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Abstrat. | We extend the so-alled topology of semimartingales to ontinuous

semimartingales with values in a manifold and with lifetime, and prove that if the

manifold is endowed with a onnetion r then this topology and the topology of

ompat onvergene in probability oinide on the set of ontinuous r-martingales.

For the topology of manifold-valued semimartingales, we give results on di�erentia-

tion with respet to a parameter for seond order, Stratonovih and Itô stohasti

di�erential equations and identify the equation solved by the derivative proesses.

In partiular, we prove that both Stratonovih and Itô equations di�erentiate

like equations involving smooth paths (for the Itô equation the tangent bundles

must be endowed with the omplete lifts of the onnetions on the manifolds).

As appliations, we prove that di�erentiation and antidevelopment of C

1

families

of semimartingales ommute, and that a semimartingale with values in a tangent

bundle is a martingale for the omplete lift of a onnetion if and only if it is the

derivative of a family of martingales in the manifold.

1. Introdution

Let (
; (F

t

)

0�t<1

;P) denote a �ltered probability spae,M a smooth onneted

manifold endowed with a onnetion r. Then the tangent bundle TM inherits a

onnetion r

0

(usually denoted by r



), the omplete lift of r (see [Y-I℄ for details).

Let X be a ontinuous semimartingale with values inM . The antidevelopment of X
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in T

X

0

M is the semimartingale Z solving the Stratonovih equation

p(ÆZ) = U

0

U

�1

ÆX; Z

0

= 0; (1:1)

where U is a horizontal lift of X taking values in the frame bundle onM and p is the

anonial projetion in TM of a vertial vetor of TTM . The map A will denote the

antidevelopment with respet to r and A

0

the antidevelopment with respet to r

0

.

The initial motivation of this paper was to answer the following question: For

some open interval I in R, onsider a family (X

t

(a))

a2I; t2[0;�(a)[

of ontinuous

martingales X(a) in M , eah with lifetime �(a), di�erentiable in a for the topology

of ompat onvergene in probability. Is then also

�

X(a);A(X(a))

�

di�erentiable in

a, and if the answer is positive, do we have the relation s

�

�

a

A(X(a))

�

= A

0

(�

a

X(a))

(where �

a

denotes di�erentiation with respet to a and s is the map TTM ! TTM

de�ned by s(�

a

�

t

x(t; a)) = �

t

�

a

x(t; a), if (t; a) 7! x(t; a) is smooth and takes its

values in M)?

A positive answer will be given to this question, and this result will be obtained as

a partiular ase of general theorems on stability of stohasti di�erential equations.

In this paper equations of the general type

DZ(a) = f

�

X(a); Z(a)

�

DX(a) (1:2)

between two manifolds M and N are studied, where DX(a) denotes the (formal)

di�erential of order 2 of X(a), and f is a Shwartz morphism between the seond

order bundles �M and �N . The topology of semimartingales, de�ned in [E1℄ for R-

valued proesses, will be adapted to manifold-valued semimartingales with lifetime.

In partiular, it will be shown that the map (X; f; Z

0

) 7! (X;Z) is ontinuous, where

Z is the maximal solution starting from Z

0

to DZ = f(X;Z)DX, with appropriate

topologies on both sides.

When applied to a ertain family of semimartingales and an appropriate Shwartz

morphism, this result will tell us that if a 7! X(a) is C

1

in the topology of

semimartingales, and further if f is C

1

with loally Lipshitz derivative, Z(a) the

maximal solution to (1.2) with (Z

0

(a))

a2I

C

1

in probability, then a 7! (X(a); Z(a))

is C

1

in the topology of semimartingales and the derivative �

a

Z(a) is the maximal

solution to

D�

a

Z(a) = f

0

�

�

a

X(a); �

a

Z(a)

�

D�

a

X(a) (1:3)

where f

0

is a Shwartz morphism between the seond order bundles �TM and �TN .

As a orollary, we obtain results on di�erentiability of solutions to Stratonovih

and Itô equations. It will be shown that they an be di�erentiated in the same way

as solutions to ordinary di�erential equations (for the Itô ase, the Itô di�erentials of

the derivative proess have to be de�ned with the omplete lifts of the onnetions).

If M is endowed with a onnetion r, then it will be shown that, as in the at

ase, the topology of semimartingales and the topology of uniform onvergene in

probability on ompat sets oinide on the set of martingales. Using these results it

will be possible to prove ommutativity of antidevelopment and di�erentiation.

ACKNOWLEDGEMENT. | We would like to thank Mihel

�

Emery for his omments

and suggestions to improve this paper.
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2. Topologies of semimartingales and of uniform onvergene in

probability on ompat sets

2.1. R

d

-valued proesses

In this setion we de�ne topologies of uniform onvergene in probability and of

semimartingales for proesses with lifetime. We investigate their main properties.

Let (
;F ; (F

t

)

t�0

;P) be a �ltered probability spae satisfying the usual ondi-

tions. If � is a preditable stopping time, we denote byD



(R

d

; �) the set of ontinuous

adapted R

d

-valued proesses with lifetime �, and by S (R

d

; �) the set of R

d

-valued

ontinuous semimartingales with lifetime �. These sets are desribed as follows: an

element of D



(R

d

; �) (resp. S (R

d

; �)) is the image under an isomorphi time hange

A: [0; �[! f� > 0g � [0;1) of an R

d

-valued ontinuous adapted proess (resp. semi-

martingale) de�ned on the probability spae

�

f� > 0g;

�

F

A

�1

s

�

s�0

; P( � j� > 0)

�

.

They an be endowed with a omplete metri spae struture, as in the ase � =1,

whih gives respetively the topology of ompat onvergene in probability and the

topology of semimartingales (see [E1℄). Let T denote the set of preditable stopping

times and let

^

D



(R

d

) =

S

�2T

D



(R

d

; �) ;

^

S (R

d

) =

S

�2T

S (R

d

; �) :

The sum X + Y , di�erene X � Y , produt (X;Y ) of two proesses with lifetime

is a proess with lifetime the in�mum of the lifetimes of the two proesses. The

lifetime of a proess X will be denoted by �

X

.

If T is a preditable stopping time, we an de�ne the operations of stopping at

T and killing at T on the sets

^

D



(R

d

) and

^

S (R

d

): let X be an element of

^

D



(R

d

)

or

^

S (R

d

). Then the proess X

T

stopped at time T is the ontinuous proess with

lifetime +1 1

fT<�

X

g

+ �

X

1

fT��

X

g

whih oinides with X on [0; T ^ �

X

[ and is

onstant on [T;1[ \ fT < �

X

g; the proess X

T -

killed at time T is the ontinuous

proess whih has lifetime T ^ �

X

and oinides with X on [0; T ^ �

X

[. If � is any

preditable stopping time, then by T < � we will mean T < � on f� > 0g and T = 0

on f� = 0g.

Let us de�ne a topology on the sets

^

D



(R

d

) and

^

S (R

d

). If X 2

^

D



(R

d

) with

lifetime �

X

, T a preditable stopping time suh that T < �

X

and " > 0, one de�nes

neighbourhoods of X with the sets

V

p

(X;T; ") =

�

Y 2

^

D



(R

d

); E

h

1 ^ sup

0<t�T

kY

t

�X

t

k

i

< "

�

(with the onvention that sup� = 0 and kZ

t

k = +1 if t � �

Z

) and

W

p

(X; ") =

�

Y 2

^

D



(R

d

); P

�

�

�

Y

> �

X

+ "

	

\

�

lim

t!�

X

X

t

exists

	

�

< "

�

(the seond ondition will insure that the topology is separated).

Analogously, one de�nes neighbourhoods of X 2

^

S (R

d

) by setting

V (X;T; ") =

n

Y 2

^

S (R

d

); E

�

1 ^ v(Y �X)

T

�

< "

o
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where if Z = Z

0

+M +A is the anonial deomposition of Z 2

^

S (R

d

),

v(Z)

t

=

d

X

i=1

�

jZ

i

0

j+<M

i

;M

i

>

1=2

t

+

Z

t

0

jdA

i

j

�

(with the onvention that v(Z)

t

= +1 if t � �

Z

) and

W (X; ") =

�

Y 2

^

S (R

d

); P

�

�

�

Y

> �

X

+ "

	

\

�

lim

t!�

X

X

t

exists

	

�

< "

�

:

PROPOSITION AND DEFINITION 2.1. | The basis of neighbourhoods

V

p

(X;T; ") \W

p

(X; "

0

) ; X 2

^

D



(R

d

)

�

resp. V (X;T; ") \W (X; "

0

) ; X 2

^

S (R

d

)

�

)

"; "

0

> 0 ; T preditable

stopping time suh that T < �

X

;

de�nes a separated topology on

^

D



(R

d

) (resp.

^

S (R

d

)) suh that every point has a

ountable basis of neighbourhoods. This topology will be alled the topology of ompat

onvergene in probability (resp. the topology of semimartingales).

Remarks. | 1) If for the topology in

^

D



(R

d

) (resp.

^

S (R

d

)) (X

n

)

n2N

onverges

to X, then �

X

n

^ �

X

onverges in probability to �

X

and �

X

n

onverges to �

X

in

probability on the set flim

t!�

X

X

t

existsg.

2) Let � 2 T . The topology of the omplete metri spae (D



(R

d

; �); d

p

) (resp.

(S (R

d

; �); d

sm

)) de�ned in [E1℄ is exatly the topology indued by

^

D



(R

d

) (resp.

^

S (R

d

)) on D



(R

d

; �) (resp. S (R

d

; �)).

Proof of Proposition 2.1. | We are going to prove this for

^

D



(R

d

). To see that

every point has a ountable basis of neighbourhoods, one shows that it is suÆient to

onsider an inreasing sequene of preditable stopping times (T

m

)

m2N

onverging

to �

X

and suh that T

m

< �

X

for all m.

Let us show that the topology is separated. If X 6= Y , then two situations an

our. Either there exists " > 0 and a preditable stopping time T with T < �

X

^ �

Y

and E

h

1 ^ sup

0<t�T

kY

t

� X

t

k

i

> 2" in whih ase V

p

(X;T; ") \ V

p

(Y; T; ") = �, or

Y

�

X

-

= X

�

Y

-

with P(�

Y

< �

X

) > 0 and there exists " > 0 and a preditable stopping

time T satisfying T < �

X

suh that P

�n

�

Y

+ 2" < T; lim

t!�

Y

Y

t

exists

o�

> 2"; in this

ase, one veri�es that V

p

(X;T; ") \W

p

(Y; ") = �.

Remark. | Convergene for the topology of semimartingales implies ompat

onvergene in probability.

For 1 � p � 1 and � 2 T , let S

p

(R

d

; �) denote the Banah spae of proesses

X 2 D



(R

d

; �) suh that kXk

S

p

(R

d

; �)

= kX

�

�

k

L

p

< 1, where X

�

t

= sup

s<t

kX

s

k on

0 � t � � and sup� = 0. Let

^

S

p

(R

d

) = [

�2T

S

p

(R

d

; �).
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DEFINITION 2.2. | We say that a sequene (X

n

)

n2N

in

^

D



(R

d

) onverges to

X 2

^

D



(R

d

) loally in

^

D



(R

d

) (resp.

^

S

p

(R

d

)) if the following two onditions are

satis�ed :

(i) There exists an inreasing sequene of stopping times (T

m

)

m2N

onverging to �

X

suh that for any m, T

m

< �

X

, (X

n

)

T

m

-

belongs to D



(R

d

; T

m

) (resp. S

p

(R

d

; T

m

))

for n suÆiently large and onverges in D



(R

d

; T

m

) (resp. S

p

(R

d

; T

m

)) to X

T

m

-

.

(ii) The lifetimes �

X

n

onverge in probability to the lifetime �

X

on the set

flim

t!�

X

X

t

existsg.

For 1 � p � 1 and � 2 T , let H

p

(R

d

; �) be the spae of proesses X 2 S (R

d

; �)

suh that kXk

H

p

(R

d

; �)

= kv(X)

�

k

L

p

<1. Let

^

H

p

(R

d

) = [

�2T

H

p

(R

d

; �).

DEFINITION 2.3. | We say that a sequene (X

n

)

n2N

in

^

S (R

d

) onverges to

X 2

^

S (R

d

) loally in

^

S (R

d

) (resp.

^

H

p

(R

d

)) if the following two onditions are

satis�ed :

(i) There exists an inreasing sequene of stopping times (T

m

)

m2N

onverging to �

X

suh that for any m, T

m

< �

X

, (X

n

)

T

m

-

belongs to S (R

d

; T

m

) (resp. H

p

(R

d

; T

m

))

for n suÆiently large and onverges in S (R

d

; T

m

) (resp. H

p

(R

d

; T

m

)) to X

T

m

-

.

(ii) The lifetimes �

X

n

onverge in probability to the lifetime �

X

on the set

flim

t!�

X

X

t

existsg.

Note that loal onvergenes are not derived from topologies. Their relation

to topologies is desribed in the following proposition whih is the analogue for

proesses with lifetime of [E1℄ Proposition 1 and Theorem 2.

PROPOSITION 2.4. | Let p 2 [1;1℄ and let E �

^

D



(R

d

) (resp. E �

^

S (R

d

)).

Let F be the sequential losure of E for loal onvergene in

^

D



(R

d

) (resp.

^

S (R

d

)),

let G be the losure of E for the topology of ompat onvergene in probability (resp.

for the topology of semimartingales), and let K

p

be the sequential losure of E for

loal onvergene in

^

S

p

(R

d

) (resp.

^

H

p

(R

d

)).

Then F = G = K

p

.

Remark. | Proposition 2.4 an be rewritten as follows: let (X

n

)

n2N

be a

sequene of elements of

^

D



(R

d

) (resp.

^

S (R

d

)). Then the following three onditions

are equivalent:

(i) for every subsequene (Y

n

)

n2N

, there exists a subsubsequene (Z

n

)

n2N

whih

onverges to X

0

loally in

^

D



(R

d

) (resp.

^

S (R

d

)),

(ii) (X

n

)

n2N

onverges to X

0

in the topology of ompat onvergene in proba-

bility (resp. in the topology of semimartingales),

(iii) for every subsequene (Y

n

)

n2N

, there exists a subsubsequene (Z

n

)

n2N

whih

onverges to X

0

loally in

^

S

p

(R

d

) (resp.

^

H

p

(R

d

)).

Proof of Proposition 2.4. | 1) Seond equality: We will give the proof for ompat

onvergene in probability. The proof for semimartingale onvergene is similar.

To prove K

1

� G, it is suÆient to verify that if X

n

onverges to X loally

in

^

S

1

(R

d

), then X

n

onverges to X for the topology of ompat onvergene in

probability, and this is almost evident.
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We are left to prove that G � K

1

, i.e. that for every sequene X

n

onverging to

X for the topology of ompat onvergene in probability, there exists a subsequene

whih onverges to X loally in

^

S

1

(R

d

). One easily shows that ondition (ii) of

loal onvergene is satis�ed, without extrating a subsequene. By extrating a

subsequene to obtain an a.s. onvergene of �

X

n

^ �

X

and by stopping at a time

smaller than �

X

but lose to �

X

in probability, one may assume that all the terms

of the sequene belong to D



(R

d

;1). One an also assume that X = 0. It is

then suÆient to show that we an �nd a stopping time T as big as we want for

the topology of onvergene in probability and a subsequene (X

n

k

)

k2N

suh that

(X

n

k

)

T

onverges to 0 in S

1

(R

d

;1) (a sequene of stopping time inreasing to 1

and a diagonal subsequene give then the result). But for every M 2 N

�

, (X

n

)

�

M

onverges in probability to 0. By extrating a subsequene one an assume that the

onvergene is almost sure. The end of the proof is similar to the proof of Egoro�'s

theorem: let " > 0, T

n

m

=M ^ inf

�

t > 0; k(X

n

)

�

t

k � 1=m

	

, S

n

m

= inf

k�n

T

k

m

, n(m)

suh that P

�

S

n(m)

m

< M � 1

�

<

"

2

m

, and R = inf

m2N

�

S

n(m)

m

. Then R is as lose

to1 as we want and (X

n

)

R

onverges a.s. uniformly to 0.

2) The proof of the �rst equality is idential as the one for in�nite times.

As a orollary, using the demonstration of Theorem 2 in [E1℄, one an show that

a sequene (X

n

)

n2N

of elements of

^

S (R

d

) onverges to X 2

^

S (R

d

) if and only if it

onverges in

^

D



(R

d

) and for all bounded preditable proess H with values in R

d

,

�

Z

.

0

HdX

n

�

�

X

-

onverges in

^

D



(R) to

Z

.

0

HdX (ompare with the de�nition of the

topology of semimartingales in [E1℄).

DEFINITION 2.5. | Let E;F =

^

D



(R

d

) or

^

S (R

d

), and let �: E ! F be a map.

We will say that � is lower semiontinuous if for every sequene (X

n

)

n2N

of elements

in E onverging to X 2 E, the sequene

�

(�(X

n

))

�

�(X)

-

�

n2N

onverges to �(X).

An important example of a lower semiontinuous map is X 7! p(�(X)) 2

^

S (R

d

)

ifX 7! �(X) 2

^

S (R

d+d

0

) is ontinuous and p: R

d+d

0

! R

d

the anonial projetion.

Note also that if X 7! �(X) is lower semiontinuous, and if both X and �(X) are

in

^

D



(or

^

S ) and the lifetime of �(X) is greater or equal to the lifetime of X, then

X 7! (X;�(X)) is ontinuous.

With Proposition 2.4, one an investigate ontinuity properties for operations

on the sets of ontinuous adapted proesses and of semimartingales. For m 2 N ,

let C

m

(R

d

) denote the set of real-valued C

m

funtions on R

d

, endowed with the

topology of uniform onvergene on ompat sets of the derivatives up to order m.

PROPOSITION 2.6. | 1) The map

C

0

(R

d

)�

^

D



(R

d

) �!

^

D



(R)

(h;X) 7�! h(X)

is lower semiontinuous.
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2) The maps

C

2

(R

d

)�

^

S (R

d

) �!

^

S (R)

(h;X) 7�! h(X)

and

^

S (R

d

) �!

^

S (R)

X 7�!M

i

; A

i

; <M

i

;M

j

>

are lower semiontinuous, where X = X

0

+M + A is the deomposition of X into

the value at 0, a loal martingale and a proess with �nite variation.

3) Let T be a preditable stopping time. The map

^

D



(R

d

) (resp.

^

S (R

d

)) �!

^

D



(R

d

) (resp.

^

S (R

d

))

X 7�! X

T -

is ontinuous, and

^

D



(R

d

) (resp.

^

S (R

d

)) �!

^

D



(R

d

) (resp.

^

S (R

d

))

X 7�! X

T

is lower semiontinuous and ontinuous at the points X with lifetime �

X

suh that

P(�

X

= T ) = 0.

4) Let U be an open subset of R

d

. If X belongs to

^

D



(R

d

), let T

U

(X) denote the

exit time of X from U , i.e., T

U

(X) = infft > 0; X

t

62 Ug (with inf � = +1). Then

^

D



(R

d

) (

^

S (R

d

)) �!

^

D



(R

d

) (

^

S (R

d

))

X 7�! X

T

U

(X)-

is lower semiontinuous, and

^

D



(R

d

) (

^

S (R

d

)) �!

^

D



(U) (

^

S (U))

X 7�! X

T

U

(X)-

is ontinuous.

In part 4),

^

D



(U) (

^

S (U)) is the set of elements of

^

D



(R

d

) (

^

S (R

d

)) whih take

their values in U , endowed with a topology de�ned in the same manner.

Proof. | 1) By Proposition 2.4, is suÆient to show that for every sequene

(h

n

; X

n

) onverging to (h;X), there exists a subsequene (h

n

k

; X

n

k

) suh that

h

n

k

(X

n

k

) satis�es ondition (i) of loal onvergene to h(X) in

^

S

1

(R

d

). But using

again Proposition 2.4, by extrating a subsequene, we an assume that the X

n

are

loally bounded and onverge loally a.s. uniformly to X. We onlude using the

fat that h is uniformly ontinuous on ompat sets and h

n

onverges to h uniformly

on ompat sets.
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2) The proof is analogous to 1) using the equality

v(h(X)) =

�

�

h(X

0

)

�

�

+

�

Z

0

D

i

h(X)D

j

h(X) d<M

i

;M

j

>

�

1=2

+

Z

0

�

�

�

�

1

2

D

ij

h(X) d<M

i

;M

j

>+D

i

h(X) dA

i

�

�

�

�

and ondition (i) of loal onvergene in

^

H

1

(R

d

).

3) The proof is left to the reader.

4) We only give a sketh of the proof for the seond assertion. It is suÆient

to prove that for every T satisfying T < T

U

(X) ^ �

X

, T

U

(X

n

) ^ T onverges

in probability to T , and that T

U

(X

n

) onverges in probability to T

U

(X) on the

event

n

lim

t!�

X

^T

U

(X)

X

t

exists in U

o

. But this is a onsequene of the existene

for every subsequene (X

n

k

)

k2N

of a subsubsequene whih onverges loally a.s.

uniformly.

A onsequene of 1) is that if F is a losed subspae of R

d

, then taking

h(x) = dist(x; F ) shows that the subset of

^

D



(R

d

) (

^

S (R

d

)) onsisting of F -valued

proesses is losed. This topologial subspae will be denoted by

^

D



(F ) (

^

S (F )).

Property 4) is very useful for the study of manifold-valued proesses and stohasti

di�erential equations. It removes problems in onnetion with the exit time from

domains of de�nition. It allows loalization in time.

We are now interested in di�erentiability properties.

DEFINITION 2.7. | Let a 7! X(a) 2

^

S (R

d

) be de�ned on some interval I in R.

1) The map a 7! X(a) is di�erentiable in

^

S (R

d

) at a

0

2 I if it is ontinuous at a

0

and if there exists Y 2

^

S (R

d

) suh that

X(a)�X(a

0

)

a� a

0

onverges in

^

S (R

d

) to Y as

a! a

0

. Then (X(a

0

); Y ) is alled the derivative of X at a

0

.

2) The map a 7! X(a) is C

1

in

^

S (R

d

) if for all a

0

2 I, a 7! X(a) is di�erentiable

in

^

S (R

d

) at a

0

, and if the derivative a 7! Y (a) is ontinuous in

^

S (R

2d

). The

semimartingale Y (a) is denoted by �

a

X(a).

3) For k � 1, the map a 7! X(a) is C

k+1

in

^

S (R

d

) if a 7! X(a) is C

1

in

^

S (R

d

)

and �

a

X(a) is C

k

in

^

S (R

2d

).

Remarks. | 1) In the �rst part of the de�nition, one asks a 7! X(a) to be

ontinuous at a

0

only to guarantee that �

X(a)

onverges in probability to �

X(a

0

)

on

the set

n

lim

t!�(a

0

)

X

t

(a

0

) exists

o

.

2) In the same manner, replaing

^

S (R

d

) by

^

D



(R

d

) in De�nition 2.7, the notion

of a map a 7! X(a) 2

^

D



(R

d

) being C

k

in

^

D



(R

d

) an be de�ned.

The following proposition says that regularity of paths implies regularity in

^

D



(R

d

).
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PROPOSITION 2.8. | Let k � 0. Suppose a 7! X(a) 2

^

D



(R

d

), with lifetime �(a),

is de�ned on an open interval I in R. Assume that !-almost surely, a 7! �(a)(!) is

lower semiontinuous and ontinuous at a

0

if lim

t!�(a

0

)(!)

X

t

(a

0

) exists, a 7! X

t

(a)(!)

is of lass C

k

on its domain for all t, and that the map (t; a) 7! �

k

a

�

X

t

(a)(!)

�

,

de�ned on

�

(t; a) 2 R

+

� I; 0 � t < �(a)(!)

	

, is ontinuous.

Then a 7! X(a) is C

k

in

^

D



(R

d

).

Proof. | Let us �rst onsider the ase k = 0. Let (a

`

)

`2N

�

be a sequene of

elements of I onverging to a

0

2 I. Then �(a

`

) onverges almost surely to �(a

0

)

on the set

n

lim

t!�(a

0

)(!)

X

t

(a

0

) exists

o

, hene for " > 0, X(a

`

) 2 W

p

�

X(a

0

); "

�

for `

suÆiently large. Sine �(a

0

) ^ �(a

`

) onverges almost surely to �(a

0

), the stopping

times T

0

m

= inf

`�m

�(a

0

) ^ �(a

`

) are preditable, inreasing in m, and onverge still

almost surely to �(a

0

). Thus there exists a sequene of preditable stopping times

(T

m

)

m2N

�

inreasing almost surely to �(a

0

), suh that almost surely, for all m,

T

m

< T

0

m

on fT

0

m

> 0g.

By the seond part of Proposition 2.4, it is suÆient to show that X(a

`

)

T

m

-

onverges in

^

D



(R

d

) to X(a

0

)

T

m

-

as ` tends to 1. But on fT

m

> 0g, almost surely,

there exists "(!) > 0 suh that the map

[0; T

m

(!)℄� [a

0

� "(!); a

0

+ "(!)℄ �! R

d

(t; a) 7�! X

t

(a)(!)

is well-de�ned and uniformly ontinuous. Thus lim

`!1

sup

0�t�T

m

kX

t

(a

`

) � X

t

(a

0

)k = 0

almost surely on fT

m

> 0g, and this gives the onvergene of X(a

`

)

T

m

-

to X(a

0

)

T

m

-

in

^

D



(R

d

). Hene we have the result.

If k = 1, let a

0

, (a

`

)

`2N

�

, (T

m

)

m2N

�

be as above. It is suÆient to prove that for

every m,

X

T

m

-

(a

`

)�X

T

m

-

(a

0

)

a

`

� a

0

onverges to �

a

X

T

m

-

(a

0

) in

^

D



(R

d

), as ` tends to 1. Almost surely on fT

m

> 0g,

there exists "(!) > 0 suh that the map

[0; T

m

(!)℄� [a

0

� "(!); a

0

+ "(!)℄ �! R

d

(t; a) 7�! �

a

X

t

(a)(!)

is de�ned and uniformly ontinuous. But, for suh !, t, a, we have









X

t

(a)�X

t

(a

0

)

a� a

0

� �

a

X

t

(a

0

)









� sup

kb�a

0

k�ka�a

0

k





�

a

X

t

(b)� �

a

X

t

(a

0

)





;

hene

sup

0�t�T

m









X

t

(a

`

)�X

t

(a

0

)

a

`

� a

0

� �

a

X

t

(a

0

)









� sup

kb�a

0

k�ka

`

�a

0

k

sup

0�t�T

m





�

a

X

t

(b)� �

a

X

t

(a

0

)
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and the left-hand side onverges almost surely to 0 as ` tends to 1. It implies that

X

T

m

-

(a

`

)�X

T

m

-

(a

0

)

a

`

� a

0

onverges to �

a

X

T

m

-

(a

0

) in

^

D



(R

d

), as ` tends to1.

If k � 2, one an prove in the same way by indution that for ` � k, a 7! X(a) is

C

`

in

^

D



(R

d

), and almost surely, for all t,

�

�

`

a

X

�

t

= �

`

a

(X

t

).

Remark. | Proposition 2.8 is false with

^

S (R

d

).

2.2. Manifold-valued proesses

Let M be a onneted smooth manifold endowed with a onnetion r. With

respet to some �xed �ltered probability spae (
;F ; (F

t

)

t�0

;P), for every pre-

ditable stopping time �, let let D



(M; �) denote the set of M -valued adapted

ontinuous proesses with lifetime �, and S (M; �) the set of M -valued ontinuous

semimartingales with lifetime �. The spaes D



(F ; �),S (F ; �),

^

D



(F ),

^

S (F ), where

F is a losed subset of M are de�ned by analogy with the previous de�nitions.

Let �: M ! R

d

be a smooth proper embedding. Then �(M) is a losed subset

of R

d

. As a onsequene, (

^

D



(�(M)); d

p

), resp. (

^

S (�(M)); d

sm

), is a topologial

subspae of

^

D



(R

d

), resp.

^

S (R

d

). By means of the di�eomorphism �: M ! �(M),

we obtain omplete topologial spae strutures on

^

D



(M) and

^

S (M).

DEFINITION 2.9. | Let �: M ! R

d

be a smooth proper embedding.

1) The topology of ompat onvergene in probability on

^

D



(M) is the topology

indued by the di�eomorphism �: M ! �(M) and the topologial spae

^

D



(�(M)).

2) The topology of semimartingales on

^

S (M) is the topology indued by the

di�eomorphism �: M ! �(M) and the topologial spae

^

S (�(M)).

Sine every smooth funtion onM is of the form gÆ� for some smooth g: R

d

! R,

it is easy to see that the indued strutures are independent of the hoie of the

proper embedding �.

Independent of the proper embedding � are also the notions of loal onvergene

in

^

S

1

(�(M)) and of loal onvergene both in

^

S

1

(�(M)) and in

^

H

1

(�(M)). This

is of great importane in the sequel.

With a proper embedding �, we an also de�ne di�erentiability for families of

proesses in

^

D



(M) (resp.

^

S (M)). In this ase, if a 7! �(X(a)) is di�erentiable

at a

0

and Z is the derivative of �(X(a)) at a

0

, then it is easy to verify that

Z takes its values in T�(TM) and the derivative of X(a) at a

0

is the proess

�

a

X(a

0

) = (T�)

�1

(Z) with values in

^

D



(TM) (resp.

^

S (TM)).

Let

^

M

r

(M) be the set of ontinuous martingales with lifetime in

^

D



(M). By

[E4 4.43℄,

^

M

r

(M) is losed in

^

D



(M). This implies that it is also losed in

^

S (M).

PROPOSITION 2.10. | On

^

M

r

(M), the topology of ompat onvergene in

probability and the topology of semimartingales oinide.

To establish this result, we need some lemmas.
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LEMMA 2.11. | Every point x of M has a ompat neighbourhood V , ontained

in the domain of a hart h, together with a smooth onvex funtion  : V � V ! R

+

whih satis�es the following onditions :

1) For all x; y 2 V ,  (x; y) = 0 if and only if x = y,

2) There exists a onstant  > 0 suh that for all (X;Y ) 2 T

x

M �T

y

M , x; y 2 V ,

with oordinates

�

X = dh(X);

�

Y = dh(Y ) 2 R

d

,

(r
r)d (x; y)

�

(X;Y ); (X;Y )

�

�  k

�

Y �

�

Xk

2

;

3) For every Riemannian metri Æ on V there exists a onstant A > 0 suh that

 � AÆ

2

.

It is proven in [K℄ that onvex geometry (the existene of a onvex funtion  

satisfying 1)) implies that every V -valued martingale has almost surely a limit at

in�nity.

Proof. | We show that the funtion  de�ned in [E4 4.59℄ has the desired

properties. For x

0

2M , take an exponential hart (h; V ) entered at x

0

, and de�ne

 (x; y) =

1

2

�

"

2

+ kh(x) + h(y)k

2

�

kh(x)� h(y)k

2

:

Note that  satis�es 1) and 3). It is proven in [E4 4.59℄ that, if V is suÆiently

small, one an hoose " > 0 and 0 < � < 1 suh that if U = (U

1

; U

2

) 2 TV �TV is a

tangent vetor with oordinates (

�

X;

�

Y ) 2 R

d

� R

d

where

�

X = dh(U

1

),

�

Y = dh(U

2

),

then

(r
r)d (U;U) � (1� �)

�

"

2

k

�

X �

�

Y k

2

+ kh(x)� h(y)k

2

k

�

X +

�

Y k

2

�

� (1� �) "

2

k

�

X �

�

Y k

2

:

This gives 2).

LEMMA 2.12. | Let V; Æ be as in Lemma 2.11. There exists a onstant C > 0

suh that if Y and Z are V -valued martingales, h(Y ) = (Y

1

; : : : ; Y

d

) and h(Z) =

(Z

1

; : : : ; Z

d

) in oordinates, then

E

"

d

X

i=1

<Y

i

� Z

i

; Y

i

� Z

i

>

1

#

� C E

�

Æ

2

(Y

1

; Z

1

)

�

:

Remark. | In partiular, applying this result with a onstant Z, we dedue

that the expetation of the quadrati Riemannian variation of Y is bounded by a

onstant independent of Y .

Proof of Lemma 2.12. | Let  be as in Lemma 2.11. The Itô formula applied to

 and (Y; Z) gives

 (Y

1

; Z

1

) =  (Y

0

; Z

0

) +

Z

1

0




d ; d

r
r

(Y; Z)

�

+

1

2

Z

1

0

(r
r)d (Y; Z)

�

d(Y; Z)
 d(Y; Z)

�
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where d

r
r

denotes the Itô di�erential with respet to the produt onnetion in

M �M . Using the fat that (Y; Z) is a martingale, we obtain

E [ (Y

1

; Z

1

)℄ = E [ (Y

0

; Z

0

)℄ +

1

2

E

�

Z

1

0

(r
r)d (Y; Z)

�

d(Y; Z)
 d(Y; Z)

�

�

;

hene by 2) and 3) of Lemma 2.11, we have

A E

�

Æ

2

(Y

1

; Z

1

)

�

� E [ (Y

1

; Z

1

)℄ �



2

E

"

d

X

i=1

<Y

i

� Z

i

; Y

i

� Z

i

>

1

#

:

This gives the result, with C = 2A=.

Proof of Proposition 2.10. | We may assume thatM is a losed subset of R

d

, and

have to show that every sequene (X

n

)

n2N

of r-martingales onverging in

^

D



(M)

to a r-martingale X onverges in

^

S (M) to the same limit. By means of the seond

equality of Proposition 2.4 with p = 1, it is suÆient to prove the existene of a

subsequene whih onverges to X loally in H

1

(R

d

;1). Sine we are allowed to

extrat subsequenes and sine we have to prove only loal onvergene, by using

the seond equality of Proposition 2.4 with p = 1, we may assume that (X

n

)

n2N

onverges to X in S

1

(R

d

;1). Still using the fat that it is suÆient to prove loal

onvergene, we may further assume the existene of a �nite inreasing sequene of

stopping times suh that if S and T are two onseutive times in this sequene, then

on [S; T [ all the (X

n

)

n2N

and X take values in a ompat set V as onsidered in

Lemma 2.11. Finally, sine the sequene of stopping times is �nite, it is suÆient

to prove onvergene on one of the intervals [S; T [. Hene we assume that (X

n

)

n2N

is a sequene of V -valued r-martingales onverging to X in S

1

(R

d

;1), and it is

suÆient to prove its onvergene to X loally in H

1

(R

d

;1).

Sine we are dealing with martingales, the �nite variation parts of the oordinates

satisfy

d

g

(X

n

)

i

= �

1

2

d

X

j;k=1

�

i

jk

(X

n

) d<(X

n

)

j

; (X

n

)

k

> ;

d

e

X

i

= �

1

2

d

X

j;k=1

�

i

jk

(X) d<X

j

; X

k

>

where �

i

jk

are the Christo�el symbols of the onnetion. This gives the bound

kX

n

�Xk

H

1

(R

d

;1)

� E

"

d

X

i=1

�

�

(X

n

)

i

0

�X

i

0

�

�

d

X

i=1

<(X

n

)

i

�X

i

; (X

n

)

i

�X

i

>

1=2

1

+

d

X

i;j;k=1

Z

1

0

 

�

�

�

i

jk

(X

n

)� �

i

jk

(X)

�

�

�

�

d<X

j

; X

k

>

�

�

+

�

�

�

i

jk

(X

n

)

�

�

�

�

�

d<(X

n

)

j

�X

j

; (X

n

)

k

>

�

�

+

�

�

d<X

j

; (X

n

)

k

�X

k

>

�

�

�

!#

:
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The Christo�el symbols are Lipshitz on V , hene by dominated onvergene,

P

d

i;j;k=1

R

1

0

�

�

�

i

jk

(X

n

) � �

i

jk

(X)

�

�

�

�

d<X

j

; X

k

>

�

�

onverges to 0 almost surely, and

still by dominated onvergene and the remark after Lemma 2.12, its expetation

onverges to 0. Sine the Christo�el symbols are bounded on V , the last terms an

be bounded by

C E

"

d

X

i;j=1

<(X

n

)

i

�X

i

; (X

n

)

i

�X

i

>

1=2

1

�

<(X

n

)

j

; (X

n

)

j

>

1=2

1

+<X

j

; X

j

>

1=2

1

�

#

with a onstant C > 0. Using H�older's inequality and uniform boundedness of the

expetations of the quadrati variations of V -valued martingales, we are led to

show that E

"

d

X

i=1

<(X

n

)

i

� X

i

; (X

n

)

i

� X

i

>

1

#

onverges to 0. But, by means of

Lemma 2.12,

E

"

d

X

i=1

<(X

n

)

i

�X

i

; (X

n

)

i

�X

i

>

1

#

� C E

�

Æ

2

(X

n

1

; X

1

)

�

with a onstant C > 0, and this gives the result.

3. Regularity of solutions of stohasti di�erential equations

Let M and N be onneted smooth manifolds. In this setion, we will study

stability of seond order stohasti di�erential equations of the type

DZ = f(X;Z)DX (3:1)

where f 2 �(�(M)

�


 �(N)) is a Shwartz morphism, X belongs to

^

S (M) and Z

to

^

S (N).

Remark. | If P is a submanifold of M �N suh that the anonial projetion

P ! M is a surjetive submersion, and if f is only de�ned on P and onstrained

to P (see [E3℄), then one an extend f in a smooth way to M �N , and one knows

that a solution (X;Z) of (3.1) with (X

0

; Z

0

) 2 P will stay on P .

PROPOSITION 3.1. | Let (X

n

)

n2N

be a sequene of elements in

^

S (M) onverging

to X in

^

S (M), let (Z

n

0

)

n2N

be a sequene of N -valued random variables onverging

to Z

0

in probability, and let (f

n

)

n2N

be a sequene of loally Lipshitz Shwartz

morphisms in �(�(M)

�


 �(N)) with uniform Lipshitz onstant on ompat sets,

onverging to a Shwartz morphism f 2 �(�(M)

�


 �(N)). If Z

n

is the maximal

solution starting from Z

n

0

to DZ

n

= f

n

(X

n

; Z

n

)DX

n

, then (X

n

; Z

n

) onverges in

^

S (M �N) to (X;Z) where Z is the solution to DZ = f(X;Z)DX starting from Z

0

.

Moreover, if �

X

n

onverges in probability to �

X

then Z

n

onverges to Z in

^

S (N).
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Proof. | Let �

Z

be the lifetime of Z. We will show that (Z

n

)

�

Z

-

onverges

to Z and that lim

t!�

Z

Z

t

does not exist on f�

Z

< �

X

g, whih is stronger than the

results of Proposition 3.1. The seond point is known, let us prove the �rst one.

We have to show that there exists a stopping time T as lose to �

Z

as we want

and a subsequene Z

n

k

onverging to Z. Hene we an assume that X

n

, X take

their values in a ompat subset K

M

, Z

n

0

in a ompat subset K

N

and that X

n

onverge in H

1

(K

M

;1) and in S

1

(K

M

;1) to X. We an also assume that Z

takes its values in K

N

and has lifetime 1. Consider Shwartz morphisms f

n

K

, f

K

satisfying the same onvergene assumptions as f

n

and f , with ompat support

K ontaining a neighbourhood of the produt K

M

� K

N

. Using the ontinuity

results of Proposition 2.6 and [E2℄ theorem 0, we obtain that the solution Z

n

K

of

DZ

n

K

= f

n

K

(X

n

; Z

n

K

)DX

n

with (Z

n

K

)

0

= Z

n

0

onverge in S (N;1) to the solution

Z

K

of DZ

K

= f

K

(X;Z

K

)DX with (Z

K

)

0

= Z

0

. This implies that a subsequene

onverges loally in

^

H

1

(N) and in

^

S

1

(N), but then loally, for indies suÆiently

large, the solutions to the trunated equation oinide with the solutions to the

original equation. This gives the laim.

Immediate onsequenes of Proposition 3.1 are the following results.

COROLLARY 3.2. | 1) Let �

1

(�(M)

�


�(N)) be the set of C

1

Shwartz morphisms

endowed with the topology of uniform onvergene on ompat sets of the maps and

their derivatives, and let L

0

(N) be the set of N -valued random variables endowed

with the topology of onvergene in probability. Then the map

^

S (M)� �

1

(�(M)

�


 �(N))� L

0

(N) �!

^

S (M �N);

de�ned by (X; f; Z

0

) 7! (X;Z) with Z the maximal solution of DZ = f(X;Z)DX,

is ontinuous.

2) Let �

1

(�(M)

�

) be the set of C

1

forms of order 2 endowed with the topology of

uniform onvergene on ompat sets of the maps and their derivatives. Then the

map

�

1

(�(M)

�

)�

^

S (M) �!

^

S (R)

(�;X) 7�!

Z

0

h�(X);DXi

is lower semiontinuous.

Example. | Here we give an example of a sequene of deterministi paths

onverging uniformly to a onstant path, but suh that parallel transports above

the elements of this sequene do not onverge. This shows in partiular that in 1)

we annot replae the topology of semimartingales in

^

S (M) by the topology of

ompat onvergene in probability, unless we restrit for instane to the sets of

martingales with respet to a given onnetion.

Let M be a simply onneted surfae endowed with a rotationally invariant

metri about o 2 M , represented in polar oordinates as ds

2

= dr

2

+ g

2

(r) d#

2

for

some smooth funtion g. Let t 7! x(t) 2 M be a path in M , de�ned on the unit
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interval [0; 1℄, with polar oordinates r(t) � " and #(t) = �t for some � > 0. A

straightforward alulation shows that the rotational speed of a parallel transport

above x in polar oordinates is ��g

0

("). Hene the rotational speed in an exponential

hart with entre o whih realizes an isometry at o is �(1 � g

0

(")) (note that this

gives 0 if the metri is at).

In the following,M is taken to be an open subset of the sphere S

2

. Thus we have

g(r) = sin r, and �(1�g

0

(")) = �(1� os "). Consider the sequene of paths (x

n

)

n2N

de�ned in polar oordinates by #

n

(t) = 2�nt and r

n

(t) � "

n

= aros(1�

1

2n

) (hene

2�n(1� os "

n

) = �). Sine "

n

! 0, we get uniform onvergene of (x

n

)

n2N

to the

onstant path o. But for all n, the rotation at time 1 of a parallel transport above

x

n

is �. Hene parallel transports above x

n

do not onverge to a parallel transport

above o.

In the sequel we are seeking di�erentiability results. This requires some geometri

preliminaries. We will use the maps �: M �N �M ! N de�ned by Cohen [C1℄

and [C2℄ to desribe stohasti di�erential equations in manifolds with �adl�ag

semimartingales.

DEFINITION 3.3. | Let k 2 N. A Shwartz morphism f 2 �(�(M)

�


 �(N))

(resp. a setion e 2 �(TM

�


 TN)) is said to be of lass C

k

Lip

if f (resp. e) is C

k

with loally Lipshitz derivatives of order k.

We say that a measurable map �: M �N �M ! N is of lass C

k;1

Lip

if there

exists a neighbourhood of the submanifold f(x; z; x); (x; z) 2 M � Ng on whih �

is C

1

with respet to the third variable and all the derivatives with respet to this

variable are C

k

with loally Lipshitz derivatives of order k (with respet to the three

variables).

LEMMA (AND DEFINITION) 3.4. | Let k 2 N. For every Shwartz morphism

f 2 �(�(M)

�


 �(N)) of lass C

k

Lip

, there exists a map �: M �N �M ! N of lass

C

k;1

Lip

suh that for all (x; z) 2M �N

f(x; z) = �

3

�(x; z; x)

where �

3

� denotes the seond order derivative of � with respet to the third variable.

Suh a map � will be alled a Cohen map assoiated to f .

In partiular, a Cohen map satis�es �(x; z; x) = z for all (x; z) 2M �N .

Proof. | First, we remark that it is suÆient to onstrut � in a neighbourhood

of the submanifold f(x; z; x); (x; z) 2M �Ng and to extend it then in a measurable

way to M �N �M .

Letr

M

(resp.r

N

) be a onnetion onM (resp.N). There exists a neighbourhood

of the diagonal of M �M on whih the maps (x; z) 7! v(x; z) = _(0) and (x; z) 7!

u(x; z) = �(0) are smooth, where  is the geodesi suh that (0) = x and (1) = z.

There exists a neighbourhood of the null setion in TN on whih the exponential

map, denoted by exp

N

, is smooth. If u 2 �N is a seond order vetor, denote by

F (u) 2 TN its �rst order part with respet to the onnetion r

N

(see [E4℄ for the

de�nition).
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Thus there exists a neighbourhood V of

�

(x; y; x); (x; y) 2 M � N

	

suh that

the map

�: V ! N

(x; y; z) 7! exp

N

�

f(x; y) v(x; z) +

1

2

F

�

f(x; y)u(x; z)

�

�

is de�ned and satis�es the regularity assumptions. We have to verify the equation

�

3

�(x; y; x) = f(x; y). For this, it is suÆient to hek that these maps oinide on

elements of �

x

M of the form _(0) and �(0) where  is a geodesi with (0) = x and

(1) = z. A hange of time gives

�(x; y; (t)) = exp

N

�

t f(x; y) v(x; z) +

t

2

2

F

�

f(x; y)u(x; z)

�

�

Taking suessively �rst and seond order derivatives with respet to t at time 0

gives the result.

THEOREM 3.5. | Let a 7! X(a) be C

1

from I to

^

S (M), let f 2 �(�(M)

�


�(N))

be a Shwartz morphism of lass C

1

Lip

, and a 7! Z(a) the maximal solution of

DZ(a) = f

�

X(a); Z(a)

�

DX(a) (3:2)

where a 7! Z

0

(a) is C

1

in probability. Then the map a 7! (X(a); Z(a)) de�ned on I

and with values in

^

S (M �N) is C

1

, and the proess �

a

Z(a) is the maximal solution

of

D�

a

Z(a) = f

0

�

�

a

X(a); �

a

Z(a)

�

D�

a

X(a) (3:3)

with initial ondition �

a

Z

0

(a) where f

0

is the Shwartz morphism of lass C

0

Lip

de�ned

as follows : if f(x; z) = �

3

�(x; z; x) with a C

1;1

Lip

Cohen map � assoiated to f , then

f

0

(u; v) = �

3

T�(u; v; u) for (u; v) 2 TM � TN , i.e., T� is a C

0;1

Lip

Cohen map

assoiated to f

0

. If moreover a 7! �

X(a)

is ontinuous in probability, then a 7! Z(a)

is C

1

in

^

S (N).

Remark. | If P is a submanifold of M �N suh that the anonial projetion

P !M is a surjetive submersion, and if f is only de�ned on P and is onstrained

to P , then one an show that f

0

is onstrained to TP . As a onsequene, by the

remark at the beginning of this setion, if

�

�

a

X

0

(a); �

a

Z

0

(a)

�

belongs to TP , then

�

�

a

X(a); �

a

Z(a)

�

takes its values in TP .

LEMMA 3.6. | Let P; Q; R; S be manifolds, ': Q ! P and  : R ! S maps,

and let �: Q� R�Q ! R and �

0

: P � S � P ! S be Cohen maps suh that

�

0

Æ (';  ; ') =  Æ �. Then, for all (x; y) 2 Q�R, we have

�

3

�

0

�

'(x);  (y); '(x)

�

Æ �'(x) = � (y) Æ �

3

�(x; y; x):

If semimartingales X; Z take values in Q, resp. R, and satisfy the equation

DZ = �

3

�(X;Z;X)DX, then U = '(X) and V =  (Z) satisfy

DV = �

3

�

0

(U; V; U)DU:

Proof. | It is suÆient and easy to prove the �rst equality with seond order

derivatives of urves. The seond equality is a onsequene of the �rst one.
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Proof of Theorem 3.5. | Assume that 0 2 I. Using Proposition 3.1, it is suÆient

to prove that a 7! (X(a); Z(a)) is di�erentiable at a = 0 and that the derivative of

a 7! Z(a) is the maximal solution of (3.3).

Let r

M

be a onnetion on M . There exists an open neighbourhood �

M

1

of the

diagonal �

M

in M �M suh that for a 6= 0 the funtion

'

M

a

: �

M

1

�! U

M

a

:= '

M

a

(�

1

)

(x; y) 7�!

1

a

(exp

N

x

)

�1

y

is well-de�ned and a di�eomorphism. The same objets on N are denoted with the

supersript N . Let � be a C

1;1

Lip

Cohen map assoiated to f . It is easy to see that

D(Z(0); Z(a)) = �

3

(�; �)

�

(X(0); X(a)); (Z(0); Z(a)); (X(0);X(a))

�

D

�

X(0); X(a)

�

:

Let T

M

(a) be the exit time of (X(0); X(a)) of �

M

1

,

e

X(a) = (X(0); X(a))

T

M

(a)-

and

e

Z(a) be the maximal solution to

D

e

Z(a) = �

3

(�; �)

�

e

X(a);

e

Z(a);

e

X(a))

�

D

e

X(a)

with initial ondition (Z

0

(0); Z

0

(a)). Let then T

N

(a) be the exit time of

e

Z(a) of �

N

1

.

Using Proposition 2.6, it is easy to see that T

M

(a)^�

X(0)

onverges in probability to

�

X(0)

as a tends to 0, and then that T

N

(a) ^ �

Z(0)

onverges in probability to �

Z(0)

.

By Lemma 3.6, de�ning

e

V (a) = '

N

a

�

e

Z(a)

T

N

(a)-

�

and

e

Y (a) = '

M

a

�

e

X(a)

T

N

(a)-

�

for a 6= 0, we have that

e

V (a) is the maximal solution in

^

S (TM) of

D

e

V (a) = �

3

�

'

N

a

Æ (�; �) Æ

�

('

M

a

)

�1

; ('

N

a

)

�1

; ('

M

a

)

�1

���

e

Y (a);

e

V (a);

e

Y (a)

�

D

e

Y (a)

with initial ondition

e

V

0

(a) = '

N

a

�

Z

0

(0); Z

0

(a)

�

on f(Z

0

(0); Z

0

(a)) 2 �

N

1

g. For

u 2 U

M

a

(resp. u 2 U

N

a

), denote by `

M

a

(u) (resp. `

N

a

(u)) the seond oordinate of

('

M

a

)

�1

(u) (resp. ('

N

a

)

�1

(u)). Then the mapping

(a; u; v; w) 7!

�

'

N

a

�

�

�

�(u); �(v); �(w)

�

; �

�

`

M

a

(u); `

N

a

(v); `

M

a

(w)

��

if a 6= 0,

T�(u; v; w) if a = 0,

de�ned on an open subset of (�1; 1) � TM � TN � TM ontaining the elements

of the form (0; u; v; u) with (u; v) 2 TM � TN , depends C

1

on the last vari-

able and its derivatives with respet to this variable are loally Lipshitz (as

funtions of all four variables). This implies the onvergene of �

3

�

'

N

a

Æ (�; �) Æ

�

('

M

a

)

�1

; ('

N

a

)

�1

; ('

M

a

)

�1

��

to �

3

T� as a ! 0, and the existene of uniform

Lipshitz onstants on ompat sets. Sine a 7! X(a) is di�erentiable at a = 0,

T

M

(a) ^ �

X(0)

onverges in probability to �

X(0)

and T

N

(a) ^ �

Z(0)

onverges in

probability to �

Z(0)

, we have that

e

Y (a) onverges to Y (0)

�

Z(0)

with Y (0) := �

a

X(0);

on the other side,

e

V

0

(a) onverges in probability to �

a

Z

0

(0) = V

0

(0) on f�

Z

(0) > 0g;

hene we get by Proposition 3.1 that (

e

Y (a);

e

V (a)) onverges to (Y (0); V (0)) where

V (0) is the maximal solution of

DV (0) = �

3

T�

�

Y (0); V (0); Y (0)

�

DY (0)

with initial ondition V

0

(0) = �

a

Z

0

(0). This implies that a 7! (X(a); Z(a)) is

di�erentiable at a = 0 and that its derivative is (Y (0); V (0)).
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We now want to investigate Stratonovih and Itô equations. In the following,

if (t; a) 7! x(t; a) is a map de�ned on an open subset of R

2

and with values in

a manifold M , _x(t; a) will denote its derivative with respet to t, and �x(t; a) will

denote the seond order tangent vetor suh that for all smooth funtion g on M ,

�x(t; a)(g) = �

2

t

(g Æx)(t; a). For a smooth funtion g onM , d

2

g will denote the seond

order form de�ned by hd

2

g; �x(t; a)i = �x(t; a)(g) (see [E4℄).

LEMMA 3.7. | Let J; I be two intervals in R. Suppose that (t; a) 7! x(t; a) 2 M

and (t; a) 7! z(t; a) 2 N are C

2;1

maps de�ned on J � I, and satisfy for eah a

�z(0; a) = �

3

�

�

x(0; a); z(0; a); x(0; a)

�

�x(0; a) (3:4)

where �: M �N �M ! N is a C

1;1

Lip

Cohen map. Then

(�

a

z)�(0; a) = �

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)�(0; a):

Proof. | It is suÆient to prove




d

2

`; (�

a

z)�(0; a)

�

=




d

2

`; �

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)�(0; a)

�

(3:5)

and




d`; (�

a

z)_ (0; a)

�

2

=




d`; T

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)_ (0; a)

�

2

(3:6)

for ` = g Æ �: TN ! R and ` = dg: TN ! R where g: N ! R is smooth. Equations

(3.5) and (3.6) for ` = g Æ �: TN ! R, g 2 C

1

(N;R) are diret onsequenes

of assumption (3.4). To establish (3.5) for ` = dg: TN ! R, we de�ne z

0

(t; a) =

�

�

x(0; a); z(0; a); x(t; a)

�

. Then

hd

2

`; (�

a

z)�(0; a)i = �

2

t

�

a

(g Æ z)(0; a) = �

a

�

2

t

(g Æ z)(0; a) = �

a




d

2

g; �z(0; a)

�

= �

a




d

2

g; �

3

�

�

x(0; a); z(0; a); x(0; a)

�

�x(0; a)

�

= �

a




d

2

g; (z

0

)�(0; a)

�

= �

a

�

2

t

(g Æ z

0

)(0; a) = �

2

t

�

a

(g Æ z

0

)(0; a)

= �

2

t

dg Æ T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(t; a)

�

=




d

2

`; �

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)�(0; a)

�

:

Finally, to verify (3.6) for ` = dg: TN ! R, we have to prove that

�

�

t

�

a

(g Æ z)(0; a)

�

2

=

�

�

t

�

a

(g Æ z

0

)(0; a)

�

2

:

We �rst derive from (3.4) that

�

�

t

(g Æ z)(0; a)

�

2

=

�

�

t

(g Æ z

0

)(0; a)

�

2

;

and by taking the square of the derivative with respet to a,

�

�

t

(g Æ z)(0; a)

�

2

�

�

t

�

a

(g Æ z)(0; a)

�

2

=

�

�

t

(g Æ z

0

)(0; a)

�

2

�

�

t

�

a

(g Æ z

0

)(0; a)

�

2

:

Let a

0

2 I. If

�

�

t

(gÆz)(0; a

0

)

�

2

6= 0, equality (3.6) is satis�ed for a = a

0

. Now onsider

the ase

�

�

t

(gÆz)(0; a

0

)

�

2

= 0. If

�

�

t

�

a

(gÆz)(0; a

0

)

�

2

6= 0 or

�

�

t

�

a

(gÆz

0

)(0; a

0

)

�

2

6= 0,

then we have

�

�

t

(g Æ z)(0; a)

�

2

6= 0 in a neighbourhood of a

0

(a

0

exepted) and (3.6)

is satis�ed for a = a

0

by ontinuity.
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DEFINITION 3.8. | A Cohen map �: M �N �M ! N is said to be a

Cohen map of Stratonovih type if in addition it has the following property :

if a C

2

urve (; �) in M � N satis�es _�(t) = T

3

�

�

(t); �(t); (t)

�

_(t) then

��(t) = �

3

�

�

(t); �(t); (t)

�

�(t).

PROPOSITION 3.9. | Let k � 1 and e be a C

k

Lip

setion of the vetor bundle

T

�

M � TN over M �N . Then there exists a C

k�1;1

Lip

Cohen map � of Stratonovih

type suh that e(x; z) = T

3

�(x; z; x) for all (x; z) 2M�N . If � is a C

k;1

Lip

Cohen map

of Stratonovih type, then T�: TM � TN � TM ! TN is a C

k�1;1

Lip

Cohen map of

Stratonovih type.

Proof. | The existene of � of lass C

k�1;1

Lip

is a onsequene of [E3 Theorem 8℄,

whih gives the existene of a unique Shwartz morphism of Stratonovih type f of

lass C

k�1

Lip

assoiated to e, together with Lemma 3.4.

Let � be a C

k;1

Lip

Cohen map of Stratonovih type; we want to show that T� is

also a Cohen map of Stratonovih type. Let t 7! �(t) be a smooth urve with values

in TN and t 7! Æ(t) a smooth urve with values in TM suh that

_

�(t) = T

3

T�

�

Æ(t); �(t); Æ(t)

�

_

Æ(t): (3:7)

We have to prove that

�

�(t) = �

3

T�

�

Æ(t); �(t); Æ(t)

�

�

Æ(t):

This will be done by means of Lemma 3.7. More preisely, let (t; a) 7! x(t; a) satisfy

�

a

x(t; 0) = Æ(t), and let (t; a) 7! z(t; a) 2M be a solution of

_z(t; a) = T

3

�

�

x(t; a); z(t; a); x(t; a)

�

_x(t; a) (3:8)

with the property �

a

z(0; 0) = �(0). It is easy to verify that �(t) = �

a

z(t; 0) then

already for all t, by exploiting uniqueness of solutions to (3.7) with given initial

onditions and by alulating hdh; (�

a

z)_ (t; 0)i for h = dg and h = g Æ � where

g: N ! R is smooth. Sine � is a Cohen map of Stratonovih type, together with

equation (3.8), we get from Lemma 3.7

(�

a

z)�(t; a) = �

3

T�

�

�

a

x(t; a); �

a

z(t; a); �

a

x(t; a)

�

(�

a

x)�(t; a)

whih an be rewritten for a = 0 as

�

�(t) = �

3

T�

�

Æ(t); �(t); Æ(t)

�

�

Æ(t):

This proves that T� is indeed a Cohen map of Stratonovih type.

Rephrased in terms of Cohen maps of Stratonovih type, the following result is a

onsequene of [E3 Theorem 8℄.
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PROPOSITION 3.10. | Let k � 1 and let e be a C

k

Lip

setion of T

�

M � TN

over M � N . Let � be a C

k�1;1

Lip

Cohen map satisfying e(x; z) = T

3

�(x; z; x). The

equations ÆZ = T

3

�(X;Z;X) ÆX and DZ = �

3

�(X;Z;X)DX are equivalent if and

only if � is a Cohen map of Stratonovih type.

For the rest of this setion we assume that both M and N are endowed with

onnetions r

M

and r

N

. On the tangent bundles TM and TN we onsider the

orresponding omplete lifts (r

M

)

0

and (r

N

)

0

of these onnetions (see [Y-I℄ for a

de�nition).

We will say that a Shwartz morphism f 2 �(�(M)

�


 �(N)) is semi-aÆne if

for every r

M

-geodesi  with values in M and de�ned at time 0, for every y 2 N ,

f((0); y) �(0) is the seond derivative of a r

N

-geodesi in N (see [E3℄ for details).

In fat f((0); y) �(0) is the seond order derivative ��(0) of the geodesi � whih

satis�es �(0) = y and _�(0) = f((0); �(0)) _(0).

DEFINITION 3.11. |We say that a Cohen map � is a Cohen map of Itô type (with

respet to the onnetions r

M

and r

N

) if �

3

�(x; z; x): �

x

M ! �

z

N is a semi-aÆne

morphism.

PROPOSITION 3.12. | Let k � 0 and let e be a C

k

Lip

setion of T

�

M � TN over

M �N . There exists a C

k;1

Lip

Cohen map � of Itô type suh that e(x; z) = T

3

�(x; z; x)

for all (x; z) 2M �N . If k � 1 and � is a C

k;1

Lip

Cohen map of Itô type, then T� is

a C

k�1;1

Lip

Cohen map of Itô type (with respet to the onnetions (r

M

)

0

and (r

N

)

0

).

Proof. | The existene of � is a onsequene of [E3 Lemma 11℄ whih gives the

existene of a unique Shwartz morphism of Itô type assoiated to e, together with

Lemma 3.4.

Let � be a Cohen map of Itô type; we want to show that T� is also a Cohen

map of Itô type. We have to prove that for all (y

0

; v

0

) 2 TM � TN , �

3

T�(y

0

; v

0

; y

0

)

is semi-aÆne, i.e., if t 7! y(t) is a (r

M

)

0

-geodesi in TM with y(0) = y

0

, then

the (r

N

)

0

-geodesi t 7! v(t) in TN with _v(0) = T

3

T�(y

0

; v

0

; y

0

) _y(0) satis�es

�v(0) = �

3

T�(y

0

; v

0

; y

0

) �y(0).

Let (t; a) 7! x(t; a) 2 M satisfy �

a

j

a=0

x(t; a) = y(t) and suh that t 7! x(t; a) is

a r

M

-geodesi for all a. Note that this is possible beause y is a Jaobi �eld. Let

(t; a) 7! z(t; a) 2 N be suh that for all a, t 7! z(t; a) is a r

N

-geodesi with

_z(0; a) = T

3

�

�

x(0; a); z(0; a); x(0; a)

�

_x(0; a)

and �

a

j

a=0

z(0; a) = v(0). Sine t 7! x(t; a) and t 7! z(t; a) are geodesis and

T

3

�(x; z; x) is semi-aÆne, we dedue that

�z(0; a) = �

3

�

�

x(0; a); z(0; a); x(0; a)

�

�x(0; a):

Now we an apply Lemma 3.7 to obtain

(�

a

z)�(0; a) = �

3

T�(�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)) (�

a

x)�(0; a): (3:9)
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It remains to prove that (�

a

z)�(0; 0) = �v(0) and (�

a

x)�(0; 0) = �y(0). But t 7! �

a

z(t; a)

and t 7! �

a

x(t; a) are geodesis for (r

N

)

0

and (r

M

)

0

, hene it is suÆient to know

that (�

a

z)_ (0; 0) = _v(0) and (�

a

x)_ (0; 0) = _y(0) (the last equality is already known).

For this, we want to alulate hdh; (�

a

z)_ (0; a)i for h = dg and h = g Æ � with

g: N ! R smooth (we will do the veri�ation only for h = dg). Let h = dg, then

hdh; (�

a

z)_ (0; a)i = �

t

j

t=0




dg; �

a

z(t; a)

�

= �

t

j

t=0

�

a

(g Æ z)(t; a) = �

a

�

t

j

t=0

(g Æ z)(t; a)

= �

a

�

t

j

t=0

(g Æ �)

�

x(0; a); z(0; a); x(t; a)

�

= �

t

j

t=0

�

a

(g Æ �)

�

x(0; a); z(0; a); x(t; a)

�

= �

t

j

t=0




dg; T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(t; a)

��

=




dh; T

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)_ (0; a)

�

:

In partiular, for a = 0, this gives




dh; (�

a

z)_ (0; 0)

�

=




dh; T

3

T� (y

0

; v

0

; y

0

) _y(0)

�

:

Sine _v(0) = T

3

T�(y

0

; v

0

; y

0

) _y(0) we obtain _v(0) = (�

a

z)_ (0; 0) whih �nally gives

with (3:9)

�v(0) = (�

a

z)�(0; 0) = �

3

T�(y

0

; v

0

; y

0

) �y(0):

This proves that T� is a Cohen map of Itô type.

Rewritten with Cohen maps of Itô type, we get the following result as a

onsequene of [E3 Theorem 12℄.

PROPOSITION 3.13. | Let k � 0 and e be a C

k

Lip

setion of T

�

M�TN overM�N .

Let � be a C

k;1

Lip

Cohen map satisfying e(x; z) = T

3

�(x; z; x) for all (x; z) 2M �N .

Then the equations d

r

N

Z = T

3

�(X;Z;X) d

r

M

X and DZ = �

3

�(X;Z;X)DX are

equivalent if and only if � is a Cohen map of Itô type.

The main motivation in our study of Cohen maps of Stratonovih and Itô type is

the following result.

COROLLARY 3.14. | 1) Let k � 0 and e be a C

k+1

Lip

setion of the vetor bundle

T

�

M � TN overM �N . Assume that a 7! X(a) is C

k

in

^

S (M), and a 7! Z(a) is

the maximal solution of

ÆZ(a) = e

�

X(a); Z(a)

�

ÆX(a) (3:10)

where a 7! Z

0

(a) is C

k

in probability. Then a 7! (X(a); Z(a)) is C

k

in

^

S (M �N),

and if k � 1, the derivative �

a

Z(a) is the maximal solution of

Æ�

a

Z(a) = e

0

�

�

a

X(a); �

a

Z(a)

�

Æ�

a

X(a) (3:11)

with initial ondition �

a

Z

0

(0) where e

0

is the C

k

Lip

setion of T

�

TM � TTN over

TM � TN de�ned as follows : if e(x; z) = T

3

�(x; z; x) with a C

k+1;1

Lip

Cohen map �

then e

0

(u; v) = T

3

T�(u; v; u) for (u; v) 2 TM � TN . If moreover a 7! �

X(a)

is

ontinuous in probability, then a 7! Z(a) is C

k

in

^

S (N).
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2) Let k � 0 and e be a C

k

Lip

setion of the vetor bundle T

�

M � TN overM �N .

Assume thatM (resp. N) is endowed with a onnetion r

M

(resp. r

N

), and denote

by (r

M

)

0

(resp. (r

N

)

0

) the omplete lift of r

M

(resp. r

N

) in TM (resp. TN).

Assume that a 7! X(a) is C

k

in

^

S (M), a 7! Z(a) is the maximal solution of

d

r

N

Z(a) = e

�

X(a); Z(a)

�

d

r

M

X(a) (3:12)

where a 7! Z

0

(a) is C

k

in probability. Then a 7! (X(a); Z(a)) is C

k

in

^

S (M �N),

and the derivative �

a

Z(a) is the maximal solution of

d

(r

N

)

0

�

a

Z(a) = e

0

�

�

a

X(a); �

a

Z(a)

�

d

(r

M

)

0

�

a

X(a) (3:13)

with initial ondition �

a

Z

0

(0) where e

0

is the C

k�1

Lip

setion of T

�

TM � TTN over

TM � TN de�ned in 1). If moreover a 7! �

X(a)

is ontinuous in probability, then

a 7! Z(a) is C

k

in

^

S (N).

Remark. | We like to stress the pleasant point that both Stratonovih and Itô

equations di�erentiate like equations involving smooth paths.

Proof of Corollary 3.14. | 1) We only have to onsider the ase k � 1. Let �

be a C

k;1

Lip

Cohen map of Stratonovih type suh that T

3

�(x; z; x) = e(x; z) for all

(x; z) 2M �N . By Proposition 3.10, equation (3.10) is equivalent to

DZ(a) = �

3

�

�

X(a); Z(a); X(a)

�

DX(a):

Applying Theorem 3.5, we an di�erentiate with respet to a and we get

D�

a

Z(a) = �

3

T�

�

�

a

X(a); �

a

Z(a); �

a

X(a)

�

D�

a

X(a): (3:14)

But by Proposition 3.9, T� is a C

k�1;1

Lip

Cohen map of Stratonovih type, and again

by Proposition 3.10, equation (3.14) is equivalent to

Æ�

a

Z(a) = T

3

T�

�

�

a

X(a); �

a

Z(a); �

a

X(a)

�

Æ�

a

X(a)

whih is preisely equation (3.11).

2) The proof of 1) arries over verbatim, replaing Stratonovih by Itô, Proposi-

tion 3.10 by Proposition 3.13, and Proposition 3.9 by Proposition 3.12.

We want to rephrase equation (3.13) in terms of ovariant derivatives. For this

we need some de�nitions and lemmas. Let R

M

denote the urvature tensor of

the onnetion r

M

on M , whih is assumed here to be torsion-free. If J is a

semimartingale with values in TM endowed with the horizontal lift (r

M

)

h

of r

M

(see [Y-I℄ for a de�nition), let DJ denote its ovariant derivative, i.e. the projetion

of the vertial part of d

(r

M

)

h

J , thus DJ = v

�1

J

(d

(r

M

)

h

J)

v

with v

j

: T

x

M ! T

j

TM

denoting the vertial lift for j 2 T

x

M . We observe that also DJ = ==

0;.

d(==

�1

0;.

J)

where ==

0;t

means parallel translation along �(J). Indeed, this equality is veri�ed if

J is a smooth urve, and sine by [Y-I℄ (9.2) p. 114, J is a geodesi if and only if

(�(J); ==

�1

0;.

J) is a geodesi in M � T

�(J

0

)

M for the produt onnetion, using [E3℄

orollary 16, it extends to semimartingales as an Itô equation.
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LEMMA 3.15. | Let J be a semimartingale with values in TM , and X = �(J) its

projetion to M . Then

d

(r

M

)

0

J = d

(r

M

)

h

J +

1

2

v

J

�

R

M

(J; dX)dX

�

(3:15)

where v

j

(u) is the vertial lift above j 2 T

x

M of a vetor u 2 T

x

M .

Proof. | Following [E3℄, if

e

r is a onnetion on TM , the Itô di�erential

d

e

r

J may be written as F

e

r

(DJ) where F

e

r

: �TM ! TTM is the projetion

de�ned as follows: if A and B are vetor �elds on TM , then F (A) = A and

F (AB) =

1

2

�

e

r

A

B +

e

r

B

A + [A;B℄

�

. The result is a diret onsequene of the

following Lemma.

For ` 2 �M , let b(`) 2 TM � TM denote its symmetri bilinear part, i.e.,

hdf 
 dg; b(`)i =

1

2

�

`(fg)� f `(g)� g `(f)

�

for f; g smooth funtions on M .

LEMMA 3.16. | Let L be an element of �

u

TM with u 2 T

x

M . Then

�

F

(r

M

)

0

� F

(r

M

)

h

�

(L) = v

u

�

�

R

M

(u;

.

)

.

�

b(�

�

L)

�

where �

�

: �TM ! �M is indued by �: TM !M .

Proof. | It is suÆient to prove this for L

u

= (AB)

u

with A and B horizontal

or vertial vetor �elds. But sine among these possibilities (r

M

)

0

A

B and (r

M

)

h

A

B

oinide exept if both A and B are horizontal, we an restrit to this ase. Let A

(resp. B) be the horizontal lift of

�

A (resp.

�

B). Then by [Y-I℄,

(r

M

)

0

A

u

B � (r

M

)

h

A

u

B = v

u

�

R

M

(u;

�

A

x

)

�

B

x

�

where x = �(u), and this gives the result, sine b(�

�

L

u

) =

1

2

�

�

A

x




�

B

x

+

�

B

x




�

A

x

�

.

COROLLARY 3.17. | Let k � 0 and e be a C

k

Lip

setion of the vetor bundle

T

�

M � TN over M � N . Assume that M (resp. N) is endowed with a torsion-free

onnetion r

M

(resp. r

N

). Assume that a 7! X(a) is C

k

in

^

S (M), a 7! Z(a) the

maximal solution of

d

r

N

Z(a) = e

�

X(a); Z(a)

�

d

r

M

X(a) (3:16)

where a 7! Z

0

(a) is C

k

in probability. Then a 7!

�

X(a); Z(a)

�

is C

k

in

^

S (M �N),

and the derivative �

a

Z(a) is the maximal solution of the ovariant stohasti diffe-

rential equation

D�

a

Z = e(X;Z)D�

a

X +re(�

a

X; �

a

Z) d

r

M

X

+

1

2

�

e(X;Z)R

M

�

�

a

X; dX

�

dX � R

N

�

�

a

Z; e(X;Z)dX

�

e(X;Z)dX

�

(3:17)

with initial ondition �

a

Z

0

(0). If moreover a 7! �

X(a)

is ontinuous in probability,

then a 7! Z(a) is C

k

in

^

S (N).
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Remarks. | 1) If r

M

and r

N

are allowed to have torsion, one an write �rst a

ovariant equation of the form (3.17) with respet to the symmetrized onnetions

�

r

M

and

�

r

N

. With the obvious notations, expressing

�

D�

a

X,

�

D�

a

X,

�

R

M

and

�

R

N

in terms of D�

a

X, D�

a

X, R

M

, R

N

and the torsion tensors, one obtains then a

ovariant equation with respet to r

M

and r

N

.

2) Starting with (3.11) in Corollary 3.14, one an also easily determine a

Stratonovih ovariant equation, idential to the equation for smooth proesses.

Proof of Corollary 3.17. | Applying Lemma 3.15 to part 2) of Corollary 3.14

gives the following equation for �

a

Z:

d

(r

N

)

h

�

a

Z = e

0

�

�

a

X; �

a

Z

�

�

d

(r

M

)

h

�

a

X +

1

2

v

�

a

X

�

R

M

(�

a

X; dX)dX

�

�

�

1

2

v

�

a

Z

�

R

N

(�

a

Z; dZ)dZ

�

:

But, if u;w 2 T

x

M , z 2 TN , we have e

0

(u; z)v

u

(w) = v

z

�

e

�

�(u); �(z)

�

w

�

, and by

de�nition, if h

r

M

u

(w) 2 T

u

TM is the horizontal lift of w, then v

z

�

re(u; z)w

�

is

the vertial part of e

0

(u; z)h

r

M

u

(w). These equalities applied to u = �

a

X, z = �

a

Z,

and suessively to w = D�

a

X, w = d

r

M

X and w =

1

2

R

M

(�

a

X; dX)dX, give the

desired equation.

As an appliation of Corollary 3.14, we get di�erentiability results for stohasti

integrals, onsidered as partiular instanes of stohasti di�erential equations:

COROLLARY 3.18. | 1) Let k � 0 and � be a C

k+1

Lip

setion of the vetor bundle

T

�

M . Assume that a 7! X(a) is C

k

in

^

S (M).

Then a 7!

�

X(a);

Z

.

0




�(X(a)); ÆX(a)

�

�

is C

k

in

^

S (M � R).

2) Let k � 0 and � be a C

k

Lip

setion of the vetor bundle T

�

M �TN overM �N .

Assume thatM (resp. N) is endowed with a onnetion r

M

. Assume that a 7! X(a)

is C

k

in

^

S (M).

Then a 7!

�

X(a);

Z

.

0




�(X(a)); d

r

M

X(a)

�

�

is C

k

in

^

S (M � R).

4. Appliation to antidevelopment

If M is a manifold, we will denote by s: TTM ! TTM the following anonial

isomorphism: if (t; a) 7! x(t; a) is a smooth M -valued map de�ned on some open

subset of R

2

, then �

t

�

a

x(t; a) = s (�

a

�

t

x(t; a)).

THEOREM 4.1. | Let M be a manifold endowed with a onnetion r. Denote

by r

0

the omplete lift of r on TM . Let A

0

denote the antidevelopment with respet

to r

0

. Let a 7! X(a) 2

^

S (M) be a map of lass C

1

de�ned on some interval I of R.

Then a 7!

�

X(a);A(X(a))

�

2

^

S (TM � TM) is of lass C

1

and

s

�

�

a

A(X(a))

�

= A

0

�

�

a

X(a)

�

:

Moreover, if a 7! �

X(a)

is ontinuous in probability, then a 7! A(X(a)) is C

1

in

^

S (TN).
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Before proving this result we introdue some de�nitions and lemmas. Let M be

a manifold of dimension m. If r is a onnetion on M , we onsider the omplete

lift r

0

of r on TM , whih is haraterized by the relation r

0

X



Y



= (r

X

Y )



valid

for all vetor �elds X;Y 2 �(TM). Here X



denotes the omplete lift of X, i.e. the

vetor �eld in �(TTM) de�ned by X



u

= s

�

TX(u)

�

(see [Y-I℄ for details). Reall

that the geodesis for r

0

are the Jaobi �elds for r.

Let L(M) be the prinipal bundle of linear frames on TM : thus L

x

(M) is the set

of linear isomorphisms R

m

! T

x

M for eah x 2M . There is a anonial embedding

|: TL(M) ! L(TM) de�ned as follows: if W 2 TL(M) is equal to (�

a

U)(0) where

a 7! U(a) is a smooth path in L(M), and if v 2 TR

m

= R

2m

is equal to (�

a

z)(0)

where a 7! z(a) is a smooth path in R

m

, then one has |(W )v = s ((�

a

(Uz))(0)).

Let (e

1

; : : : ; e

m

; e

�

1

; : : : ; e

�n

) be the standard basis of TR

n

. Then |((�

a

U)(0))e

�

=

s ((�

a

(Ue

�

))(0)) and |((�

a

U)(0))e

��

is the vertial lift (Ue

�

)

v

(0) of (Ue

�

)(0) above

�

a

(� Æ U)(0) where �: L(M)!M is the anonial projetion.

LEMMA 4.2. | If a 7! X(a) 2

^

S (M) is C

1

and U(a) 2

^

S (L(M)) is a

horizontal lift of X(a) suh that a 7! U

0

(a) is C

1

in probability, then a 7! U(a)

is C

1

in

^

S (L(M)) and | (�

a

U(a)) is a horizontal lift of �

a

X(a) with respet to the

onnetion r

0

.

Proof. | The fat that a 7! U(a) is C

1

is a diret onsequene of Corollary 3.14

and the fat that

�

lim

t!�

U(a)

U

t

(a) exists

	

is inluded in

�

lim

t!�

X(a)

X

t

(a) exists

	

.

Another onsequene of Corollary 3.14 is that it suÆes to prove the assertion with

both X

t

(a) = x(t; a) and a 7! U

0

(a) = u(0; a) deterministi and smooth. Write

u(t; a) = U

t

(a).

It is suÆient to verify that for all i 2 f1; : : : ;mg, t 7! |(�

a

u(t; a)) e

i

and

t 7! |(�

a

u(t; a)) e

�{

are parallel transports. But by [Y-I hapt. I, prop. 6.3℄, we have

r

0

(�

a

x)_ (t;a)

s

�

�

a

(u(t; a)e

i

)

�

= s

�

�

a

�

r

_x(t;a)

u(t; a)e

i

��

= 0

and

r

0

(�

a

x)_(t;a)

�

u(t; a)e

i

�

v

=

�

r

_x(t;a)

u(t; a)e

i

�

v

= 0:

This proves Lemma 4.2.

Proof of Theorem 4.1. | The fat that a 7!

�

X(a);A(X(a))

�

is C

1

is a onse-

quene of Corollary 3.14. We an alulate as if dealing with smooth deterministi

paths. Let a 7! U

0

(a) 2 L

X

0

(a)

(M) be C

1

in probability and denote by U(a) the

parallel transport of U

0

(a) along X(a). Write Z(a) = A(X(a)). Then we have the

equation

U(a)U

�1

0

(a) p

�

ÆZ(a)

�

= ÆX(a)

where if z 2 T

x

M and v 2 T

z

TM is a vertial vetor, p

�

v

�

denotes its anonial

projetion onto T

x

M .
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Denoting by m the dimension ofM , we de�ne a family of R

m

-valued proesses R(a)

by R(a) = U

�1

0

(a)Z(a), hene

ÆR(a) = U

�1

0

(a) p

�

ÆZ(a)

�

: (4:1)

We have U(a)ÆR(a) = ÆX(a) and by di�erentiation with respet to a, using the

de�nition of |,

|

�

�

a

U(a)

�

s

�

Æ�

a

R(a)

�

= Æ�

a

X(a): (4:2)

On the other hand, di�erentiation of (4.1) gives

|

�

�

a

U

0

(a)

�

s

�

Æ�

a

R(a)

�

= p

0

�

Æs

�

�

a

Z(a)

��

(4:3)

where p

0

on the vertial vetors to TTM is de�ned like p. Putting together (4.2) and

(4.3) gives

|

�

�

a

U(a)

� �

|

�

�

a

U

0

(a)

��

�1

p

0

�

Æs

�

�

a

Z(a)

��

= Æ�

a

X(a):

But |

�

�

a

U(a)

�

is the parallel transport of |(U

0

(a)) above �

a

X(a) by Lemma 4.2,

hene s

�

�

a

Z(a)

�

= A

0

(�

a

X(a)).

COROLLARY 4.3. | Let J be a TM -valued semimartingale with lifetime � = �(0).

There exists a C

1

family (X(a))

a2R

of elements in

^

S (M) suh that the equality

J = �

a

X(0) is satis�ed. In partiular, if �(a) is the lifetime of X(a), then �(a)^�(0)

onverges in probability to �(0) as a tends to 0. The semimartingale J is a r

0

-

martingale if and only if one an hoose (X(a))

a2R

suh that X(a) is a r-martingale

for eah a 2 R.

Proof. | With the notations of Theorem 4.1 de�ne V = A

0

(J), and for a 2 R,

Z(a) = T exp

�

s

�

as(V )

��

:

Note that the lifetime of Z(a) an be 0 if exp aJ

0

is not de�ned. A straightforward

alulation shows that s

�

�

a

Z(0)

�

= V . De�ne now X(a) as the stohasti devel-

opment of Z(a). We have the relation Z(a) = A

�

X(a)

�

; by Corollary 3.14, the

map a 7! (Z(a); X(a)) is C

1

in

^

S (M) and in partiular, �(a) ^ �(0) onverges in

probability to �(0) as a tends to 0. By Theorem 4.1, the antidevelopment of the

derivative of a 7! X(a) at a = 0 is s

�

�

a

Z(0)

�

= V . This implies that �

a

X(0) = J .

If J is a martingale, then V is a loal martingale (with possibly �nite lifetime).

It is easy to see that for eah a 2 R, Z(a) is also a loal martingale, hene its

development X(a) is a martingale.
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