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Riemannian medians and means with applications
to radar signal processing

Marc Arnaudon, Frédéric Barbaresco and Le Yang

Abstract—We develop a new geometric approach for this direction and then receive echoes. For each echo we
high resolution Doppler processing based on the Rieman- measure its amplitude and phasep, so that it can be
nian geometry of Toeplitz covariance matrices and the represented by a complex numbef?. As a result, the
notion of Riemannian p-means. This paper summarizes qgina| radar observation value of each cell is a complex
briefly our recent work in this direction. First of all, we vectorz = (zo,...,zn_1), wheren is the number of

introduce radar data and the problem of target detection. di itted | h t Intuitivel i ti
Then we show how to transform the original radar data radio waves emitted in each gust. Intuitively, a target 1

into Toeplitz covariance matrices. After that, we give our @n object whose behavior on reflectivity or speed is very

results on the Riemannian geometry of Toeplitz covariance different from its environment. Now the aim of target
matrices. In order to compute p-means in practical cases, detection is to know, according to the above observation

we propose deterministic and stochastic algorithms, of values, whether there are targets at the locations of some
which the convergence results are given, as well as the ratecells in the fixed direction.
of convergence and error _estimatgs. Finallly, we propose @ The fundamental difference between our detection
new detector based on Riemannian median and show its hethod and the classical FFT-CFAR method (see e.g.
advantage over the existing processing methods. [23]) is that, instead of using directly the original
Index Terms—median, mean, Toeplitz covariance ma- observation value: of each cell, we regard it as a
trices, radar signal processing, Riemannian manifold realization of a centered stationary Gaussian process and
identify it with its covariance matrixk,, = E[zz]. In
other words, the new observation value for each cell
is a covariance matrix, which is also Toeplitz due to
In recent years, it becomes more and more infhe stationarity of the process. Then our new detection
portant to improve the detection performance of PBrocedure can be formulated as follows (see Fig.1): for
(Pulsed Doppler) radar in perturbed environment amrgch cell under test, we compute the distance between
with smaller bunch of pulses. However, the classical FRfie covariance matrix of the cell and the average matrix
(Fast Fourier Transform) based CFAR (Constant Falgethe covariance matrices of the reference cells around
Alarm Rate) detection procedures (see e.g. [23]) aite cell, if this distance is greater than some threshold,
not very satisfactory due to their low resolution issueghen we can conclude that there is a target at the location
In order to overcome these drawbacks we propose dfithe cell under test.
this paper a new CFAR detection procedure based on
nonlinear statistics of radar Toeplitz covariance matrice _Radarcalls
Before explaining our main idea, we briefly introduc_I_I] L ..TTTTTTTDDD
pute
Distance

. INTRODUCTION

the radar data which we intend to analyze and tl
problem of target detection. For simplicity, we only
consider one fixed direction in which a radar sends rac
waves and we subdivide this direction into a number
cells. The radar sends each time a gust of radio waves BB et [l v ot [T menoe of et [ conro e

> Threshold
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covariance matrices and the third one is how to defipeecisely, letR; be thek-th order principle submatrix
the average matrix of Toeplitz covariance matrices awod R,,, then the explicit expression of is given by
_how to_compute it. The first ques_,tion will be answered . det Sy % k41

in Section Il through autoregressive models, the second = (—1) det Ry’ 1 i >
one will be answered in Section Il by giving Toeplitz k B
covariance matrices a Riemannian structure and last dfeth® Submatrix of 2., obtained by deleting the
will be answered in Section IV by studying themeans first row and the last column. On t_he_ other hand, if
of probability measures on Riemannian manifolds. Fi£0: #1;- -+ kn-1) € RY x D1, then its Inverse image
nally, it will be shown in Section V that, as far as radafi» undere can be calculated by the following algorithm:
target detection is concerned, the median matrix (i.e.
p = 1) is the most advisable choice for the average
matrix of reference cells and this choice leads to & = —hPr1+ai_Je 1R ok, 2<k<n-—1,
new OS-HDR-CFAR detector, whose advantage will Rghere

illustrated through numerical experiments.

where S, = Rk+1<

ro =Py, m=-FPyu,

- 0 01
[l. TOEPLITZ COVARIANCE MATRICES AS RADAR ap_1=| |, 1= 0 ... 10 ,
OBSERVATION VALUES Tk-—l ) 00
In this section, we show how to transform the original
radar data into Toeplitz covariance matrices via reflectiGid b1
coefficients, for which an estimation method is also P, = P, H(l — ). (1)
given. More details can be found in [12], [13] and [27]. PRl

_ _ _ _ Since ¢ is a diffeomorphism, the covariance matrix
A. Toeplitz covariance matrices parameterized by reflegsn pe parameterized by reflection coefficients, which

tion coefficients via autoregressive model has a crucial advantage that, under this reparametriza-
As stated in Section I, the original observation valugon, the Riemannian metric that we will give t&,
of each radar cell is a complex vectoe (zg,...,z,-1) is diagonal. This means that the Riemannian distances
which is assumed to be a realization of a centered stati@md geodesics admit simple closed form formulae, which
ary Gaussian process = (Zy,...,Z,—1). Moreover, make our algorithms for computingmeans applicable.
we assume that the covariance matrix Consequently, instead of estimating the covariance ma-
ro  TL ... Tp-i1 trix R,, it suffices to estimate the reflection coefficients
roTo ... Tp_o (ro,p1,- .., pn—1) according to the original radar ob-
R,=E[ZZ*|=| . . . . servation valu€z, ..., z,_1). This can be achieved by
: R using the regularized Burg algorithm, to which we now
rm—1 ... T To turn.

is strictly positive definite, where, = E[ ZyZ;.]. Now
for 1 < k <1 <n—1, the k-th order autoregressiveB. Reflection coefficients estimation by regularized Burg
estimate o7, is given byZ; = — 25:1 CLg—k)Zl_j , Where algorithm

the autoregressive coeﬁiciemgc),...,a,gk) are chosen  The regularized Burg algorithm (see [10] and [11])
such that the mean squared erly = E|Z, — Z)|*> s an alternative Bayesian composite model approach to
is minimized. The last autoregressive coefficie ) is spectral estimation. The reflection coefficients, defined
called thek-th reflection coefficienand is denoted by,.. in the classical Burg algorithm are estimated through
Observe that the classical Levinson’s recursion (see eagregularized method, based on a Bayesian adaptive
[24]) yields |ux| < 1, hence we obtain a map betweespectrum estimation technique, proposed by Kitagawa
two open submanifolds dR?"~!: and Gersch, who use normal prior distributions ex-
pressing a smoothness priors on the solution.With these
priors, autoregressive spectrum analysis is reduced to a
where7,, is the manifold of Toeplitz Hermitian positiveconstrained least squares problem, minimized for fixed
definite matrices of order andD = {¢ € C: || < 1} tradeoff parameters, using Levinson recursion between
is the open unit disk of the complex plane. autoregressive parameters. Then, a reflection coefficient
Using the Cramer’s rule and the method of Schur coris calculated, for each autoregressive model order, by
plement we can show that is a diffeomorphism. More minimizing the sum of the mean-squared values of the

o: T, — RixD" ' R, (ro,pi1, ., ln-1),
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forward and backward prediction errors, with spectréFy, 1, ..., u,—1), but also the autoregressive coeffi-
smoothness constraints. Tradeoff parameters balancegisnts (agn‘l), . ,ag”_‘ll)), and the last mean squared
timate of the autoregressive coefficients between inéirror P,_; follows easily by (1). Hence the power
delity to the data and infidelity to the frequency domaigpectral density function of the autoregressive model is
smoothness constraint. This algorithm conserves lattisgplicitly given by
structure advantages, and could be brought in widespread P
use with a multi-segment regularized reflection coef-S(f) = ol
ficient version. The regularized Burg algorithm lattice

structure offers implementation advantages over tapped lat i ) e of
delay line filters because they suffer from less round- d:ﬁor ater usage, we confinue to give an example o

noise and less sensitivity to coefficient value perturbglpec'[ra visualization. To this end, we fix a direction and
subdivide its range into 200 cells, in which we insert

|1 _ Z;% a](gn_l) —27l7rkf|27

tions. ) .
We briefly summarize the regularized Burg algorithrﬂNo targets. For each cell, we simulate an autoregressive
as follows: process of orde7 and regard it as the echo of the cell.
Initializatidn' As a result, the original radar observation value of each
' cell is a complex vecto(z,...,z7). Then according
ék) = b(()k) =z, k=0,...,n—-1; to previous analysis, for each cell we have a spectral
1 function given by (2), all these functions are visualized in
= — Z z|* and a(()o) =1. Fig. 2, where the: axis represents the cells and thaxis
represents the frequengyin (2), the spectra function
lteration: fori = 1,...,n — 1 S(-) of each cell corresponds to a colored vertical line
and the value5( f) for a specified frequency is indicated
2 (k (k 1) ; (, 1)\ by the colorimetric on the right.
R (=P o LU W s
k=i+1
Frequency Initial spectra
/< Z |f2 1|2+|b |2+2Zﬁk |a(Z Y > 130
k i+1 120
where N
100
B = @m)* (k= i)? ;
. Target 2— 80
a(()l) =1, 70
al(cl) = al(cl_l) + ,ulaz('l__kl)v k= 17 )t — 17 Ll F
. 50
agl) = K, 40
and Cells
k k
fi( )= fi(—)l + b
b,(k) = b,(lizl) + ifi—l' Fig. 2. Initial spectra of simulated data.

Thanks to the above regularized Burg algorithm, we
can easily estimate the reflection coefficients of every
radar cell according to the original radar observation
values.

[Il. RIEMANNIAN GEOMETRY OF TOEPLITZ
COVARIANCE MATRICES

Thanks to the reflection coefficients, we can regard
7,, as a Riemannian manifold whose metric, which is

C. Visualization of autoregressive spectra
introduced in [13] through the Hessian of the Kahler
As another important application of the regL‘Ia”ZeHotenUal

Burg algorithm, we proceed to show how to apply it to ®(R,) = — In(det Ry,)

visualize the autoregressive spectra, which are closely ’

related to the speed of targets. According previous angl-given by

ysis, we have in fact for each radar cell an autoregressive )

model of ordem — 1 and the regularized Burg algorithm ds? = n_ + Z || , (3)
allows us to determine not only the reflection coefficients 1 — |p]?)?
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where (Po, pt1, .-y pin—1) = @(Ry,). A. Riemanniarp-means

This metric is a Bergman type metric and it is Shown | ot 77 be a Riemannian manifold whose sectional
in [27] that this metric is not equal to the FiSheEurvaturesK(a) verify —32 < K(o) < o2, where
information metrlc_ of7,,. But J. Burbea and C. R-a,ﬂ are positive numbers. Denote pythe Riemannian
Rao have proved in [20, Theorem 2] that the Bergmafistance on\/. Let B(a,r) be an open geodesic ball in

metric and the Fisher information metric do coincide fo, and . be a probability measure with support included
some probability density functions of particular forms. A, p(4, ). Fix p € [1,00). We will always make the
similar potential function was used by S. Amari in [3] tGg|lowing assumptions orfr, p, 11): the support ofy is
derive the Riemannian metric of multi-variate Gaussig{yt reduced to one point. Either> 1 or the support of
distributions by means of divergence functions. 1 is not contained in a line. The radiussatisfies

With the metric (3) the spac®’ x D" ! is just
the product of the Riemannian manifol@R’_, ds3) and v smin {inj(M), &}, if 1<p<2
(D, ds%)lgkgn—la where “p % min {an(M) ﬂ} s if p > 2,

Yo

ds? = nd_Po2 and ds? = (n — k) |dp|? . whereinj(M) is the injectivity radius ofM.
2 (1 — |ugl?)? It has been proved in [1, Theorem 2.1] that the
The latter is justn — k times the classical Poincargunction
metric of D. Hence (R} x D""! ds?) is a Cartan- H,: M — R,
Hadamard manifold whose sectional curvatukeserify
—4 < K < 0. The Riemannian distance between two T /Mpp(w’y)”(dy)

different pointsz andy in R: x D 's given by has a unique global minimizetr, in A, the p-meanof

n-l 1/2 w, and moreoveg, € B(a,r). Particularly,e; and ey
d(z,y) = <7W(R QP2+ > (n— k)7 (s, Vk)2> . are themedianand themeanof ., respectively.
k=1 Remark:Wheny is not necessarily compactly supported,
wherex = (P, pi1, ...y pin-1), ¥y = (Q, V1, ..., Vn_1), the almost sure uniqueness @imeans wherp > 1 is
ey provgd in [9]. Moreove_r, to our knovv'ledge, the most
o(P,Q) = |ln(%)| and 7 (ju, i) = 5 n 1V—;iwk . Pprecise re_sult on the existence of a Fréchet mean on the
1- hfﬁﬁ’ circle is given in [21].
Remark: The existence and uniqueness means in
Finsler geometry are proved in [7], where algorithms
for computingp-means in Finslerian case are also de-
o(P,Q) 7(p1, 1) veloped.
V(s w.y) = (fm( d(z,y) 8): d(z,y) 8o Remark:We do not consider the circum-centeg, of 1
T(tn—1,Vn—1) in this paper. Nevertheless, interested readers can find in
W >7 [6] a simple deterministic algorithm for computing the
circum-centers of probability measures in Riemannian

The geodesic fromx to y in 7,, parameterized by arc
length is given by

’Yn—l(

wherey(t) = Petsen(Q@=P) and forl < k <n —1, manifolds.
0 (s + €04)e2t + (g — ei0) In order to give thedct;gracterlzatlonspfneans, for
M(t) = (L + fne®)e® + (1 — fipee)’ everyz € B(a,r), we define
_ -1
with 6, = arg L2t / ZOPs Y ), it p=1;
m\{zy PT,Y)
V. DETERMINISTIC AND STOCHASTIC ALGORITHMS Gplx) = .
FOR COMPUTINGRIEMANNIAN p-MEANS p | PPNz y)—expx yu(dy) it p>1.
This section is devoted to introducing the notion M plz.y)

of Riemannianp-means. The existence and uniquene#isis easily seen that ip > 1, thenG,(z) is simply the
results are given. Deterministic and stochastic algorsthrgradientvector of H,, atz ande,, is the unique point
for computingp-means are developed and are tested B(a, ) such thatG,(z) = 0,. The case = 1 deserves
examples. The rate of convergence and error estimagekittle more explanation. In this case,ifx} > 0, then
are also obtained. More details can be found in [5] artlde gradient ofy — p(z,y) is not well defined atz, so
[27]. that we eliminatex from the integration domain off;
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and then take the gradient at This yields the vector Now we give an example of the above algorithm
G1(x), which is asubgradienof H; atz. If u{z} =0, applied to median computation in the Poincaré disk. In
then the gradient off; is well defined atr and coincides Fig. 4, i is supported by the three blue points with
with G1(x) and this holds particularly when does not equal weight and the red point stands for the iteration
belong to the support gi. It is shown in [25] thate; is sequencer,. The starting state is at the top left and the

the unique pointz € B(a,r) such thalG;(z)| < u{z}. end state is at the bottom right. The top right and bottom
left pictures are two intermediate states of the iteration

process. Finally, the red point converges to the median

B. Deterministic algorithms for computingmeans _
of the three blue points.

The deterministic algorithms for computingmeans
that we are going to present are essentially gradient
descent type procedures. To begin with, we choose ¢
sequence of stepsizés;),>o such that

0 <ty <Ti(e,B,r D), hm t, =0 andZtk—

with € = p(supp u, 0B(a,))/2.
After that, letzy € B(a,r) be an arbitrary starting

point and define
Tpt1 = expy, (—tkG(xg)), k> 0.

Then the sequence,),>o converges ta,.

We proceed to give some heuristics of the above
algorithm. In Fig. 3 belowy is supported by four data
pointsy1, yo, y3 andyy, with possibly different weights.

In order to compute thg-mean ofu, we start from some
point 2, and compute the weighted sum of the four unqt'
tangent vectors (black arrows) ifi,, M pointing to the
data points. This gives us the tangent vectar,(zo).
Then we go along the geodesic (blue line) stating from efore giving the error estimates of the above deter-
zo with velocity —Gy(zo) for ato time to arrive at the ministic algorithms, we give a little explanation on a
next iteration pointz;. We repeat this procedure antonstant which will be involved in our presentation. It
finally we will arrive ate,,. is shown in [5] and [25] that there exists some constant
Cyp,,. > 0 such that for every € B(a,r),

k=0
where the constant
Ti(e, B, 7, p) = pe? (mp*(2r)**~" B coth(28r)+peP )

g 4. Median computation by subgradient algorithm in tb@Paré

] Ch,
2

Hy(x) — Hy(ep) = =25 p* (2, ¢p).

-®
=

@

)

T Moreover, for the case wheh< p < 2, we can choose
d Cpp = p(2r)P~2min(p — 1, 2ar cot(2ar)). But if p =
N 1 orp > 2, thenC,, maybe depend on the shape of
""" g N supp 4 and one can only determin€, , according to
‘\ concrete cases.

@, Now the error estimates can be summarized as fol-
lows: assumely, < Cp 1 holds for everyk, then the

Fig. 3. Deterministic algorithms for computingmeans. following error estlmatlons hold:
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i)if 1 <p<?2, thenfork >1, different weights. In order to compute themean of
k1 1, we start from some poinK, and randomly choose
pz(:nk,ep) < 42 H(l — Cpti) a point according to the law, assumeys is chosen,

=0 then after going along the geodesic joinidg and y-
k—1 k—1 (dashed line) for a distangepp” ! (X, y2) we arrive at
+ C(ﬁ,r,p)(Zt?_l [T - Copti) + t2_1> .= by; Xi. Similarly, we randomly choose for the second time
j=1 i=j another point according to the law and assume this
time y4 is chosen, then after going along the geodesic

i) if p> 2, then fork > 1, o .
joining X; and y, for a distancetopp?~1(X1,y4) we

k—1 , , . ; :
arrive atX». By repeating this procedure, we will arrive
Hy(zr) — Hp(ep) < (2r)° H)(l — Cputi) at e, almost surely.
1=
k—1 k—1
+C(B,7,p) ( o[- Cputi) + t%—l) = Cg, . ¥
j=1 i=j
where the constar®' (3, r,p) ;’J
| pA@2r)? B eoth(26r), if 1<p<2; é_Xl . @
B p3(2r)3P=* (2Br coth(26r) +p —2), if p>2. L ' -\“‘9\'/
Moreover, the sequencésy), and (c;), both tend to .yJ
zero whenk tends to infinity.
Remark It is shown in [27] that if the stepsizes are L
chosen to be a multiple of harmonic series, then the X \
convergence rate of the above algorithm is at least ® ¥
sublinear. For example, #, = c(k+1)~! with ¢ > Cp_ﬁ'
2 _ ~1
then forl <p <2 we havep (mk’ ep) - O(k ) Fig. 5. Stochastic algorithms for computipgmeans.
C. Stochastic algorithms for computingmeans The following example focuses on the cake= R?

@ndp = 2, where drastic simplifications occur. Assume

o : -
scent algorithms for computingmeans. As before, we ¥ = R® and u is a compactly supported probability
start by choosing a sequence of stepsidg$,>; such Mmeasure oY, the above stochastic gradient algorithm

that simplifies into Xy = x¢ and fork > 0,

o o Xpi1 =X —tporgrady, Fo(-, Pyyq). 4
0 <ty <Ta(e,p,rp), Ztk:ooandZt%<oo, +1 i x. Fy +1) @)
k=1 =1 If furthermore p = 2, then clearlyes = E[P;] and
grad, Fp(-,y) = 2(x —y). As a result, (4) becomes

We continue to introduce the stochastic gradient d

where the constant

Ty(e,p,r, 1) = min(Cyh,(20) 7p7Y), Xt = (1= 22 X 21 P

Now let (P).>1 be a sequence of independentNen €asy induction yields for > 1,

B(a,r)-valued random variables with the same law k—1 k—1 j—1
andxy € B(a,r—¢) be an arbitrary initial point, then we Xy = xg H(I_th—j)+2 Z Py_jty—; H(I—th_e).
define inductively a random walkX});>o by Xo = x¢ j=0 j=0 £=0
and _ 1
Now, takingt, = o we have
Xg+1 = expy, (—tk+1 grady, Fp('7Pk+1)) , k>0,
k—1 j—1 .
— i i ke —
where F,(z,y) = pP(z,y), with the convention H(l —2,_;)=0 and H(l ) = J
grad, F,(-,x) = 0. Then the random walKXk)k>0 ;g P k
converges in.? and almost surely te,,. h
As before, we give some heuristics of the abO\%OI at E—1 L1k
stochastic algorithm. In Fig. 5 below is supported Xp,=S P~ = _Zp._
i i i : Tk k&=
by four data pointsy;,y2,y3 and y4, with possibly =0 =1
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The stochastic gradient algorithm estimating the mean

of i is given by the empirical mean of a growing sample
of independent random variables with distributionin

this simple case, our convergence result is nothing but
the Strong Law of Large Numbers.

Now we give an example of the above stochastic
algorithm applied to median computation in the Poincaré
disk. In Fig. 6, is supported by the three blue points
with equal weight. The black point stands for the state
of the inhomogeneous Markov chaiX});>o and the
red path represents one of its trajectory. The green
point is the median of the blue points computed by the
subgradient algorithm in the preceding subsection. The
starting state is at the top left and the end state is at frig 7
bottom right. The top right and bottom left pictures are
two intermediate states of the iteration process. Finally,
the black point converges to the green point.

Density function on the squafe2, 2] x [—2,2].

square[—2, 2] x [—2, 2]

gives the convergence speed of our stochastic gradient
descent algorithm.

For everyk > 1, let ty, = min(d/k, T (e, p, r, ) for
somed > C }L Since the exponential map a} is a
Fig. 6. Median computation by stochastic gradient algariih the dlﬁeomorphlsm ontoB(a,r), we can define for every

. . Fig. 8. Median computation by stochastic gradient algaritin the

Poincaré disk. n > 1 a Markov chain(Y;");>o in T, M by
We end this section by showing another example Y = iexpe_pl Xr.
of the stochastic gradient algorithm applied to median vn

computation. In Fig. 8 M is the Euclidean plan®? Assume H,, is C? in a neighborhood ot,, then the
andy. is an absolutely continuous law with density giveBequence of process{gf[nt]) converges weakly in
in Fig. 7. The red path represents one trajectory of tﬁf)?

inhomogeneous Markov chaiX, );>o corresponding to 0,00), T, M) t0 a dlffu5|on process given by

p = 1, with linear interpolation between the different d o [t
steps. The red point is;. White blobs represent the ys(t) =Y t'~ / sV 6o dBs, e5)ei, >0,
values of(Py)g>1. i=1 0

It is well known that the convergence rate of the lawhereB; is the standard Brownian motion ih,, M and
of large numbers is given by the central limit theorena: € End(7,, M) satisfying
This is also the case for our stochastic gradient descent
algorithm. Now we turn to a central limit theorem which 00" =E [gf&de,, Fp(-, P1) @ grad, Fy(- P1)|
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Cell | Classical

(ei)1<i<q is an orthonormal basis diagonalizing the syn|| i CFAR Chain
metric bilinear formVdH,(e,) and (\;)1<i<q are the || & —
associated eigenvalues. Moreover, the proggsatisfies || ' [ 5%, 1 T

k

the following SDE: cell |

k+1

CA-CFAR

0OS-CFAR

CA-CFAR

OS-CFAR

Radar Cells

dys(t) = %[y(;(t) — SVdH, (ys(1), -Y]dt + S0d By,

Cell | Advanced
k-2

where VdH,(y,-)? is the dual vector oV dH,,(y, ). can —

kA High Doppler
cell |

1&Q Resolution
V. APPLICATIONS. ANEW OS-HDR-CFAR X Al %’ coetteorts

Cell (PojeHago-- Hmi)

DETECTOR e |

0OS-HDR-CFAR
(Doppler Spectrum Median)

P . _
Stz S o — myarg (s = Hameam
L7 = -t,n,,,,

ui

With the notion of p-means, we could choose in @ ) o foma “‘"“““”’\/’"1““
principle the “average matrix” stated in Section | to be
the p-mean of reflection coefficients. But considering thﬁg. 10. Comparison of classical CFAR detector and the new OS
heavily perturbed radar environment, the most appropHbR-CFAR detector.
ate choice should be thmedian which is a prominent
ordered statistic estimator due to its robustness. In fact,
ordered statistic is a very useful tool used in Radar fér Test of OS-HDR-CFAR on simulated data

a long time to be robust against outliers on scalar dataye proceed to show the advantage of the new detector
from secondary data. over the classical ones. For this purpose, we come back

Now we are to apply the tools developed in the previp the example considered in Section II-C and work
ous sections to build an Ordered-Statistic High Doppl@fithin this context.

Resolution Constant False Alarm Rate (OS-HDR-CFAR) gince the autoregressive spectra are closely related

detector (see [16], [17], [18] and [19]) jointly takingto the speed of targets, we first investigate the spectral
into account the robustness of median matrix and higlarformance of the new detector. Our results on the
Doppler resolution of regularized complex autoregressiugedian spectra and the mean spectra are shown in Fig.
model. This new detection procedure is shown in Fig1 To be more precise, in order to obtain the median
9. To be more precise, firstly, we use the regularizeghectra, for each cell ranging from the 8-th to the 193-
Burg algorithm to compute the reflection coefficients g e use the subgradient algorithm in Section IV-B to
each cell in the fixed direction. After that, for each ceflompute the median of the reflection coefficients of the
under test, we use the subgradient algorithm and figndow (cf. Fig. 9) centered on this cell and consisting
compute the median of the reflection coefficients of thexer that, we apply (2) to each of the median reflection
reference cells around the cell under test. Finally, W@efficients to obtain a spectral functio-). As in
compute the Riemannian distance between the reflectigaction 11-C, all these functions are visualized in the
coefficients of the cell under test and the median reflegiture at the top of Fig. 11, where theaxis represents
tion coefficients just obtained, if this distance is greatgfe cells and the, axis represents the frequengyin
than some threshold, then we can conclude that therqgi the spectra functiors(-) of each cell corresponds

Radar cells specified frequency is indicated by the colorimetric on
— the right. Replacing the median by the mean in the above

TTTTTFE procedure yields the mean spectra which is shown at the
Median k bottom of Fig. 11.

L Now we are ready to analyze these spectra. On the
i one hand, it is easily seen that the median spectra are
ol nor et R robust against the second target but the mean spectra are

B i W o B cion oo B 5= strongly affected by it as there is an evident distortion
at the location where the second target appears in the

Fig. 9. OS-HDR-CFAR detection procedure. picture of mean spectra. This phenomena well explains
the fact that the median is much more robust than the

The comparison of the classical CFAR detector amdean when outliers appear (see e.g. [22] and [26]). As
the new OS-HDR-CFAR one is shown in Fig. 10. the robustness is a desired property for detectors, the
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OS-HDR-CFAR detector is advantageous over the mean-

HDR-CFAR detector as far as robustness is concerned. . N
On the other hand, the three plateau in Fig. 2 are OSHDRGFAR
simulated to represent transitions of clutter. After fiigr g

by median, the edges of clutter transitions are much N

better marked and, in contrast, they are not well marked
after the mean filtering. This is another advantage of
the OS-HDR-CFAR detector over the mean-HDR-CFAR

detector when the targets are near the transitions of
clutter. F I R — i I TR

Median spectra | Target detection by
Mean-HDR-CFAR

Frequency

Non perturbation ———

by outlier
Preservation
of discontinuities —|
5IJ 20 40 =) 80 100 120 140 160 180 200
‘ ‘ 35 . — . .
i 2
100 il g "'_ )
20 40 B0 B0 100 120 140 160 180 3l Target detection by
FFT-CFAR
Cells
Frequency Mean spectra

Perturbation —
by outlier

Non preservation ~ |
of discontinuities |

05
0

L L L L L L L L L
20 40 B0 80 100 120 140 160 180 200

Fig. 12. Comparison of the detection quality. From top tatdoot
OS-HDR-CFAR, Mean-HDR-CFAR and FFT-CFAR.

Cells

B. Test of OS-HDR-CFAR on real data
Fig. 11. Comparison of the median spectra and the mean apectr
We have also tested OS-HDR-CFAR on real recorded

ground Radar clutter with ingestion of synthetic slow

We finish our test on simulated data by showing thgrgets. In Fig. 13, we give ROC curves (see e.g. [23)])

detection performance of the three detectors: OS-HDRith Probability of detection versus Probability of false
CFAR, Mean-HDR-CFAR and FFT‘CFAR, the resultﬁlarm. We observe that OS-HDR-CFAR is bem —
are shown in Fig. 12, in which the axis stands for ( g9) than OS-CFAR/Doppler-filter§P; = 0.65) and

the cells and they axis stands for the Riemannianyean-HDR-CFAR for arbitrarily fixedPs,.
distance between the original reflection coefficients of

each cell and the median reflection coefficients of the
cell computed when producing the median spectra. It
is easily seen that the two inserted targets are muchA new approach for high resolution Doppler pro-
better detected by the OS-HDR-CFAR detector than logssing is developed. In order to achieve this method,
the other two detectors. One can also observe that the have studied the Riemannian geometry of Toeplitz
performance of the classical FFT-CFAR detector is veppvariance matrices and thg-means of probability
poor. measure on Riemannian manifolds. Deterministic and

VI. CONCLUSIONS
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Lol OSHDRCEARpissys Ve P [9]
//‘,7
08 . / r
070 Classical CFAR pd=65% /,"/ . / [10]
i / / ROC curve by
= ) / OS-HDR-CFAR
o [11]
E 04F ; J ¥
03f 3 /‘" J ROC curve by
o - f o OS/CA-CFAR [ 1 2]
01 ‘Jr &2 d
U-E ) * Probability jfalse alarm K o [13]
[14]
ROC curve by
OS-HDR-CFAR
[15]
ROC curve by
Mean-HDR-CFAR
[16]
Fig. 13. Comparison of ROC curves. [17]

stochastic algorithms for computingmeans are given,

as well as their error estimates. Finally, it is shown thi!
this new processing method possesses many advantagesrheory, Proceedings of IRS’11, International Radar Canfee,
over the existing ones, especially for the cases when Leipzig, Sept. 2011

targets are near and move slowly. [19]
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