ P(X) : ∃ x0 ∈ X such that
∫

X
d(x0, x) μ(dx) < ∞

}

and consider two families of probability measures (μδ
1)δ�0, (μδ

2)δ�0 ⊂ P1(X).

Lemma 2.11 (W1 distance approximation) If diamsuppμδ
2 = O(δ�) and μδ

1 � μδ
2

for every δ � 0 with the density satisfying supx∈suppμ2

dμδ
1

dμδ
2
(x) = 1 + O(δk), then

sup
μ∈P1(X)

∣∣W1(μ,μδ
1) − W1(μ,μδ

2)
∣∣ = O(δk+�).

Proof By the reverse triangle inequality and Kantorovich–Rubinstein duality, for all
μ ∈ P1(X):

∣∣W1(μ,μδ
1) − W1(μ,μδ

2)
∣∣ � W1(μ

δ
1, μ

δ
2)

= sup
f ∈Lip1(X)

∫

X
f (x)(dμδ

1(x) − dμδ
2(x))

= sup
f ∈Lip1(X)

∫

X
f (x)

(
dμδ

1

dμδ
2

(x) dμδ
2(x) − dμδ

2(x)

)

= sup
f ∈Lip1(X)

∫

X
f (x)

(
dμδ

1

dμδ
2

(x) − 1

)
dμδ

2(x)

= sup
f ∈Lip1(X)

∫

X
( f (x) − f (x0))O(δk) dμδ

2(x) = O(δk+�),

where x0 ∈ suppμδ
2 is arbitrary. On the last line, we introduced the term

∫

X
f (x0)

(
dμδ

1

dμδ
2

(x) − 1

)
dμ2(x) = 0,

because f (x0) is constant and the density integrates to 1, and then used the 1-Lipschitz
property of f together with the O(δ�) bound on the diameter of the support of μ2. ��
Let (μδ)δ�0 ⊂ P1(X) be another family of probability measures.
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Definition 2.12 (Approximate transport map) A measurable map T δ : X → X is said
to be an approximate transport from μδ to μδ

2 with degree k if T δ∗ μδ � μ2 and the
density satisfies

sup
x∈suppμ2

d(T δ∗ μδ)

dμδ
2

(x) = 1 + O(δk).

Corollary 2.13 If T δ : X → X is an approximate transport map from μδ to μδ
2 with

degree k and diamsuppμδ
2 = O(δ�) then

W1(μ
δ, μδ

2) = W1(μ
δ, T δ∗ μδ) + O(δk+�).

Proof Set μδ
1

..= T δ∗ μδ and apply the previous lemma. ��

2.3 Test measures in Fermi coordinates

Let (M, g) be a Riemannian submanifold of codimension k in R
m+k and U ⊂ M an

open neighbourhood of a point x0 ∈ M as in Notation 2.2. The Fermi coordinates
are a suitable tool for explicit computations and will be used throughout the rest
of this work. The following is a modification of classical Fermi coordinates to the
submanifold setting.

Definition 2.14 (Fermi coordinates) Let γ : (−δ0, δ0) → M be a unit speed geodesic
with δ0 > 0 small enough for γ to be contained in U , ε0 the uniform injectivity
radius in M along γ and σ0 smaller than half the reach of U in R

m+k . Let (ei )mi=1 be
an orthonormal frame for the fibres of T M along γ such that e1(α1) = γ̇ (α1) and
∇M

γ̇ ei (α1) = 0 for i = 1, . . . ,m and every α1 ∈ (−δ0, δ0). Also let (ni )ki=1 be a local

orthonormal frame for fibres of the normal bundle T M⊥ along γ .
Denote by B̃m−1

ε the centered ball of radius ε > 0 in Rm−1 and by B̃k
σ the centered

ball of radius σ > 0 in Rk . Denote α = (α1, . . . , αm), β = (β1, . . . , βk) and define

φ : (−δ0, δ0)× B̃m−1
ε0

× B̃k
σ0

→ R
m+k,

φ(α, β) ..= expM,γ (α1)

( m∑

i=2

αi ei (α1)

)
+

k∑

j=1

β jn j (α),

which is a diffeomorphism provided that δ0, ε0, σ0 > 0 are sufficiently small. This is
referred to as the Fermi chart along γ adapted to the submanifold M . See Fig. 3 for
an illustration on a 2-surface in R3.

The Riemannian metric is expressed in the Fermi coordinates as

gi j (α) = 〈∂αi φ(α, 0), ∂α j φ(α, 0)〉. (2.8)

Remark 2.15 The advantage of φ over a generic ψ as given in Notation 2.7 is that φ is
adapted to the geodesic γ in a way that simplifies computations of distances relevant
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to our optimal transport problem. The chart φ yields again a foliation {φ(U , β) :
β ∈ B̃k

σ0
} of Mσ0 .

Definition 2.16 (Test measures) Denote the cylinder-like segment in R
n of height σ

and radius ε centered at x ∈ M as

Bσ,ε(x) ..= {z ∈ Mσ : dM (π(z), x) < ε}

and let μ be the Lebesgue measure on R
n . For any x ∈ M define the family of test

probability measures

for all A ∈ B(Rn) : μσ,ε
x (A) = μ(A ∩ Bσ,ε(x))

μ(Bσ,ε(x))

indexed by ε, σ > 0.

Denote α̂ = (α2, . . . , αm) so that α = (α1, α̂). The main purpose of the expansion
in the following lemma is twofold. First, we use it to design the third order corrections
in the approximate transport map of Definition 2.18 so that density matching occurs
in Proposition 2.23. Second, the first order term of the expansion interacts with first
order term of pointwise distance when integrating to get the Wasserstein upper bound
in the proofs of Sects. 3 and 4.

Lemma 2.17 (Test measures in Fermi coordinates) For any y = γ (δ), the expansion
of the density of test measures in Fermi coordinates is

(φ−1∗ μσ,ε
y )(dα, dβ)

= 1

Z
1B̃σ,ε

(δ + α1, α̂, β)

(
1 −

k∑

i=1

βi H
i (φ(0)) −

k∑

i=1

m∑

j=1

α jβi∂α j (H
i ◦φ)(0)

−
k∑

i, j=1

βiβ j∂β j (H
i ◦φ)(0) + 1

2

k∑

i, j=1

βiβ j H
i (φ(0))H j (φ(0))

+ 1

4

m∑

q,�=2

m∑

i=1

αqα�∂αq ∂α�
gii (0) + O(δ3)

)
dα dβ

(2.9)

where Z is the probability normalization constant and g = (gi j ) is the Riemannian
metric of M in Fermi coordinates given by (2.8).

Proof First, note the pull-back of the test measure μ
σ,ε
y (dα, dβ) to Fermi coordinates

is

(φ−1∗ μσ,ε
y )(dα, dβ)

= 1

Z
1B̃σ,ε

(α1 + δ, α̂, β) exp

(
−
∫ 1

0
‖β‖〈H(φ(α, sβ)),n(φ(α, sβ))〉 ds

)
(φ−1∗ volM )(dα)dβ.
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The Riemannian metric in Fermi coordinates expands as

gi j (α) = gi j (0) +
m∑

�=1

α�∂α�
gi j (0) + 1

2

m∑

q,�=1

αqα�∂αq ∂α�
gi j (0) + O(ε3)

= δi j + 1

2

m∑

q,�=2

αqα�∂αq ∂α�
gi j (0) + O(ε3).

(2.10)

Indeed, ∂αi g j�(α1, 0) = 0 for allα1 ∈ (−δ0, δ0), and hence also ∂α1∂αi g j�(α1, 0) = 0.
We show this by cases:

• for all i, j, � = 2, . . . ,m: ∂i g j�(α1, 0) = 0 because for everyfixedα1 ∈ (−δ0, δ0),
φ(α1, ·) are normal coordinateswithin the injectivity radius of expγ (α1)

({γ̇ (α1)}⊥)

⊂ M at γ (α1) (see e.g. [19, Section 1.4] for a proof),
• for all i, j = 1, . . . ,m: ∂1gi j (α1, 0) = 0 for anyα1 ∈ (−δ0, δ0) as the orthonormal
frame along γ used to define the Fermi chart is parallel translated along γ ,

• for all i = 2, . . . ,m and j = 1, . . . ,m and any α1 ∈ (−δ0, δ0):

∂i g1 j (α1, 0) = 〈∂α1∂αi φ(α1, 0), ∂α j φ(α1, 0)
〉+ 〈∂α1φ(α1, 0),∇M

∂αi φ
∂α j φ(α1, 0)

〉

= 〈∇R
n

∂α1φ∂αi φ(α1, 0) − ∇M
∂α1φ∂αi φ(α1, 0), ∂α j φ(α1, 0)

〉 = 0

using that ∇R
n

∂α1φ∂αi φ(α1, 0) − ∇M
∂α1φ∂αi φ(α1, 0) ⊥ M and ∇M

∂αi φ
∂α j φ(α1, 0)

= 0. The latter vanishes for j �= 1 again by normality of the chart on
expγ (α1)

({γ̇ (α1)}⊥), and for j = 1 because ∂αi φ is given by parallel translation
along γ .

The Riemannian volume expanded in the Fermi coordinates then simplifies to

φ−1∗ volM (dα) =
√
det gi j (α) dα

= det

(
δi j + 1

2

m∑

q,�=2

αqα�∂αq ∂α�
gi j (0) + O(ε3)

)1/2
dα

=
(
1 + 1

4

m∑

q,�=2

m∑

i=1

αqα�∂αq ∂α�
gii (0) + O(ε3)

)
dα.

Moreover, expand the exponent in the normal part of the disintegration as

−
∫ 1

0
‖β‖Hn(φ(α, sβ)) ds = −

∫ 1

0

k∑

i=1

βi H
i (φ(α, sβ)) ds

= −
k∑

i=1

βi H
i (φ(0)) −

∑

i, j

α jβi∂α j (H
i ◦φ)(0)

−
∑

i, j

βiβ j∂β j (H
i ◦φ)(0) + O(δ3)
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and apply the approximation up to second order ex = 1+ x + x2
2 + O(x3) to obtain

exp

(
−
∫ 1

0
‖β‖Hn(φ(α, sβ)) ds

)

= 1 −
k∑

i=1

βi H
i (φ(0)) −

∑

i, j

α jβi∂α j (H
i ◦φ)(0)

−
∑

i, j

βiβ j∂β j (H
i ◦φ)(0) + 1

2

∑

i, j

βiβ j H
i (φ(0))H j (φ(0)) + O(δ3).

(2.11)

We conclude the result by taking the product of the two factors (2.10) and (2.11),
merging third order terms in α, β into O(δ3) by the assumption ε ∨ σ � δ/4.

The probability normalization constant can be deduced by integration of (2.11) with
respect to μ

σ,ε
y as

Z = 1 + 1

2(k + 2)
σ 2

k∑

i=1

Hi (φ(0))2 + O(δ3),

and so

1

Z
= 1 − 1

2(k + 2)
σ 2

k∑

i=1

Hi (φ(0))2 + O(δ3). ��

2.4 Proposed transport map

Asmentioned in the introduction,when considering an embeddedmanifold, it is crucial
to include the mean curvature in the transport map. We will show that the transport
map proposed below is an approximate transport map with degree 3. We then present
a criterion for optimality of the proposed map in Lemma 2.25.

Definition 2.18 Define T : Bσ,ε(x0) → Bσ,ε(y) in Fermi coordinates as

T (φ(α, β)) ..= φ

(
δ − α1, α2, . . . , αm,

β1 − 1

2
(σ 2 − β2

1 )(δ − 2α1)∂α1(H
1◦φ)(0),

. . . ,

βk − 1

2
(σ 2 − β2

k )(δ − 2α1)∂α1(H
k ◦φ)(0)

)
.

Denote by α̂ = (α2, . . . , αm) and similarly for α̂′, and denote the input vector on the
right in the above definition as (α′, β ′). Note that

α′
1 = δ − α1, α̂′ = α̂, β ′ = β + O(δ3).
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Remark 2.19 Observe that T is a local diffeomorphism and

∣∣det D(φ−1◦T ◦φ)(α, β)
∣∣ = 1 −

k∑

i=1

βi (δ − 2α1)∂α1(H
i ◦φ)(0) + O(δ3)

and deduce

∣∣det D(φ−1◦T ◦φ)−1(α′, β ′)
∣∣ = |det D(φ ◦T ◦φ)(α, β)|−1

= 1+
k∑

i=1

βi (δ−2α1)∂α1 (H
i ◦φ)(0)+O(δ3). (2.12)

Remark 2.20 The third order terms in the definition of T are adjustments to cancel out
second order terms in the proof of Proposition 2.23 below, obtaining an approximate
transport of degree 3 as a result. In fact, the form of T is tailored precisely for this to
occur. It turns out these third order adjustment terms do not influence the Wasserstein
distance computation up to order 4.

We need two general lemmas to show that T is an approximate transport of degree 3.

Lemma 2.21 (Density under pushforward) LetX,Y bemeasurable spaces,φ : X → Y

a measurable bijection with measurable inverse, and μ, ν two measures on X with
μ � ν. Then the push-forward measures are also absolutely continuous with density

d(ψ∗μ)

d(ψ∗ν)
(x) = dμ

dν
(ψ−1(x)).

Proof For all measurable sets A ⊂ X,

ψ∗μ(A) = μ(ψ−1(A))

=
∫

ψ−1(A)

dμ

dν
(x) dν(x)

=
∫

ψ−1(A)

dμ

dν
(ψ−1◦ψ(x)) dν(x)

=
∫

A

dμ

dν
(ψ−1(x)) d(ψ∗ν)(x). ��

Noting that the representations (2.6) and (2.7) are decompositions into skew-
products of two measures, the following will be used for density comparisons.

Let X,Y be measurable spaces. Given measures {μy
1 : y ∈ Y} on X and a measure

μ2 on Y, the skew-product is defined as follows: For all bounded measurable real
valued functions f on X⊗Y,

μ1⊗μ2( f ) ..=
∫

Y

∫

X
f (x, y) dμ

y
1(x) dμ2(y).
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Lemma 2.22 (Skew-product density factorization) Consider two families of measures
(μ

y
1)y∈Y and (ν

y
1 )y∈Y onX such thatμy

1 � ν
y
1 for every y ∈ .Y and the map (x, y) �→

dμ
y
1

dν
y
1
(x) is measurable. Furthermore, let μ2 and ν2 be measures on Y with μ2 � ν2.

Consider the skew products of (μ
y
1)y∈Y with μ2 and that of (ν

y
1 )y∈Y with ν2. Then

μ1⊗μ2 � ν1⊗ν2 and

d(μ1⊗μ2)

d(ν1⊗ν2)
(x, y) = dμ

y
1

dν
y
1

(x)
dμ1

dν2
(y).

Proof Plugging in the densities, for all f ∈ MX⊗MY bounded:

μ1⊗μ2( f ) =
∫

Y

∫

X
f (x, y) dμ

y
1(x) dμ2(y)

=
∫

Y

∫

X
f (x, y)

dμ
y
1

dν
y
1

(x)
dμ2

dν2
(y) dν

y
1 (x) dν2(y)

=
∫

Y

∫

X
f (x, y)

dμ
y
1

dν
y
1

(x)
dμ2

dν2
(y) d(ν1⊗ν2)(x, y)

=
∫

Y

∫

X
f (x, y)

d(μ1⊗μ2)

d(ν1⊗ν2)
(x, y) d(ν1⊗ν2)(x, y). ��

We verify that the density of T∗μσ,ε
x0 via T matches that of μ

σ,ε
y up to O(δ3).

Proposition 2.23 The proposed map is an approximate transport map of degree 3, i.e.

d(T∗μσ,ε
x0 )

dμ
σ,ε
y

(φ(α, β)) = 1 + O(δ3).

Proof First, combining the elementary change of variable formula with the Fermi
coordinate representation of μ

σ,ε
x0 , with notation of Definition 2.18 we have

(φ−1∗ T∗μ
σ,ε
x0 )(dα, dβ)

= (φ−1◦T ◦φ)∗(φ−1∗ μ
σ,ε
x0 )(dα, dβ)

= 1

Z
1B̃σ,ε

(α′
1 − δ, α̂′, β ′)

(
1 −

k∑

i=1

β ′
i H

i (φ(0)) −
k∑

i=1

m∑

j=1

α′
jβ

′
i∂α j (Hni ◦φ)(0)

−
k∑

i, j=1

β ′
iβ

′
j ∂β j (H

i ◦φ)(0) + 1

2

k∑

i, j=1

β ′
iβ

′
j H

i (φ(0))H j (φ(0))

+ 1

4

m∑

q,�=2

m∑

i=1

αqα�∂αq ∂α�gii (0) +
k∑

i=1

βi (δ − 2α1)∂α1 (H
i ◦φ)(0) + O(δ3)

)
dα dβ

(2.13)

123



   24 Page 24 of 65 M. Arnaudon et al.

using the expansions (2.12) for the determinant of φ−1◦T ◦φ and (2.9) for the coor-
dinate representation of φ−1∗ μ

σ,ε
x0 .

We use Lemma 2.21 to push the density into Fermi coordinates, and then Lemma
2.22 allows us to take the ratio of the densities of (2.13) and (2.9), obtaining

d(T∗μσ,ε
x0 )

dμ
σ,ε
y

(φ(α, β)) = d(φ−1∗ T∗μσ,ε
x0 )

d(φ−1∗ μ
σ,ε
y )

(α, β)

= 1B̃σ,ε(0)
(α1 − δ, α̂, β)(1 + O(δ3))

because the second order terms cancel out. Here we also used that T is a diffeomor-
phism from B̃σ,ε(0m+k) to B̃σ,ε(δ, 0m+k−1), hence

1B̃σ,ε(δ,0)
(α′, β ′) = 1B̃σ,ε(0)

(α1 − δ, α̂, β). ��

Remark 2.24 Building upon the preceding proposition and leveraging Corollary 2.13,
we readily deduce that the proposed transport map satisfies:

W1(μ
σ,ε
x0 , μσ,ε

y ) = W1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) + O(δ4),

taking also into account that supp T∗μσ,ε
x0 = suppμ

σ,ε
y leading to diam supp T∗μσ,ε

x0 =
O(δ) when σ ∨ ε � δ/4. Thus, when computing the coarse curvature, we may use
W1(μ

σ,ε
x0 , T∗μσ,ε

x0 ). This is justified as terms involving the second fundamental form at
the point x0 emerge only at the third order in the expansion ofW1(μ

σ,ε
x0 , μ

σ,ε
y ), making

precision up to O(δ4) sufficient.

The following will allow us to deduce a Wasserstein lower bound from an upper
bound provided by an approximate transport map of degree 3, and merging these into
a both-sided estimate up to O(δ4).

Lemma 2.25 If f : B2δ(x0) ⊂ R
m+k → R is smooth and takes the form

f (T z) − f (z) = ‖T z − z‖ + O(δ4) = O(δ) (2.14)

and the magnitude of its gradient satisfies

sup
z∈B2δ(x0)

‖∇ f (z)‖ = 1 + O(δ3)

then for all σ, ε, δ sufficiently small with σ ∨ ε � δ/4,

W1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) =
∫

‖T z − z‖ dμσ,ε
x0 (z) + O(δ4)

=
∫

( f (T z) − f (z)) dμσ,ε
x0 (z) + O(δ4).
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Proof Using the expansion 1/(1 + a) = 1 − a + O(a2), we deduce that

(
sup

z′∈B2δ(x0)
‖∇ f (z′)‖)−1

f (z) = (1 + O(δ3)) f (z).

By the mean value theorem, a differentiable function divided by the supremum of its
gradient is 1-Lipschitz. Then by Kantorovich–Rubinstein duality

W1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) �
∫

Bσ,ε(x0)

(
sup

z′∈B2δ(x0)
‖∇ f (z′)‖)−1

( f (T z) − f (z))μσ,ε
x0 (dz)

=
∫

Bσ,ε(x0)
(1 + O(δ3))( f (T z) − f (z)) dμσ,ε

x0 (α, β)

=
∫

Bσ,ε(x0)
( f (T z) − f (z))μσ,ε

x0 (dz) + O(δ4)

=
∫

Bσ,ε(x0)
‖T z − z‖μσ,ε

x0 (dz) + O(δ4)

� W1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) + O(δ4),

using the assumption (2.14) on the third and fourth line. ��
Finally, in order to integrate over the correct range of Fermi coordinates to cover

precisely Bσ,ε(x0) as the support of μ
σ,ε
x0 , we need to find the range parameter ε(α)

such that if

Bσ,ε(0) ..=
{
(α, β) : |α1| � ε,

m∑

j=2

α2
j � ε(α)2,

k∑

i=1

β2
i � σ 2

}
⊂ R

m+k

then

φ(Bσ,ε(0)) = Bε(x0).

This is a necessary consideration, because in general non-flat spaces

φ(B̃σ,ε(0)) �= Bσ,ε(x0).

The following is a classical result of Toponogov, which is a generalization of the
Pythagoras theorem forRiemannianmanifolds andgives a characterisation of sectional
curvature. See e.g. [24] for a proof.

Lemma 2.26 For any point x0 ∈ M and any w1, w2 ∈ Tx0M sufficiently small, the
Riemannian distance between expx0(w1) and expx0(w2) has the expansion

d(expx0(w1), expx0(w2)) = ‖w1 − w2‖ − 1

3
〈R(w1, w2)w2, w1〉

+O(max(‖w1‖, ‖w2‖)5).
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As a consequence, we deduce that given a coordinate α1 ∈ (−ε, ε), the range
parameter ε(α) is characterized by the relation

ε2 = α2
1 + ε(α)2 + O(max(α2

1, ε(α)2))

where the coefficient in the remainder term only depends on a fixed neighbourhood
of x0. This implies ε(α) = O(ε) and

ε(α) = (1 + O(ε2))

√
ε2 − α2

1 =
√

ε2 − α2
1 + O(ε3).

We shall label the remainder term r(α) = O(ε3) for the purpose of the following
proof. The next corollary will allow us to ignore the distinction between B̃σ,ε(0) and
Bσ,ε(0) up to O(δ4) whenever we integrate with respect to the test measure μ

σ,ε
x0 in

Fermi coordinates.

Corollary 2.27 If P : Rm+k → R is a polynomial with no constant term andmax(σ, ε)

� δ then
∫

B̃σ,ε(0)
P(α, β) d(φ−1∗ μσ,ε

x0 )(α, β) =
∫

Bσ,ε(0)
P(α, β) d(φ−1∗ μσ,ε

x0 )(α, β) + O(δ4).

Proof We split the domain of integral on the right so that one part matches the domain
on the left and the integral of the other part is O(δ4):

∫

Bσ,ε(0)
P(α, β) d(φ−1∗ μσ,ε

x0 )(α, β)

=
∫

|α1|�ε,‖α̂‖�ε(α)
‖β‖�σ

P(α, β) d(φ−1∗ μσ,ε
x0 )(α, β)

=
∫

|α1|�ε,‖α̂‖�
√

ε2−α2
1

‖β‖�σ

P(α, β) d(φ−1∗ μσ,ε
x0 )(α, β)

+ O

(∫

|α1|�ε,−|r(α)|�‖α̂‖−
√

ε2−α2
1�|r(α)|

P(α, β)

)
d(φ−1∗ μσ,ε

x0 )(α, β)

=
∫

B̃σ,ε(0)
P(α, β) d(φ−1∗ μσ,ε

x0 )(α, β) + O(δ4),

on the last lineweusing that P(α, β) has no constant termand r(α) = O(ε3) = O(δ3).
��

3 Curves and surfaces

We establish explicit formulas for the coarse extrinsic curvature defined by (1.3) in
four practically relevant cases: a circle, a planar curve, a space curve, and a surface.
We begin by presenting the common setup shared among all these cases.
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3.1 The circle example

Our motivating example is the circle S1R with a fixed radius R > 0, which avoids
technicalities arising from varying radius in the osculating circle, an issue that will be
addressed in Sect. 3.2 in the case of planar curves.

Notation 3.1 Denote the polar coordinates

φ(α, β) ..=
(

(R − β) cos(α/R)

(R − β) sin(α/R)

)
, (3.1)

where α ∈ (−πR, πR) parametrizes arc-length distance from the point (R, 0) along
the circle and β ∈ (−σ, σ ) parametrizes the direction normal to the circle.

Denote x0 ..= φ(0, 0) = (R, 0) and for every δ > 0 denote y ..=
(

R cos(δ/R)
R sin(δ/R)

)
.

Lemma 3.2 The test measures in polar coordinates take the form

(φ−1∗ μσ,ε
y )(dα, dβ) = 1

4σε
1(δ−ε,δ+ε)×(−σ,σ )(α, β)

(
1 − β

R

)
dα dβ.

Proof At any (α, β), the radial coordinate is R−β, the radial length element is dβ and
the angular element is dα

R , giving the volume element (R−β)dβ dα
R = (1− β

R )dαdβ,
with 1

4σε
as the probability normalization factor for the support (δ−ε, δ+ε)× (−σ, σ ).

This is consistent with the formula of Proposition 2.9, as the mean curvature at
(α, β) is 1

R−β
, which gives the density

e− ∫ 10 β
R−sβ ds = elog(R−β)−log R = 1 − β

R

on (δ − ε, δ + ε)× (−σ, σ ). ��

The transport map of Definition 2.18 boils down to

T (φ(α, β)) = φ(δ − α, β) =
(

(R − β) cos((δ − α)/R)

(R − β) sin((δ − α)/R)

)
, (3.2)

and note that y = T x0 = T (φ(0, 0)). See also Fig. 1 below.
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Remark 3.3 In this case the transport map T is precise in the sense that T∗μσ,ε
x0 = μ

σ,ε
y .

Indeed, for any f : R2 → R Borel measurable,

∫
f (z) d(T∗μσ,ε

x0 )(z) =
∫

f (T z) dμσ,ε
x0 (z)

=
∫

f (T (φ(α, β))) d(φ−1∗ μσ,ε
x0 )(dα, dβ)

= 1

4σε

∫
f (T (φ(α, β)))1(−ε,ε)× (−σ,σ )(α, β)

(
1 − β

R

)
dα dβ

= 1

4σε

∫
f (φ(δ − α, β))1(−ε,ε)× (−σ,σ )(α, β)

(
1 − β

R

)
dα dβ

= 1

4σε

∫
f (φ(α, β))1(δ−ε,δ+ε)× (−σ,σ )(α, β)

(
1 − β

R

)
dα dβ

=
∫

f (z) dμσ,ε
y (z).

Proposition 3.4 For all δ, ε, σ > 0 sufficiently small with σ ∨ ε � δ/2, it holds that

W1(μ
σ,ε
x0 , μσ,ε

y ) = 2R2 sin

(
δ

2R

)
1

ε
sin

(
ε

R

)(
1 + σ 2

3R2

)

= ‖x0 − y‖ R

ε
sin

(
ε

R

)(
1 + σ 2

3R2

)
.

Proof For every point z = φ(α, β),

‖T z − z‖ = 2(R − β) sin

(
δ − 2α

2R

)
,

which is the Euclidean distance of two points on the circle at angle (δ − 2α)/R apart.
Integrating with respect to the test measure yields

W1(μ
σ,ε
x0 , μσ,ε

y ) �
∫

‖T z − z‖ dμσ,ε
x0 (z)

= 1

4σε

∫ σ

−σ

dβ

∫ ε

−ε

dα

(
1 − β

R

)
2(R − β) sin

(
δ − 2α

2R

)

= 1

4σε

∫ σ

−σ

dβ

(
1 − β

R

)
2(R − β)

×
∫ ε

−ε

dα

(
sin

(
δ

2R

)
cos

(
α

R

)
− sin

(
α

R

)
cos

(
δ

2R

))

= 2R2 sin

(
δ

2R

)
1

ε
sin

(
ε

R

)(
1 + σ 2

3R2

)
.
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For the lower bound, we test against the 1-Lipschitz function

f (z) ..=
〈
z − x0,

y − x0
‖y − x0‖

〉
.

We have

y − x0 = φ(δ, 0) − φ(0, 0) =
(
R cos(δ/R)

R sin(δ/R)

)
−
(
R
0

)
=
(
R(cos(δ/R) − 1)

R sin(δ/R)

)
,

and so ‖y − x0‖ = R
√
2(1 − cos(δ/R) = 2R sin(δ/(2R)), giving

y − x0
‖y − x0‖ = 1

2 sin(δ/(2R))

(
cos(δ/R) − 1
sin(δ/R)

)
. (3.3)

Then we compute using (3.1), (3.2) and (3.3):

f (T z) − f (z) =
〈
φ(δ − α, β) − φ(α, β),

y − x0
‖y − x0‖

〉

= (R − β)

2 sin(δ/(2R))

(
cos((δ − α)/R) − cos(α/R)

sin((δ − α)/R) − sin(α/R)

)
·
(
cos(δ/R) − 1
sin(δ/R)

)

= R − β

sin(δ/(2R))

(
cos(α/R) − cos((δ − α)/R)

)

= 2(R − β) sin((δ − 2α)/(2R)) = ‖T z − z‖

by trigonometric identities. Therefore

W1(μ
σ,ε
x0 , μσ,ε

y ) �
∫

f (z)(dμσ,ε
y (z) − dμσ,ε

x0 (z))

=
∫

( f (T z) − f (z)) dμσ,ε
x0 (z)

=
∫

‖T z − z‖ dμσ,ε
x0 (z),

which shows the lower bound agrees exactly with the upper bound. ��

3.2 Planar curve

Let γ : (−δ0, δ0) → R
2 be a smooth unit speed curve. As before, let x0 ..= γ (0),

y ..= γ (δ) where δ ∈ (−δ0, δ0).
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The normal vector field along γ is given by n(α) ..= γ̈ (α)
‖γ̈ (α)‖ , the radius of the

osculating circle is R(α) ..= 1
‖γ̈ (α)‖ and we have the relationships

γ̈ (α) = n(α)

R(α)
,

...
γ (α) = − 1

R(α)2
γ̇ (α) − Ṙ(α)

R(α)2
n(α),

ṅ(α) = − γ̇ (α)

R(α)
, n̈(α) = Ṙ(α)

R(α)2
γ̇ (α) − 1

R(α)2
n(α).

(3.4)

Let φ : (−δ0, δ0)×(−σ0, σ0) → R
2 be given as follows:

φ(α, β) ..= γ (α) + βn(α).

This is the Fermi chart along γ . While we have the general Fermi coordinate repre-
sentation in terms of the expansion in Lemma 2.17, in this case we arrive at a precise
form:

Lemma 3.5 The test measures at y = γ (δ) are

(φ−1∗ μσ,ε
y )(dα, dβ) = 1

4σε
1(δ−ε,δ+ε)×(−σ,σ )(α, β)

(
1 − β

R(α)

)
dα dβ.

Proof To evaluate H(φ(α, β)) in applying Proposition 2.9, normalize the vector field
tangent to the curve α �→ φ(α, β) and compute the second derivative in R

2 as

∂α

‖∂αφ(α, β)‖
(

∂αφ(α, β)

‖∂αφ(α, β)‖
)

= ∂2αφ(α, β)

‖∂αφ(α, β)‖2 − 〈∂2αφ(α, β), ∂αφ(α, β)〉
‖∂αφ(α, β)‖3 ∂αφ(α, β).

The second term is tangential to the curve, so may be ignored for the computation of
H . Moreover,

∂2αφ(α, β) = γ̈ (α) + βn̈(α) = β
Ṙ(α)

R(α)2
γ̇ (α) + 1

R(α)

(
1 − β

R(α)

)
n(α),

‖∂αφ(α, β)‖−2 = ‖γ̇ + βṅ(α)‖−2 =
(
1 − β

R(α)

)−2

.

Note that n(α) is normal to α �→ φ(α, β) for every β since

〈n(α), ∂αφ(α, β)〉 = 〈n(α), γ̇ (α) + βṅ(α)〉 = 0,

therefore the mean curvature is

H(φ(α, β)) =
〈
n(α),

∂α

‖∂αφ(α, β)‖
(

∂αφ(α, β)

‖∂αφ(α, β)‖
)〉

= 1

‖∂αφ(α, β)‖2 〈n(α), ∂2αφ(α, β)〉

=
(
1 − β

R(α)

)−2 1

R(α)

(
1 − β

R(α)

)
= 1

R(α) − β
.
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Fig. 1 Planar curve case: test measures in red with some transport pairs of T in blue (Color figure online)

Finally,

e− ∫ β
0 H(φ(α,β ′))dβ ′

dα dβ = e
− ∫ β

0
1

R(α)−β′ dβ ′
dα dβ =

(
1 − β

R(α)

)
dα dβ

and the Lebesgue measure of the support 1
4σε

is the normalization factor because the
β term vanishes when integrating over β ∈ (−σ, σ ). ��

In this case the proposed transport map of Definition 2.18 reduces to

T (φ(α, β)) = φ

(
δ − α, β − 1

2

Ṙ(0)

R(0)2
(σ 2 − β2)(δ − 2α)

)
.

As a consequence of Corollary 2.13,

Lemma 3.6 For all δ, ε, σ > 0 sufficiently small with σ ∨ ε � δ/4, it holds that

W1(μ
σ,ε
x0 , μσ,ε

y ) = W1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) + O(δ4).

For notational ease we shall from here onwards denote R ..= R(0) and Ṙ ..= Ṙ(0).

Proposition 3.7 Let γ be a smooth unit speed curve in R
2 such that γ (0) = x0 and

γ (δ) = y. For all δ, ε, σ > 0 sufficiently small with σ ∨ ε � δ/4, it holds that

W1(μ
σ,ε
x0 , μσ,ε

y ) = ‖x0 − y‖
(
1 − ε2

6R2 + σ 2

3R2

)
+ O(δ4)

where R is the radius of the osculating circle of the curve at x0.

Proof Lemma 3.6 allows computingW1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) instead. Throughout the proof,
terms of order δ4 and higher are absorbed into O(δ4). For the upper bound,we compute
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by expansion with respect to the orthonormal basis (γ̇ (0),n(0)) at x0,

φ(α, β) = γ (0) + βn(0) + α(γ̇ (0) + βṅ(0))

+ α2

2
(γ̈ (0) + βn̈(0)) + α3

6

...
γ (0) + O(δ4)

= x0 +
(

α − αβ

R
− α3

6R2 + βα2 Ṙ

2R2

)
γ̇ (0)

+
(

β + α2

2R
− α3 Ṙ

6R2 − βα2

2R2

)
n(0) + O(δ4)

having inserted for the derivatives at 0 using the list (3.4). Then the distance of the
transport pairs up to order 4 is

‖T (φ(α, β)) − φ(α, β)‖ = ‖φ(δ − α, β) − φ(α, β)‖

= (δ − 2α)

∥∥∥∥

(
1 − β

R
− 1

6R2 (δ2 − δα + α2) + β Ṙ

2R2 δ + O(δ3)

)
γ̇ (0)

+
(

δ

2R
+ O(δ2)

)
n(0)

∥∥∥∥

(3.5)

having used the factorizations (δ − α)3 − α3 = (δ − 2α)(δ2 − δα + α2) and
(δ − α)2 − α2 = δ(δ − α). By orthonormality of (γ̇ (0),n(0)), we compute this
norm as

(δ − 2α)

[(
1 − β

R
− 1

6R2 (δ2 − δα + α2) + β Ṙ

2R2 δ + O(δ3)

)2

+
(

δ

2R
+ O(δ2)

)2]1/2

= (δ − 2α)

(
1 − 2β

R
+ β2

R2 − 1

3R2 (δ2 − δα + α2) + Ṙ

R2 βδ + 1

4R2 δ2
)1/2

+ O(δ4)

= (δ − 2α)

(
1 − β

R
− δ2

24R2 + δα

6R2 − α2

6R2 + Ṙ

2R2 βδ

)
+ O(δ4). (3.6)

by the expansion
√
1 + x = 1 + 1

2 x − 1
8 x

2 + O(x3) for the square root on the last
line.

Moreover, expanding the volume distortion factor as

(
1 − β

R(α)

)
= 1 − β

R
+ Ṙ

R2 αβ + O(δ3)
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andmultiplying the expression for ‖T (φ(α, β))−φ(α, β)‖ by this factor, we integrate
and note that only terms of even order in both α and β contribute, yielding

W1(μ
σ,ε
x0 , μσ,ε

y )

� 1

4σε

∫ ε

−ε

dα

∫ σ

−σ

dβ

(
1 − β

R
+ Ṙ

R2 αβ + O(δ3)

)
‖T (φ(α, β)) − φ(α, β)‖

= 1

4σε

∫ ε

−ε

dα

∫ σ

−σ

dβ

(
1 − β

R
+ Ṙ

R2 αβ + O(δ3)

)

×(δ − 2α)

(
1 − β

R
− δ2

24R2 + δα

6R2 − α2

6R2 + Ṙ

2R2 βδ

)
+ O(δ4)

= δ

(
1 − δ2

24R2 − ε2

6R2 + σ 2

3R2

)
+ O(δ4)

= ‖y − x0‖
(
1 − ε2

6R2 + σ 2

3R2

)
+ O(δ4).

To obtain the factor ‖y − x0‖ on the last line, we applied that

‖y − x0‖ = δ

(
1 − δ2

24R2

)
+ O(δ4)

which can be deduced by plugging in for α = β = 0 in the previous computation of
T (φ(α, β)) − φ(α, β). The σ 2 coefficient came from integrating the β2 term of the
integrand, σ 2

3R2 = 1
2σ

∫ σ

−σ

(− β
R

)×(− β
R

)
dβ. The terms with odd power in α or β such

as δαβ vanished as they are mean zero.
We proceedwith showing the lower bound, using again the 1-Lipschitz test function

f (z) ..=
〈
z − x0,

y − x0
‖y − x0‖

〉
.

Express the vector between the centres of the two test measures, recalling γ (0) = x0,

γ (δ) − γ (0) = T (φ(0, 0)) − φ(0, 0)

= δ

(
1 − δ2

6R2

)
γ̇ (0) − δ

(
δ

2R
+ O(δ2)

)
n(0) + O(δ4).

This vector has magnitude

‖γ (δ) − γ (0)‖ = δ

(
1 − δ2

24R2

)
+ O(δ4),

and so we deduce that

y − x0
‖y − x0‖ = γ (δ) − γ (0)

‖γ (δ) − γ (0)‖ =
(
1 − δ2

8R2 + O(δ3)

)
γ̇ (0) +

(
δ

2R
+ O(δ2)

)
n(0).
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Thenwe compute, using the expression (3.5) for T (φ(α, β))−φ(α, β)obtained above,

f (T z) − f (z)

=
〈
T (φ(α, β)) − φ(α, β),

y − x0
‖y − x0‖

〉

= (δ − 2α)

(
1 − β

R
− 1

6R2 (δ2 − δα + α2) + βδ Ṙ

2R2

)(
1 − δ2

8R2 + O(δ3)

)

+ (δ − 2α)

(
δ

2R
+ O(δ2)

)(
δ

2R
+ O(δ2)

)
+ O(δ4)

= (δ − 2α)

(
1 − β

R
− δ2

24R2 + δα

6R2 − α2

6R2 + βδ Ṙ

2R2

)
+ O(δ4).

We see that this agrees with the pairwise transport distance (3.6) up to O(δ4), hence
Lemma 2.25 applies and the upper and lower bounds agree up to an O(δ4) term. ��

3.3 Space curve

Let γ : (−δ0, δ0) → R
3 be a smooth, unit speed curve with velocity γ̇ . Define the unit

normal and binormal vector fields along γ as

n(α) ..= γ̈ (α)

‖γ̈ (α)‖ , b(α) ..= γ̇ (α)×n(α)

‖γ̇ (α)×n(α)‖ .

This yields the so-called Frenet–Serret frame (γ̇ (α),n(α),b(α)) ofR3 along γ . Writ-
ing R(α) ..= 1

‖γ̈ (α)‖ for the radius of the osculating circle and τ(α) ..= ‖ḃ(α)‖ for the
torsion, the Frenet–Serret formulas give relationships between the vector fields of the
frame,

γ̈ (α) = n(α)

R(α)
,

ṅ(α) = − γ̇ (α)

R(α)
+ τ(α)b(α),

ḃ(α) = − τ(α)n(α).

(3.7)

From these, we deduce the higher order derivatives

...
γ (α) = − 1

R(α)2
γ̇ (α) − Ṙ(α)

R(α)2
n(α) + τ(α)

R(α)
b(α),

n̈(α) = Ṙ(α)

R(α)2
γ̇ (α) −

(
τ(α)2 + 1

R(α)2

)
n(α) + τ̇ (α)b(α),

b̈(α) = τ(α)

R(α)
γ̇ (α) − τ̇ (α)n(α) − τ(α)2b(α).

(3.8)
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Wewill employ theFrenet–Serret frame for explicit computations of distances between
points in the tubular neighborhood of a space curve. Additionally, we will employ it in
formulating a sufficiently accurate approximate transport map between test measures,
represented through an expansion in Fermi coordinates.

Definition 2.14 for Fermi coordinates requires a choice of a local orthonormal frame
of the normal bundle along γ . We choose (n1,n2) as follows:

n1(α) ..= n(α) − ατ(α)b(α)√
1 + α2τ(α)2

= (1 + O(α2))n(α) − (ατ(α) + O(α2))b(α)),

n2(α) ..= b(α) + ατ(α)n(α)√
1 + α2τ(α)2

= (1 + O(α2))b(α) + (ατ(α) + O(α2))n(α)

where n,b come from the Frenet–Serret frame.

Definition 3.8 Define the Fermi coordinates φ : (−δ0, δ0)
3 → R

3, adapted to γ , by
the formula:

φ(α, β1, β2)
..= γ (α) + β1n1(α) + β2n2(α)

= γ (α) + (β1 + αβ2τ(α) + O(δ3))n(α) + (β2 − αβ1τ(α) + O(δ3))b(α).

Denote R = R(0), Ṙ = Ṙ(0), τ = τ(0), τ̇ = τ̇ (0).

Consider the family of curves {α �→ φ(α, β1, β2) : (β1, β2) ∈ Bσ }. Denote the
particular unit normal vector fields

ñ(α, β1, β2)
..= 1√

β2
1 + β2

2

(β1n1(α) + β2n2(α)).

The mean curvature of each curve in the direction ñ is expressed as

〈
H(φ(α, β1, β2)), ñ(α, β1, β2)

〉

=
〈
ñ(α, β1, β2),

∂α

‖∂αφ(α, β1, β2)‖
(

∂αφ(α, β1, β2)

‖∂αφ(α, β1, β2)‖
)〉

=
〈
ñ(α, β1, β2),

∂2αφ(α, β1, β2)

‖∂αφ(α, β1, β2)‖2
〉
.

where the second equality holds because ñ is normal to ∂αφ by Lemma 2.4.

Remark 3.9 We perform computations in terms of the Frenet–Serret frame as it can be
interpreted in terms of the radius of the osculating circle and torsion of the curve.
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Fig. 2 Space curve case: test measures in red with some transport pairs of T in blue (Color figure online)

(1) As a special case of Lemma 2.17, using that the mean curvature components are

H1(φ(0)) = 〈n(0), γ̈ (0)〉 =
〈
n(0),

n(0)

R(0)

〉
= 1

R(0)
,

H2(φ(0)) = 〈b(0), γ̈ (0)〉 =
〈
b(0),

n(0)

R(0)

〉
= 0,

the test measures at every y = γ (δ) in Fermi coordinates along γ are

(φ−1∗ μσ,ε
y )(dα, dβ1, dβ2)

=
1B̃σ,ε

(α, β1, β2)
∫
B̃σ,ε

(1 + r(α, β1, β2)) d(φ−1∗ μ
σ,ε
y )(α, β1, β2)

×
(
1 − β1

R(0)
+ r(α, β1, β2)

)
dα dβ1 dβ2

where r(α, β1, β2) = O(δ2) is the remainder.
(2) The proposed transport map of Definition 2.18 reduces, in this case, to

T (φ(α, β1, β2)) = φ
(
δ − α, β1 + O(δ3), β2 + O(δ3)

)
.

The transport map in this case is depicted in Fig. 2. These expressions will be used
in the proof of the next theorem.

Theorem 3.10 Let γ : (−δ0, δ0) → R
3 be a space curve with x0 = γ (0), y = γ (δ)

and μ
σ,ε
x0 , μ

σ,ε
y the test measures defined in Definition 2.16 with coordinate represen-

tation of Remark 3.9. For all δ, σ, ε > 0 sufficiently small and with σ ∨ ε � δ/4, it
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holds that

W1(μ
σ,ε
x0 , μσ,ε

y ) = ‖x0 − y‖
(
1 + σ 2

4R2 − ε2

6R2

)
+ O(δ4).

where R = 1
‖γ̈ (0)‖ is the radius of the osculating circle.

Proof Due to Lemma 3.6, it is sufficient to work with the distanceW1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) as
it approximates W1(μ

σ,ε
x0 , μ

σ,ε
y ). The computation of the pairwise distances is similar

to the planar curve case, (3.5), with additional terms due to the component b(α).
Concretely, since

b(α) = b(0) + αḃ(0) + 1

2
α2b̈(0) + O(α3)

= α2τ

2R
γ̇ (0) −

(
ατ + 1

2
α2τ̇

)
n(0) +

(
1 − 1

2
α2τ 2

)
b(0) + O(α3),

and using the derivatives (3.7) and (3.8), compute

φ(α, β1, β2) = x0 +
(

α − αβ1

R
− α3

6R2 + β1α
2 Ṙ

2R2 + β2α
2τ

2R
+ O(δ4)

)
γ̇ (0)

+
(

β1 + α2

2R
+ O(δ3)

)
n(0) + (β2 + O(δ3))b(0).

Then similarly to (3.5) we obtain

‖T (φ(α, β1, β2)) − φ(α, β1, β2)‖
= ∥∥γ (δ − α) + β1n(δ − α) + β2b(δ − α) − γ (α) − β1n(α) − β2b(α)

∥∥

= (δ − 2α)

∥∥∥∥

(
1 − β1

R
− 1

6R2 (δ2 − δα + α2) + β1 Ṙ

2R2 δ + β2δτ

2R
+ O(δ3)

)
γ̇ (0)

+
(

1

2R
δ + O(δ2)

)
n(0) + O(δ2)b(0)

∥∥∥∥

= (δ − 2α)

(
1 − β1

R
− δ2

24R2 + δα

6R2 − α2

6R2 + β1 Ṙ

2R2 δ + β2δτ

2R
+ O(δ3)

)
.

(3.9)

The Wasserstein distance upper bound is then computed by integration with respect
to μ

σ,ε
x0 using the coordinate representation of Remark 3.9 as

W1(μ
σ,ε
x0 , T∗μσ,ε

x0 ) �
∫

B̃σ,ε

‖T (φ(α, β1, β2)) − φ(α, β1, β2)‖ d(φ−1∗ μσ,ε
x0 )(α, β1, β2)

= δ

(
1 − δ2

24R2 + σ 2

4R2 − ε2

6R2

)
+ O(δ4)

= ‖x0 − y‖ + O(δ4)
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applying on the last line that ‖x0 − y‖ = δ
(
1− δ2

24R2

)+ O(δ4). In the integral on the
first line, terms of odd order vanish upon integration, and the remaining terms amount
to integration of quadratic polynomials.

We now address the lower bound. Analogously to the plane curve case, define the
test function for the Kantorovich–Rubinstein duality as

f (φ(α, β1, β2))
..=
〈
φ(α, β1, β2) − x0,

y − x0
‖y − x0‖

〉

which is again clearly 1-Lipschitz in R
3. We wish to apply Lemma 2.25 to show the

lower bound and upper bound coincide up to O(δ4). Noting that y−x0 = φ(δ, 0, 0)−
φ(0, 0, 0), we deduce from (3.9) that

y − x0 = δ

(
1 − δ2

6R2 + O(δ3)

)
γ̇ (0) + δ

(
δ

2R
+ O(δ2)

)
n(0) + O(δ3)b(0),

‖y − x0‖ = δ

(
1 − δ2

24R2 + O(δ3)

)
,

and so

y − x0
‖y − x0‖ =

(
1 − δ2

8R2 + O(δ3)

)
γ̇ (0) +

(
δ

2R
+ O(δ2)

)
n(0) + O(δ2)b(0).

Therefore

f (φ(T (α, β1, β2))) − f (α, β1, β2)

=
〈
T (φ(α, β1, β2)) − φ(α, β1, β2),

y − x0
‖y − x0‖

〉

= (δ − 2α)

(
1 − β1

R
− δ2

24R2 + δα

6R2 − α2

6R2 + β1δ Ṙ

2R2 + β2δτ

2R
+ O(δ3)

)
.

This is the same expression as for ‖T (φ(α, β1, β2)) − φ(α, β1, β2)‖, hence Lemma
2.25 applies and the lower and upper bounds agree up to O(δ4). ��

3.4 Surface

We now consider a smooth 2-surface M ⊂ R
3 and γ : (−1, 1) → M a unit speed

geodesic in M , denoting again x0 ..= γ (0), y ..= γ (δ) for δ > 0 sufficiently small. Let
n ∈ �(T M⊥) be the unit normal vector field and m ∈ �(T M |γ ) the unit vector field
along γ orthogonal to the velocity γ̇ . Both n and m are unique up to sign.

Definition 3.11 • Define the Fermi coordinates ψ : (−δ0, δ0)×(−ε0, ε0) → M
along γ in M as

ψ(α1, α2) = expM,γ (α1)
(α2m(α1)).
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Fig. 3 Fermi coordinates along γ adapted to the surface M embedded in R
3

• Define the Fermi coordinates φ : (−δ0, δ0)×(−ε0, ε0)×(−σ0, σ0) → R
3 along

γ in R3 adapted to the surface M as

φ(α1, α2, β) = ψ(α1, α2) + βn(α1, α2).

See Fig. 3 for a graphical representation of ψ and φ.
• For i, j ∈ {1, 2} denote the components of the second fundamental form in the
Fermi coordinates

IIi j (α) = 〈n(α), ∂αi ∂α j φ(α, 0)〉.

Remark 3.12 We point out that we overload the second fundamental form symbol II
depending on the context of use. In the notation (1.1) and in the statements of Theorem
3.16 and Theorem 4.1, the subscript is the point x0 on the manifold and the bracket
arguments are tangent vectors. On the other hand, in coordinate computations taking
place in the proofs, the subscripts will represent components with respect to the Fermi
frame at Fermi coordinates α, β in brackets.

Similarly to the Frenet–Serret frame in the case of a planar curve, we now consider
the orthonormal frame (γ̇ ,m,n)with the intent to expand at x0, i.e. α1 = α2 = β = 0.

Lemma 3.13 The first derivatives of the normal vector field at (α1, α2) = 0 are

∂α1n(0) = −II11(0)γ̇ (0) − II12(0)m(0), ∂α2n(0) = −II22(0)m(0) − II12(0)γ̇ (0).
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Hence the derivatives of φ at (α1, α2, β) = 0 up to third order are

∂βφ(0) = n(0), ∂kβφ(0) = 0 for k � 2,

∂α1φ(0) = γ̇ (0), ∂α2φ(0) = m(0),

∂αi ∂α j φ(0) = IIi j (0)n(0), i, j ∈ {1, 2},
∂β∂αi φ(0) = −II1i (0)γ̇ (0) − IIi2(0)m(0), i ∈ {1, 2},

∂3α1φ(0) = −II11(0)2γ̇ (0) − II11(0)II12(0)m(0) + ∂α1 II11(0)n(0),

∂α1∂
2
α2

φ(0) = −II11(0)II22(0)γ̇ (0) − II12(0)II22(0)m(0) + ∂α1 II22(0)n(0),

∂α2∂
2
α1φ(0) = −II11(0)II12(0)γ̇ (0) − II12(0)2m(0) + ∂α2 II11(0)n(0),

∂3α2φ(0) = −II12(0)II22(0)γ̇ (0) − II22(0)2m(0) + ∂α2 II22(0)n(0).

Proof The derivatives involving ∂β are clear, recalling the definition

φ(α1, α2, β) ..= ψ(α1, α2) + βn(α1, α2),

and the first derivatives in α1, α2 follow from the definition of ψ(α1, α2).
For ∂α1n(0) we check its components with respect to the frame (γ̇ ,m,n),

〈∂α1n(0),n(0)〉 = 1

2
∂α1〈n,n〉(0) = 0,

〈∂α1n(0), γ̇ (0)〉 = ∂α1〈n, ∂α1ψ〉(0) − 〈n(0), ∂2α1ψ(0)〉 = −II11(0),

〈∂α1n(0),m(0)〉 = ∂α1〈n, ∂α2ψ〉(0) − 〈n(0), ∂α1∂α2ψ(0)〉 = − II12(0)

and similarly for ∂α2n(0).
For the second derivatives in α1, α2 at (α1, 0, 0) for any α1 ∈ (−δ0, δ0) and j =

1, 2,

∂α1∂α j φ(α1, 0, 0) = ∂α1∂α j ψ(α1, 0)

= ∇R
3

∂α1
∂α j ψ(α1, 0) − ∇M

∂α1
∂α j ψ(α1, 0)

= II (∂α1ψ(α1, 0), ∂α j ψ(α1, 0)) = II1 j (α1, 0)n(α1, 0)

having introduced the term ∇M
∂α1

∂α j ψ(α1, 0), which vanishes for j = 1, 2, because

α1 �→ ψ(α1, 0) is a geodesic on M andm(α1) is the parallel translation ofm(0) along
γ . By the same argument, for any (α1, α2) ∈ (−δ0, δ0)×(−ε0, ε0),

∂2α2φ(α1, α2, 0) = II22(α1, α2)n(α1, α2)

because α2 �→ ψ(α1, α2) is a geodesic for every α1 ∈ (−δ0, δ0).
For the second derivatives in β and one of α1 and α2, deduce ∂β∂αi φ(0) = ∂αin(0)

and plug in for ∂αin(0).
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For the third derivatives at (α1, α2, β) = 0, write by the chain rule

∂3α1φ(0) = ∂α1 |α1=0(∂
2
α1

φ(α1, 0, 0)) = II11(0)∂α1n(0) + ∂α1 II11(0)n(0),

∂α1∂
2
α2

φ(0) = ∂α1 |α1=0(∂
2
α2

φ(α1, 0, 0)) = II22(0)∂α1n(0) + ∂α1 II22(0)n(0),

∂α2∂
2
α1

φ(0) = ∂α1 |α1=0(∂α1∂α2φ(α1, 0, 0)) = II12(0)∂α1n(0) + ∂α1 II12(0)n(0),

∂3α2φ(0) = ∂α2 |α2=0(∂
2
α2

φ(0, α2, 0)) = II22(0)∂α2n(0) + ∂α2 II22(0)n(0)

and plug in for ∂αin(0) in each. ��
Denote DuV the plain derivative in the direction u ∈ R

n of a vector field V as a
smooth map from an open subset of Rn to Rn .

Notation 3.14 Denote B̃σ,ε
..= {(α1, α2, β) : α2

1 + α2
2 < ε2, |β| < σ } ⊂ R

3.
Consider the family of surfaces {φ(U , β) : β ∈ (−σ0, σ0)}. For any β ∈ (−σ0, σ0),

we denote the unit normal vector field of the surface as n(α1, α2), which is unique up
to sign. The corresponding mean curvature is:

H(φ(α1, α2, β)) =
〈
n(α1, α2),

2∑

i=1

∇R
3

ei ei (φ(α1, α2, β))

〉

where (e1, e2) is an orthonormal frame on each φ(U , β).

Remark 3.15 (1) As a special case of Lemma 2.17, the test measures at y = γ (δ) in
these Fermi coordinates are

(φ−1∗ μσ,ε
y )(dα1, dα2, dβ)

=
1B̃σ,ε

(δ + α1, α2, β)
∫
B̃σ,ε

1 + r(α, β) d(φ−1∗ μ
σ,ε
y )(α, β)

× (1 − β(II11(0) + II22(0)) + r(α, β)
)
dα1dα2dβ

(3.10)

where r(α, β) = O(δ2) is a second order remainder.
(2) The proposed transport map of Definition 2.18 reduces, in this case, to

T (φ(α1, α2, β)) = φ
(
δ − α1, α2 + O(δ3), β + O(δ3)

)
.

See Figs. 4, 5 and 6 for a pictorial representation of this map.

Theorem 3.16 Let M be an isometrically embedded surface in R
3, let x0 be a point

and (e1, e2) an orthonormal basis of principal curvature directions at x0. Let γ be a
unit speed geodesic in M with γ (0) = x0, γ̇ (0) = e1 and denote y = γ (δ). For all
δ, ε, σ > 0 sufficiently small with σ ∨ ε � δ/4, it holds that

W1(μ
σ,ε
x0 , μσ,ε

y ) = ‖y − x0‖
(
1 +

(
σ 2

3
− ε2

8

)
〈IIx0(e1, e1), H(x0)〉

)
+ O(δ4).
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Fig. 4 Test measures in red with some transport pairs of T in blue (Color figure online)

Fig. 5 Top-down perspective for the transport map T

Fig. 6 Cross-sectional perspective for the transport map T
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Remark 3.17 If we set ε = 2
√
2√
3

σ , we note that the bracket on the right reduces to
1. This is due to the effects of second fundamental form and the curvature of the
submanifold cancelling out, so it would appear in such special case that the coarse
extrinsic curvature is flat, even though the second fundamental form may be non-
vanishing. Such a special case is due to having an additional degree of freedombecause
of the additional σ parameter and the sign of the σ 2 term happens to oppose that of
the ε2 term. The extrinsic curvature should thus be seen as encapsulated by varying
both σ and ε in W1(μ

σ,ε
x0 , μ

σ,ε
y ).

Proof The conclusion of Corollary 2.13 holds, so we may compute W1(μ
σ,ε
x0 , T∗μσ,ε

x0 )

instead. For every point φ(α1, α2, β), expanding up to third order and using the list of
derivatives of Lemma 3.13, we collect terms as components of the frame (γ̇ ,m,n) at
0,

φ(α1, α2, β)

= x0 +
∑

i

αi∂αi φ(0) + β∂βφ(0) + 1

2

∑

i, j

αiα j∂αi ∂α j φ(0) +
∑

i

βαi∂β∂αi φ(0)

+ 1

6

∑

i, j,k

αiα jαk∂αi ∂α j ∂αkφ(0) + 1

2

∑

i, j

βαiα j∂αi ∂α j ∂βφ(0) + O(δ4)

= x0 +
(

α1 − II11(0)βα1 − 1

6
II11(0)2α3

1 − 1

2
II11(0) II22(0)α1α

2
2 + O(δ4)

)
γ̇ (0)

+ (α2 − II22(0)βα2 + O(δ3))m(0)

+
(

β + 1

2
II11(0)α2

1 + 1

2
II22(0)α2

2 + O(δ3)

)
n(0)

+ 1

2

∑

i, j

βαiα j∂β∂αi ∂α j φ(0). (3.11)

While the terms βαiα j∂β∂αi ∂α j φ(0) are only of order 3, they are linear in β, and
hence will not influence the integral with respect to μ

σ,ε
x0 up to O(δ4). In the same way

an expression for the proposed transport

T (φ(α1, α2, β)) = φ
(
δ − α1, α2 + O(δ3), β + O(δ3)

)
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can be obtained by making corresponding substitutions for the components in the
above expression for φ(α1, α2, β). Then the pointwise transport vector is

T (φ(α1, α2, β)) − φ(α1, α2, β)

= (δ − 2α1)

×
[(

1 − II11(0)β − 1

6
II11(0)2(δ2 − δα1 + α2

1)

− 1

2
II11(0) II22(0)α2

2 + O(δ3)

)
γ̇ (0)

+ O(δ2)m(0) +
(
1

2
II11(0)δ + O(δ2)

)
n(0)

+ βα2∂β∂α1∂α2φ(0) + 1

2
βδ∂β∂2α1φ(0) + O(δ3)

]

(3.12)

and its magnitude is

‖T (φ(α1, α2, β)) − φ(α1, α2, β)‖ (3.13)

= (δ − 2α1)

(
1 − II11(0)β − 1

6
II11(0)2(δ2 − δα1 + α2

1) − 1

2
II11(0)II22(0)α2

2

+ 1

8
II11(0)2δ2 + βα2〈∂α1∂α2n(0), γ̇ (0)〉 + 1

2
βδ〈∂2α1n(0), γ̇ (0)〉

)
+ O(δ4).

Using the density of the test measure μ
σ,ε
x0 in Fermi coordinates given by (3.10), the

upper bound is

W1(μ
σ,ε
x0 , T∗μσ,ε

x0 )

�
∫

Bσ,ε

‖T z − z‖μσ,ε
x0 (dz)

=
∫

B̃σ,ε

‖T (φ(α, β)) − φ(α, β)‖ (φ−1∗ μσ,ε
x0 )(dα, dβ) + O(δ4)

= δ

(
1 − 1

24
II11(0)2δ2 +

(
1

3
II11(0)2 + 1

3
II11(0) II22(0)

)
σ 2

− 1

8
(II11(0)2 + II11(0) II22(0))ε2

)
+ O(δ4)

= ‖x0 − y‖
(
1 + 1

3
(II11(0)2 + II11(0) II22(0))σ 2

− 1

8
(II11(0)2 + II11(0)II22(0))ε2

)
+ O(δ4).

In the third equality, we plugged in for ‖T (φ(α, β)) − φ(α, β)‖ as computed above
and used that terms of odd order in one of α1, α2, β integrate to 0 and again absorbed

123



Coarse extrinsic curvature of Riemannian submanifolds Page 45 of 65    24 

higher order terms into O(δ4). On the last line, we used that

‖x0 − y‖ = δ

(
1 − 1

24
II11(0)2δ2

)
+ O(δ4).

We proceed with showing the lower bound. Define

p(α2, β) ..= φ(δ, α2, β) − φ(0, α2, β)

‖φ(δ, α2, β) − φ(0, α2, β)‖
and the test function

f (φ(α1, α2, β)) ..= 〈φ(α1, α2, β) − x0, p(α2, β)〉 (3.14)

for the Kantorovich–Rubinstein duality, with the intention of applying Lemma 2.25
to conclude. We first expand

φ(δ, α2, β) − φ(0, α2, β)

= δ

[(
1 − II11(0)β − 1

6
II11(0)δ2 − 1

2
II11(0) II22(0)α2

2

+ 1

3
βδ〈∂2α1n(0), γ̇ (0)〉 + 1

3
βα2〈∂α1∂α2n(0), γ̇ (0)〉 + O(δ3)

)
γ̇ (0)

+ O(δ2)m(0) +
(
1

2
II11(0)δ + O(δ2)

)
n(0)

]
.

Deduce

‖φ(δ, α2, β) − φ(0, α2, β)‖
= δ

(
1 − II11(0)β − 1

24
II11(0)2δ2 − 1

2
II11(0) II22(0)α2

2

+ 1

3
βδ〈∂2α1n(0), γ̇ (0)〉 + 1

3
βα2〈∂α1∂α2n(0), γ̇ (0)〉

)
+ O(δ4),

and therefore

p(α2, β) =
(
1 − 1

8
II11(0)2δ2 + O(δ3)

)
γ̇ (0)

+ O(δ2)m(0) +
(
1

2
II11(0)δ + O(δ2)

)
n(0).

(3.15)

Then it can be verified using expansions (3.12) and (3.15) to compute the inner product
that

f (T z) − f (z) = 〈T (φ(α1, α2, β)) − φ(α1, α2, β), p(α2, β)
〉

= ‖T (φ(α1, α2, β)) − φ(α1, α2, β)‖ + O(δ4)
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by comparison with (3.13).
It remains to show that the magnitude of the gradient of f satisfies

sup
z∈B2δ(x0)

‖∇ f (z)‖ = 1 + O(δ3).

For this we need to expand the inversematrix of themetric in Fermi coordinates. Using
the expansion (3.11), compute

∂α1φ(α1, α2, β) =
(
1 − II11(0)β − 1

2
II11(0)2α2

1 − 1

2
II11(0) II22(0)α2

2

+ 1

3
βα1〈∂2α1n(0), γ̇ (0)〉

+ 1

3
βα2〈∂α1∂α2n(0), γ̇ (0)〉 + O(δ3)

)
γ̇ (0)

+ O(δ2)m(0) + (II11(0)α1 + O(δ2))n(0),

∂α2φ(α1, α2, β) = O(δ2)γ̇ (0) + (1 − II22(0)β + O(δ2))m(0)

+ (II22(0)α2 + O(δ2))n(0),

∂βφ(α1, α2, β) = − (II11(0)α1 + O(δ2))γ̇ (0)

− (II22(0)α2 + O(δ2))m(0) + (1 + O(δ2))n(0).

We shall label the term

r(α) ..= 1

3
α1〈∂2α1n(0), γ̇ (0)〉 + 1

3
α2〈∂α1∂α2n(0), γ̇ (0)〉.

Then the metric matrix has the shape

G =
⎛

⎝
g11 g12 0
g21 g22 0
0 0 1

⎞

⎠

with

g11 = 1 − 2II11(0)β + II11(0)2β2 − II11(0) II22(0)α2
2 + 2βr(α) + O(δ3),

g22 = 1 − 2II22(0)β + O(δ2),

g12 = O(δ2).

Note that the matrix is of the form

G = I + A

with A = O(δ), which means the expansion of its inverse is

G−1 = I − A + A2 + O(δ3).
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We compute

A2 = 4β2

⎛

⎝
II11(0)2 0 0

0 II22(0)2 0
0 0 0

⎞

⎠+ O(δ3),

and thus

g11 = 1 + 2II11(0)β + 3II11(0)2β2 + II11(0) II22(0)α2
2 − 2βr(α) + O(δ3),

g12 = O(δ2),

g22 = 1 + 2β II22(0) + O(δ2).

From (3.15) we deduce the derivatives of the projection vector field in coordinates are

∂α2 p(α2, β) = O(δ2)γ̇ (0) + O(δ)m(0) + O(δ)n(0),

∂β p(α2, β) = O(δ2)γ̇ (0) + O(δ)m(0) + O(δ)n(0).

Then the first derivatives of the test function defined in (3.14) are

∂α1( f ◦φ)(α, β) = 〈∂α1φ(α1, α2, β), p(α2, β)〉
= 1 − II11(0)β − 1

2
II11(0)2α2

1 − 1

2
II11(0) II22(0)α2

2

− 1

8
II11(0)2δ2 + 1

2
II11(0)2δα1 + βr(α) + O(δ3),

∂α2( f ◦ φ)(α, β) = 〈∂α2φ(α1, α2, β), p(α2, β)〉
+ 〈φ(α1, α2, β) − x0, ∂α2 p(α2, β)〉

= O(δ2),

∂β( f ◦φ)(α, β) = 〈∂βφ(α1, α2, β), p(α2, β)〉 + 〈φ(α1, α2, β) − x0, ∂β p(α2, β)〉
= − II11(0)α1 + 1

2
II11(0)δ + O(δ2).

Then the magnitude of the gradient is

‖∇ f (φ(α1, α2, β)‖2 = (g11◦φ)(∂α1( f ◦φ))2 + 2(g12◦φ)∂α1( f ◦φ)∂α2( f ◦φ)

+ (g22◦φ)(∂α2( f ◦φ))2 + (∂β( f ◦φ))2,

123



   24 Page 48 of 65 M. Arnaudon et al.

and we find the individual summands

(g11◦φ)(∂α1( f ◦φ))2 = 1 +
(

− α2
1 + δα1 − 1

4
δ2
)
II11(0)2 + O(δ3),

(g12◦φ)∂α1( f ◦φ)∂α2( f ◦φ) = O(δ3),

(g22◦φ)(∂α2( f ◦φ))2 = O(δ3),

(g33◦φ)(∂β( f ◦φ))2 =
(

α2
1 − δα1 + 1

4
δ2
)
II11(0)2 + O(δ3),

which indeed gives

‖∇ f (φ(α1, α2, β)‖ = 1 + O(δ3)

as the first and second order terms cancel out. Hence Lemma 2.25 applies and we
conclude the lower bound coincides up to O(δ4) with the upper bound. ��

4 General Riemannian submanifolds

We now consider a Riemannian submanifold M of arbitrary dimension m and codi-
mension k embedded isometrically in Rm+k . Theorems 3.10 and 3.16 are thus special
cases of Theorem 4.1 below. We begin by defining an orthonormal frame of Rm+k-
valued vector fields on a sufficiently small open domain U in the submanifold M ,
which is used to define the Fermi coordinates on U in this general setting.

4.1 Frame extension

We take the ambient manifold to be Rm+k . Recall the second fundamental form at a
point x ∈ M is

IIx (w1, w2) = ∇R
m+k

w1
W − ∇M

w1
W for all w1, w2 ∈ TxM,

whereW is an arbitrary local vector field on M withW (x) = w2. The mean curvature
at x is

H(x) =
m∑

j=1

IIx (e j , e j )

for an arbitrary orthonormal basis (e j )mj=1 of TxM . Both IIx (w1, w2) and H(x) are
normal to the submanifold, i.e.

〈IIx (w1, w2), u〉 = 〈H(x), u〉 = 0 for all u ∈ TxM .
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Recall from Definition 2.14 that the Fermi coordinates in M along γ are given by

ψ(α) = expM,γ (α1)

( m∑

j=2

α j e j (α1)

)
,

where (e j (α1)
m
j=1 is the parallel transport along γ of an orthonormal basis (e j (0))mj=1

of Tx0M with e1(0) = γ̇ (0). We refer back to Sect. 2 for properties of the Fermi chart.
Denote α̂ = (α2, . . . , αm) so that α = (α1, α̂). Extend the frame (e j (α1))

m
j=1

defined along α1 �→ γ (α1) to U ⊂ M by imposing

D

ds
e j (α1, sα̂) = 0,

i.e. by parallel translating in M along the geodesic s �→ ψ(α1, sα̂).
Given an initial orthonormal basis (ni )ki=1 of Tx0M

⊥, first extend it to a frame along
γ by requiring that

∂α1〈ni (α1), e j (α1)〉 = 0 and (∂α1ni (α1))
⊥ = 0 for all α1 ∈ (−δ0, δ0).

The first requirement implies

〈∂α1ni (α1), e j (α1)〉 = − 〈ni (α1), ∂α1e j (α1)〉 = − 〈ni (α1), II (e1(α1), e j (α1))〉

which together with the second requirement implies the first order ODE

∂α1ni (α1) = −
m∑

j=1

〈ni (α1), ∂α1e j (α1)〉e j (α1)

= −
m∑

j=1

〈ni (α1), II (e1(α1), e j (α1))〉e j (α1).

(4.1)

The solution exists and is unique by standard ODE theory. Having defined the frame
(ni (α1))

k
i=1 along the geodesic α1 �→ γ (α1), wemay also extend it to the submanifold

by requiring that for every α1 ∈ (−δ0, δ0) and α̂ ∈ B̃m−1
ε0

,

d

ds
〈ni (α1, sα̂), e j (α1, sα̂)〉 = 0 and

(
d

ds
ni (α1, sα̂)

)⊥
= 0 for all s ∈ [0, 1].

Similarly to the above, the first requirement implies that for all j = 1, . . . ,m,

〈
d

ds
ni (α1, sα̂), e j (α1, sα̂)

〉
= −

〈
ni (α1, sα̂),

d

ds
e j (α1, sα̂)

〉
,
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and from the second requirement we conclude the frame satisfies the first order ODE

d

ds
ni (α1, sα̂) = −

m∑

j=1

〈
ni (α1, sα̂),

d

ds
e j (α1, sα̂)

〉
e j (α1, sα̂)

along each geodesic s �→ φ(α1, sα̂) in M .
With these concrete vector fields, recall the Fermi coordinates in R

m+k along γ

adapted to the submanifold M were defined in Definition 2.14 as

φ(α, β) = ψ(α) +
k∑

i=1

βini (α)

and note that φ(α, 0) = ψ(α).
For every α1 ∈ (−δ0, δ0), the map ψ(α1, ·) : B̃m−1

ε0
→ M is the exponential chart

on its image. It is known that the Christoffel symbols vanish at the centre for such
charts, i.e.

∇M
∂αi ψ

∂α j ψ(α1, 0) = 0 for all i, j = 2, . . . ,m.

Moreover, since ∂α j ψ(α1, 0) = e j (α1) for j = 1, . . . ,m is parallel transport of e j (0)
along γ , also

∇M
∂α1ψ∂α j ψ(α1, 0) = 0 for all j = 1, . . . ,m,

noting that γ̇ (α1) = ∂α1ψ(α1, 0).
Denote the components of the second fundamental form with respect to the Fermi

coordinates as

IIi j�(α) = 〈∂α j ∂α�
ψ(α) − ∇M

∂α j ψ
∂α�

ψ(α),ni (α)
〉
.

Note that the first index represents the normal direction and the latter two represent
manifold directions. Then we can write for every j, � = 1, . . . ,m,

∂α j ∂α�
ψ(α1, 0) = ∂α j ∂α�

ψ(α1, 0) − ∇M
∂α j ψ

∂α�
ψ(α1, 0)

=
k∑

i=1

IIi j�(α1, 0)ni (α1, 0).
(4.2)

In addition, (4.1) can be written as

∂α1ni (α1) = −
m∑

j=1

IIi j1(α1)e j (α1).
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Thus the third derivatives with at least one in α1 are

∂α1∂αr ∂α�
ψ(α1, 0) =

k∑

i=1

∂α1(IIir�(α1, 0))ni (α1, 0)

−
k∑

i=1

m∑

j=1

IIir�(α1, 0) IIi j1(α1, 0)e j (α1).

(4.3)

4.2 Main theorem

In the statement of the theorem, IIx0(w1, w2) is the vector of second fundamental
form. In the proof exclusively, IIi j (α, β) denotes the i j-component of the second
fundamental form with respect to the Fermi frame at Fermi coordinates α, β.

Theorem 4.1 Let M be an isometrically embedded submanifold of Rm+k , and γ a
unit speed geodesic in M such that γ (0) = x0 and γ (δ) = y. Let (e j )mj=1 be an
orthonormal basis of Tx0M with e1 = γ̇ (0) and assume that IIx0(e1, e j ) = 0 for all
j = 2, . . . ,m. Then for every σ, ε, δ > 0 sufficiently small with σ ∨ ε � δ/4 it holds
that

W1(μ
σ,ε
x0 , μσ,ε

y ) = ‖y − x0‖
(
1 +

(
σ 2

k + 2
− ε2

2(m + 2)

)
〈IIx0(e1, e1), H(x0)〉

)
+ O(δ4).

Remark 4.2 We point out two special cases:

• If the submanifold has dimension 1 then the condition on the second fundamental
form is trivially satisfied as there are no submanifold directions other than that of
the curve itself. In this case

H(x0) = IIx0(e1, e1) = ∇R
m+k

γ̇ γ̇ (0) = γ̈ (0),

and hence 〈IIx0(e1, e1), H(x0)〉 = ‖γ̈ (0)‖2. This is the square curvature of the
curve and for m = 1, k = 2 agrees with Theorem 3.10.

• If the submanifold has codimension 1 with a normal vector field n on the subman-
ifold, then the orthonormal eigenbasis of 〈IIx0( · , ·),n(x0)〉 satisfies the condition
IIx0(ei , e j ) = 0 for i �= j . Such a basis always exists as IIx0 is symmetric and
consists of the so-called principal curvature directions. Thus for m = 2, k = 1,
we obtain Theorem 3.16 as a special case.

• In general codimension, however, such a basis may not exist for a general subman-
ifold, hence the assumption on the second fundamental form needs to be made and
is highly restrictive.
If this assumption was dropped, the upper bound for the Wasserstein distance
via the proposed transport map would still apply. However, the computation of
the lower bound using a projection plane, as done in the proof of Theorem 3.16
and applied again in the proof below, would yield additional lower order terms
not agreeing with the upper bound. This is symptomatic of the non-optimality of

123



   24 Page 52 of 65 M. Arnaudon et al.

the transport map up to third order. The more general computation including the
off-diagonal terms to show this is straightforward but rather lengthy and is thus
omitted.
Qualitatively, the issue is that the off-diagonal terms of the second fundamental
form introduce adeformationof the supports of the testmeasureswhich is not easily
remedied and leaves the fully general case open. The deformation arises because
the principal curvature directions above the reference point x0 for each leaf of
the foliation of the tubular neighbourhood change their vertical alignment as we
consider leaves further away from the base submanifold M . On the other hand, the
diagonal assumption on the second fundamental form ensures an aligned stacking
of principal curvature directions of leaves above x0, leading to the favourable
cylinder-like support of the test measures.

• For the interpretation of the special case of the parameters ε =
√

2(m+2)
k+2 σ , we

refer back to Remark 3.17.

Proof of Theorem 4.1 Expand the Fermi chart up to and including third order as

φ(α, β) = x0 +
m∑

j=1

α j∂α j φ(0) +
k∑

i=1

βi∂βi φ(0) + 1

2

m∑

j,�=1

α jα�∂α j ∂α�
φ(0)

+ 1

6

m∑

i, j,�=1

αiα jα�∂αi ∂α j ∂α�
φ(0) +

k∑

i=1

m∑

j=1

βiα j∂βi ∂α j φ(0)

+ 1

2

k∑

i=1

m∑

j,�=1

βiα jα�∂βi ∂α j ∂α�
φ(0) + O(δ4).

From the definition of the Fermi chart and (4.2), (4.3), we have the derivatives at the
origin on the right-hand side:

∂α j φ(0) = e j (0), ∂βi φ(0) = ni (0),

∂α j ∂α�
φ(0) =

m∑

i=1

IIi j�(0)ni (0),

∂α1∂α j ∂α�
φ(0) =

k∑

i=1

∂α1(IIi j�(α1, 0))ni (α1, 0) −
k∑

i=1

m∑

r=1

IIi j�(0) IIir1(0)er (0).

With these we obtain:

φ(α, β) = x0 +
m∑

j=1

α j e j (0) +
k∑

i=1

βini (0) + 1

2

k∑

i=1

m∑

r ,�=1

αrα� IIir�(0)ni (0)

− 1

6

m∑

j=1

α3
1 IIi11(0)IIi j1(0)e j (0) − 1

2

m∑

j=1

m∑

�=2

α2
1α� IIi�1(0)IIi j1(0)e j (0)
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− 1

2

m∑

j=1

m∑

�,r=2

α1αrα� IIir�(0)IIi j1(0)e j (0) + 1

6

m∑

i, j,�=2

αiα jα�∂αi ∂α j ∂α�
φ(0)

−
k∑

r=1

m∑

�, j=1

βrα� IIr� j (0)e j (0) + 1

2

k∑

r=1

m∑

l,q=1

βrα�αq∂α�
∂αqnr (0) + O(δ4).

In the above, the sum of third derivative terms in α was split into those that involve
at least one power in α1, for which we have a formula, and those that don’t. The
other third derivatives ∂αi ∂αr ∂α�

φ(0) for i, r , � � 2 are not easily written in Fermi
coordinates, but will not be needed for our computations. Rearranging the terms,
we write φ in terms of the basis (e1(0), . . . , em(0), n1(0), . . . ,nk(0)) and apply the
assumption IIi j1(0) = 0:

φ(α, β) = x0 +
(

α1 −
k∑

r=1

βrα1 IIr11(0) − 1

6
α3
1

k∑

i=1

IIi11(0)2

− 1

2

m∑

�,r=2

α1αrα� IIir�(0) IIi11(0)

+ 1

6

m∑

i, j,�=2

αiα jα�〈∂αi ∂α j ∂α�
φ(0), e1(0)〉 (4.4)

+ 1

2

k∑

r=1

m∑

l,q=1

βrα�αq〈∂α�
∂αqnr (0), e1(0)〉 + O(δ4)

)
e1(0)

+
m∑

j=2

(
α j −

k∑

r=1

m∑

�=2

βrα� IIr� j (0) + O(δ3)

)
e j (0)

+
k∑

i=1

(
βi + 1

2
α2
1 IIi11(0) + 1

2

m∑

r ,�=2

αrα� IIir�(0) + O(δ3)

)
ni (0).

We will henceforth denote

ri (α) ..= 1

2
α1〈∂2α1ni (0), e1(0)〉 +

m∑

�=2

α�〈∂α�
∂α1ni (0), e1(0)〉.

Let T be the transport map defined in Definition 2.18. With asymptotic notation for
the third order terms,

T (φ(α1, α̂, β)) = φ(δ − α1, α̂, β + O(δ3)).

In the expansion of φ above, from the third derivatives in α we only needed to specify
those involving α1, because the transport map T changes only the first coordinate up
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to O(δ3). These derivatives were given by (4.3). Then the pointwise transport vector
is

T (φ(α, β)) − φ(α, β)

= φ(δ − α1, α̂ + O(δ3), β + O(δ3)) − φ(α, β)

= (δ − 2α1)

[(
1 − 1

6
(δ2 − δα1 + α2

1)

k∑

i=1

IIi11(0)2

− 1

2

k∑

i=1

m∑

r ,�=2

αrα� IIir�(0)IIi11(0)

−
k∑

i=1

βi IIi11(0) +
k∑

i=1

βi ri (α) + O(δ3)

)
e1(0)

+
m∑

j=2

O(δ2)e j (0) +
k∑

i=1

(
δ

2
IIi11(0) + O(δ2)

)
ni (0)

]
.

(4.5)

Therefore, using the expansion
√
1 + x = 1 + 1

2 x − 1
8 x

2 + O(x3), the pointwise
transport distance is

‖T (φ(α, β) − φ(α, β)‖

= (δ − 2α1)

(
1 − 1

6
(δ2 − δα1 + α2

1)

k∑

i=1

IIi11(0)2

− 1

2

k∑

i=1

m∑

r ,�=2

αrα� IIir�(0)IIi11(0)

+ δ2

8

k∑

i=1

IIi11(0)2 −
k∑

i=1

βi IIi11(0) +
k∑

i=1

βi ri (α) + O(δ3)

)
.

(4.6)

Lemma 2.17 expressed the density of the test measure μ
σ,ε
x0 in Fermi coordinates up

to second order. Denoting the second order remainder of the density as r(α, β), the
density simplifies to give

(φ−1∗ μσ,ε
x0 )(dα, dβ)

=
1B̃σ,ε

(α, β)
∫
B̃σ,ε

(1 + r(α′, β ′))(φ−1∗ μ
σ,ε
x0 )(dα′, dβ ′)

×
(
1 −

k∑

i=1

m∑

j=1

βi IIi j j (0) + r(α, β)

)
dαdβ,

(4.7)
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where the form of the normalizing factor in the denominator is deduced from the two
facts

∫

B̃σ,ε

k∑

i=1

m∑

j=1

βi IIi j j (0) d(φ−1∗ μσ,ε
x0 )(α, β) = 0,

∫

B̃σ,ε

d(φ−1∗ μσ,ε
x0 )(α, β) = 1.

We deduce the upper bound in the statement of Theorem 4.1 by computing the integral
on the right side of the inequality

W1(μ
σ,ε
x0 , μσ,ε

y ) �
∫

B̃σ,ε

‖T (φ(α, β) − φ(α, β)‖ (φ−1∗ μσ,ε
x0 )(dα, dβ)

up to and including third order terms. Using the product of expressions (4.7) and (4.6),
this amounts to integrating a quadratic polynomial in α, β. First, as terms with odd
power in one of the coordinates vanish, we simplify the integral to

∫

B̃σ,ε

‖T (φ(α, β) − φ(α, β)‖ (φ−1∗ μσ,ε
x0 )(dα, dβ)

= δ

∫

B̃σ,ε

(
1 − δ2

6

k∑

i=1

IIi11(0)2 + 1

2

m∑

j=1

α2
j

k∑

i=1

(
IIi j1(0)2 − IIi11(0)IIi j j (0)

)

+
k∑

i=1

β2
i

( m∑

j=1

IIi11(0)IIi j j (0) + 1

2

m∑

j=2

IIi j1(0)2
))

dα dβ + O(δ4).

We now use the fact that the average integral of the square of any coordinate over a
d-dimensional ball of arbitrary radius r > 0 is

−
∫

Bd
r

x2i dx1 . . . dxd = 1

|Bd
r |d

∫ r

0
|∂Bd

s |s2ds = 1

rd

∫ r

0
sd+1ds = r2

d + 2
,

where −
∫
Bd
r
denotes the integral normalised by the volume of the ball and using that

|Bd
r | = πd/2

�(d/2 + 1)
rd , |∂Bd

s | = 2πd/2

�(d/2)
sd−1.

This in particular gives

−
∫

B̃σ,ε

α2
j dα dβ = ε2

m + 2
, −
∫

B̃σ,ε

β2
i dα dβ = σ 2

k + 2
.
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Then

∫

B̃σ,ε

‖T (φ(α, β) − φ(α, β)‖ (φ−1∗ μ
σ,ε
x0 )(dα, dβ)

= δ

(
1 − δ2

24

k∑

i=1

IIi11(0)
2 +

(
σ 2

k + 2
− ε2

2(m + 2)

) k∑

i=1

m∑

j=1

IIi11(0) IIi j j (0)
)

+ O(δ4)

= δ

(
1 − δ2

24

k∑

i=1

IIi11(0)
2 +

(
σ 2

k + 2
− ε2

2(m + 2)

)
〈IIx0 (e1, e1), H(x0)〉

)
+ O(δ4).

Furthermore, from (4.6) for α = 0, β = 0 we deduce

‖x0 − y‖ = δ

(
1 − δ2

24

k∑

i=1

IIi11(0)2
)

+ O(δ4).

Therefore, we can rewrite in terms of the Euclidean distance:

W1(μ
σ,ε
x0 , μ

σ,ε
y ) �

∫

B̃σ,ε

‖T (φ(α, β) − φ(α, β)‖(φ−1∗ μ
σ,ε
x0 )(dα, dβ)

= ‖x0 − y‖
(
1 +

(
σ 2

k + 2
− ε2

2(m + 2)

)
〈IIx0 (e1, e1), Hx0 〉)

)
+ O(δ4).

We now address the lower bound. Denoting

p(α̂, β) ..= φ(δ, α̂, β) − φ(0, α̂, β)

‖φ(δ, α̂, β) − φ(0, α̂, β)‖ ,

emphasizing that this vector does not depend on α1, we propose

f (φ(α, β)) ..= 〈φ(α, β) − x0, p(α̂, β)〉

as the test function for Kantorovich–Rubinstein duality, with the intention of applying
Lemma 2.25 to conclude the upper bound is also a lower bound up to O(δ4). We
deduce from (4.5) that

p(α̂, β) =
(
1 − δ2

8

k∑

i=1

IIi11(0)2 + O(δ3)

)
e1(0)

+
m∑

j=2

O(δ2)e j (0) +
k∑

i=1

(
δ

2
IIi11(0) + O(δ2)

)
ni (0).

(4.8)
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Then it can be verified, using the expansions (4.5) and (4.8) to compute the inner
product up to and including third order terms, that

f (T (φ(α, β))) − f (φ(α, β)) = 〈T (φ(α, β)) − φ(α, β) + O(δ4), p(α̂, β)
〉

= ‖T (φ(α, β)) − φ(α, β)‖ + O(δ4)

by comparison with (4.6).
Finally, wewish to compute the squaremagnitude of the gradient of the test function

in order to verify that its supremum over B2δ(x0) is 1 + O(δ3) for Lemma 2.25 to
apply. For this we need to establish the Riemannian metric in Fermi coordinates gi j =
〈∂αi φ, ∂α j φ〉. The first derivatives of the Fermi chart are deduced by differentiating
(4.4) as

∂α1φ(α, β) =
(
1 −

k∑

i=1

βi IIi11(0) − 1

2

k∑

i=1

m∑

r ,�=2

αrα� IIir�(0)IIi11(0) + O(δ3)

)
e1(0)

+
m∑

�=2

O(δ2)e�(0) +
k∑

i=1

(α1 IIi11(0) + O(δ2))ni (0),

∂α j φ(α, β) =
m∑

�=2

(
δ� j −

k∑

i=1

βi IIi� j (0) + O(δ2)

)
e�(0)

+
k∑

i=1

( m∑

�=2

α� IIi� j (0) + O(δ2)

)
ni (0) for 2 � j � m,

∂βi φ(α, β) = −
m∑

j=2

( m∑

�=2

α� IIi� j (0) + O(δ2)

)
e j (0) +

k∑

r=1

(δir + O(δ2))ni (0).

Then the entries of the inverse metric matrix are computed from these to be

g11(φ(α, β)) = 1 − 2
k∑

i=1

βi IIi11(0) +
k∑

i,r=1

βiβr IIi11(0)2

−
k∑

i=1

m∑

r ,�=2

αrα� IIir�(0)IIi11(0) + O(δ3),

g j�(φ(α, β)) = δ j� − 2
k∑

i=1

βi IIi� j (0) + O(δ2) for j, � � m,

gi j (φ(α, β)) = O(δ2) for m + 1 � i � m + k, j � m,

gir (φ(α, β)) = 〈ni (α),nr (α)〉 = δir for m + 1 � i, r � m + k.

Note that ∂α1φ and g11 needed to be expanded up to second order due to the particular
role of the first coordinate. For the rest, expansion up to first order is sufficient. The
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above means the metric matrix has the block structure

G =
(

(g j�) j,��m O(δ2)

O(δ2) Ik

)
.

In particular, denoting

a j� = − 2
k∑

i=1

βi IIi j�(0),

b =
m∑

�=1

k∑

i,r=1

βiβr IIi�1(0) IIr�1(0) −
k∑

i=1

m∑

r ,�=2

αrα� IIir�(0) IIi11(0)

and the matrix

A =

⎛

⎜⎜⎜⎜⎝

a11 + b + O(δ3) O(δ2) . . . O(δ2)

O(δ2) a22 + O(δ2)
...

...
. . .

O(δ2) . . . amm + O(δ2)

⎞

⎟⎟⎟⎟⎠
,

having used that a1 j = 0 for j = 2, . . . ,m as IIi j1(0) = 0 by assumption, we can
write

G = Im+k +
(

A O(δ2)

O(δ2) 0

)
.

Noting that the second matrix is O(δ), the expansion of its inverse is

G−1 =
(
Im − A + A2 + O(δ3) O(δ2)

O(δ2) Ik + O(δ4)

)

due to the block structure. Computing

(A2) j� =
m∑

q=1

a jqa�q + O(δ3) = 4
m∑

q=1

k∑

i,r=1

βiβr IIi jq(0)IIr�q(0) + O(δ3),

we deduce

g11(φ(α, β)) = 1 − a11 + a211 − b + O(δ3)

= 1 + 2
k∑

i=1

βi IIi11(0) + 3
k∑

i,r=1

βiβr IIi11(0)IIr11(0)

+
k∑

i=1

m∑

j,�=2

α jα� IIi j�(0) IIi11(0) + O(δ3)
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by plugging in for a j� and b, and also

g j�(φ(α, β)) = δ j� + 2
k∑

i=1

βi IIi j�(0) + O(δ2) for all j, l � m.

We remark that for j, � � 2 the expansion of g j� up to the linear term suffices for the
computations to follow, while the expansion of g11 up to second order is necessary.

We now compute the expansions of the derivatives of the test function. The first
derivatives of the projection vector field in coordinates can be computed from (4.8)
as

∂α j p(α̂, β) = O(δ) for all 2 � j � m,

∂βi p(α̂, β) = O(δ) for all 1 � i � k.

Then computing the inner products, using (4.4) for the derivatives of the chart,

∂α1( f ◦φ)(α, β) = 〈∂α1φ(α, β), p(α̂, β)〉

= 1 −
k∑

i=1

βi IIi11(0) − 1

2

k∑

i=1

m∑

j,�=2

α jα� IIi j�(0)IIi11(0)

+ α1δ

2

k∑

i=1

IIi11(0)2 − δ2

8

k∑

i=1

IIi11(0) + O(δ3),

and for 2 � j � m,

∂α j ( f ◦φ)(α, β) = 〈∂α j φ(α, β), p(α̂, β)〉 + 〈φ(α, β) − x0, ∂α j p(α̂, β)〉 = O(δ2),

and for i � k,

∂βi ( f ◦φ)(α, β) = 〈∂βi φ(α, β), p(α̂, β)〉 + 〈φ(α, β) − x0, ∂βi p(α̂, β)〉
= − α1 IIi11(0) + δ

2
IIi11(0) + O(δ2).

We wish to compute

‖∇ f (φ(α, β))‖2 =
m∑

j,�=1

g j�(φ(α, β))∂α j ( f ◦φ)(α, β)∂α�
( f ◦φ)(α, β)

+ 2
k∑

i=1

m∑

j=1

gm+i, j (φ(α, β))∂βi ( f ◦φ)(α, β)∂α j ( f ◦φ)(α, β)

+
k∑

i=1

(∂βi ( f ◦φ)(α, β))2.
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The individual summands are

(g11◦φ)(∂α1( f ◦φ))2 = 1 −
(

α2
1 − α1δ + δ4

4

) k∑

i=1

IIi11(0)2 + O(δ3),

(g j�◦φ)∂α j ( f ◦φ)∂α�
( f ◦φ) = O(δ3) for 1 � j � m, 2 � � � m,

(gm+i, j ◦φ)∂βi ( f ◦φ)∂α j ( f ◦φ) = O(δ3) for i � k, j � m,

(∂βi ( f ◦φ))2 =
(

α2
1 − α1δ + δ4

4

)
IIi11(0)2 + O(δ3), i � k.

All first and second order terms vanish upon summation, hence we may conclude that
‖∇ f (φ(α, β))‖2 = 1 + O(δ3) as required. ��

5 Applications

5.1 Poisson point processes onmanifolds

In applications one may wish to recover curvature information from coarse curvature
of a random point cloud represented by a Poisson point process. Such an approach has
already been investigated in [18] and [2] for the Ricci curvature and generalised Ricci
curvature, respectively.

We first recall the definition of a Poisson point process. Let (X,B, μ) be a σ -finite
measure space, M(X) the set of measures on X and (�,F,P) a probability space.

Definition 5.1 A Poisson point process on X with intensity measure μ is a random
measure P : �×B → [0,∞] (equivalently P : � → M(X)) such that the following
three properties hold:

• For all μ-finite measurable sets A ∈ B: P( · , A) is a Poisson(μ(A)) random
variable.

• For all disjoint, measurable μ-finite sets A, B ∈ B: P( · , A) and P(· , B) are
independent random variables.

• For all ω ∈ �: P(ω, ·) is a measure on X.

It turns out (see [20, Chapter 6]) that all Poisson point processes with a finite
intensity measure take the form of a random empirical measure, i.e.

P(ω, ·) =
N (ω)∑

i=1

δXi (ω)

where N is a Poisson(μ(X)) random variable, (Xi )i∈N are independent μ-distributed
random variables on X and (Xi )i∈N, N are independent. Denote the random set of
points thus generated by P as

V(ω) = {Xi (ω) : 1 � i � N (ω)}.

123



Coarse extrinsic curvature of Riemannian submanifolds Page 61 of 65    24 

Notation 5.2 Let (Pn)n∈N be a sequence of Poisson point processes on the ambi-
ent space Rm+k with uniform intensity measure nvolRm+k (dz). Denote by Vn(ω) ⊂
R
m+k the discrete random set of points generated by Pn . Let x0 ∈ M , (δn)n∈N,

(σn)n∈N, (εn)n∈N sequences of positive reals and yn ..= expx0(δnv) for a fixed unit
vector v ∈ Tx0M . As the discrete counterpart to the test measures μ

σ,ε
x , for any point

x ∈ M denote the random empirical measures adapted to the submanifold,

ησn ,εn
x (z) =

{
1

#(Bσn ,εn (x)∩Vn)
if z ∈ Bσn ,εn (x) ∩ Vn,

0 otherwise.

If σn ∨ εn � δn/4 then Bσn ,εn (x0) ∪ Bσn ,εn (yn) ⊂ x0 + [−2δn, 2δn]m+k .

Using the following result proved in [18, Corollary 3], it is possible to quantify
the approximation of the test measures by the empirical measures in the Wasserstein
metric:

Lemma 5.3 For all n ∈ N, it holds that

sup
x∈Bδn (x0)

E[W1(η
σn ,εn
x , μσn ,εn

x )] = O
(
log(n)n− 1

m+k
)
. (5.1)

Wemay then deduce that coarse curvature of point clouds with the empirical measures
as test measures has the same limit as coarse extrinsic curvature if the intensity of the
point process increases fast enough relative to the parameter δn . Denote

κ̂σn ,εn (x0, yn) = 1 − W1(η
σn ,εn
x0 , η

σn ,εn
yn )

δn
, κσn ,εn (x0, yn) = 1 − W1(μ

σn ,εn
x0 , μ

σn ,εn
yn )

δn
.

This leads immediately to a corollary of Theorem 4.1:

Proposition 5.4 Under the assumptions of Theorem 4.1, if the sequences (δn)n∈N,
(σn)n∈N and (εn)n∈N satisfy σn ∨ εn � δn/4 and log(n)n− 1

m+k = o(δ3n), then

lim
n→∞

1

δ2n
E

[∣∣∣∣ κ̂σn ,εn (x0, yn) −
(

ε2n

2(m + 2)
− σ 2

n

k + 2

)
〈IIx0(e1, e1), H(x0)〉

∣∣∣∣

]
= 0.

Proof By the triangle inequality and (5.1),

E
[|κ̂σn ,εn (x0, yn) − κσn ,εn (x0, yn)|

]

= 1

δn
E
[|W1(η

σn ,εn
x0 , ησn ,εn

yn ) − W1(μ
σn ,εn
x0 , μσn ,εn

yn )|]

� 1

δn
E
[
W1(η

σn ,εn
x0 , μσn ,εn

x0 ) + W1(η
σn ,εn
y , μσn ,εn

y )
]

= 1

δn
O
(
log(n)n− 1

m+k
) = o(δ2n).
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At the same time, from Theorem 4.1 we have

κσn ,εn (x0, yn) =
(

ε2n

2(m + 2)
− σ 2

n

k + 2

)
〈IIx0(e1, e1), H(x0)〉,

which gives the final result upon substitution and taking the limit as n → ∞. ��

5.2 Retrievingmean curvature

Theorem 4.1 could in practice be exploited in the two settings already alluded to in
the introduction, which considered the planar curve case for illustrative purposes. In
the scope of generality of Theorem 4.1, we have

lim
σ,ε�δ/4

δ→0

(
ε2

2(m + 2)
− σ 2

k + 2

)−1(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y )

‖y − x0‖
)

= 〈IIx0(e1, e1), H(x0)〉.

In particular, we may distinguish two limit regimes:

• Assuming σ = �(δ) and ε = o(σ ),

− lim
δ→0

k + 2

σ 2

(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y )

‖y − x0‖
)

= 〈IIx0(e1, e1), H(x0)〉.

This represents a situationwhere one canobtain a sample from the ambientmeasure
in a tubular neighbourhood of the surface. Decreasing ε corresponds to localization
of the geometric information thus retrieved.

• Assuming ε = �(δ) and σ = o(ε),

lim
δ→0

2(m + 2)

ε2

(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y )

‖y − x0‖
)

= 〈IIx0(e1, e1), H(x0)〉.

In this case, we have a noisy sample from the surface and obtain convergence of
the coarse extrinsic curvature under attenuation of the noise as σ decreases.

Note that these expressions depend on the vector v with yδ = expM,x0(δv). We
can remove this directionality by adding up coarse curvatures in all directions of an
orthonormal frame at x0, thus obtaining an expression involving the mean curvature.

Denote the square norm of the mean curvature vector as

‖H(x0)‖2 =
k∑

i=1

〈H(x0),ni (x0)〉2

for an arbitrary orthonormal basis (ni (x0))ki=1 of the normal space Tx0M
⊥ ⊂ Tx0N .
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Corollary 5.5 Let (e j )mj=1 be an orthonormal basis of Tx0M, and for j = 1, . . . ,m,
let y j = expM,x0(δe j ). Assume that IIx0(ei , e j ) = 0 for i �= j . Then for all σ, ε, δ > 0
sufficiently small with σ ∨ ε � δ/4 it holds that

m∑

j=1

(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y j )

‖x0 − y j‖
)

=
(

ε2

2(m + 2)
− σ 2

k + 2

)
‖H(x0)‖2 + O(δ3).

Proof We express the coarse curvatures using the expansion of Theorem 4.1 and
sum up, noting that j = 1, . . . ,m indexing each direction plays the role of the first
coordinate,

m∑

j=1

(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y j )

‖x0 − y j‖
)

=
(

ε2

2(m + 2)
− σ 2

k + 2

) m∑

j=1

〈IIx0(e j , e j ), H(x0)〉 + O(δ3)

=
(

ε2

2(m + 2)
− σ 2

k + 2

)
‖H(x0)‖2 + O(δ3),

completing the proof. ��
This implies that given the family of coarse curvatures

{
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y j )

‖x0 − y j‖ : σ, ε, δ > 0, j = 1, . . . ,m

}
,

one can retrieve the square magnitude of the mean curvature vector of the surface at
x0 as

lim
σ,ε�δ/4

δ→0

(
ε2

2(m + 2)
− σ 2

k + 2

)−1 m∑

j=1

(
1 − W1(μ

σ,ε
x0 , μ

σ,ε
y j )

‖x0 − y j‖
)

= ‖Hx0‖2.

In conclusion, we introduced the notion of coarse extrinsic curvature of Riemannian
submanifolds embedded isometrically in a Euclidean space and verified that in a
scaled limit of the parameters we retrieve meaningful geometric information about the
submanifold. As illustrative examples, in the case of a curve we retrieve the inverse
squared radius of the osculating circle at a given point, while in the case of a 2-surface
we obtain an expression in terms of the second fundamental form and mean curvature.
Such coarse extrinsic curvatures can be combined to yield the square magnitude of
the mean curvature as a scaled limit.
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