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Abstract

The stability analysis of possibly time varying positive semigroups on non
necessarily compact state spaces, including Neumann and Dirichlet boundary
conditions is a notoriously difficult subject. These crucial questions arise in
a variety of areas of applied mathematics, including nonlinear filtering, rare
event analysis, branching processes, physics and molecular chemistry. This ar-
ticle presents an overview of some recent Lyapunov-based approaches, focusing
principally on practical and powerful tools for designing Lyapunov functions.
These techniques include semigroup comparisons as well as conjugacy princi-
ples on non necessarily bounded manifolds with locally Lipschitz boundaries.
All the Lyapunov methodologies discussed in the article are illustrated in a
variety of situations, ranging from conventional Markov semigroups on general
state spaces to more sophisticated conditional stochastic processes possibly re-
stricted to some non necessarily bounded domains, including locally Lipschitz
and smooth hypersurface boundaries, Langevin diffusions as well as coupled
harmonic oscillators.
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1 Introduction

This review article outlines some of the main points of the stability theory of possibly
time varying positive semigroups on non necessarily compact state spaces, including
Neumann and Dirichlet boundary conditions. We present an overview of some recent
Lyapunov-based approaches, focusing principally on practical and powerful tools for
designing Lyapunov functions.

Foster-Lyapunov criterion dates back to the 1950s with the seminal articles [40, 46].
These criteria are nowadays an essential tool to analyze the stability properties of
Markov semigroups on general state spaces [9] [32] 45| 147, [59, [60]. There is also a vast
literature on subgeometric convergence rates for Markov chains, starting with the
foundational articles [63] [73] based on sequences of Lyapunov-type functions defined
in terms of some well chosen subgeometrical rate, followed by the control of modulated
moments of the return-time to some regular set. More practical Lyapunov conditions
are presented in [30] [38], 49| [75], [76]. Subgeometric convergence rates for continuous
time Markov processes are also discussed in [31], 39, 45], see also the more recent
article [4].

The use of Foster-Lyapunov criteria in the context of positive semigroup aris-
ing in discrete time nonlinear filtering goes back to the pioneering articles [33, [78],
based on coupling techniques developed in [50} [51]. The extension of Foster-Lyapunov
criterion to discrete or continuous time varying positive semigroups and their normal-
ized versions on general state spaces were further developed in [25], extending Do-
brushin’s ergodic coefficient techniques introduced in [I5] [16] and further developed
in [I8], 19, 20, 21, 26] to unbounded state space models.

Recall that the Dobrushin’s ergodic coefficient of a Markov semigroup is the oper-
ator norm of the Markov integral operator acting on probability measures equipped
with the total variation norm (see for instance [20] and references therein). In the
same vein, the V-Dobrushin’s ergodic coefficient of a Markov transition introduced
in [20] is defined as the operator norm of the Markov integral operator acting on
probability measures equipped with the V-norm. In this framework, the contraction
w.r.t. V-norms is deduced by coupling the Foster-Lyapunov criterion with a local
contraction on a sufficiently large compact sub-level set of the Lyapunov function.

This operator-theoretic framework is discussed in Section 2.1 and Section[2.2in the
context of discrete time and homogeneous Markov semigroups. Section[2.1]is dedicated
to V-norm contraction coefficients and the geometric convergence of Markov semi-
groups. This rather elementary operator-theoretic framework is further extended in
Section to derive in a rather simple way subgeometric convergence rates, stripped
of all analytical superstructure, and probabilistic irrelevancies.

The extension of this framework to more general classes of time varying Markov
semigroups with possibly continuous time indices is discussed in Section [2.3] The
extension to V-positive semigroups is discussed in Section (3.1}

The local contraction on the compact sub-level sets of the Lyapunov function
is generally an easily verifiable condition. This property is often deduced from a



Doeblin type local minorization property of integral operators on the compact sub-
level sets of the Lyapunov function. For instance, this local minorization condition
is satisfied as soon as the semigroup is lower bounded by an absolutely continuous
integral operator (a.k.a. transition kernel operator). This class of models includes
hypo-elliptic diffusion semigroups as well as some regular jump processes on non
necessarily bounded domains.

Even for diffusion semigroups with smooth densities on bounded manifolds with
entrance boundaries (i.e. boundary states that cannot be reached from the inside), the
existence of a sufficiently strong Lyapunov function is essential to ensure the stability
of the semigroup. In this context, the transition densities are null on entrance bound-
ary states so that the local minorization condition alone applied to some exhausting
sequence of compact subsets is not sufficient to ensure the stability of the process.
The exhausting sequence of compact subsets needs to be equivalent to the sub-level
sets of some sufficiently strong Lyapunov function near entrance boundaries. For a
more thorough discussion on this subject we refer to Section [2[ and the article [25],
see also the series of Riccati-type diffusions discussed in Section [6]

The general problem of constructing Lyapunov functions for positive semigroups,
including for Markov semigroups often requires to have some good intuition about a
candidate for a Lyapunov function on some particular class of model. As for determin-
istic dynamical systems, the design of Lyapunov functions for sub-Markov semigroups
associated with a non-absorbed stochastic process requires to use some physical in-
sight on the stability and the behavior of the free evolution stochastic process near
possible absorbing boundaries.

Constructing Lyapunov functions for general classes of positive semigroups is well
known as a very hard problem in system theory as well as in applied probability
literature. The main subject of this article is to find practical ways to design these
Lyapunov functions for various classes of positive semigroups that have been discussed
in the literature, including conditional diffusions on manifolds with Neumann and
Dirichlet boundaries. We did our best to cover the subject as broadly as possible, we
also refer to the article [25] for additional historical and reference pointers. Due to the
vast literature on this subject we apologize for possible omissions of some important
contributions due to the lack of knowledge.

The remainder of this article is structured as follows:

In Section [2, we begin with a brief review on the stability of Markov semigroup.
The extension of these results to time varying positive semigroups are discussed in Sec-
tion [3] Section [3.1]is dedicated to exponential stability theorems for normalized semi-
groups. In Section [3.2] we present some consequences of these results in the context
of time homogenous models, including existence of ground states and quasi-invariant
measures. Section [3.3|presents different tools to design Lyapunov functions for contin-
uous time Markov semigroups and sub-Markov semigroups. We also illustrate these
results through different examples of semigroups arising in physics and applied prob-
ability, including overdamped Langevin diffusions, Langevin and hypo-elliptic diffu-
sions, as well as typical examples of solvable one-dimensional sub-Markov semigroups



such as the harmonic oscillator, the half-harmonic oscillator and the Dirichlet heat
kernel. General comparison and conjugacy principles to construct Lyapunov functions
for positive semigroups are provided in Section [} Boundary problems are discussed
in some detail in Section[5] We then turn in Section [6] to the design of Lyapunov func-
tions for Riccati type processes, including positive definite matrix valued diffusions,
logistic and multivariate birth and death processes arising respectively in Ensemble
Kalman-Bucy filter theory and population dynamic analysis.

In Section [7| we illustrate the power of the Lyapunov approach in the context
of multivariate conditional diffusions. Section I§ is dedicated to illustrations with
explicit computations of geometrical objects for the Lyapunov functions discussed in
Section in the context of hypersurface Dirichlet boundaries.

1.1 Some basic notation

Let B(E) be the algebra of locally bounded measurable functions on a locally compact
Polish space E. We denote by By(E) < B(E) the sub-algebra of bounded measurable
functions endowed with the supremum norm |.|.

For a given uniformly positive function V' € B(E), we let By (E) < B(E) be the
sub-space of functions f € B(E) equipped with the norm | f|y := | f/V].

We also let By (E) < B(E) be the subalgebra of locally bounded and uniformly
positive functions V' that grow at infinity; that is, sup, V' < oo for any compact set
K < E, and for any r = V, := infg V > 0 the r-sub-level set V(r) :={V <r} c E'is
a non empty compact subset. We denote by By(E) := {1/V : V € By} < By(E) the
sub-algebra of (bounded) positive functions, locally lower bounded and that vanish
at infinity. For a given V € B, (FE), consider the subspace

Boy(E) :={f € B(E) : [f|/V € By(E)}.

We denote by C(E) < B(FE) the sub-algebra of continuous functions and by
Cy(E) < C(F) the sub-algebra of bounded continuous functions.

We also set Cy(E) := By(E) nC(E), Co(E) := By(E) n C(E) and Cx(F) :=
By (E) nC(E) and Cov(FE) := Byy(E) nC(E). Note that none of the sub-algebras
By(E) and B, (E) have an unit unless E is compact, the null function 0 ¢ By(E) but
the unit function 1 € Cyy (F) as soon as V € By (F).

Let M,(E) be the set of bounded signed measures p on E equipped with the total
variation norm |||y = |u|(E)/2, where |pu] := py + p— stands for the total variation
measure associated with a Hahn-Jordan decomposition p = py — p— of the measure.
Also let P(E) < My(E) be the subset of probability measures on E. Recall that for
any pi, o € P(E) and € €]0, 1] we have

1 — polw <1 —e<= FveP(E) : pp=ev and puy =ev). (1)

With a slight abuse of notation, we denote by 0 and 1 the null and unit scalars as
well as the null and unit function on E.



Let Qs¢, be a semigroup of positive integral operators on B,(E) indexed by con-
tinuous time indices s,t € 7 = R, := [0,00[ or by a discrete time index set 7 = N,
with s < t. The action of Q,; on B,(E) is given for any f € B,(F) by the formulae

Quil)(2) = j Quala,dy) F(y). 2)

The left action of )5, on My(E) is given for any n € M,(E) by the formulae

(1Qu(dy) i= [ n(d) Qual. ) 3
In this notation, the semigroup property takes the following form
QsuQut = Qs¢ with Qg5 =1, the identity operator. (4)

In the above display, Qs Q.+ is a shorthand notation for the composition @), 0@, + of
the left or right-action operators. Unless otherwise stated, all the semigroups discussed
in this article are indexed by conformal indices s < ¢ in the set 7. To avoid repetition,
we often write (), without specifying the order s <t of the indices s,t € T.

We denote by My (E) be the space of measures pu € M,(E) equipped with the
operator V-norm ||u||;, := |p|(V), and by Py(E) € My (E) be the convex set of
probability measures. Whenever V' > 1, for any p > 0 we have the norm equivalence
formulae

pllelly < Mellyy v < U+ p)lliedly (5)
We associate with a function h € By (E) the Boltzmann-Gibbs transformation
U, i e Py(E) = () € Pya(E) (6)
with the probability measure

Uy (p)(dx) = % p(dr) and V" :=V/he By(E).

We also denote by |[|Q]||;, the operator norm of a bounded linear operator @ : f €
Bv(E) — Q(f) € Bv(E), that is

QI == sup{[|Q(f)lv : feBv(E) suchthat |[f]y <1}. (7)

In terms of the V-conjugate semigroup

f e By(E) — Qv<f) =QV )V eBy(E)

we have

IRl = 19" (W) = [|Q"[| := sup{|Q" (/) = feBy(E) suchthat [f] <1}

6



For a given measurable function f and a given measurable subset, we use the short-
hand notation

—oo < inf f :=inf f(x) < sup f :=sup f(z) < +o0.
A zeA A zeA

For a given s € T and 7 € T with 7 > 0, we consider the time mesh
[s,0[;:={s+nTe[s, 0 : neN}

Throughout, unless otherwise is stated we write ¢ for some positive constants
whose values may vary from line to line, and we write c,, as well as ¢(f) and c,(5)
when their values may depend on some parameters «, 3 defined on some parameter
sets. We also set a A b = min(a,b), a v b = max(a,b), and ay =a v 0 for a,b e R.

1.2 V-positive semigroups

We say that @, is a V-positive semigroup on By (E) for some Lyapunov function
V € By(E) as soon as there exists some 7 > 0 and some function ©, € By(E) such
that for any 0 < f € By(E) and s <t we have 0 < Q:(f) € Bo v (E) as well as

Qs,erT(V)/V < @T and sSup (|HQS,tH| Vv H|Qs,t|”v) < 0. (8)

[t—s|<T

As shown in Section the Lh.s. criterion in (8) can be seen as a uniform
Foster-Lyapunov condition (a.k.a. drift condition).

The irreducibility condition f > 0 = Q,.(f) > 0 is satisfied if and only if we
have @Q;+(1) > 0. We check this claim by contradiction. Assume that Q.(1) > 0 and
consider a function f > 0 and some x € E such that Q,,(f)(x) = 0. In this case, for
any € > 0 we would have

€ Qut (Iyze) (7) < Qse(f)(2) = 0

by Fatou’s lemma we would find the contradiction
timinf Qur (Ly=0)(2) = 0> Quu(1)(2) = Qur(1)() = 0.

Without further mention, all semigroups (), considered in this article are assumed to
be semigroups of positive integral operators Qs on By(F) satisfying the irreducibility
condition (Q);.(1) > 0 for any s < ¢t. Notice that the condition

0< f € Bv(E> = Vs<t 0< Qs,t(f) € Bo7v(E)

is met as soon as (Qs¢ is a strong V-Feller semigroup (i.e. for any s < ¢t we have
Qs+(By(E)) < Cy(E) and when we have Qs(V)/V € By(E)). To check this claim,
observe that for any positive function f € By (E) and s < ¢ the function Qs.(f) is



positive and continuous; and thus locally lower bounded. In this situation, whenever
|fllv < 1, for any s < t we have the comparison property

Qst(f)/V < Qsp(V)/V € Bo(E) = Qst(f)/V € Bo(E) == Qs(f) € Cov (E).

In summary, a strong V-Feller semigroup Qs is V-positive on By (E) as soon as there
exists some 7 > 0 and some function ©, € By(F) such that the 1.h.s. condition in
is met and for any s < t we have

Q&t(V)/V € B()(E) and QS,S+T(V)/V <0O,e B(](E)

When V € Cy,(E), we say that (), is a V-positive semigroup on Cy (E) as soon as
Qs+(Cy(E)) € Coyv(E) for any s < t and condition (8] is met.

A V-Feller semigroup Qs for some V € C,,(E), in the sense that for any s < t we
have Qs:(Cv(F)) < Cy(E), is also said to be V-positive on Cy(F) as soon as there
exists some 7 > 0 and some function ©, € By(F) such that the 1.h.s. condition in
is met and for any s < t we have

Qs’t(V)/V S CQ(E) and QS7S+T<V>/V < @T S Bo(E>

Last but not least, observe that positive semigroups Q,; with continuous time
indices s < t € Ry can be turned into discrete time models by setting @), = Qprnr
for any p < n € N and some parameter 7 > 0. Up to a time rescaling, the parameter
7 > 0 arising in the definition of a discrete time V-positive semigroups ), can be
chosen as the unit time parameter. In this context, the r.h.s. condition in is
automatically satisfied.

2 A brief review on Markov semigroups

The stability analysis of positive semigroups presented in this article is mainly based
on discrete time operator-type contraction techniques combining Lyapunov inequali-
ties with local minorization conditions. This section presents a brief overview of this
operator-theoretic framework. Our presentation is nearly self-contained and follows
that of Section 8 in the book [26] (see also Section 2 in [25]).

2.1 V-norm contraction coefficients

In this section we are mainly interested in the contraction properties of discrete time
Markov integral operators. We only consider time homogeneous Markov semigroups
P := P41 on By(E), so that P, := Py; = PPy ;. In what follows E is assumed to be
a Polish space. One key mathematical object is the V-norm contraction coefficient.

We further assume that there exists a Lyapunov function V € B, (F) and param-
eters € €]0, 1| and ¢ < oo such that

PV)<eV +ec (9)



Note that the class of Markov semigroups considered in this section is more general
than the one discussed in . Indeed, in our context the Lyapunov condition stated
in the Lh.s. of takes the form

P(V)/V < © € By(E).

This condition ensures that for any 0 < e < |©], the set K, := {© > €} is a non
empty compact subset and we have

PV)<elp g V41 (0OV)<eV +e with ¢ :=|0]|supV.
K.

Replacing V by 271(1 + €V /c) there is no loss of generality to assume that ¢ = 1/2
and V' > 1/2. Also assume there exists some 1y > 1 and some function « : r €
[ro,0[ — a(r) €]0,1], such that for any r > ry we have

sup  [0,P — 0, Pl <1 —a(r) with V(r):={V <r}. (10)
(z,y)eV(r)?

The V-Dobrushin coefficient By (P) of P is defined by the V-norm operator

Bv(P) = sup |[(u—n)Plly/lle—nlly- (11)
wmePv (E)

As show in Section 8 in [26] (see also Section 2.3 in [25]), the supremum in is
attained on Dirac masses (y,1) = (04, d,); that is, we have

|0:P — 6, P|lv
By(P) = sup ——>=L T,
V( ) (z,y)eE2 V(I’) + V<y>

The terminology V-Dobrushin coefficient comes from the fact that we recover the
standard Dobrushin coefficient 3(P) := f;,2(P) by choosing the constant function
V' =1/2. Theorem 8.2.21 in [26] (see also Lemma 2.3 in [25]) shows that the Lyapunov
inequality @D combined with the local minorization condition ([10)) yield a V-norm
contraction estimate for some well chosen Lyapunov function.

Lemma 2.1 ([20]). Assume (9) and (10). In this situation, for any r = ro v re with
re :=1/(1 —€) we have

Bv..(P) <1 —acr) (12)

with the rescaled Lyapunov function

Ver 1= 1 (1 + b @ V) and  a(r) = a(r) (1- E)ﬁ (1 — E) > 0.

2 l4+€¢ r 2 (1+e) + =




For the convenience of the reader a proof of the V-norm estimate is provided
in the Appendix, on page . As an aside, note that whenever @ is met with ¢ = 1/2
we have

, 1 1 ar)
P €,r < €,r €,r th er T o 1—
(Ver) <€V, +ce,p wi ce, 2(( €>+1+e 27’)

The equivalence of the V-norm and the V ,-norm yields without further work the
following contraction theorem.

Theorem 2.2. For any t € N and any p,n € Py(F) we have

I =mPilly < cer Bue, (P) i =llly with  cep:i=1+2r(1+€)/a(r). (13)

The contraction estimate ensures the existence of a single invariant proba-
bility measure o = poF; € Py (F). Similar approaches are presented in the ar-
ticle [45], simplifying the Foster-Lyapunov methodologies and the small-sets return
times estimation techniques developed in [59]. While the geometric convergence of dis-
crete time Markov semigroups towards their invariant measure po, (a.k.a. Harris-type
theorem) are well known, the V-norm contraction coefficients techniques developed
in [26] provides a very direct and short proof of Theorem . In Section , this
natural operator-theoretic framework is extended without difficulties to time varying
and continuous time indices. For instance, for any collection of Lyapunov functions
Vi € By(F) and any Markov transitions M, indexed by t € N from By,(F) into
By, . (F) we have

Py = Py My = My ... My = ||[(u — n) Py, < (H By, 1 v, (M. ) 2z = lllv,
1<s<t

with the V-norm contraction coefficients

|0, My — 0, M|y,
By, vi(M;) := sup w—mn)M, = = sup )
( t) snePy (E) W( ) t"|\/}/m ‘H‘/}_l (@, y)€E2 ‘/t 1( ) + ‘/t,l(y)

Whenever all the Markov transitions M; satisfy @D anf with the same Lyapunov
function V' and the same function «(r), choosing the function V; := V, defined in
Lemma we have By, v, (M;) < (1 — a(r)), with the parameter a.(r) defined
in Lemma More general time-inhomogeneous models can probably be handle
extending the analysis developed in [I5] [I§] as well as in Theorem 4.18 and Theorem
4.20 in [69] and in Proposition 1 in [79] using the standard Dobrushin coefficient to
non necessarily compact spaces in terms of V-norms contraction coefficients.

Remark 2.3. Whenever P(V)/V < © for some © € By(E) a direct application of
yields for any t = 1 the estimate

(e =) Prallly < cer By (P) le=7lly, with Veo:=V ©

10



In some situations (cf. for instance Section @, we can choose © = 1/V. In this
context, for any any pu,n € P(E) we have the uniform total variation norm estimates

2 1w =) Pl < Nt = ) Peallly < 2¢e By, (P)' [l =l < 2¢ B, (P)'

In this situation, besides the state space E may not be compact, for sufficiently large
t > 0 the standard Dobrushin contraction coefficient B(P;) < 1 of the Markov transi-
tion P, yields exponential decays.

The extension to more general positive semigroups is slightly more involved and
relies on the stability properties of triangular arrays of Markov operators (cf. [25]). In
Section [3| we present an overview on the stability properties of this class of models.

Combining with , for any r > ry there exists some probability measure v,
such that for any p = (uy — p_) € My (E) with p(1) = 0 and any bounded positive
function f = 0 we have

pr(P(f)) = pa(Lyy) o) ve(f).
This implies that
P - Ly —(Lye
|aPllew _ H( fy B )PH <1 a(r) (/M vy) i ( vm))‘
[ elew pe(l) p-(1) pis(1) p—(1)
On the other hand, by Markov inequality we have

1 (u+(V) u—(V)> Y ) I o)

IRAVEOREED ne() "l

This implies that

Pl 2y o (1- 1 Ll

letllew e
We summarize the above discussion in the following lemma.

Lemma 2.4. Assume that (@ is met. In this case for any r = ry and p € My (E)
with (1) = 0 we have

a(r)

lPle < (1= al(r)) gl + == llellly- (14)

Whenever (9 is met with ¢ = 1/2, for any p € My (E) with p(1) = 0, recalling
that oo = s = i (1) = (1) we have

Pl < € Mully + Talo-

This yields for any p > 0 the estimate

Pllepy < (0= ) + ) e+ (22 4.) By

from which we readily check the following lemma.

11



Lemma 2.5. Assume (@ and (@) are met with ¢ = 1/2. In this situation, for any
(r,p) such that r./r < p/a(r) <1 we have

Prjzepv(P) < 1—af(r)
with the parameter r. defined in Lemma and of(r) defined by
a?(r) := (a(r) — p) A ((1 —¢) (1 _alr) C)) > 0.
p T
For instance, for any 6 > 0 we have

r>(1+9)r. and p:=(1—|—(5)oc(r)E
r

— af(r) > <a(7") (1_<1+5) 1)) A ((1_6) 1j5> > 0.

r

We end this section with a weaker version of another popular condition ensuring
the non expansive property of Markov semigroups w.r.t. V-norms (see for instance [I
14, [30, 31] and references therein). Instead of (9), we further assume there exist an

increasing function ¢ : v € [1,0[— @(v) € [0,0[ some constant ¢ = 0 and some
function V' € B, (F) such that V' > 1 and
PV)<V —o(V)+c and ¢(V)/V € By(E). (15)

Note that when ¢(V) = (1 —¢)V the r.h.s. condition in the above display is not met
(unless F is compact) but the Lh.s. inequality coincides with the Lyapunov condition
(9. In contrast with the Lyapunov condition introduced in [30], the function ¢ is not
required to be concave.

Whenever is satisfied, Lemma ensures that for any r > r; := ¢(ry) and
p € My (E) with p(1) = 0 we have

Pl < (1= a(r) o + ™2 Qi with an(r) = a (o7 (1) (16)

On the other hand, by e My (FE) with u(1) = 0 we have
Py < leally = Wealllpvry + 2¢l el
This yields for any p > 0 the inequality

nmmmﬂv<mmmﬂv—(zmmm—p@HMM+(p—””“§ mmﬂm) )

,
from which we readily check the following uniform estimates.

Lemma 2.6. Assume (@) and are met. In this situation, @) 1s met for some
parameters (r1,aq). In addition, for any r = 1 and parameter p > 0 such that
pc < oq(r) and p = 204 (r)/r we have

sup Sy (P) < 1 or equivalently  sup [|uBiflypy < el (18)

=

for any pe My (E) with u(1) = 0.

12



2.2 Subgeometric convergence

Consider the discrete time and homogeneous Markov semigroups discussed in Sec-
tion . Without further mention, we shall assume that conditions and are
met for some increasing function ¢ and some Lyapunov function 1 <V € B, (F).

Consider a concave increasing differentiable function ¢; : [1,00[— [1,00[ such
that ¢1(V)/V € By(E). We further assume there exists some parameters y > 0 and
Ko > 0 such that

dp1(V) o(V) = @a(V)  with (V) 1= ks V (01(V)/V) "X € By (E) (19)
Observe that
ka2 p2(V)/V < 01 (V) o(V)/V < 0pr(1) o(V)/V € By(E)

Thus, whenever the function ¢(V)/V is locally lower bounded and upper semi-
continuous the above estimate ensures that

p(V)/V € By(E) = 1(V)/V, 02(V)/V € Bo(E)
The prototype of model we have in mind is the case
(V) i= ko v° and @1 (v) i= Ky VTV (20)
for some parameters v, 0 €]0, 1] and k; = 1. In this context, we have
0p1(V) @(V) = hiopia (1= 00) VU™ = (V) 1= 12 V. (92(V)/V) X € B ()

with the parameters

_1=s 1-9
Ko := Kok, *° (1 —wvd) and x:= 5

Applying Jensen’s inequality and using we prove that
Plo1(V)) <o1(V) —pa(V) + 1 with ¢ = cdpr(1). (21)

We check this estimate using the fact that dy; is decreasing. Thus, for any 0 < u < v
we have

e1(v —u) < p1(v) — dp1(v) u.
In the same vein, for any 0 < v < v — u we have

Yw e [v,v —u] dp1(v) = dpi(w) and therefore (v —u) < ¢1(v) — dpy(v) w.

The Lyapunov inequality applied to is closely related to Lemma 3.5 in [49]
We further assume there exists some 15 > 1 and some function ay : r € [ry, 00—
as(r) €10, 1], such that for any r = ry we have

sup [0, P — 0y Pl < 1 — aa(r). (22)
(z,y)e{p2(V)<r}?

13



The above condition is automatically met with 7 = @2(ro) and as(r) := a (g3 ' (1))
as soon as is satisfied and s is increasing. In this situation, arguing as above,
Lemma [2.4] ensures that for any r > ry and g€ M, )(£) with p(1) = 0 we have

as(r)

[Pl < (1 = az(r)) [ulew + el g vry-

On the other hand, by we have
Pl g, vy < Mlellpy oy = Ml gy + 2enllpalleo:
Applying Jensen’s inequality for any p € My (E) with p(1) = 0 we find that

Nl = 2 LY (T;f(vv))/v) L lV) = s Il Ml (29

Following word-for-word the proof of we readily check the following lemma.

Lemma 2.7. For anyr = ry v r1 and p > 0 such that

pler nce) <ag(r) Aas(r) and 6,(r) := ko (p— 2 M) >0

and for any e My (E) with u(1) = 0 we have

1
NPl sy < Ml vy = 0 (r) Mlasll i /el

To take the final step, recall that ||, ., 1y < (1 + p)ll[&ll,, (). Combining this
estimate with the uniform estimate for any t € T = N we check that

sPeorlls s~ 1By < 5 (8B )
with the function ¢, (u) := w,(p) u'*X and the parameters

wu(p) = w(p) lIull sy and  w(p) := p* d,(r)/(1+ p)"™ (24)

Lemma 2.8 ([10]). Consider a decreasing sequence of positive numbers u; such that
for any t € N we have
U1 — U < —<(Uy)

for some continuous increasing function s from 10, ug] into |0,00[. In this situation,
for any t =1 we have

UQ d
up < I7'(t)  with I (u) == f v

u @ '

14



Proof. Since ¢ is increasing we have v € [up41,u,] = <(v) < ¢(u,). On the other
hand, by the mean value theorem there exists some v € [ty 1, u,] such that

_un+1 — Un g(un)
s(w) 7 <)

We conclude that I (u,) = n + I.(ug). This ends the proof of the lemma. "

I (ung1) = Io(un) = =L

Observe that for any ¢ > 1 we have
1
s(v) = V' = I(u) = " (u™ —u ™)

— 1) = (o

1/x y y
_ < (yw) X X
Uy X + tw X> Ow)
The above lemma readily yields the following polynomial convergence theorem.

Theorem 2.9. Assume conditions @) and (@ are satisfied for some function ¢q
and some parameter x > 0. In this situation, for any t = 1 and any p € My (E) with
w(1) = 0 we have the polynomial convergence estimates
- , —1

NPl p vy < €5 X lptllyg e with e = (xw(p) ™
In the above display, p and w(p) stands for the parameters defined in Lemma and
m .
Remark 2.10. Without further work, we recover the sequence of polynomial rates of
convergence discussed in [49] by choosing for any 1 < i < n the parameters

d:=(n—-1)/n vi=(i—1)/(n—1)

—1-véi=1-(i—1)/n (l—v)=1—1i/n I/x =1—1.

As expected, the operator-theoretic framework described above can be extended
easily to situations where the function ¢, in has the following form

p2(V) =V ¢ (01(V)/V) € By (E) (25)
for some convex increasing function ¢ : [0, o[ [0, 00[ such that 1(0) = 0. In this

situation, arguing as in for any € My (E) with p(1) = 0 we have

el vy = Mlly & (Wil /Ml

Using the fact that ¢¥(Av) < A\p(v), for any A € [0,1] and v = 0, for any ¢ = 0 we
check that

Pl
SUDg>0 |HMPsz

lePlly > supllinPlly (R
> sup [Pl v (|||m|||wm/sup |||MPS|||V>
=0 s=0

15



On the other hand, by we have psup o ||#Psl,, < (1 + p)[|plly,. This yields the
rather crude estimate

P ”|NPtW¢1(V)>

laPllesry = il
Hlex VT Tl

Thus, recalling the norm equivalence formulae we prove that

6Py = Wil cpy o (Pl v/ Ml

with the rescaled convex function

_ 1 r,
o= i (i o). 2

This shows that

vo = el gy and e i= Pl ) = e = e < =05(r) o ()

with the same 0,(r) as in Lemma (with ke = 1) and the function ¢, (u) =
vy ¥, (u/vg). In this context, Lemma readily yields the following convergence
theorem.

Theorem 2.11. Assume there exists some function o satisfying (@), with the func-
tion s defined in in terms of some convex increasing function . In this situa-
tion, for any t = 0 and any p € My (E) with p(1) = 0 we have

e Pell sy vy < T () iellli
with the parameter p defined in Lemma the function v, defined in @ and

‘od
Ty, (u) := ™ ?(}v) with ¢:=1v | (V)/V].

Proof. Observe that

“ o du uo/vo iy,
L= [ - f/ Gp ) - Lo (w0

On the other hand, we have uy < ¢ vy and Iy, (u) < Jy,(u). Since I, and Jy, are
decreasing their inverse are also decreasing and choosing u = ]Jpl (t) in the above
display we have

t=Iy,(I1, () < Jy, (I, (1))

= () = () = I (1) = vo L1}(1) < wo Jy (1),

The end of the proof is now a direct consequence of Lemma, [2.8| [

16



2.3 Some V-norm stability theorems

Let Ps; be a semigroup of Markov integral operators Ps; on By(E) indexed by con-
tinuous time indices s,t € T = R, := [0, 0] or by discrete time indices s,t € T = N.
We further assume that

Pisr(V) <& Ve (27)

for some parameter €, €]0, 1] and some finite constant ¢, < 0. The geometric drift
condition ensures that the sequence ||Ps inr||;, indexed by s > 0 and n > 1
is uniformly bounded. In this context, applied to Qs = P, ensures that the
operator norms of F;; are uniformly bounded w.r.t. any time horizon. More precisely,
whenever is met we have the equivalence

sup sup |||P57t|||v <<= sup [Py < 0. (28)

s=0 t=s [t—s|<T

Note that the condition is automatically satisfied whenever is met for any
7 > 0 with sup,¢jg;¢; < . For instance, consider the Markov transition semigroup
P; ; of a continuous time stochastic flow X, () on some locally compact normed vector
space (F, |.|) with generator L; defined on some common domain D(L) < B(FE). In
this context, for any non negative function V' € D(L) and any parameters a > 0,
¢ < o and 7 > 0 we have

VteT =R, L(V)<—aV +c
(29)
= and with e, =(1+ar) <1 and ¢, =cr.

The above estimate is rather well known, a detailed proof is provided in the appendix
on page Further examples of Markov diffusion semigroups on R" satisfying
are discussed in Section 2.4, We further assume there exists some ry > 1 and some
function a, : 1 € [rg, 0] — a,(r) €]0, 1], such that for any r > ry we have

sup H‘SzPs,s-i-T - 5yPS,s+'rHtv <1—ax(r), (30)
(z,y)EV(r)?

with the compact level sets V(r) introduced in (10]). By Theorem , conditions ,
and ensure the existence of some parameter 7 > 0 such that

sup Py (Pst) <oo and  sup Py (Pssir) < 1. (31)

|t—s|<7 520

In the above display, By (Ps,) stands for the V-Dobrushin coefficient of the Markov
operator P, introduced in . The next exponential contraction theorem is a direct
consequence of the operator norm estimates and it is valid on abstract measurable
spaces as well as for any function V' > 1.
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Theorem 2.12. Let Ps; be a semigroup of Markov integral operators Ps; on some
measurable state space E satisfying condition for some function V=1 and some
parameter T > 0. In this situation, there exists a parameter b > 0 and some finite
constant ¢ < o such that for any s < t and p,n € Py(E) we have the exponential
estimate

(e =) Poellly < e el =l (32)

In particular, the above exponential Lipschitz estimates are met as soon as conditions

, (@ and (@) are satisfied. The estimates (@ also hold for any s = 0 and
t € [s,o[, as soon as and (30) are satisfied for some T > 0 and €, €]0, 1.

Theorem [2.12| can be seen as an extension of Harris’ theorem to time varying
Markov semigroup. The proof of Theorem is based on the discrete time V-norm
operator contraction techniques presented in Section . The r.h.s. condition in
is a technical condition only made for continuous time semigroups to ensure that
also holds for continuous time indices. Note that the strength of conditions and
depends on the strength of the function V: when the function V is bounded,
the geometric drift condition and the uniform norm condition are trivially
met but in this case condition is a uniform contraction condition on the state
E. In the reverse angle, when V' € B, (E) is a function with compact sub-level sets,
the geometric drift condition (27) combined with ensures that pF;; is a tight
collection of probability measures indexed by s < ¢. For time homogenous models
P, 51+ = B, following Remark , uniform total variation estimates can be derived
for any t > 7 as soon [|P.(V)| < c0. Some examples satisfying this condition are
discussed in Section [6

Using we readily check that the local contraction condition is met if and
only if for any s = 0 and any (x,y) € V(r)? there exists some probability measure pu
on E (that may depends on the parameters (7,7, s, x,y)) such that

Vz e {z,y} 52Ps78+7(dy) = ar(r) p(dy).

For instance, the above condition is met as soon as

Ps,erT(:U’ dy) = ps,erT(x? y) VT(dy) (33)

for some Radon positive measure v, on E and some density function p; 4., satisfying
for any r > r the local minorization condition

0< ;g;vl(r;; Dsstr and 0 < v (V(r)) < oo. (34)

For locally compact Polish spaces condition 0 < v,(V(r)) < o is met as soon as V' has
compact sub-levels sets V(r) with non empty interior and v, is a Radon measure of full
support; that is v, is finite on compact sets and strictly positive on non-empty open
sets. For time homogeneous models, also note that the l.h.s. minorization condition
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(34) is satisfied as soon as (z,y) € (E°)* — p,(x,y) is a continuous positive function
on the interior E° of the set E.

Several illustrations of Theorem 2.12] are discussed in Section 2.4]in the context of
diffusion processes on Euclidean spaces as well as in Section [6]in the context of Riccati-
type diffusion on positive definite matrix spaces and multivariate birth and death jump
type processes on countable state spaces. The stability of Markov semigroups on man-
ifolds with entrance boundaries can also be analyzed using the Lyapunov techniques
developed in Section 5] For instance, as shown in Section [5.1] any absolutely con-
tinuous Markov semigroup Ps; on a bounded connected subset £ < R"™ with locally
Lipschitz boundary 0F satisfies the conditions of Theorem with the (non unique)
Lyapunov function V(z) = 1/4/d(z,0F) and the distance to the boundary defined
for any x € E by

d(xz,0F) = inf {|x —y| : yec JE}.

We illustrate the above discussion with some elementary one dimensional examples.

Example 2.13. Consider a one dimensional Brownian motion X () starting at
Xo(z) = x € E := [0,1] and reflected at the boundaries 0F = {0,1}. We recall
that the Markov transition of the processt € T := Ry — Xi(z) € E is symmetric and
absolutely continuous; that is we have

Pi(z,dy) := P(Xi(x) € dy) = pi(x,y) v(dy) with v(dy) := 1jo,1(y)dy

and the density pi(x,y) is given by the spectral decomposition

pe(z,y) =1+2 Z e~ (2 cos (nrx) cos (ny)

n=1

In this situation, P, = Py coincides with the Neumann heat semigroup on [0, 1]. Since
the Neumann heat kernel py(x,y) is smooth as well as bounded and strictly positive
on the compact interval [0,1], the conditions of Theorem are satisfied with the
unit Lyapunov function V(x) = 1, as well as for any of the Lyapunov functions
V(z) = 1/y/z, V(z) = 1/J/1—z or V(z) = 1/\/x + 1/3/1 —z. Indeed, note that
the minorization condition holds for any of the Lyapunov functions V discussed
above. Since v(V) < w0, we have | P, (V)| < o for any 7 > 0, so that the Lyapunov
condition 1$ also met.

The same reasoning applies to the one dimensional positive Riccati-type diffusions
with an entrance boundary at the origin discussed in Section|[6, Reflecting this class of
positive diffusions at x = 1, the conditions of Theorem are satisfied on E =]0,1]
with the Lyapunov functions V(z) = 1/3/x as well as for V(z) = 1/\/z + 1/4/1 — x.

In the same vein, assume there exists some increasing differentiable concave func-
tion ¢ : v e [1,00[— p(v) € [0,00[ with bounded differential ||d¢| < oo and some
function V' € B, (E) such that V' > 1 and V, (V) € D(L). In addition, there exists
some finite constant ¢ > ¢(1) such that for any t € T = R, we have

Li(V)<—p(V)+c¢ and ¢(V)/V e By(E) (35)
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We set
Vo= Varo(V) and (o) = (/B) with B i=1+7]e(V)/V]. (36)
Observe that

or (Vi) =@ (VL +10(V)/V)/B:) <@ (V) with Sr:=1+7[p(V)/V]
and
or (Vo) Ve < (V) )V € By(E)

This estimate ensures that ¢, (V;) /V; € Bo(E) as soon as ¢, (V;) /V; is locally lower
bounded and upper semi-continuous.

Lemma 2.14. Assume condition is satisfied for some functions (¢, V') and some
constant ¢ > p(1). In this situation, for any s € T and T > 0 we have

VseT  Pouer(Vy) < Vi =7 00(Vi) 46

with the function V. defined in (36) and ¢, :==c 1 (1 + o] 7/2).

The proof of the above lemma is provided in the Appendix, on page [73] Next
theorem is the continuous time version of the polynomial convergence theorem, The-
orem presented in Section [2.2] The continuous time version of Theorem [2.11] can
be obtained using the same lines of arguments, thus it is left to the reader.

Theorem 2.15. Assume is met for some function (v, V') and the function ¢, de-
fined in @) satisfies (@ for some parameters T, x > 0 and some functions (p;1,¢r2)
such that o (V;)/Ve, 0r1(V2) Ve € Bo(E) and v 2(V;) € B (E). We also assume that
(@) 15 satisfied with the compact level sets of the function V.. In this situation, there
exists some constant ¢ < oo (that may depends on T) such that for any s = 0 and any
t € [s,00[, and p,n € Py(E)we have

(e = m Pl < e (8= 5)"% i =l

The above polynomial convergence estimates also holds for any continuous time indices
as soon as sups_y <, [ Pselly, < oo

Proof. Applying Theorem there exists some parameter p, > 0 and some finite
constant ¢, such that for any n € N we have the polynomial convergence estimates

iPesinrlly s gy < €0 0™ VX Mgy, v, < e (14 pr) 07V Iy,

This implies that

liPysnrlly, < e n Xl with = e B,(1+ pr)

This ends the proof of the theorem. n
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2.4 Diffusion semigroups

This section is mainly concerned with the design of Lyapunov functions for continuous
time Markov semigroups. To simplify notation, we only consider time homogeneous
models. All the semigroups discussed in this section satisfy condition (28]). Thus,
by the contraction theorem, Theorem , applies to all the Markov semigroups
discussed in this section as soon as the transition semigroups have a continuous density
with respect to the Lebesgue measure.

Section [2.4.1] presents some elementary principles based on spectral conditions
on the drift function and a simple way to design Lyapunov functions in terms of
the generator of diffusion process. These generator-type techniques are illustrated
in Section [2.4.2] in the context of overdamped Langevin diffusions. The design of

Lyapunov functions for hypo-elliptic diffusions and Langevin diffusions are discussed
respectively in Section [2.4.3] and Section

2.4.1 Some general principles

Consider the Markov semigroup P, of a diffusion flow X;(z) on £ = R"™ defined by
dXi(z) = b(X¢(x)) dt + o(X¢(x)) dB;. (37)

In the above display, B; is a nj-dimensional Brownian motion starting at the origin for
some n > 1, b is a differentiable drift function from R™ into itself with gradient-matrix
Vb = (02,V)1<ij<n, and o stands for some diffusion function from R" into R"*™. We
set X2 := go’, where o'(x) := o(z) stands for the transposition of the matrix o(z),
so that ¥%(z) := o(z)o’(z). The absolutely continuity of the transition semigroup
P(z,dy) = P(Xy(z) € dy) = pi(z,y)r(dy) for some continuous transition densities
pe(z,y) (w.r.t. the Lebesgue measure v(dy)) is ensured as soon as (b, o) are globally
Lipschitz continuous and the diffusion matrix is invertible or more generally satisfying
a parabolic Hormander condition (see for instance [62, 60} [68] and references therein).
The generator L of the diffusion flow X,;(z) and its carré du champ operator I'y, are
given respectively by the formula

L(f) :=b0Vf+ % Tr (2*V?f) and T'p(f,g):= (Vf)'E*Vy. (38)

The next proposition provides a rather elementary way to design a Lyapunov
function.

Proposition 2.16. Assume that o(x) = oy for some oy € R"*™ and we have
Vb+ (Vb)) < =2\ 1 for some X > 0. (39)
Then for any v > 0 and t > 0 there exists some 6; > 0 such that

V(x) = exp (v]z]) = R(V)/V < e/V. (40)
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The proof of the above proposition is rather technical, thus it is provided in the
appendix on page [75]

The next proposition is a slight extension of Theorem 2.6 [58] on reversible semi-
groups to stochastic flows in Euclidean spaces. It provides a rather simple way to
design Lyapunov functions in terms of generators.

Proposition 2.17. Assume there exists some function W = 0 as well as some pa-
rameters a >0, € R and 0 < € < 1 such that

aW+p8+LW)<—el(W,W). (41)
In this situation, for any t > 0 we have
Vi=exp (2eW) = P, (V) /V < v, /V* (42)
with the parameters
vy =exp (=28 (1—e ) /a) and & = (1—e ™).

The proof of the above proposition follows word-for-word the proof of Theorem
2.6 in [58], thus it is provided in the appendix on page [76]
We further assume that P, satisfies for any ¢ > 0 the sub-Gaussian estimate

1
Pavdy) < o exp (=g by = mte)?) dy (13
t

for some parameters o; > 0 and some some function m; on R™ such that
[mu(@)] < e (1 + |=]).
In this situation, for any n > 1 and ¢t > 0 we have
V(z) =1+ [z|" = [P(V)/V] < .
More refined estimates can be found when the function m; is such that
|my(z)] < € || with ¢ €]0,1] (44)

for some norm |.| on R™. In this situation, observe that any v > 0 and any centered
Gaussian random variable Y on R" with identity covariance matrix I,, we have

ef'u|x\ E (€v|mt(x)+UtY|) <¢ ef'u(lfet)kv\.

This yields the following lemma.

Lemma 2.18. Consider a Markov semigroup P, satisfying the sub-Gaussian estimate
as well as for some norm |.| on R™. Then for any v = 0 and t > 0 there
also exists some finite constant 6; > 0 such that

V(z) := exp (v|z]) = P,(V)/V < ¢ /V°.
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2.4.2 Overdamped Langevin diffusion

Let W (z) be some twice differentiable potential function from R™ into R. The over-
damped Langevin diffusion is defined by choosing in the drift function

b(x) :=—y VW (z) and (n1,o(x)) =(n,pI) for some ~,p>0.
In this context, we have
— V*W = (\/v) I forsome \>0.

Also observe that
2
q; —=aW+p+ % Te(VPW) < (v —€ p?) [|[VW]2

The above condition is clearly met when W behaves as ||z|™ with m > 1 at infinity;
that is, there exists some sufficiently large radius r such that for any |z > r we have

Te(V2W(2))] < ¢ |lz|™=2+ and  |[VW(2)]|* = ¢ [z]*™ Y.

2.4.3 Hypo-elliptic diffusions

Consider the R™-valued diffusion (37) with (b(z),o(z)) = (Az, X), for some matrices
(A, ) with appropriate dimensions. We assume that A is stable (a.k.a. Hurwitz);
that is its spectral abscissa ¢(A) defined below is negative

¢(A) :=sup{Re(A(A)) : A A) e Spec(A)} <0. (45)

In the above display Spec(A) denotes the spectrum of the matrix A, and Re (A(A))
the real part of A(A). We also assume that R := 3% is positive semi-definite and the
pair of matrices (A, RY/?) are controllable, in the sense that the (n x n?)-matrix

[RI/Q, ARY? .. ,AT_IRI/Q] has rank n. (46)
Whenever ¢(A) < 0 we have

g =) G = mda)) ) dy (4

1
v/ det (27 CY) P < 2

with the mean value function

Pt($7dy) =

A

x> my(z) = e —> 0 0

and the covariance matrices C} defined for any ¢ > 0 by

t o0
0<C:= f AR ds —y_op Oy i= f A Re*? ds.
0 0
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Since A is stable, there exists some norm |.| on R™ such that the corresponding
operator norm satisfies || < €/ for some log-norm parameter I(A) < 0. This
implies that

[ma(2)] = €] < ' Ja]. (48)

This clearly shows that the semigroup F; of the hypo-elliptic Ornstein-Ulhenbeck
diffusion satisfies and (44), and thus the conditions of Lemma are met.
Let P, be the Markov semigroup of the R™-valued linear diffusion

dX,(z) = (AX,(x) + a(X,(x))) dt + 3 dB, (49)

with some bounded drift function @ on R", an (n x n)-matrix A satisfying (45]), some
ni-valued Brownian motion B; starting at the origin and some (n x ni)-matrix X
satisfying the rank condition (46).

Using the stochastic interpolation formula (cf. Theorem 1.2 in [27]) given by

Xi(z) — Xy(z) = Jo e o (X, (x)) ds

we check the almost sure estimate
| X () — Xi(z)| < ¢ for some finite constant ¢ < .

This yields the following proposition.

Proposition 2.19. For any v > 0 and t > 0 there exists some 0; > 0 such that

V(z) = exp (v|z]) = P(V)/V < &/ V.

2.4.4 Langevin diffusion

Consider the Langevin diffusion diffusion flow A;(z) = (Xi(2),Yi(2)) € (R” x R")
starting at z = (z,y) € (R” x R") and given by

dXi(z) = Yi(z)/m dt
qYi(s) = ((X(2)) — FY:(2)/m) dt + o dB,.

In the above display, B; stands for an r-dimensional Brownian motion starting at the
origin, o, 8, m > 0 some parameters and b a function of the form

b(x) :=—yx+a(xr) with v>0 and |af < oo.
In statistical physics, the above diffusion represents the evolution of N particles

Xi(2) = (X{(2))1<i<ny € R3*N with mass m > 0, position X;(z) € R*" and momenta
Yi(2). In this context, v > 0 stands for some friction parameter, and the diffusion
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parameter o > 0 is related to the Boltzmann constant and the temperature of the sys-
tem. In this context, the function b(z) = —VW (z) is often described by the gradient
of some potential function W. For instance, for a quadratic confinement we have

W(z) :=v|x|?/2 + w(x) with |[Vw| <

— b(z) = —VW(x):= —yz+a(x) and a(z) = Vw(x).
Notice that X;(z) can be rewritten in vector form as in (49)) with n = 2r, a(x,y) =

( 0 > and the matrices
a(z)

0 mt Ln (0 0
A= ( - Inxn _/Bm_l ]nxn ) and 2= ( 0 U]nxn ) ‘ (50)

It is a simple exercise to check that A satisfies and .
Consider the R2-valued stochastic process X; = (q;, p;) defined by

dgg = f B dt
ow o? (51)
dp, = —B (—(qt)+— &> dt + o dB,
aq 2 m
with some positive constants 3, m, o, a Brownian motion B, and a smooth positive
function W on R such that for sufficiently large r we have

ow
q 3q

Vgl =r (9) =6 (W(g) + %)

for some positive constant §. This condition is clearly met when W behaves as ¢? for
certain [ > 1 at infinity. We let V(q,p) be the function on R? defined by

Vig,p) =1+ ! 24 Wi(g) + il 242 with <U2
= —_— —_— —_— 1 _
%P 2mp Uy \o 1 Pd “Som

In this situation, there exists some a > 0 and ¢ < oo such that
L(V)< —aV +ec. (52)
The proof of the above estimate is rather technical, thus it is provided in the appendix

on page [79

3 Stability of V-positive semigroups

3.1 Normalized semigroups

For non necessarily Markov V-positive semigroups ()5 ; one natural idea is to normalize
the semigroups. For any probability measure 1 € Py (E) we let ®,,(n) € Py(E) be
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the normalized distribution defined for any f € By (E) by the formula

an,t(f) Qs t(f)(x)

o (n)(f) := 10w (1)  And e set Qua(N(@) = 5575 = Pselda)(f). (53)

Qs (1)()

The mapping @, ; is a well defined semigroup on Py (£). The denormalisation formula
connecting these semigroups is given for any t € [s, +o0[, by

MQs,t<f) = q)s,t 1_[ (I)su Qu u+T< )) (54)

ue(s,t[+

with
[s,t[;:={s+nT€e[st] : neN}L

To check this claim, observe that for any ¢t := s + n7 we have
Cbs,s+p7’(:u)(Qs-ﬁ-pf,s-i-(p-i-l)f( )) /‘LQS s+(p+1) ( )//’LQS s+p7-( )

and therefore H0<p<n (I)S,S+p7' (H) (Qs+pﬂ',8+(p+1)7'(1)) = MQS,S-HLTU)‘

The above formula coincides with the product formula relating the unnormalized
operators () ; with the normalized semigroup ®;; discussed in [I8, Section 1.3.2], see
also [21), Proposition 2.3.1] and [23] Section 12.2.1].

We strengthen and assume that for any s > 0 and 7 > 0, the integral operator
Q1+- has a density ¢ s, with respect to some Radon positive measure v, on E; that
is we have the formula

Qs,s+7($7 dy) = qS,S-‘rT(‘/L‘? y) VT(dy)' (55)
We also assume there exists some ry > 1 such that for any r» > rq we have

0 < (1) :=inf inf gss4r <suUp sup gss4r <00 and v (V(r)) > 0. (56)
s€T V(r)? s€T V(r)?

In this situation, for any » > ry and 7 > r we have the uniform estimate
11;%% Qs7s+r(1) = JT,F(T) = 11}(175 Qs,s+'r(1V(F)) = LT(T) VT(V(T)) > 0.

We associate with a given p € Py (E) and some function H € By (E) the finite rank
(and hence compact) operator

Qs,t(H) ,u
1s(Qar (1) ™

with the flow of measures j; = Dy, (115) starting at po = p. With this notation at
hand, one has the following theorem.

feBy(E)— TH(f) = (f) € Cv(E)
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Theorem 3.1 ([25]). Consider a V -positive semigroups Qs with a density sat-
isfying (@) for some parameter T > 0 and some ro > 1. In this situation, there exists
a parameter b > 0 such that for any p,n € Py(E) and any s = 0 and t € [s, o[, we
have the local Lipschitz estimate

@56 (1) — @)l < c(psm) e [l —nllly - (57)

For any (pu, H) € (Py(E) x By (E)) there exists some finite constant cy(p) < o0 such
that for any s = 0 and t € [s, 0|, we have

‘H Qs,t o T,LL;EH
MSQs,t(l) >

For continuous time semigroups, the above estimates also hold for any continuous
time indices s < t as soon as for any r = ry there exists some T = r such that

infée[O,T] jr,?(é) > 0.

The proof of Theorem is based on discrete time type V-norm operator contrac-
tion techniques combining the geometric drift condition stated in the L.h.s. of (8| with
the local minorization condition stated in . The condition infsep ) Jr7(0) > 0 is
a technical condition only made for continuous time semigroups to ensure that
and also hold for continuous time indices.

Theses regularity conditions are rather flexible as we will now explain.

Absolutely continuous integral operators arise in a natural way in discrete time
settings [18, 2], [33] [78] and in the analysis of continuous time elliptic diffusion absorp-
tion models [3], B8] 36 [72]. In connection to this, two-sided estimates for stable-like
processes are provided in [8, 52, [70), [77]. Two sided Gaussian estimates can also be
obtained for some classes of degenerate diffusion processes of rank 2, that is when the
Poisson brackets of the first order span the whole space [53]. This class of diffusions
includes frictionless Hamiltonian kinetic models.

Diffusion density estimates can be extended to sub-Markovian semigroups using
the multiplicative functional methodology developed in [19]. Whenever the trajecto-
ries of these diffusion flows, say t — X;(z), where x € E is the initial position, are
absorbed on the smooth boundary JF of a open connected domain E, for any 7 > 0
the densities ¢, (z,y) of the sub-Markovian semigroup @, (with respect to the trace of
the Lebesgue measure on E') associated with the non absorption event are null at the
boundary. Nevertheless, whenever these densities are positive and continuous on the
open set E? for some 7 > 0, they are uniformly positive and bounded on any compact
subset of E; thus condition is satisfied.

In this context, whenever T'(x) stands for first exit time from E and 7T,.(z) the
first exit time from the compact level set V(r) c E starting from = € V(r), for any
d €[0,7] and r, > r we have the estimate

< cylp) e7t9), (58)

|4

Qs(Lye ) (@) = E (1o (X5(2)) lr@ys=s) =P (T, (z) > 6) =P (T, () > 7).
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In this context, we have

inf P (7, >7) >0 inf inf 1) > inf 4., .(6) > 0. 59
P (T @ > 1) > 00— Bf Qs(1) > Inf e (0 (59
Whenever the interior F, := V(r,)° is a connected domain, the Lh.s. estimate in (59))
is met as soon as the sub-Markovian semigroup Q) associated with the non absorption
event at the boundary dE, has a strictly positive continuous density (z,y) € E2 —
¢t (z,y). To check this claim, observe that for any x € V(r) we have

P (T, () > 7) = QX)) > QF (lv)le) = | a7 (@.0) Ly (0) wr(dy)

> v:(V(r) inf g7 >0.

;
V(r
It is out of the scope of this article to review the different classes of absolutely con-
tinuous operators and related two-sided Gaussian estimates arising in the analysis of
continuous time elliptic diffusion and particle absorption models. For a more thorough
discussion on this topic we refer to the series of reference pointers presented above.

Needless to say that the design of Lyapunov functions is a crucial and challenging
problem in the stability analysis of positive semigroups. We have chosen to concen-
trate our review on presenting practical and general principles for designing Lyapunov
functions.

3.2 Time homogenous models

For time homogeneous models we use the notation

((I)t, Qty@t) = ((I)O,hQO,ta@O,t)'

As expected for time homogeneous semigroups a variety of results follow almost im-
mediately from the estimates obtained in Theorem (3.1} Following [25] (cf. for instance
Section 4.1 and Section 4.3), these results include the existence of an unique leading
eigen-triple

(P Mooy h) € (R x Py (E) x Boy(E)) with ne(h) =1 (60)
in the sense that for any ¢ € 7 we have
Qi(h) =e” h and 7,Q; =€’ n, or equivalently (1) = 7. (61)

The eigenfunction A is sometimes called the ground state and the fixed point measure
N the quasi-invariant measure. For any x € E we also have the product series
formulation

0< h(l') = 1_[ {1 +e 7 [(P’RT((SLU)(QT<1)) - (I)nT(nOO)(QT(l))]} '

n=0
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In this context, choosing (11, H) = (15, h) in (58)), we readily check that

e
Neo ()

In terms of the Boltzmann-Gibbs transformation ¥, introduced in @, for any n €
Py (FE) we have the conjugate formulae

Uy (®(1)) = Wn(n) P (62)

TIN(f) = T(f) = No(f) and e Q= T||, < cnl(n) e

with the Doob h-transform of @); defined by the Markov semigroup

' FeBy(E) o PA(S) = ' Qubf) € Byu(B).
Observe that

No = (I)t(noo) = 77?0 = \Dh(noo> = n?cpth'

The Markov semigroup P! is sometimes called the transition semigroup of the h-
process, a.k.a. the process evolving in the ground state.

We further assume that @); is a sub-Markov semigroup of self-adjoint operators on
Lo(v) with respect to some locally finite measure v on E. In addition, there exists
an orthonormal basis (p,),>1 associated with a decreasing sequence of eigenvalues
pn < 0 such that

(w,dy) = Y e onlz) only) v(dy). (63)

n=1

In this context, the formulae are satisfied with the parameters
1
(0.1) = (1) and s (dx) = Wy(v)(de) i= — h() v(d).

Note that in this case h has unit norm v(h?) = 1. The spectral resolution yields
for any ¢ > 0 and f € Ly(v) the following decomposition

Ne(f) = D et ou(x) vignf) with ph=p,—pi. (64)

e " Qu(f)(x) — 7o () o

This yields the following result.

Proposition 3.2. For any time horizon t = 0 and any f € Lo(v) we have the expo-
nential estimates
h

1/2
noo(h) .

< e (v(f?) — v(hf)?)

La(v)

e "Quf) - (65)

7]oo(f)
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Whenever @, is a positive semigroup of self-adjoint operators on Ly(v) the Doob
h-transform P! is a semigroup of self-adjoint operators on Ly(n”) and we have the
following spectral decomposition

Lemma 3.3. For any t >0 and f € Ly(n") we have

P, dy) = 0 (dy) + ), ™" ha(@) huly) 1l (dy) (66)

n=2
with the Ly(nh) orthonormal basis (hy)ns2 defined for any n = 2 by
hp :=pn/h and X\, =p,—p1 <0 and 7730 = Up2(v).
Note that the density of the integral operator P/*(z, dy) w.r.t. n%(dy) is given by

pl(z,y) =e " % — 14 7; e by () ha(y). (67)

We further assume that h € By(E) and P} is ultra contractive, in the sense that
for any t > 0 we have
@,y

P! =e " sup aly) = sup pMxz,y) < 0. (68)
‘H tH’LZ(n&)HLw(n}J@) (z,y)eE? h(x)h(y) (z,y)eE? '

Proposition 3.4. Assume that v(E) < o and h € By(E). In addition, for anyt > 0
@ holds and the mapping x — § p(xz,y) v(dy) is upper semi-continuous and locally
lower bounded. In this situation, the function V := 1/h € By (E) and for any t > 0
we have Qu(V)/V € By(E). In addition, for any t > 0 we have

Q:(V))V < ¢;/V?* e By(E). (69)

3.3 Sub-Markov semigroups

Sub-Markov semigroups are prototype-based models of positive integral operators. In
time homogeneous settings, these stochastic models are defined in terms of a stochastic
flow X;(x) evolving on some metric Polish space (€, d), some non negative absorption
potential function U on some non necessarily bounded Borel subset £ < £. For a
given x € £ we denote by T'(x) the exit time of the flow X,(x) from FE.

We associate with these objects, the sub-Markov semigroup QEU] defined for any
fe€By(E) and x € E by

QM (f)(z) =E ( F(X(2)) Tp@ysr exp (— f U(Xs(x))ds>) . (70)

0

The above model can be interpreted as the distribution of a stochastic flow evolving
in an absorbing medium with hard and soft obstacles. Before killing, the flow starts
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at © € E and evolves as X;(x). Then, it is killed at rate U or as soon as it exits the
set E. In the case F = &, the flow cannot exit the set £ and it is only killed at rate
U. This situation is sometimes referred a sub-Markov semigroup with soft obstacles
represented by the absorbing potential function U on E. When the flow may exit the
set F < &, the complementary subset C' := £ — F is interpreted as an hard obstacle,
a.k.a. an infinite energy barrier.

We illustrate the V-positive semigroup analysis developed in this article through
three typical examples of solvable sub-Markov semigroups arising in physics and ap-
plied probability.

3.3.1 The harmonic oscillator

Consider the case F = & = R, and let X;(x) = By(x) be a Brownian motion starting
at x € R and let U(z) = x?/2. In this situation, the semigroup Q" = @, defined
in coincides with the one dimensional harmonic oscillator. For any ¢ > 0, the
integral operator (); has a continuous density w.r.t. the uniform measure v on E given

by
a(x,y) = D, e on(@)en(y) (71)

n=1

with the Ly(v) orthonormal basis eigenstates
pn(x) = (2" (n = 1)lym) T e H,y (2)
associated with the eigenvalues
pn = —(n—1/2) and the Hermite polynomials H,(z) = (—1)" e* d"e~*".

In this context, the eigenstate associated with the top eigenvalue p = p; = —1/2 is
given by the harmonic function

h(z) = 1 (z) = 7 V4 2, (72)

The spectral resolution of integral operator P!(z,dy) and its density pf(z,y) with
respect to the invariant measure

1 2
h -y

are given as in and with Ly(n2) orthonormal basis defined for any n > 2 by
hy = (2" n =) H,1 and p}=p,—p1=—(n—1).
In this context, the h-process is given by the Ornstein-Uhlenbeck diffusion

dX!'(x) = olog h(X[(x)) dt + dB; = —X['(x) dt + dB,. (73)
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In the above display, B; = B;(0) stands for the one dimensional Brownian motion
starting at the origin. The conjugate formula

Qi(hf)/Qi(h) = PI(f) == Qi(f) = ¢”'h P'(f/h) (74)
yields the following proposition.

Proposition 3.5. For any time horizon t = 0 we have

=
Qi(r,dy) = L ( > exp (—M) dy

cosh(t) 2py
with the mean and variance parameters (my(z),p;) defined by
my(z) = x/cosh(t) and p; = tanh(t).

The proof of the above proposition is a direct consequence of the conjugate formula
, thus it is provided in the appendix, on page .
Choosing V(z) = 1 + |z|™, for some n > 1, we readily check that

VelCy(E) and Qu(V)/V < v Q1) €Co(E) (75)

where v; is a constant depending only on .

3.3.2 The half-harmonic oscillator

Consider the case E =]0,0[c & = R, and let X;(x) = B;(x) be a Brownian motion

starting at z € £ and let U(z) = x?/2. In this situation, the semigroup QEU] = Q;
defined in ([70) coincides with the harmonic oscillator with an infinite barrier at the
origin 0E = {0} (a.k.a. the half-harmonic oscillator). Using the fact that

1
¢/ 5 e =U(z) —1/2

by an exponential change of probability measure (cf. for instance Section 18.3 in [20])
we have the conjugate formula

Q@) = e R E (f(Yil@) O 1 yy)

with the Ornstein-Uhlenbeck diffusion

dY(z) = =Yy (x) dt + dB,
(76)
and TY(z):=inf{t >0 : Yi(z) e 0E} with J0F = {0}.

Note that the stochastic flow Y;(x) coincides with the h-process of the harmonic
oscillator discussed in . Thus, by reflection arguments we have

Q}t/(f) (ZL’) (f(}/t(x)) 1Ty(z)>t> =K (f(Bgt(thL‘)) 1T(6tx)>t)

~ E
- L“O f) @ (v.y) dy with ¢ (2,y) = (re(z,y) —re(z, —y)).
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In the above display, (&, 0¢) stands for the parameters

)
(e,00) := | e, L« and 12, y) = ! exp (_% (y — Etf)Q)-
2 N 2mo? 20}

This yields the following proposition.

Proposition 3.6. For any t > 0 and x € E the normalized semigroup Q, defined in

18 given by

_ _ o siob(ym(e) 1 g
Qul, dy) = P(0<Z<m(z)//pr) 270 Y < 2p: ) )

In the above display, v(dy) := ly.[(y) dy stands for the trace of the Lebesgue measure
on the half-line, Z is a centered Gaussian variable with unit variance and (m¢(x), p;)
are the mean and variance parameters defined in Proposition [3.5. In addition, the
total mass function Q.(1)(x) is given by the formula

6_% bt

Qi(1)(x) =2 N0 xP(0<Z <my(x)/\/pi) € Co(E).

The proof of the above proposition follows the same lines of arguments as the
proof of Proposition [3.5} it is provided in the appendix, on page
Choosing V(z) = 2™ + 1/z, for some n > 1, we readily check that

VeCo(E) and QV)/V <c/V €Co(E). (77)

The proof of the above estimate follows elementary but lengthly calculations, thus it
is provided in the appendix on page [80]

For any ¢t > 0, the integral operator ); has a continuous density w.r.t. the uniform
measure v on F given by

@lz,y) = D, e (@) enly)

n=1

with the Ly(v) orthonormal basis eigenstates
fa(@) = V2 (227120 — V)2 72y, (2)
associated with the eigenvalues
pn=—((2n—1)+1/2).

In this context, the eigenstate associated with the top eigenvalue p = p; = —3/2 is
given for any z €]0, o[ by the harmonic function

h(z) = pi(z) = 20 Y4 3 2 = ho(z) Hy(z)
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with the ground state hg of the harmonic oscillator discussed in ([72)). Note that h
coincides with the restriction on |0, o0 of the first excited state of the harmonic-
oscillator (negative on | — o0, 0] and crossing the origin at « = 0).

The spectral resolution of integral operator P/*(z,dy) and its density p?(x,y) with
respect to the invariant measure

2

4 B
e (dy) = NG v e oui(y) dy

are given for any z,y €]0, 0| as in and with Ly (n% ) orthonormal basis defined
for any n > 2 and x €]0, o[ by the odd Hermite functions

ho(z) = (2220 — D)) "Y2 Hyp_y(2)/z and pl = —2(n — 1).
In this context, the h-process is given by the diffusion

dX!'(x) = dlog h(X!(z)) dt + dB, = (% - Xf@)) dt + dB;. (78)

3.3.3 The Dirichlet heat kernel

Let Xy(x) = B(z) be a Brownian motion starting at =z € E :=]0,1[c £ := R and
T(x) be the first time ¢t > 0 the process B;(z) € dE := {0,1}. Choosing U = 0 in
1) the semigroup QEU] = (), takes the following form

Q:(f)(z) == E(f(Bi(z)) 1T(x)>t)~

For any ¢t > 0, the integral operator (); has a continuous density w.r.t. the uniform
measure v on F given by the Dirichlet heat kernel

g(,y) = Y € on(@)pn(y) (79)

n=1

with the Ly(v) orthonormal basis eigenstates
©n(r) = /2 sin (nmx) associated with the eigenvalues p, = —(nm)?/2.

In this context, the eigenstate h(x) = ¢;(z) = v/2 sin (7x) associated with the top
eigenvalue p = p; = —7?/2 is strictly positive except at the boundary {0,1}. By
removing the boundary, the semigroup P! of the process evolving in the ground state
h(zx) on the open interval F is a self-adjoint operators on Ly(nL) with

0 (dx) = h*(z) v(dx) = 2 sin® (r2) 1p(z) da.

In addition, we have the spectral decomposition with the Lo(n®) orthonormal
basis eigenstates
hp(x) := sin (nmwx)/sin (7x)
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associated with the eigenvalues
Ay = —m2(n* —1)/2 < 0.
Our next objective is to estimate the density p?(x,y) of the integral operator P!'(x, dy)
w.r.t. n defined in (67). Recalling that |sin (ny)| < n|sin(y)|, for any n > 1 and
y € R, for any x € F we have the diagonal estimate
pha.) —1= Y e hy (o)

n=2
with
o (2)? sin (nmz)\ > 2 that condition (G8) is satisfied
()= ———=] <n° sothat condition is satisfied.
sin (7x)
Observe that the function

V :zeEw—V(z):=vV2/h(z)e[l,0]
is locally bounded with compact level sets given for any 0 < € < 1 by the formulae
Ke:={x€]0,1] : V(z)<1l/e} ={x : sin(nzx)>¢€} c E.

In any dimension we can use the intrinsic ultracontractivity to produce a Lyapunov
function V. Let E be a bounded domain of R" for some n > 1 and assume that it is
a C* domain for some a > 0. Denote by ¢;(z,y) the Dirichlet heat kernel on E. By
[67] one has

Qt(x7 y) <G d(l‘, aE)d(ya aE)

for some constant ¢; independent on x and y. Here d(z, 0E) denotes the distance from
z to the boundary of E. Set V(z) = d(mlaE)' The above intrinsic ultracontractivity
implies

QuV)() = f a2,V (y)dy < i|E| d(z, OE)

which in turn gives Q;(V)/V < ¢|E|/V? € By(FE), where |E| stands for the volume of
the bounded set E.

4 Lyapunov design principles

The aim of this section is to present some general principles to construct Lyapunov
functions for positive semigroups. Section [4.1] provides equivalent formulations of
the Lyapunov condition in encountered in the literature in terms of exhausting
sequences of compact level sets. This section also presents simple ways to design
Lyapunov functions for sub-Markov semigroups on normed spaces in terms of their
generators. Section 4.2| presents some principles to construct Lyapunov functions
for positive semigroups dominated by semigroups with known Lyapunov functions.
Section [4.3]is dedicated to the design of Lyapunov functions for conjugate semigroups.
All the principles discussed in this section are illustrated in Section [6] as well as in
Section [7l in the context of conditional diffusions.
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4.1 Foster-Lyapunov conditions

For time homogeneous models @, 54 := (¢, the Lh.s. condition in takes the form
Q,(V)/V < O, € By(E). In terms of the compact sets K, := {O, > €}, the Lh.s
Lyapunov condition in yields for any 7 > 0 the estimate

Q.(V)(x) <eV(x)+ 1g.(z) c. (80)

for any € > 0 with the parameter c. := supg (V©O,) < co. This implies that for any
n =1 we have

Q-(V)(x) <e, V(z) + 1k, (2) c, (81)

where K., < FE stands for some increasing sequence of compacts sets and c., some
finite constants, indexed by a decreasing sequence of parameters €, € [0, 1] such that
€, —> 0 as n — oo. In the reverse angle, assume that @Q.(V)/V is locally lower
bounded and lower semicontinuous. In this situation, condition (81| ensures that
Q.(V)/V € By(E) for any 7 > 0. Indeed, for any § > 0, there exists some n > 1 such
that €, < d and we have

{Q-(V)/V =20} < {Q-(V)/V > en} © K.

Since {Q-(V)/V = 4} is a closed subset of a compact set it is also compact.
More generally, whenever is met for some exhausting sequence of compact
sets K, , in the sense that for any compact subset K < E there exists some n > 1

such that K < K, we have

i%f Q(V)/V = glf Q:(V)V = ¢,.

This ensures that the function @Q,(V')/V is necessarily locally lower bounded. In this
situation, we have Q. (V)/V € By(E) as soon as Q. (V)/V is lower semicontinuous.

Notice that the sub-level set V(r) := {V < r} of the Lyapunov function V' € B, (E)
and the e-super-level sets K, := {©, > ¢} of ©, € By(F) are equivalent compact
exhausting sequences, in the sense that for any r > 1 we have

V(r)c K., < V(r.) with €, := ]121(1f) ©, and r.:=supV.

€r

Whenever E is a locally compact Polish space, the abstract sequence C,, := K,
in (81)) is automatically exhausting; that is, we have that F = u,>¢C,, with C, is
included in the interior C;_; of the compact set C,, ;. To check this claim, observe
that for any n > 1 there exists some m,, = n such that

C,c {0, > iélf@} < Cp, < {6, = énf O}.

mn,

Thus, the exhausting sequence C,, is equivalent to the one defined by the super-level
sets of ©,.
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The rather abstract condition is often presented in the literature as an initial
condition to check on a case-by-case basis to analyze the stability property of time
homogenous sub-Markov semigroups (see for instance [37,44], as well as Section 17.5
in [26] in the context of Markov semigroups and the references therein).

We end this section with a brief discussion on condition in the context of the
sub-Markov semigroup discussed in . Note that this semigroup can be turned into
a Markov semigroup by sending the killed process into a cemetery state, say A, at
the killing time. In this interpretation, functions on F are extended to Exn = Eu {A}
by setting f(A) = 0. More interestingly, whenever E is locally compact its topology
coincides with the weak topology induced by Co(E) := By(E)nCyp(E), and inversely (cf.
Proposition 2.1 in [2]). In this context a continuous function f vanishes at infinity
if and only if its extension to the one point compactification (a.k.a. Alexandroff
compactification) Ea := E U {A} (obtained by setting f(A) = 0) is continuous. For
locally compact spaces, we also recall that the one point extension Ea is compact.

Whenever it exists, the generator LY of these sub-Markov semigroups QEU] are de-
fined on domain of functions D(LY) = By(FE). As expected, the analysis of this class
of models in terms of generators often requires to develop a sophisticated analysis tak-
ing into account the topological structure of the set E. To the best of our knowledge,
there is no simple sufficient condition to check in terms of these generators.

The situation is greatly simplified for sub-Markov semigroups with soft obstacles.
When E = £ is a locally compact normed space (E, ||.||) we let L be the generator of
the flow X;(x). In this situation, the generator of the sub-Markov semigroup Q,EU] is
given by LY = L—U. We further assume that L and LY are defined on some common
domain D(L) c B(E).

Lemma 4.1 ([37]). Let V, Vi € D(L) be a couple of functions such that V,Vy = 1 and
V(CL‘) ||z - oo and V(ZE)/%(ZE) —|z| - 0. (82)

In this situation, condition 15 satisfied as soon as there exists some finite constant
co < 0 such that

LY(Vo)/Vo <co and LY(V)(2)/V(2) —|u)me0 —0- (83)

Note that in this context, the compact sets in (81]) are given for some sufficiently
large radii . > 0 by the closed balls:

K.=B(0,r):={xeFE : |z| <r}. (84)

4.2 Semigroup domination

For a given p > 1 we clearly have

VeBy(E) == VP e Bo(E) and Byiw(E) < By(E) € By»(E).
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We say that a V-positive semigroup (), is p-dominated by a collection of integral
operators Qg; on By»(FE) and we write ) «, Q as soon as for any non negative
function f € By (E) and any s <t we have

Qsi(f) < cis(p) Qua(fP)VP.
To simplify notation, when p = 1 we write ) € Q instead of () «; Q. Observe that
Q< Q — Vs<t  (Qu(V)/V) <mslp)’ Qa(VP)/ VP
This yields for any 7 > 0 and 6, € By(E) the Lyapunov estimate

Qs,s+7’(vp)/vp < 92 = Qs,s+7(v)/v < Cr 97“ (85)

We illustrate the above domination property with the Langevin diffusion flow Xt(a) (2) =
(Xi(2),Yi(2)) € (R" x R™) starting at z = (x,y) € (R” x R") and defined by the hypo-
elliptic diffusion

dXi(z) = Yi(z)/m dt

dYy(z) = (a(X(2)) —vXi(z) = BYi(2)/m) dt + o dB;. (86)
In the above display, ,~, 5, m > 0 stands for some parameters and a some Lipschitz
function on R”, with n > 1. Notice that when a = 0, the flow Xt(o)(z) resumes to

an hypo-elliptic Ornstein-Ulhenbeck on R?". Consider a bounded open connected
domain D < R™ and set

Vze E:=D xR" TW(z) ::inf{t>O : Xt(a)(z)eﬁE}.

We associate with these objects, the sub-Markov semigroup defined for any f € B,(E)
and z = (x,y) € E by

QI (£)(2) = B (F(A”()) Trereyst) -
In this situation, we have

supa <0 = VYp>1 QW «, Q0. (87)
D
The proof of the above assertion is a direct consequence of Girsanov’s theorem and
Holder’s inequality. For the convenience of the reader, a detailed proof is provided in
the appendix on page [82
To emphasize the role of the absorption in sub-Markov semigroups we return to the
class of models discussed in . We let P; be the free evolution Markov semigroup
associated with the stochastic flow X;(z). Assume that QI”)(1) € By(E) and

1Y (V) V| < o0 for some t > 0 and V € By (E). (88)
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Applying Hélder’s inequality and choosing V,, := VP € B, (E) with p > 1 we readily
check the estimate

QN V)V, < elp) QN (1)1 € By(E). (89)

The next lemma provides several practical conditions to check the uniform estimate
for sub-Markov semigroups associated with soft obstacles.

Lemma 4.2. Consider the sub-Markov semigroup discussed in (@ when E = & 1is
a locally compact normed space (E,||.||). Assume that the generators L and LY of
the flows P; and QEU] are defined on some common domain D(L) < B(FE). In this
situation, for any V € By (E) nD(L) and parameter a > 0 we have

LYVy<—aV+c = vt=0 QP (V)/V| < . (90)
Whenever U € By, (E) nD(L), for any ag = 0 and a; € R we have
LU)<a+alU = vi=0 [Q“U)| <. (91)

The proof of the above lemma follows essentially the same lines of arguments as
the proof of Lemma [4.1} thus it is provided in the appendix, on page

Whenever & = £ and the absorption potential function U is bounded, we have
P « QU « P. In this context, there is no hope to have that QEU](l) € By(E) for
some t > 0. Nevertheless, for any V' € By (F) and any time horizon ¢t > 0 we have

QN V)V € By(E) = Pi(V)/V € By(E).

In this situation, the design of Lyapunov functions V' satisfying or equivalently
Foster-Lyapunov conditions of the form (81)) is equivalent to the problem of finding a
Lyapunov function for the Markov semigroup F;.

Whenever P, is stable, in the sense that it has a Lyapunov V' € By (FE) such that
P,(V)/V € By(E) for some t > 0, then the domination property QI « P yields
automatically a Lyapunov function for QEU].

Whenever P, is not necessarily stable but we have |P,(V)/V| < oo for some t > 0
and V € By (FE), applying the domination property QY] « P ensures that for
any p > 1 we have V, := VP € B, (E) and

Q) eBy(BE) =  QUV,)/V, € By(E).

Last, but not least, note that the above discussion extends without difficulties to
time varying models.
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4.3 Some conjugacy principles

For any given V' € B, (E), observe that for any positive function H,

HeByy(E) = V" .=V /H e B,(E).
Thus, Q; is a V-positive semigroup on By (E) if and only if the H-conjugate semigroup
QH(f) := Qi(fH)/H is a VH-positive semigroup on Byu(E). In this situation, any

semigroup @ « Q dominated by Qf yields for any s > 0 and ¢ > 0 the Lyapunov
estimate

Qusnt (V) /VH < ¢, Q,(V))V € By(E).

To get one step further, observe that
Q(V)/V = Qi(1) Qu(V)/V.

In this notation, for any H € Byy(E) and any V-positive semigroup Q; on By (E)
such Q;(1) € By(E) and H‘thv < o0 we have

Q « Q" = Q.. (V) VT < ¢; Qi(1) € By(E). (92)

We illustrate the above comparison principles with an elementary example. Let
€ =R and W € B,(R) be some non negative function. Consider the stochastic flow
XY () of a one-dimensional Langevin diffusion on & with generator

L(f) = % o (e?of). (93)

We associate with a given open connected interval E < &, the sub-Markov semigroup
Q: on By(E) defined by

Qi(f)(z) := E(f( X}V (2)) 1T(%($)>t) with  Thp(x) := inf {t >0 : XV (z)e ﬁE}.
(94)
Observe that
H=e"V—=1U:= H‘I% 0°H = % ((oW)? — °W). (95)

When W = 0 the flow X?(z) = By(x) coincides with the Brownian flow B;(x) starting
at x. Thus, by a change of probability we check that

Q= 0Q with Qf)(@)i=E (f(By()) lrgmpse e VB &) (96)

Whenever E =0, 1[ the semigroup Q; is dominated by the Dirichlet heat kernel
on |0, 1] discussed in Section When E = R, respectively £ =]0, [, and
U(z) = ¢+ x%/2, for some ¢ < o0 and ¢ > 0, the semigroup Q; is dominated by the
harmonic oscillator discussed in Section [3.3.1], respectively the half-harmonic oscillator
discussed in Section All of these dominating semigroups are completely solvable
with Q;(1) € By(E) and known Lyapunov functions.
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5 Boundary problems

Let (£,d) be a locally compact Polish space with a distinguished complete metric
d :(z,y) € E* — d(x,y) € R.. We recall that these metric spaces are complete o-
compact and locally compact metric spaces, thus they have the Heine-Borel property,
that is each closed and bounded subsets in £ are compact.

We also recall that a subspace E < £ is Polish if and only if it is the intersection
of a countable collection of open subsets. The distance from x € £ to a measurable
subset A < £ is denoted by

d(x, A) :=inf {d(z,y) : ye A}

We also denote by 0E := E — E° the boundary of some domain (open and connected)
E c &, where E and E° stand for the closure and the interior of a subset E.

In the further development of the article, X stands for some decreasing positive
function X on ]0, o[ such that for any 0 < o < 1 we have

iiir(l)X(a) = 40 X(a) <1l/a and X(«a):= Ja X(u)du < 0.

Definition 5.1. We associate with X the function Vy € C(E) defined by
Vo i xe B — Vi(x) :=X(d(z,0F)) €]0, 0. (97)

For instance, we can choose X(u) = 1/u'~¢, for some € €]0, 1[. For any r > 0 the
r-sub-level sets of Vj are given by the closed subsets

Volr) :={zeE : Va(x)<r}={wveE : dx,dE)=X""(r)}.

Note that V € C,(E) as soon as E is compact.

5.1 Bounded domains

Let E < £ := R" be some bounded domain with locally Lipschitz boundary JF, for
some n = 1. Consider a semigroup of integral operators

Qi(r,dy) = qi(x,y) dy (98)

having for any ¢ > 0 a bounded density (z,y) € E* — q;(z,y) € [0, 00 w.r.t. the trace
of the Lebesgue measure v(dy) = dy on E. In this situation, we have the following
lemma.

Lemma 5.2. For any t > 0 we have

Vae Co(E) and [Qu(V3)] < co J X(d(z, OB)) dz < . (99)

E
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The proof of the above lemma follows from an elementary change of variable
formulae, thus it is provided in the appendix, on page

The estimate clearly applies to the class of sub-Markov semigroups QgU] de-
fined in for any choice of the absorption potential function, as soon as the semi-
group QY « @ is dominated by a collection of integral operators Q,(z, dy) having
a bounded density ¢;(z,y) on E? w.r.t. the Lebesgue measure on E. For instance,
when the transition semigroup of the free evolution flow X;(z) in has a density
pi(z,y) for any non negative function f on E and any x € E we have

QWUN@SJqMMOﬂw@/Wml%@w%=mwwlﬂw

We summarize the above discussion with the following proposition.

Proposition 5.3. Assume that QY « Q is dominated by a collection of integral
operators Q; satisfying . Then,

Q' (Vo) Vi < ¢/ Vi € Bo(E).

The choice of the Lyapunov function V' is clearly not unique. For instance, when
E =]0, 1] instead of V; we can choose V (z) := 1/y/x + 1/4/1 — . For the Dirichlet
heat kernel discussed in Section we can also choose V(z) = 1/sin (7).

We emphasize that sub-Markov integral operators on the compact interval £ =
[0, 1] with a positive continuous density w.r.t. the Lebesgue measure on F arise when
the free evolution process is reflected at both sides of the interval. In this context
the process is not conditioned by any type of non absorption at the boundaries. In
this context, the unit function V' = 1 belongs to By (FE). In the same vein, sub-
Markov integral operators with mixed boundary conditions on the left-closed interval
E = [0,1], or respectively on the right-closed interval E =]0, 1] arise when the free
evolution process is reflected at the Neumann boundary dy E := {0} and non absorbed
at the Dirichlet boundary dpE = {1}, or respectively reflected at dy E := {1} and non
absorbed at dpFE = {0}.

More generally, consider a bounded domain 2 < R"™ with Lipschitz boundary
02 = dpQludnfl consisting of two disjoint connected components dp€) and dn<? closed
in R, and set F := Q u dyQ. In this notation, the function Vy(z) := x (d(x,0pE))
belongs to Cy,(E). In addition, for any bounded density ¢;(z,y) on E* we have the
uniform estimate

JE a(x,y) Valy) dy < ¢ J Va(y) dy < .

E
The above estimate also holds for the function Vy(z) = x (d(x, 0F)).

5.2 Unbounded domains

When the domain F is not bounded the function V; ¢ B, (F). In this context, one
natural way to design a Lyapunov function V' € B, (F) is to consider an auxiliary
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function Ve € Co(€) with Ve(z) = 1 for any « € E. In this situation, we have
V= Vs + Ve € Co(E).

To check this claim, observe that the sub-level sets of V, are given by the closed
subsets
Vo(r) :={Vo<r}={zeE : dz,0E) = Xx"'(r)} c E

and we have the compact inclusion
V(r) ={V <r} cVe(r) n Va(r) with Ve(r):={xe& : Ve(zx) <r}.

This yields the following easily checked proposition.

Proposition 5.4. For any t > 0 we have

[Q:(Vo)| v [Qu(Ve)| <0 = Qu(V)/V < c/V € By(E).
When Q.(1) € Bo(E) we also have

[QUVA v [Qu(Ve) Vel < 00 = Qu(V)/V < e Qu(1) € Bo(E).

The design of a function Vg is rather flexible. For instance, assume that Q « P is
dominated by some Markov integral operators P on B,(£) such that | F;(Ve)/Vel < oo
for some Vg € By, (€). In this situation, we have |Q,(Ve)/Ve| < o0 as well as

Ve Qu(1)] < o0 = [Q:(Ve)| < .

For instance, when P, satisfies the sub-Gaussian estimates on & = R" we can
choose Ve(x) := 1+ |z, for some k > 1, as soon as the function Q;(1)(z) —|z|—w 0
faster than |z|=".

When the domain F and its boundary 0F are both non necessarily bounded, it
may happens that Q,(1) € By(E) but Q,(Va) ¢ By(E). In this situation, we can use
the following proposition.

Proposition 5.5. Assume there ezists some Ve € Cor(E) with Ve(x) = 1 for any x € E
and such that

1Q:(Vo)/Vell v Q,(Ve) Vel v [Q:(1) Vel < .

Then we have

Q.(V)/V < c)V € Bo(E).

Proof. Using the following decompositions

Q:(Va) = Q()Ve Q,(Va)/Ve and  Qy(Ve) = Qi(1)Ve Q,(Ve)/Ve

and applying Proposition [5.4| we have

IQuVA)| v 1Qu(Ve)| < o0 and therefore  Qu(V)/V < c/V € By(E).
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This ends the proof of the proposition. [

The case Q:(1) ¢ By(E) can also be handle whenever the pair (V,, Ve) can be
chosen so that

V6 >0 Va2 elCu(E). (100)
For instance we can choose for some v > 0 and € €]0, 1| the functions
Ve(z) :=exp (v|z]) and X(u):=1/u'""
Observe that
d(z,0F) < |z| + d(0,0F) and Vp(x) = X(|z| + (1 v d(0,0F)))

and for any m > 0 and 6 > 0 we have

\%

Ve(z) = co(m, 8) (14 |z])m+0/,
This implies that

(L + )™

Ve Vele) 2 eI (T3 a0, B

J’_
= ¢ (1+ =)™

Using the fact that Vg(z) > 1 for any = € E, this implies that
(reF : Ve(@)Vox)<r}c{zeE : c(l+|z))"™ <r}nf{zeE : Vi(z)<r}

We conclude that V2V; has compact level sets and (100)) is satisfied.
In this context, we have the following proposition.

Proposition 5.6. Consider a couple of functions (V, Ve) satisfying . Assume
there exists some parameterst > 0, 6; > 0 and € = 0 such that

Qi(Ve)/Ve < c/VE and Qu(Vo) < ¢ V™ (101)
In this situation, for any p > 1+ € we have
V=V TP VP e cu(B)
as well as
QuV) IV < e/ (Ve rVa) e Co(E) with &= (1= (1+¢)/p) > 0.
Proof. Observe that for any p > 1 + € we have

VoV e Co(E)  and therefore V := Val/p Vgl_l/p €Co(E).
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In the same vein, for any € > 0 we have
(100) — VoVP"» € C,o(E) and therefore  V;/P V" € Cp(E).

On the other hand, using Holder’s inequality, we have

QuV)/V < (QuVe)/Ve) P (Qu(Va) Vo)
< aD(QVa)/ (VY Vo) < @)1/ (Vv e,
This ends the proof of the proposition. [

The design of a function Vg satisfying ([101)) is rather flexible. For instance, (101)) is
automatically satisfied when ) « P is dominated by some Markov integral operators
P, on B,(€) such that

Py(Ve)()/Ve(x) < c(1)/Ve(x).

Section discusses a variety of Lyapunov functions Ve satisfying the above condi-
tion for Markov diffusion semigroups. These Lyapunov functions can also be designed
using the domination principles presented in Section For instance, consider the

semigroup ) := Q,Ea) associated with the Langevin diffusion flow on a cylinder dis-
cussed in (87). In this situation, combining with Proposition for any v = 0
and ¢ > 0 there exists some finite constant d; > 0 such that

Ve(x) :=exp (v|z]) = Qi(Ve)/Ve < ct/Vgt.
Next, we illustrate the r.h.s. condition in (101)) when ¢; are sub-Gaussian densities;

in the sense that for any x,y € F we have

. 1 1
@(r,y) <c ge(r,y) with gz, y) = W exp <—F ly — mt(l’)|2) (102)
t t

for some parameter o, > 0 and some non necessarily bounded function m; on F.
Proposition 5.7. Let ¢ be a Lipschitz function on R with uniformly bounded
gradient and set

E:={2=(2)1<icn €ER™ : 3, > o(x_p)} with 2_, = (2;)1<ijen € R"7.

Then the r.h.s. condition in 1s met with e = 0 for any positive semigroup
satisfying . The same property holds when the boundary 0E can be decomposed
as a finite union of graphs of differentiable functions on R" ! with uniformly bounded
gradients.
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Proof. We choose o > 0 sufficiently small so that for any
ve€Dy(E):={xeFE : dz dE)<a}

there exists a projection T € 0F with d(x,0F) = |v —Z|. Let C5(T) be an interior
cone with a given base vertex T = (x_,, @(x_n)) € 0F and a given half-opening angle
w around the axis A(T) := {(x_n,x,) : 2, = @(x_,)}. For any x € A(T) there exists
a projection T € 0C(T) on the boundary 6C () with

d(z, 0C,(T)) = d(z,7) = cos (g - w) (2 — o(z_0)) < d(z,7)

On the other hand, for any y € 0F we have

lp(zn) — ©(y—n)|
|2 —n —yn|

2= (Yop,p(z_y)) = 0< w<yzz and tan(yzz) =

bo | 3
|

This yields the estimate

s — 1
CoS (5 — w) = COS (yxz) =

from which we conclude that
0<a,—px_y,) <kdT)
with

= V14|Vl and [Ve|:= sup [Ve(y)| < .

yER"71
This implies that

JD (E)x(d(y,aE))qt(x,y) dy

< (1) f - X ((yn — ©(y—n)) /K)) exp (—%,?((yn —p(y-n)) + (p(y—n) — (mt(m))n))2)

1
< oxp (=50 lion = ()l ) didi
t

Using the change of variables

= (Yn — p(y_n)) /K = dy, = Kk dz
we find that

f (E)x (d(y, 0F)) qi(,y) dy

<k e(1) X(a) f

Rn—1

exp (=g [0 = ()01 diy < 2.
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On the other hand, for any o > 0 we have
| xwom) atew dy<x@) 1] < al)
E—Dq(E)

This ends the proof of the proposition. [

5.3 Smooth boundaries

Next, we illustrate the Lyapunov conditions on Vj in the context of absolutely con-
tinuous sub-Markov semigroup of the form with a bounded density ¢(z,y) on
a non necessarily bounded domain £ < R"™ with smooth non necessarily bounded
C2-boundary with uniformly bounded interior curvature.

We assume that there exists a > 0 sufficiently small so that every point of the
a-offset of OF (a.k.a. a-tubular neighborhood) defined by

Tuby(OF) := {x e R" : d(z,0F) < o}

lies on some normal ray passing through a point on 0F and no two normal rays passing
through different points of 0E intersect in Tub,(0F). We let N(z) be the unit normal
vector at z € Tub,(0F) pointing inward F, and let D,(E) the closed subset defined
for any r < a by

D,(E):={xeFE : dx,0E)<r} and D_.(E):={xeR"—E : d(z,0F) <r}.
In this notation, the inverse of the normal coordinate map
F : (z,r)€ 0FE x [—a,a] — F(z,r) = z+ 1 N(z) € Tub,(0F) (103)
is given for any x € Tub,(0F) by
F~(x) = (projog(2), da(z, OE))

where proj,g(x) stands for the projection of € Tub,(0F) onto 0E and d,(z,0F)
stands for the signed distance function

do(z,0F) := d(x,0F) 1p,(p)(x) — d(z,0F) 1p_ (p)(x) € [—a, .
In addition, the inward normal N(z) at any z on the C? boundary 0F is given by
Vdu(z,0FE) = N(z).

The Hessian of the signed distance function on the boundary 0F gives the Weingarten
map W(z). With this notation at hand, we have

‘LWfW%%»M%w@=fﬂﬂﬁ@ﬂW
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with the level-set density function

dwr) = | alew) anldy (104)
_ LE G (2 +N(2)) |det (T = W(2))| oa(d=).

In the above display, 0,(dz) stands for the Riemannian volume measure on the r-
extended boundary

OE,:={x e E : d(z,0F) =r}.

Moreover, since E has uniformly bounded interior curvature, for any » < a we
have

ko(a) :==sup|det (I —r W(z))| < oo and k;(a):=sup|det (I +7 W(y))| < .

In the above display, the supremum is taken over all z € JF, y € JFE,, and r <
a. Several examples of hypersurface boundaries satisfying the above conditions are
discussed in Section [§] (cf. for instance Proposition [8.4)).

We denote by g7 > ¢¢ the function defined as ¢’ by replacing ¢; by g,. Using the
fact that

(&7

Qo)) < X(a) + f X(r) T r) dr

0
we readily check the following proposition.

Proposition 5.8. For any t > 0 we have

sup sup qf(ac,r) <o = Q(Va) < X(a) Q1) + ¢y(a) X(a)

0<r<a xeF

sup supq(z,r) <o — Q,(Va) < X(a) + ¢(a) X(a). (105)

0<r<a zeF
When the boundary 0F is bounded, for any t > 0 we have the estimate
QU < ele) (Xla) +¥() sup o, (05)). (106)
<r<oa

We end this section with some practical tools to estimate the level-set density
functions discussed in Section Most of our estimates are based on the following
technical lemma.

Lemma 5.9. Consider a couple of non negative functions f,g on R™ and some pa-
rameter a > 0 such that

sup f(z+u) <i(a) g(z)  for some (o) < c0.

|ul<a

In this situation, we have the uniform estimate

sup (2) 0a,(dz) < () Ko@) f g(2) oa(dz)

Osr<a JOE, oF

48



as well as the co-area estimate

(2) 0alds) < - ele) wifa) [ gle) da

[ o(E)

The proof of the above lemma is provided in the appendix, on page 84!
Note that the level-set density function defined in (104)) can be estimated for any
0 < r < a by the formula

qf(a:,r) < Ha(a)f g (x,z +1rN(2)) o0s(dz).
oE

Proposition 5.10. Assume that ¢(z,y) < w; gi(z,y) is dominated by some proba-
bility density y — gi(x,y) on R™ for some t > 0 and some parameter w, < . In
addition, we have
sup gi(z,y + u) < w(a) gau(z,y) (107)
[u]<er
for some probability density y — ga+(z,y) and some (o) < c0. In this situation, we
have the uniform density estimates

sup sup ¢ (z,7) < @ y(a)k; (@)ka()/a. (108)

0<r<a zeFE

Proof. By (107) for any 0 < r < o we have

qf(:v,r) < w kola) LE gt (x, 2+ rN(z)) os(dz).

On the other hand, we have
J gra(z,y) dy < 1.
o(E)

The estimate (108]) is now a direct consequence of the co-area estimate stated in
Lemma [5.9] This ends the proof of the proposition. [

We illustrate the above condition when ¢; are the sub-Gaussian densities discussed in
(102). In this situation, using the fact that 2a’b < {|a|® + €[b]|? for any 0 < ¢ < 1 and
|u| < o we check that

1 (1—¢)

1 /1
2 2 2
g M) = )P < = O by e+ 5z (1) o

In this context, condition (107]) is met with the gaussian density

e—ﬁ ly—me ()|

Gor(T,y) 1= (270, (€)2)/2

with ,
a“/e
wla) :=c e@® and oy(e)? =02 /(1 —¢).
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6 Riccati type processes

6.1 Positive diffusions
Consider the Riccati type diffusion on E =)0, +oo[ defined for any = € E by
dXy(z) = (a0 + a1 Xe(z) — b Xo(2)?) dt+01(Xi(2)) dB} +02(Xe()) dBf, Xo(z) =z
for some Brownian motion (B}, Bf) on R?, the diffusion functions
o(r)i=a Ve oa(r) =g

and the parameters

a; €R a0>§12 b>0 and ¢, =0.
Applying It6’s formula, we readily check that

OE(Xi(x)) < Rice (E(X¢(x))) and 0E(1/X:(z)) < Rice™ (E(1/X:(2)))
with the Riccati drift functions defined by
Ricc(z) := ag + a1z — bz and Ricc (2) :=ay +a;z—b 2° (109)

with the parameters

ag :=b a; = (s5—a;) and b :=ay—s;.

Consider the Lyapunov function V' € By, (E) defined by V(x) := = + 1/z. By well
known properties of Riccati flows, for any ¢ > 0 we have ||P,(V)| < co. For a more
thorough discussion on this class of one-dimensional Riccati diffusions, we refer to the
article [6].

6.2 Matrix valued diffusions

Let £ and E be the space of (n x n)-positive semi-definite and definite matrices
respectively. Also let A\j(z) = ... = \,(x) denote the ordered eigenvalues of x € E.
Let W, denotes an (n x n)-matrix with independent Brownian entries. Also let A be
an (n x n)-matrix with real entries and let R, S € E. We associate with these objects
the E-valued diffusion

AX, = (X + XA + R= X,SX) dt + | X/, RV + RV aw) X}

Whenever € < 2/4/n + 1, the diffusion X; has a unique strong solution that never
hits the boundary 0F = E — E. In addition, the transition semigroup P, of X, is
strongly Feller and admits a smooth density w.r.t. the Lebesgue measure on F, thus
it is irreducible. Furthermore, when €*(1 + n)/2 < \,(R)/A\i(R) then the function
V(x) = Tr(x) + Tr(z™') is a Lyapunov function with compact level subsets. For a
detailed proof of the above assertion for more general classes of Riccati matrix valued
diffusions we refer to [7] (see for instance the stability Theorem 2.4 and Section 5.4
in [7]).
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6.3 Logistic birth and death process

Let X;(x) be the stochastic flow on E := N — {0} with generator L defined for any
f € By(F) and x = 2 by

L(f)(x) = J(z,z = 1) (f(x = 1) = f(z)) + J(z, 2+ 1) (f(x + 1) - f(z))

and for z = 1 by
L(f)(1) = J(L,2)(f(2) — f(1)).
In the above display, the birth and death rates are given by

J(x,x+1):=Nzx+v, and J(r,z—1):=Xgz+ N z(x—1)+ vy (110)

for some non negative parameters Ag, Ay, vy, vg = 0 and \; > 0. Consider the identity
function V : x € E— V(z) = x. For any x > 2 we have

L(V)(x)=Jxz,x+1)—J(x,xz—1)=(FoV)(x)
with the concave function
zeRy = F(2)i=(vp—va) + (M + X — M) 2— N 22 e R (111)
Observe that
L)1) -F(V(1))=J(1,2) — F(1) = J(1,0) = vg + Aqg
This yields the estimate

B(LV))(z) = Pl LV))(x) + F(lgy LV))(z)
= B((Fo V))(:v)+Pt(1{1})( z) (L(V)(1) = F(V(1)))
< F(R(V))(z)+J(1,0)

from which we check that
ab(V)(x) < Rice(B(V)(z))
with the Riccati drift function defined in with the parameters
ag = Uy + Mg ar =X+ N —A and b:= A > 0.

By well known properties of Riccati flows, for any ¢ > 0 we conclude that | P,(V')| < co.
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6.4 Multivariate birth and death processes

We denote by e := {e;, 1 < i < n} the collection of column vector e; on {0, 1}" with
entries €;(j) = 1;—; and with a slight abuse of notation we denote by 0 the null state
in N". Let X;(z) be a stochastic flow on F = N* — {0} with generator L defined by

L(f)(x) == > J(x,y) (f(y) — f(x)). (112)

yelE

Let A, p,v,¢ be some column vectors and let C, D some (d x d)-matrices with real
entries such that for any 1 < ¢ < d and any x € E we have

J(x,x+e) :=vi+x; (N +(Cx))) =20 and J(z,z—e¢;) = +a; (i + (Dx);) = 0.

We also set
J(x,y) =0 assoonas |z—y|=2.

We further assume that

lu] = ¢ B:=(D-C)=bI>0 forsomeb>D0.

and we set
ag = |U| - |§| =0 ap = Vléién(/\i - Mz’)

and for any x € N”

1/2
|| = ( D x§> >z = )]
1<i<n 1<i<n
Consider the Lyapunov function
reE—V(z)=|z]e N,

Note that V is locally bounded with finite level sets and for any x € £ — e we have

LV)(@) = > ((vi+a i+ (Ca)y)) = (i + @i (us + (Da)y)).

1<isn

In this situation, we have the formula
L(V)(z) = ap+ (N — p)'x —2’'Bx < ap + a1 |z — b]|z|*. (113)

On the other hand, for any y = e; we have

L)) = D, J(yy+e).

1<ign

52



This implies that

P(L(V)) = P(lg_e L(V))+ P(1. L(V))
= ag+a P(V)—0bP(V?
+ Y P(L,) (L(V)(e) — (a0 + (A — p)'e; — €;Be;))

1<j<n
from which we readily check that
OGE(V(X,(2))) < ag + aE(V(X(2))) — b (E(V(X())))?

with

ag = ag+ Z ( Z J(ej e;+e) = (Jo] = [s] + (A= p)'e; — €j(D — C)ej))

1<j<d  \1l<i<d

= Qg+ Z (|§| + Mlej + e;Dej) .

1<j<d

We conclude that |P(V)| < o, for any ¢ > 0. The semigroup analysis discussed
above can be extended without difficulties to more general process on countable spaces
models satisfying condition (I13). The extension to time varying models can also be
handle using a more refined analysis on time varying Riccati equations.

We also mention, that the case |v| = 0 = [¢| coincides with the competitive and
multivariate Lotka-Volterra birth and death process discussed in Theorem 1.1 in [13].

7 Some conditional diffusions

7.1 Coupled harmonic oscillators

Consider the R"-valued diffusion with (b(z),0(z)) = (A, X), for some non neces-
sarily stable drift matrix A and some diffusion matrix ¥ with appropriate dimensions.
We associate with a given semi-definite positive (n x n) matrix S > 0 the potential
function

1
U(x) = 5 'Sz and we set R = XY (114)

We assume that the pairs (A, R'/?) and (A’, S'/?) are both controllable. Let Q, = QI
be the sub-Markov semigroup defined in on the Euclidean space £ = E = R™.
As shown in [I7], the leading-triple (p, h,7y) discussed in (61)) is given by

p = —Tr(Rgxn)/2 = =Tr(peS)/2
h(z) = exp(—2'qpr/2) and ny(dx) = exXp (Z2pp 7/2) d

det(2mpys)

z,  (115)
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with the positive fixed points p,, and g of the dual algebraic Riccati matrix equation

In this context, the h-process, denoted (X! (z));>o and defined by the stochastic dif-
ferential equation

dX]'(x) = A"XMz) dt + X dB, with A" := A~ R qy. (116)

Our controllability conditions ensures that A" is a stable matrix. Note that X! (x)
is an R"-valued Gaussian random variable with mean m/(z) and covariance matrix
pl € R™" given for any ¢ > 0 by

t
m}(z) = exp (A")  and p; = J exp (A"s) Rexp ((4")'s) ds > 0.
0

This yields the explicit formula
1 h

Nt (—§<y @) ) m?(m))) &

Moreover the invariant measure 7 = n.P! is unique and given by

1 1 _
nh(dr) = ——— exp <—§y’(p?o) 13/) dy

A/ det(2mph.)

with the limiting covariance matrix

Pth<x7 dy) =

ph o= f exp (A"s) %2 exp ((A")'s) ds = (p)' + ¢) ™' > 0.
0

For any time horizon ¢ > 0 and any measurable function F' on the set C([0,¢],R")
of continuous paths from [0, ¢] into R™ we have the path space exponential change of
measure Feynman-Kac formula

K (mxt(x)) exp ( [ 0% (@) d)) — e h(z) B (F(X (@) /h(X} (2)))

0
with the historical processes

Xi(2) 1= (Xs(®))o<s<ts X?(I) = (X:<x))0<s<t and  Us(Xs(z)) 1= Us(Xs(2))-
This yields the conjugate formulae
Q:(f) = e h P(f/h).

We denote by (my(x), p;) € (R" x R™*™) the mean and covariance parameters satisfying
the linear evolution and the Riccati matrix differential equations

omi(x) = (A—pS) my(x)
(117)
ope = App+p A+ 32— pSp, with  (mg(x),po) = (z,0).

The next proposition provides an explicit description of these semigroups.
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Proposition 7.1 ([I7]). For any time horizon t > 0 we have p, > 0 and the normal-
wzed semigroup @), defined in is given by

0,(a dy) = Ly @y - mt<x>>) By (18)

—_— exp(
det(2mpy) 2
as well as . .
—2log Q¢(1)(z) = 2 (f F.SF, ds> x +f Tr(Sps) ds
0 0
with the fundamental matriz semigroup Fy starting at Fy = I given by
atFt = (A —ptS) Ft.

Observe that the normalized Markov operator @, satisfies and (44) with the
parameters

1 2

¢ = —F———, 07 = Mnaz(P and €, = eTA=PoS) ) as 1 — 119
= Tae) ) | | (119)
for some matrix norm |.|. The r.h.s. assertion is a direct consequence of the Floquet

representation theorem presented in [5] (cf. (1.3) and Theorem 1.1) and the fact that
(A — pyS) is a stable matrix. Applying Lemma for any v > 0 and ¢ > 0 there
also exists some finite constant d; > 0 such that

V(z) := exp (v]z]) = Q,(V)/V < ¢;/V*".
Using Proposition for any k > 0 and ¢t > 0 it is also readily checked that

V()= 1+ [a])! = [Q,(V)/V] <o and [Qi(V)] < 0.

7.2 Half-harmonic linear diffusions

For one dimensional models, the coupled harmonic oscillator discussed in Section [7.1
resumes to one dimensional linear diffusion

dX,(z) = a X,(z)dt + dB, and the potential U(x) = ¢z?/2 (120)

for some parameters ¢ > 0 and a € R. We set § := a + v/a? + . In this notation, the
leading pair (p,h) = (p1, 1) is given by

p=—B/2 and h(z) = ((6 —a)/m)" exp (—52%/2). (121)

The quasi-invariant measure is therefore given by

Moo (d) = \/% exp (—s2°/(28)) dz.
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Therefore, the h-process resumes to the Ornstein-Uhlenbeck diffusion
dX!(x) = —b X! (z) dt + dB, (122)

with the invariant measure

b
U?o(dx) = \/j exp (—b 1‘2) dr with b:= (6 — a,) = \/m > (.
N

Note that any Ornstein-Uhlenbeck process can be seen as the h-process associated
with a non absorbed (possibly transient) linear diffusion evolving in some quadratic
potential well.

In this context, Proposition [7.1] is also satisfied with the mean and variance pa-
rameters

omi(z) = (a—ps) my(z)
(123)
Opr = 2ap;+1—cp7 with  (mg(x), po) = (2,0).
We also have
2
e log Qi(1)(z) =, + x¢ @° (124)

with

¢ s t
Xt 1= f exp (—QJ (a —Pu§)du> ds and P, := J psds.
0 0 0

The half-harmonic semigroup associated with the flow X,(x) is defined for any
r € F:=]0,0[ and f € B,(E) by the formulae

Qi(f)(z) = E (f(Xt(x)) Lr(z)>t exp{—fU(Xs(:v)) ds}) : (125)

0

In the above display, T'(x) stands for the hitting time of the origin. In terms of
the h-process of the flow in the harmonic potential (122)) we also have the conjugate
formula

Q@) = e PR E (f(Yila) M2 v,y (126)

with the parameters (p, #) defined in ((121)) and the Ornstein-Uhlenbeck diffusion flow
defined by
dYy(x) = =bYi(z) dt + dB; with b:= (5 —a) > 0.

In the above display, TY (z) stands for the hitting time of the origin by the flow Y;(x)
starting at © > 0. Arguing as in Section [3.3.2] we check that

Qt (]3, dy)

= sinh (y my(x)) exp (—% (x¢ 22 +]‘9t)) X A [— exp o0

2 < y? + my(z)?
TPt

) Looi(y) dy
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with the parameters (m(z),p;) and (xy, p,;) defined in (123]) and (124]).
Arguing as in (77), choosing the Lyapunov function V(z) = 2" + 1/z, for some
n > 1, we readily check that

Vely(E) and Q,(V)/V <c/V eColE). (127)

7.3 Linear diffusions in some domains

Consider the one-dimensional stochastic flow Y;(x) of an Ornstein-Uhlenbeck
dYy(z) = =bY(x) dt + dB; for some b > 0.

In the above display, B; is a one-dimensional Brownian motion starting at the origin.
For a given z € E :=]0, o[, we let TY (z) be the hitting time of the origin by the flow
Y;(z) starting at > 0. Consider the semigroup

Q) () = E(f(Ye(@)) 1rv()=e).
Choosing (a,s, 8, p) = (0,0%,b, —b/2) in , formula takes the form
Qi (f)(z) = e H(z)"'Qu(fH)(z) with H(x) = exp (~bz?/2)
with the semigroup Q; defined in (125 with U(x) = b%*z/2.
For any given n > 1 we have
V(z)i=a2"+ 1)z =V eCy(E) and V¥ :=V/HeC,(E).
Using we conclude that
VHeCy(E) and QY (VH)/VH = Q,(V))V < ¢,)V € Co(E).

The long time behavior of the positive semigroup @} is also studied in [55], and
more recently in [65] in terms of the tangent of the h-process.

More generally, consider the R"-valued diffusion flow X;(z) defined in with
(b(x),0(x) = (Az, X)), for some matrices (A, X)) with appropriate dimensions. Assume
that R := XY is positive semi-definite and the pair of matrices (A, R'/?) are control-
lable. In this situation, the Markov semigroup P, of the stochastic flow X;(x) satisfies
the sub-Gaussian estimate for some parameters (o, my(z)).

Consider a domain F < R™ with C?-boundary with uniformly bounded interior
curvature. For any given x € F, let (J; be the sub-Markov semigroup

Qi(f)(x) = E(f(X(x)) 1r@)=e) with T(x):=inf{t >0 : X,(z)e dE}. (128)

We clearly have Q;(Vs) < Py(Vp), with the function V; defined in (97). When E is
non necessarily bounded but its boundary JF is bounded we known from ((106) that
1Q:(V3)| < oo. For non necessarily bounded boundaries the sub-gaussian property

(102)) ensures that ||Q:(V3)| < oo.
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When E is bounded, applying Lemma (see also Proposition we have
VoeCu(E) and Qu(Va)/Vo < ¢t/Vo € Co(E).

For unbounded domains we need to ensure that A is stable so that is satisfied
for some norm |.| on R™. In this situation, applying Proposition for any t > 0
there exists some §; > 0 such that

Ve(z) := exp (v|z]) = Qu(Ve)/Ve < c/VE".
Applying Proposition with € = 0, for any p > 1 we conclude that
Vo= Ve Ve Co(B) amd Qu(V;) /Vy < 1 O (129)
with the function
i o= 1/(V2UTPYIRY € Co(EB).
7.4 Langevin diffusions in some domains

Consider the semigroup @); of the one-dimensional Langevin diffusion defined in ((94))
with £ =]0, o[ and a quadratic confinement potential

2 1
W) =a2%2— H(z) = e W@ =2 and U:= 3 (a:2 + 1) )
In this case, the semigroup Q; defined in coincides with the semigroup of the
half-harmonic oscillator discussed in Section 2. By (77 . for any n > 1 we have
V(z) :=a"+ 1)z = Qu(V)/V < ¢/V € Cy(F).

Notice that

e:c2/2

VH(z) = V(z)/H(z) = 2" " + (130)

X

Using we conclude that
VH S COO(E> and Qt(VH)/VH = Qt<V)/V < Ct/v € CO(E)

More generally, consider the case E =]0, 0] with at least a quadratic confinement
potential U, in the sense that

Uz) == ((0W)* = W) (z) = Us(z) :=c+¢ x*/2 for some ¢ > 0.

[\DI»—t

In this situation, @, « Q2] is dominated by the semigroup Q2! of the half-harmonic
oscillator discussed in Section Arguing as in (130) we have

H:=e" VI :=V/HeCyh(E) and Q,(V")/VH < ¢,/V € Cy(E).
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For instance, whenever the confinement potential W is chosen so that
W(x) = eologx + Wi(x) for some 0 < ¢ <1

and some function W; > 1 such that Wi (x) —,_ o0 we have

H=e"V—=VHz):=V(z)/Hx) = 2" " +
Using we conclude that
VEeCy(E) and Q. (VH)/VH = Q,(V)/V < ¢V € Co(E).

We illustrate the above result, with the logistic diffusion discussed in [12]. Consider
the generalized Feller diffusion

dY,(z) := (2a Y,(z) — (8b/0%) Yi(x)?) dt + o \/Y(x) dB,

starting at © € E :=]0,00[. In the above display, B; is a one dimensional Brownian
motion starting at the origin and a, b, 0 > 0 some parameters. Observe that

Xi(z) = (2/o)\Yi(z) = dXi(x) = —0W (Xi(x)) dt + dB;

with the potential function

1
6W(:U):2——ax+b:c3 with a,b > 0.
x

Thus, choosing

x? x?

1
W(z) = 5 logx+bz —as

we readily check that
VH(2) = VO 4 1/a) = (2" 4 1Va) T 0T = VT e Cu(E).
More generally, consider the Langevin diffusion flow
Xi(z) = (Xi(2), Yi(2)) € (R" x R")

starting at z = (z,y) € (R" x R") and defined by the hypo-elliptic diffusion (86). We
further assume that supp a < o for some bounded open connected domain D < R"
with C%.-boundary, and for any z € E := D x R" and f € By(F) we set

Qi(f)(2) = E (f(Xi(2)) 1r>) with T(z):=inf{t >0 : X,(z) e aD}.

We know from that for any ¢ > 1 we have Q «, @) is g-dominated by the sub-
Markov semigroup @; associated with the Ornstein-Uhlenbeck diffusion on E defined
in (128)), with the matrices (A4, %) defined in (50). In terms of the functions (V}, ©,,)

defined in (129)), combining with (129) for any p,q > 1 we conclude that
Q(Voa)/ Vo < ct(p, @) Opgu

with the collection of Lyapunov functions

Vog = V;/q € Cx(E) and the function ©,,;:= @;{f € Cy(E).
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7.5 Coupled oscillators in some domains

Consider the R™-valued diffusion X;(x) and the quadratic potential function U dis-
cussed in Section , for some n > 2 and set F :=]0,0[xR""!. Let Q; be the
semigroup defined for any f € B,(F) and x € E by the formulae

t

Qi(f)(z) = E (f(Xt(x)) 1p(a)>t XD (_ f

0

U(Xs(x))ds)) (131)

with the quadratic function U in (114]) and the exit time 7T'(x) given by
T(z):=inf{t =0 : X,(x) e 0F} with 0F = {0} x R"*,

In terms of the h-process Y; () := X}*(x) associated with the leading pair (p, h) defined
in (116) we also have the conjugate formula

Qi(f) =" h Q) (f/h) with Q) (f)(x):=E (f(Ye(x)) 11v()>1) -
In the above display, TY (z) stands for the boundary hitting time
TY(z) :=inf{t =0 : Y(x) € OE}.

When n = 2, the linear diffusion X;(x) associated to the matrices Ay = Agy =
AQ,Q = 0 and ALQ = 1 and 21’1 = 21?2 = 22’1 = 0 and 2272 = 1 coincides with the
integrated Wiener process model discussed in [43, 54} [57]. In a seminal article [57],
McKean obtained the joint distribution of the pair (7'(z), X%(m)) in the absence of soft
absorption, that is when U = 0. To the best of our knowledge, an explicit descrip-
tion of the distribution of this pair and the corresponding sub-Markov semigroup is
unknown in more general situations.

Observe that for any = € F and any non negative function f € B,(R"™) we have

Qu(f)(x) < Qu(f)(x) = ¢ h(z) E(f(Yi(x))/h(Yi(x)))

The semigroup Q, defined above coincides with the semigroup of the coupled harmonic

oscillator discussed in Section . We know from (119)) that Q, satisfies the sub-
Gaussian estimates (43) with

1
Cp = ———
o /det(2mp;)

with the solution p; of the Riccati-matrix equation (117). Using Proposition for
any k > 1 we have

and af = Anaz(Dt)

Ve(z) =1+ 2" = [ Qu(Ve)/ Vel < 0 = Qu(V) < e Qu(1)VE.
Recalling that Q;(1)(z) tends to 0 exponentially fast as |z| — oo, this implies that

V=0 |Q(Ve)| < .
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On the other hand for any y = (y1,y_1) € E = (]0, 00[xR"™1), the distance to the
boundary is given by d(y,0F) = y;. In terms of the function V; defined in (97) his
implies that

QuVi) () < f Qi dy) Tpo.;(y1) X(3) + X(1) Q,(1)(x)

from which we check that |Q.(V;)| < o0. Applying Proposition |5.4f we conclude that
Vi=Vo+VeeCu(E) and Qu(V)/V < ¢/V € Cy(E).

The same analysis applies by replacing the half line £} by the unit interval £y :=]0, 1[.
In this context, the boundary is given by the two infinite potential walls

OFE = ({0} x R ) u ({1} x R"™) and d(z,0F) =z A (1 — 7).

More generally, consider a domain E = R" with C%-boundary with uniformly bounded
interior curvature. In this situation, the sub-Gaussian property (102)) ensures that
19:(V3)| < o and therefore

[Qu(Va) | < [Qu(Va)] = Qi(1)Q(Va)| < 0.
Applying Proposition [5.4, we conclude that

Vi=Vo+Veelyp(E) and and Qu(V)/V <¢/V € Co(E).

8 Some hypersurface boundaries

8.1 Defining functions and charts

Consider a smooth function y € R"! — ¢(y) € R with non empty and connected
level set, for some n > 2. Consider a domain F in R" with a smooth boundary
OF = 7 1({0}) defined as the null level set of the function

T = (1) 1<i<cn € R" = B(z) 1= p(x_,) — 2, With z_, := (;)1<icn € R"L.

Consider the column vectors Vip(z_,) := (02,0(¥—n))1<;p- In this notation, the unit
normal vector N(x) at x € 0F is given by the column vectors

) = V@(l‘) _ 1 V@(ﬁ—n)
N = ] ¢1+||w<x_n>2< -1 >

Observe that the vector N(x) is the outward-pointing normal direction to E as soon
as B = ' (] —0,0[) and the inward-pointing normal direction to £ when E =

@ (]0, +cof).
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Consider the column vectors e; := (1;())1<i<n, With 1 < ¢ < n. In this notation,
the (n — 1) tangential column vectors T;(z) at x € JE are given for any 1 < i < n by

the column vectors
e,
Ti(z) := ! )
(@) (@ymw>)

The inner product g(z) on the tangent space T,(0F) (a.k.a. the first fundamental
form on JF) is given by the Gramian matrix

9(2) = (@) T @),y = T@T() with T(a) i= (Ty(a), ... Tus (@)
This yields the matrix formula

I

v ) > =T+ Vo(z_n,)Ve(z_,)"

g(z) = ( I,Vp(z_,) ) ( Voo

In this notation, the projection projy (g on the tangent space T,(0F) is defined for
any column vector V = (V%) <<, € R by

Ti(x) Vi
projr, op) (V) := (T1(2), . .., Tp-1(2)) g(a) ™" : :
Tn_l([E)/ Vn

In matrix notation, the projection of m column vectors V; € R", with i € {1,..., m}
and any m > 1 takes the synthetic form

prOjTI(aE)(Vh ey V) = (T(x)/g(:p)_lT(:L‘)) Vi, Vi)
= (projr,om V1), - - - PrOjr, (o) (Vi) ) -

Equivalently, if g(x)* denotes the (i, j)-entry of the inverse matrix g(z)~!, the pro-
jection of a column vector V' € R"™ onto T,(0F) is defined by

projrom(V) = Y. g@)" (Ty(x)'V) Ti(x).

1<i,j<n

8.2 The shape matrix

Consider the Monge parametrization

n— 0 n

In this chart, the tangent vectors and the normal unit vector at x = () are given
for any 1 <17 <n by

TP (0) := 05 (0) = T, (¥(9)) € To(OE) and  N¥(9) := N(¥(9)) € T, (9E).
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For any 1 < 17,7 < n we have

(09, 10(0)) N¥(0) = 0

— QU(0))i = (00,0,0(8)) NV(8) = — (0o,0(6))' 20, NV (6).
Observe that for z = ¥(6),
0 NY(0) = > (9, N) () 0o (0) = (VN(x))" 05,1(6)

from which we check that for any 1 < i,j < n the coefficients of the second funda-
mental form can be computed as follows:

A@)iy = — (05,4(0)) (VN(2))' O,1(0).

We set
(ON?(0)) := (0, N¥(8),. .., 0, N*(0)) € (Ty@(2E))"™"

In this notation, for any x = ¢ () we have the matrix formulation

Ofa) = —aw(0) (ON*(0)" = ((Go0,0)) N(x))

C2S0(9) . 2
= — with VZ©(0) := (0, 9. 0(0 L
1+ [Ve(0)]? 2(0) = (%.0,900)) 11

1<i,j<n

We also readily check the matrix formulation of the Weingarten’s equations

(ONY(0))" = ((29(0)) 9(:(0))7) (24:(6)) (IN*(8))" = — (24:(8))' W (x).

In the above display, W(z) stands for the shape matrix (a.k.a. the Weingarten map
or the mixed second fundamental form) defined by

W(z) = g(z)"'Q(z)

) _¢1+|v1<,o<x_ 7 (14 Vel Vo)) V(e

We summarize the above discussion in the following proposition.

Proposition 8.1. For any 1 <1 < n we have the Weingarten’s equations

W, NY(0) = — > W(W(0)),; 00,1(0) € Tyo)(0E).

1<k<n

Example 8.2. Forn = 2 we have z € R — @(z) = ¢(x) — z, so that the boundary
OF =57 1({0}) coincides with the graph of the function @. In this context, the metric
and Weingarten map at v € OE = {x = (v1,12) € R? : 29 = ¢(x1)} take the form

1
(1+ |op(a1)[2)*"

g9(x) = 1+ |0p(z1)|* and W(z) = - 0*p(x1).
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Example 8.3. For n = 3, the boundary 0F is given by the surface in R? defined
OB := {2 = (z;)1<ic3 € R® © 23 = (21, 12)}.
The Monge parametrization is given by

0
770 : 6:(01,92)€R2HI/}(9>= 62 EaECRs.
90<917‘92>

In this situation, the tangent vectors at x € OF are given by

1 0
Ty (z) = 0 and Ty(x) = 1
Oy p(7) O, ()

In the same vein, whenever E = {x € R® : p(x1,72) < w3} the outward pointing unit
normal at x € OF is given by

" 1 gzﬁo(x)
= V1 (00, 0(2))? + (Onyp())? miol(m)

The inner product g(x) is easily computed and given by

1 @) (Pne(@)(@np(@)
gle) = < (O (@) (Pegp(@) 1+ (Prgip())? > '

The inverse metric is given by

O ( L+ (00(2))® = (02, 0(2))(Cay p()) )
det(g(z)) \ —(Ca0(2))(Onyp(x)) 1+ (0uyip())
with
det(g(x)) = 1+ (0, 9(2))* + (Orp(2))* = 1 + [Vip(z)|*.
The second fundamental form is also given by
Q(:U) _ 1 ( aglgo(x) 8231,2;290(1’) )
VIF[Ve@ 2 \ Onme(@) 05 e()

and the Weingarten map is defined by

1

N e DR

( (1 + (00, p(2))*) 0%, 0(%) = (0, (%)) (Cryp(2)) 01 2P (7)) (14 (00y 0(2))*) O 2 (%) — = (0o 0(2)) (Ory () 02, 0() )

= (02, 0(2)) (00, 0(2)) 02, () + (1 + (0, 0(2))*) 001 2, 0(2) (001 2(2)) (a2 (%)) Oy an (%) + (1 + (0, 0(2))*) 05, ()
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8.3 Surface and volume forms
The surface form o, on the boundary 0F expressed in the chart v introduced in ((132))

is given by
(00 097" (d0) = +/det (g(v(0))) db

with the Gramian of the coordinate chart

g(¥(0)) := Gram (691w(9), . (%n_lw(G))
= (09(0)) (09(0)) = I + V(8) (Ve ()

with the coordinates tangent vectors dv(6) = T%(0) := T(¢(6)). To check this claim
recall that the surface area spaced by the column vectors

5¢(9)/ = (591w(0)7 SR a9n—1w(9))

is equal to the volume of the parallelepided generated by the column vectors

(0v(0), N(1(6))) := (g, 10(0), - .., Og,_,0(8), N(¥(6)))

which is given by the determinant of the column vectors, so that
(00097 (d) = |det (O(6)', N (v(0))) | db.

On the other hand, we have

2(0) ,
(kg ) Couter v

(O 0))
N (0008 (@08) O,
| sy | (0N ) = (G )

N(w(6))

This implies that

det (B0:(0), N(w(6)))| = /Idet ((20(6Y, N((9))) (2(6). N((0)) |
= \/det ((20(0)) (2:(0))').

Using the determinant perturbation formula w.r.t. rank-one matrices det (I + uv’) =
1 + v'u which is valid for any column vectors u,v € R™ we check that

det (I + Vi (0)Vep(0)) = 1+ [Ve(0)[*.
This yields the formula

(ca0y™) (df) = /1 + [Ve(8)]? db.
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The mapping F defined in ((103) can also be rewritten as a chart 1) on D,(E)
defined for any (0,u) € (S x [0,7]) defined by

(0, u) := F((0), u) = ¢(0) + u N((0)) € Dr(E).
The Jacobian matrix of 1 is given by
Jac(@)(&, u) = ((%IE(H, Uynny 89n_lﬂ(0,u), N(w(e))) .
By Proposition [8.1| we have
Qo 0(0,u) = 0o, 0(0) + u 0, NV (0)
= () —u Y O (0) W (1()),, -

1<k<n

This yields the formula
(691E(0, u), ..., 0, (0, u)) = (691¢(9, u), ... ,69n_1w(9)) (I —uW((6)))
from which we check that
[det (Jac()(0,u)) | = +/det(g(:(0)) |det (I —u W((9)))] -

Note that (6, 0) = ¥(6), and for any given u < r, the mapping 6 — (6, u) is a chart
on 0F,. This yields the following proposition. For the convenience of the reader, a
more detailed proof of the next proposition is provided in the appendix on page |84}

Proposition 8.4. For any u < r, the surface form 0, on the boundary 0E, expressed
in the chart 0 € S — (0, u) := F((0),u) is given by the formula

(couo (. u)™") (df) = |det (I —u W((0)))] (co0v™") (db)

with
|det (1 —u W(¥(9)))]
= |det ([ + TN (I +Vp(@)Ve(8))™ V290(9)> |.

In addition, the volume form op, gy on D,(E) expressed in the chart W is given by

__1 o
(70, 0 %) (d(0, w)) = |det (T —u WO)| (c5007") (d0) du
Using Jacobi’s formula for the derivative of determinants, we also have
Oulogdet (I —u W(z)) = —Tr (I —u W(z))™ W(z)) .

The level-set density function defined in ((104)) expressed in the chart ¢ is given by
the formula

gl (z,7)

_ L g (2,0(0) + 7 N((9))) [det (I —r W((9)))| +/det(g(w(0))) dob.
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8.4 Boundary decompositions

For some given coordinate index k € {1,...,n} and = = (2;)1<i<n € R" we set
T g = (x;)iez with Z:={1,...,n}—{k}
We further assume that
OE={reR" : v, €S and o¢(z_p)=x} =% '({0})
is defined as the null level set of some global defining function of the form
P xe{(T)icicn ER™ 1 x4 €S> P(x) =p(x_y) —2reR

for some open domain S = R* 1.

Example 8.5 (Cylindrical boundaries). Let 1 < k < ny and n = ny + ny for some
ny > 1 and ny = 1. Consider a domain S of the form S = (S x R™) with § < R™ !
and assume that

Vye R"™ s.t. y_i € S and YzeR™ we have O(Y—i,2) = P(y—).
In this situation, the set OF is a cylindrical boundary given by the formula
OF = 0E x R™  with 0 := {y eR™ : y,eS and o(y_x) = yk} :
In this context, the coordinates of the outward normal by

N ()

€

T T+ Ve )P

with the orientation parameter e = 1 when E = @ !(] — ©,0[); and ¢ = —1 when
E =% 1(]0,4%[). In the same vein, the entries T} (z) of the tangent vectors T;(x)
indexed by 7 € Z are given for any 1 < j < n by

(12(§) Oz, 0(x—1) + 1(j) (—1))

T/ () = 1,(j) + 16(4) Ouip(x1).
Consider the (n x (n — 1))-matrix
T(x) = (T1(x),...,Te1(x), Tes1(x), ..., Tn(z)).

In this notation, the inner product g(z) on the tangent space T,(0F) is given by the
((n—1) x (n — 1))-square Gramian matrix

g(x) = T(@)T(z) =1+ Ve(zi)Vo(r_i)
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with the gradient column vector

aﬂ71 2 (x*k)

amk—l ' xT_ n—
V(,D(mfk) = (aziSO (1’ k))zeI 0 :ng :; SR
Tp41 -

aanO (x—k)

We check this claim using the fact that for any i1,i, € Z we have

To(@)Tple) = 3, (La() +Le(d) Ony0(2—)) (La(G) + Le(d) Orypla—r))

1<j<n

= L= + axil Sp(wfk) aﬂCZQSO(LE*k)
The parametrization of the hyper surface 0F is now given by the chart function
w 0= (9i>i€Z eS— gb(@) € 0F
with ‘
Vi<js<n o (0):=12(5) 0; + 1k(5) (0).
For any 1 < 7 < n and 41,43 € Z observe that

O, 0 (0) = T3/(0) := T, (¥(0)) and ., 7(8) = 11,(j) 9o, 0,,(6).

This implies that

(V2p(0)),
11,12 ith 2 0) := (00 9 '
\/1 TN P wi V=p(0) (5921,91290( ))(il,ig)ep

We set (01(0)) := T(1(0)) and N¥(0) := N(»(#)). In this notation, we also have

(On, 010)) N(0(0)) = -

(env(9))’
— (00, N¥(0),..., 0, N¥(0), 0, ., NV (0),..., 06, N*(6))

VZp(0)

= “W((E) = ~gWENTAWE) with Q) = —c o,

Example 8.6. For the cylindrical boundary discussed in Ezample[8.5, the inner prod-
uct and the Weingarten map on the boundary oF are given for any y € oF by the
matrices

V25(y-+)
V1I+[Vo(y—p)]?

GY) = Iy 1) + VO ) VP(y k) and W(y) =€ g(y) "
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with the gradient column vector and the Hessian matrix given by

V@(y,k) = (ayi@(y*k>>ief
V() = (OB, with = (Lo} — (R}

Observe that

et(@(e) = 1+ VR0 and Tplyz) = (g A0 o),
(n2,m1—1) (n2,n2)
In this case, the inner product and the Weingarten map on the boundary OE are given
for any point x = (y,z) € (OE x R") by the matrices

g(x) _ < g(y) ([)(mfl,nz) > and W(m) _ < W(y) 0(”1*1,712) ) .
(n2,m1—1) (n2,n2) O(nz,n171) O(n%n?)

Observe that the above matrices are bounded (w.r.t. any matriz norm) as soon as OF
is bounded.

More generally, assume that the boundary 0E < u,70(1) € R" admits a finite
covering by open connected subsets O(:) < R™ indexed by some finite set J. In
addition, there exists some local defining smooth functions », with non vanishing
gradients on O(¢) such that

OE(1) :=0EnO@) =%, ({0}) and E():=EnO() =15 "(]0,0l).

Up to shrinking the set O(:), by the implicit function theorem there is no loss of
generality to assume that the defining functions are given by

P 1 = (Tiicicn € O) = @(7) = pu(25,) = 2p,

for some parameter 1 < k, < n and some smooth function ¢, on some ball §(¢) < R"1.
We set Z, := {1,...,n} — {k,}. In this notation, the parametrization of the hyper
surface 0E(1) is now given by the smooth homeomorphism

Yo 0 0= (0:)icr, € S() =, (0) € OE()  with  9)(0) := 17,(j) 0; + 15,(j) .(0)-
(133)

The first and second fundamental forms on T, (0E(¢)) as well as the Weingarten map
at x € 0E(1) are given by

g(x) = I+Vo(r_p)Ve(r_y,)

Q(x) = V() and W,(z) := g.(z)'Q.(2).

VIt [Ve ()
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The atlas A = (¢,,S,).e7 represents a collection of local coordinate systems of the
boundary 0E = U,70E(¢). In this situation, the surface form on dE and the volume
form op, () on D,(E) expressed in the atlas A are defined by the formulae

o (df) = D m (1.(0) 0) \/1+ |V, (0)]2 db

eJ
Jér(E)(d(Q,u)) = Z 7, (¥.(0)) L1sw(0)|det (I —u W,(4.(0)))] v/1+[Ve.(0)]? du.
eJ

In the above display, m, : 0F — [0, 1] stands for some partition of unity subordinate
to the open cover of the boundary induced by the atlas.

Example 8.7. Observe that the metric in the graph model discussed in Example
18 not necessarily bounded. In this context, we can also use for any a < a, <b_ <b
a covering of the form

O(0) =]a, b[ xR O(—1) =Jb_, +o[xR and O(1) =] — 0, as[xR.
For instance when ¢(z) = 2% and (a,ay,b_,b) = (—=2,—1,1,2) we have

E0) = {(x1,22) €] —2,2[x]4,00] : 2 = @o(z1)}
E() = {(x1,29) €] — o0, —1[x]1, 400 : x1 = pi(x2)}
OE(—1) = {(x1,22) €]l,0[x]1,400[ : z1 =¢_1(x2)}

with the functions
wo(2) = 2> and Vee {-1,1} 0(2) = —€/2.

Whenever E is the sub-graph of ¢, the parameter € € {—1,1} plays the role of the
orientation and the outward pointing unit normal vector at x € 0E(0) and y € 0E(¢)
are given by

No(z) = \/ﬁ ( o > and  N(y) = m ( _6/_\}@ ) .

The tangent vectors at x € 0E(0) and at y € OE(€) are defined by

To(x)z( L ) and T.(y) = ( _6/(1/@)).

2171

The above sub-graphs can be described with 3 charts {1,V 1,%_1} defined for any
ee{-1,1} by

Yo 0€] -2, 2 o) — ( ;) and . ¢ 0|l o[ pu(0) — ( _69\@)'
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In this situation, the tangent vectors are given by

Oobo(0) = To(o(9)) = ( 210 > and  Opt)(0) =T, (ve(0)) = < _6/(1\/@> ) .

In this context, for any 0 €] — 2,2[ we have

~3/2

g(o(6)) = 1+ 46 and W(o(0)) = =2 (1 +46%)
In addition, for any 6 €]1, 00| we have
g(be(0)) = 1+1/(40) and W((0)) = —2¢ (1 +46) /%,

Observe that the metric expressed in the chart {1y, 11,v_1} is defined in terms of
bounded functions.

Example 8.8. Consider the hyperbolic paraboloid boundary

OE = {(y1,y2,y3) ER® : y3 =yi +y5}
= 0FE(0) UOE(1,1) UdE(1,—1) UdE(2,1) U dE(2,—1).

In the above display, 0E(0) and 0E(i,€) with i€ {1,2} and e € {—1,1} stands for the
partition defined for any e € {—1,1} by

0E(0) = {ye R? : (y1,92) €S0 Y3 = woly1,y2) := y% + ?Jg}
CE(L) = {ye® : () €S =iy ) = /v — o)
5E(2, 6) = {y eR® : (y2,y3) eS y = 902,6(591792) = EM}

with the sets

So = {(y1,y2) eR® : yi + 5 <2}
S = {(yy3) eR* : yz3>1 & |yl <+/3ys/4}.

On the truncated boundary 0E(0) we use a single chart defined by

01
¢0 0= (91,92) € 80 — wo(e) = ( 62 ) € 6E(O)
67 + 63

On 0E(1,€) we use the chart defined by

wl,e 0= (01,&3) €S — ¢1’5(‘9) = E\/eg — 6% € 6E(1,e)
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Finally, on 0E(2) we use the chart defined by

6«/83 —9%

¢2,6 0= (92,93) eES— QZ]Q,E(Q) = 92 € aE(Q,E)
03
For any 0 = (01, 0,) € Sy we have
1 0
091¢0<9) = 0 and 092¢0(9) = 1
2(91 292

In this chart, the metric is given by

1+462 46,0,

g(wo(ﬁ))( 18,6, 1+4e§) and  g(1(0)) " ! <1+4<9§ —49192>

T 142102 \ 40160, 1+ 467
In addition, the outward pointing unit normal at y(6) € 0E(0) is given by
260,

1 1 -2 0
m(zﬂ) et 06000 = o (o %),

For any 0 = (0,03) € S we have

No (¢o(0)) =

1 0
—ebq €

Opy1,6(0) = \/03—62 and  Opytb1 (0) = 24/03—62
0 1

In this chart, the metric is given by

2 1 [%
1+ 0, -0 1 It s 0.5
y(l/h,e(@)) _ < 99370f 2(93*169 > and g(,¢176(6))71 _ - ( 4(03 9f) 2(03 Zi) )

_ 1 - 2 1 01 1
W Lt Imm 1+ 0705 + 1w W  tanw

In addition, the outward pointing unit normal at 1y (6) € OE(1,€) is given by

—eby
¢ 03—07 ¢ €03 —e0)
- ) - - 02)3/2 5—02)32
Nie (¥1e(0)) = -1 and QU (Y1,(0)) = ( (63—9@> (9‘ gle) > .

07 1 1 T — ‘
14 73 + e (0s—07372 1(05-07)32
b3—61 2,/05—02

o= 1+ 5l + e
Finally, for any 6 = (0,03) € S we have

4(03—6%)

—elo €

\/03—62 21/03—03
8921/}2,6(‘% = 1 and 993%,6(9) = 0
0 1

In this chart, the metric and the outward pointing unit normal at 19 (6) € 0E(2,¢)
are given by
-1
€ —els
95 T «/93670%
\/1 T oz T i) 2\/05—07

1+ iQ *Lz
g(¢2,e(9)) = %32_92 2<93_192) and N2,6 (1/12,5(0)) = -

T 2(05-62) L+ 4(65—63)
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Appendix

Proof of (29)
We have

t
(—aPsu(V)+c¢) du=V +ct — af P iu(V) du
0

s+t

P t(V) <V + f

S

and
t

¢
f Piiu(V)du = tP (V) — J UP; gyu(Lsiu(V)) du = tP, (V) — ct?/2.
0 0

Combining the above estimates, we readily check that

1 t/2
Poort(V) < (14 at) 'V +ct + at/ <(1+at) 'V +ct.
' 1+ at

This ends the proof of . [

Proof of Lemma [2.14

We have
t

1< PonV) <V = [ (PrsaloV) = o) du (134)

0

By Jensen’s inequality
(Pestu(o(V)) —o(V)/u < uHp(Posru(V)) = 0(V))
< wt(o(vacu- [ Pt an) —om)

0

Letting u — 0 we conclude that

Ly (p(V)) < (99)(V) (¢ = (V) < ¢ (9p)(V)

For any s < u < t, this implies that

t

Poa(p(V)) < Pa (9(V)) + ¢ f Pou((00)(V)) dv

u
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Integrating u € [s,t] and using ({134) we conclude that

1= 9PulelV)) < [ Puutevpau+elog) 5

S

< Vora)+ (c-9 +elon) ST

We conclude that
Ps,erT(V;—) = Ps,s+7'(v + TSO(V)) < V + Cr = V; - 7—30(‘/) + Cr

with the parameter ¢, defined in (3.
This ends the proof of Lemma [2.14]

Proof of Lemma 2.1]
Set V, := 1/2 + pV with p €]0, 1[. We associate with these parameters the function
|62 — 6,) Py,
Ap(,y) -
g 162 = dylv,

|02 — 0y) M |[e p(P(V)(z) + P(V)(y))
L+p(V(z) +V(y)  1+p(V(x)+V(y)

By (9) (with ¢ = 1/2), whenever V(z) + V(y) = r > ry we have

1 L PV(2) +VIy
T+ p(V(x)+V(y) 1+p(V(z)+V

- (1‘ Fr TRy (1_ (*1))

This yields for any r > rg v r. the estimate

Ap($, y) <

Ay(z,y) <1-— d},(r)

10 (1-85) 0-2).

Recalling that V' = 1/2 we readily check that P(V)/V < (1 + ¢€) and

with

Viz)+V(y) <r

pV (x)(P(V)(2)/V(x)) + pV(y) (PV)(y)/V(y))

= T V(@) 1 V() <(+9

pr
1+ pr

Y
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This yields for any (z,y) s.t. V(z) + V(y) < r the estimate

1 —afr pr
Ay(z,y) < 1—di(r):= Tﬁ)) + (1 +¢) T o
Choosing
_ _ a(r) pr a(r) 1
p=plr)i= 2(1+€)r L+pr 2 (14_6)4_0‘(27”)
we have " a )
a(r —€ Te
di(r) - 2 a(r) < o _> < 1’
(1 + 6) + = r
- 1= a(r)/2
1 —d(r) T3 00 S 1—a(r)/2

We conclude that

B, (M) = sup Ay(z,y) < (L= d,(r)) v (1 = dj(r)) < 1—acr).

z,ye

This ends the proof of Lemma [2.1]

Proof of Proposition [2.16

We have the following almost sure estimate |[VX, (7))l < e™7

, where ||A] stands

for the spectral norm of a matrix A. This yields for any z,y € R™ the almost sure

estimate
| X7 (@) = Xo ()| < e o =yl
Applying the above to y = 0 we find that
P.(V)(z) < P,(V)(0) V(z)'™° with §=1—e.
Next, we check that PX(V)(0) < oo. We have

X, (0) = f " (0(0) ds + o dB,) + L ' L 1 Vb(eX,(0)) X,(0) de ds.

0
This implies that

X0 < B (u+t |Bu])+ 6 f " 1X.(0)] ds

with 8 := 0o v [b(0)| v [Vb|. Applying Gronwall lemma we check that

U

law
1X,0)] '€ 8 (u+ |Bud) +52L (s + [B.]) #@9 ds.
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On the other hand, we have

U 1 1
J | B, dSZuJ | Bus|| ds ' 1?2 f | B, ds.
0 0 0

This yields the rather crude estimate
1
law
IX.(0))] < B8 (u+ u'’? |Bi]) + B2 u?/2 + g uP? J | Bs|| ds.
0
For any a > 0 by Jensen’s inequality

1
E <eafé 1551 d5> < J E (e!IB:1) ds < /2.
0

It is now an elementary exercise to check that E(e?I¥~(Ol) < oo, This ends the proof
of the proposition. n

Proof of Proposition

Consider the function

fi(x) 1= exp (26 (e—at W(z)— 8 1 —;at>)

= —0;log fi(x) = 2e e~ (aW (z) + ).

In the same vein, we check that

awzft(x>/ft(‘r> = 2 eiat (}%W
Ovia; Je(T)/ fe(x) = 2€ e (26 e~ Op,W Oy, W + é’xi,ij) )

This implies that
(L(ft) = 0cfe) / 1

=2ce ™ ((aW +B)+ L(W)+ee ™ T(WW)).
Combining the above with we find that
(L(fe)(@) = Cefo(z)) < =2 € e (1 —e ) T (W, W)(2) filz) < 0.

This yields the interpolation formula

E (o X)) ~ £i() = [ E(0.(s(X,(a)) ds 0.

0

We check after some elementary manipulations, thus there are skipped. This
ends the proof of the proposition. [
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Proof of Proposition
Notice that

XZ‘(JB) taw €& v+0, Z=DBg () with ¢:=e' and o :=

and some centered Gaussian random variable Z with unit variance. The conjugate
formula yields the integral operator equation

2y 1 —er)? P
Qi(z,dy) = e 2 e/ exp (_—(y €:2) + y_) dy.

\/ 2w} 207 2

2

Observe that

o? Dt 1—o0? 1—o0?
with
1— ¢ 2
Pei= 1o = tanh(t) <= oOpr=1—p; with pg=0. (136)
t

We check this claim using the fact that

1 2 1+ ¢ 1

= =14 L -1+ —.

o} 1—¢ 1—¢f Dt
On the other hand, we have

1—o?

= cosh(t) and ¢ logcosh(t) = p; = tanh(t).

€t
This implies that

t 1 t
f ps ds = logcosh(t) and “ 5 = 0 = exp (—J psds).
0 0

1—o0; cosh(t

We also have

1—¢2 1+ ¢ €2 1—¢2
1_ 2:1_ t: t 1_ t _ t: )
7 2 2 -2 1+e

This implies that

Q1)) = 12 Y2 o (—5 pt) — 2 h(z) PM(1/R) ().

Ot
Notice that

o~ t/2 \/> 1_€t _ 2 _ 1
"1+é l—et 1/et + € /cosh(t)

and
omy(z) = —pr me(x) and  Opy =1 —p7 with  (mo(x), po) = (z,0).
This ends the proof of the proposition. [
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Proof of Proposition
Notice that

2 eac2/2 Qt(x,dy)

1 —x)? 2 + 1) 2
\/ 2o} 2 2

This implies that

2
e~ %~ tanh(t)

cosh(t)

We conclude that

Qi(1)(x) =

2
o—% tanh()

=2 cosh(t) XP( s7s \/smh t) cosh( ))

— (0 asx—->worxz —0orast— .

In the above display, Z stands for some centered Gaussian random variable with unit
variance. Note that we have used the fact that

(2)/vin -

my(z =

' b cosh(t) 4/tanh(t) \/ sinh(¢) cosh(t
In addition, we have

1
P (O < Z < x/+/sinh(t) cosh(t))

g (o () oo ((EREE)) e o

This ends the proof of the proposition. [

@t(‘rv dy) =
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Proof of ((52)
The generator of the process is defined by
. p Of oW o® p\ of o? *f
L(f)a,p) =6 2 o (aq Tyt T e

Recalling that 2pg < p? + ¢°, we prove that

1 /1 5 € o2 9
< == - =41 W
Vg, p) 2(m+e)p+2(2+>q+ (9)

< C'(e) (1+p*+¢ +W(g)

with /1 )
C*(e) := max{§ (Ejte),% (%—1—1),1}.
On the other hand, we have
L(V) = @%(%—V;H?qﬁp)
o (T E) )
o () )

Under our assumptions, this implies that for any |¢| = r we have

) < -5 [ (e ) pres (e o
< —Cu(€0) (1+p*+ ¢ +W(q) + cm(e,d)
with
Ci(e,0) :=p min{(% <% - ) € 5)} and ¢, (€,0) := C.(¢,0) + %.

We conclude that for any |g| > r,

Co(e,0) (1+p*>+ @ +W(q)) — cmle, d)

(V7 L(V))(a.p) < VD)
< _C’*(€>5) (1 +p2+q2 +W(Q)) _Cm(e76)
N C*(e) (1+p*+¢* + W(q))
Ci(€,0) N Cm(€,9) 1

CCre) T C*e) 1+p2+@+W(g)
Ci(€,0)  cm(e,0) 1

< - .
C(e)  C*e) 1+p*+¢
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We choose r sufficiently large to satisfy
Ip| >r or |q>r
Ci(€,6)  cm(e, ) 1 - Ci(€,6)  cm(e,d) 1 o Ci(€,9)
C*(e) C*e) p2+q®~ C*(e) Cx(e) r? - 20*(e)

and we set

K, :={(g;p) eR* : |p| v |q| <7}

In this notation, we have

L(V)< —aV 1g_k, +supL(V) < —aV +c¢ with c:=supL(V)+asupV.

Ky K, Ky

Proof of ((77))
Observe that for any 0 < y < 1 and z € F =]0, 0| we have
sinh (yz) <y sinh(z) and sinh(z) <

This implies that

@ 1 e %(Pt-&-e %t /pt) 0 2 y2
f Qy(,dy) ~ < sinh (m(x)) 9 f 2 e (__) ay.
0 Yy

cosh(t) 0 TPt

from which we check that

o 1 exp <— <72(pt + 6;%) - e‘%))
dy) — 1 < .
fo () Yy ony) < 24/ cosh(t)

On the other hand, for any n > 1 we have

f Qt (wa dy) )
0
72
2 «/cosh \/ ( 2pt 2 pt)

Notice that

© 2
n )
f y" exp (yet:v — —) dy.
0 2py

2 1 .132

yex — gy = (y — euxp)” + =

2
% 2p, g I

so that

1 /
f Qilz, dy) y 5 «/cosh

coxp (-5 (1—¢) pe+ g exp (— = (y — expe)? ) dy.
(5 pt))fo (o
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For any n > 1, we conclude that
V(z) =a"+1/x =V eCyx(E) and |QiV)| < o0.
This ends the proof of . [

Proof of Lemma 4.2

To simplify notation, we write @; instead of QEU]. For any V' € By (F) n D(L) we
have

Q:(V =V+fQ UV) ds

< V+L[ @ Qu(V) + ¢ Qu(1)] ds—V+cj@ ds—af Q.(v

On the other hand, through integration by parts we have

t

[ ewis = a.wi- [ s Lo a

0

Q) - f S QUL(V) ~UV) ds > t Qi(V) - f 5 Qu(1)ds

This implies that

V) < V+ CJ: Qs(1) ds —a <t Q(V) — CJt s Qs(l)d5>

0

from which we conclude that

(V) ve Quas— )<

This ends the proof of (90 . Now, we come to the proof of (91] . We have the forward
evolution equation given for any f € D(L) by

atQt(f) = Qt(LU(f))
Applying the above to f = U we readily check that

0Qu(U) < ap + a1 Qu(U) — Qu(U?) < ap + a1 Qu(U) — (Qu(U))*/Qu(1)

from which we find the Riccati estimates

0:QuU) < ag + a1 QuU) — (QuU)) ) =Vt >0 ||Q,U)] < oo.

This ends the proof of the lemma. ]

+ ct.

1+at
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Proof of (87)

By Girsanov theorem we have

O (f)(2) = E (F(X(2)) Zi(2) 1ro(y=1)

with the exponential martingale

Zt<z>=exp(§f X B~ o [ T DI ds).

By Hoélder’s inequality, for any non negative function f on F, any z € F and any
conjugate parameters p,q > 1 with 1/p + 1/q = 1 we have

QA (F)(2) S E(Zu(2) Lrogese) " Q7 (f7)(2)7.
On the other hand, we have

E (Z(2)" 110¢)=e) = E (Z( ) ex p< = f la(Xs(2))]? d8> 1To<z)>t)

< ap) i=exp <W Sl;)pa)

with the exponential martingale

Z:) = exo f a(X.(2)) dB, - L, f a6, (D)IP ds )

This ends the proof of roof of . [

Proof of Lemma [5.2

For any z € 0F there exists some open ball B(z,r) < R™ with » > 0 and some
C'-mapping ¢ from R"~! into R such that

EnB(z,r) = {xeB(z,r) : x,<g(r_n)}
OE nB(z,r) = {xeB(z,r) : z,=9g(zx_,)} with z_,:=(z1,...,2,-1).

We make the change of variables

E(z,r) = EnB(z,7)

= §(7) i= (Tn, Tn — g(x-n)) € O2,7) 1= c(E(2,7)) = (R"T x Ry)

with Jacobian



Observe that

s : xe&l(z,r):=(0EnB(z,r))

= ¢(z) = (_p,0) € Oy(z,7) := c(&(z,7)) = (R*! x {0}).
The inverse is given by

yeO(z,1) =< Y) = Yo, Yn + 9(y—n)) € E(2,7)

— ]nf X(n— V —-n
= V¢ l(y):( ( 1)0( 1) g(iy ))_

On the other hand we have

[s(z) = <(@)]

_ _ _ 1/2
(|2—n = Tnl? + (|20 — Tu| + [9(x-0) — g(T_n)])?)
(|20 = T + 2/2n — Zul? + 2| Vg 20 — T_0|)
c(g) |z —F| with c(g) :=~/2v (1+2[Vg?) >1

NN

In the same vein, we have

s y) =<' @) < clg) lly — 7| so that %q) ly =7l << ' (y) =<' @)].

For any x € £(z,7) and T € & (z,r) we have ¢(T) € Oy(z,r) and

_ . 1= 1 _ 1
T—x|=|¢ (slT))—¢ (& = —— |[5(x) —<(x)|| = ——= |s(T)n]-
|z =7 = [ (c(x)) (@)l ) [s(z) = <(@)] 0 [$(2)n]

Taking the infimum of all T € &(z,r) this implies that
1 1
dlz,&(z,1)) = A and  d(sTH(y), & (2, 1)) = — |yn
(z,&0(z,7)) = ) NEM (s (), &o(z,7)) ) |l
for any x € £(z,7) and y € O(z,7). We conclude that
J d(xz,&(z,r))) dx
E(z,r)

- L( (T ) Eolzm) et (57 @) | dy

1 _
< —— sup |det (¢'(y)) | f X(yn) dy < ©.
c(g) yeO(z,r) O(z,r)

We end the proof of the lemma by covering 0F by finitely many boundary coordinates
patches (E(zi, 1), 9i)1<i<n, for some z; € OE, r; > 0 and some local defining functions

9i- [
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Proof of Lemma [5.9]

Using the change of variable formulae
f(2) oor(dz) = f(z+rN(2)) |det (I —r W(2))]| os(dz)
OE, oF

and

f(2) oa(dz) = f(z—=rN(2)) |det (I +r W(2))]| 0s,(d2)

OF OE,
we check that

f(2) 0a,(dz) < ko) f(z+7N(2))) os(dz)

OE, [

and

f(2) oa(dz) < k; () f(z=rN(2)) o0a,(dz).

oF OE,
This yields the estimate

£(2) oan(d2) < 1) Ko(a) J 9(2) oa(d2).

0FE, oF

In the same vein, we have

f(2) oa(dz) < L(a)Kg(a)J g(2) o0a,(dz).

oFE 0FEy

Integrating w.r.t. the parameter r € [0, ] we check the co-area estimate

a N, f(2) oaldz) < o)k, (a f dr LET ) 00.(d2)
- k@) [ gl de

o (E)

This ends the proof of the lemma. [

Proof of Proposition

For any given 6 := (6,,...,0,) € (R"' x [0,7]) we set O_,, := (6,...,0,_1). In this
notation, we have

G 0e R x[0,7]) > 9(0) = F(¥(0-n),0,)



The volume form op, gy on D,(E) expressed in the chart 1 is given by

(o0 0 %) () = [det (Jac(@)(0 >)1—\/det((aa<9>)(a<9>))

Arguing as above, we have

@) - ((20..50) .2,50)) ¢ (T5/(P.(2)’
with the tangent vectors

(25, 00) = (25,00),...05,_0®) and 2, 50) = N(w(@-))

In addition, we have

(5., 00) = (@0@-) + 8. EN@E-)) = (@00-)) (I~ WE-,)

This yields the formula

(25, 2®) (25, 00) = 9 (@-) (I 80 WEHE-.)’

from which we check that

and therefore
( oa—l) = |det (I — 8, W (@_,)))| 8, (00097 (dF_).

For any given 6,, = u € [0,r], the volume form o,,, on the boundary 0F, expressed
in the boundary chart

P(ou) 0 e R s ah(0,u) = F(v(0),u) € 0F,

is given by
(am o@(.,u)_l) (dO) = |det (I —u W((0)))| (ca0c™")(d6).

This ends the proof of the proposition. [
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