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Abstract. — We extend the so-called topology of semimartingales to continuous
semimartingales with values in a manifold and with lifetime, and prove that if the
manifold is endowed with a connection V then this topology and the topology of
compact convergence in probability coincide on the set of continuous V-martingales.
For the topology of manifold-valued semimartingales, we give results on differentia-
tion with respect to a parameter for second order, Stratonovich and Ito stochastic
differential equations and identify the equation solved by the derivative processes.
In particular, we prove that both Stratonovich and It6 equations differentiate
like equations involving smooth paths (for the It6 equation the tangent bundles
must be endowed with the complete lifts of the connections on the manifolds).
As applications, we prove that differentiation and antidevelopment of C! families
of semimartingales commute, and that a semimartingale with values in a tangent
bundle is a martingale for the complete lift of a connection if and only if it is the
derivative of a family of martingales in the manifold.

1. Introduction

Let (2, (#)o<t<oo, P) denote a filtered probability space, M a smooth connected
manifold endowed with a connection V. Then the tangent bundle T'M inherits a
connection V'’ (usually denoted by V¢), the complete lift of V (see [Y-I] for details).
Let X be a continuous semimartingale with values in M. The antidevelopment of X
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in T'x, M is the semimartingale Z solving the Stratonovich equation
p(62) =U,U 16X, Zy=0, (1.1)

where U is a horizontal lift of X taking values in the frame bundle on M and p is the
canonical projection in T'M of a vertical vector of TT M. The map A will denote the
antidevelopment with respect to V and A’ the antidevelopment with respect to V'.

The initial motivation of this paper was to answer the following question: For
some open interval I in R, consider a family (X;(a))qser, tcjo,¢(a) Of continuous
martingales X (a) in M, each with lifetime £(a), differentiable in a for the topology
of compact convergence in probability. Is then also (X (a), A(X (a))) differentiable in
a, and if the answer is positive, do we have the relation s(9,.4(X (a))) = A’ (9, X (a))
(where 0, denotes differentiation with respect to a and s is the map TTM — TTM
defined by s(0,0ix(t,a)) = 010az(t,a), if (t,a) — z(t,a) is smooth and takes its
values in M)?

A positive answer will be given to this question, and this result will be obtained as
a particular case of general theorems on stability of stochastic differential equations.

In this paper equations of the general type

DZ(a) = f(X(a),Z(a)) DX (a) (1.2)
between two manifolds M and N are studied, where DX (a) denotes the (formal)
differential of order 2 of X (a), and f is a Schwartz morphism between the second
order bundles 7M and 7N. The topology of semimartingales, defined in [E1] for R-
valued processes, will be adapted to manifold-valued semimartingales with lifetime.
In particular, it will be shown that the map (X, f, Zp) — (X, Z) is continuous, where
7 is the maximal solution starting from Z, to DZ = f(X, Z)DX, with appropriate
topologies on both sides.

When applied to a certain family of semimartingales and an appropriate Schwartz
morphism, this result will tell us that if a — X(a) is C! in the topology of
semimartingales, and further if f is C! with locally Lipschitz derivative, Z(a) the
maximal solution to (1.2) with (Zg(a))aer C' in probability, then a — (X (a), Z(a))
is C! in the topology of semimartingales and the derivative 9,7 (a) is the maximal
solution to

DdaZ(a) = ['(0aX (), 0aZ(a)) DDuX (a) (1.3)
where f’ is a Schwartz morphism between the second order bundles 7T'M and 7T N.
As a corollary, we obtain results on differentiability of solutions to Stratonovich
and Ito equations. It will be shown that they can be differentiated in the same way
as solutions to ordinary differential equations (for the It6 case, the It6 differentials of
the derivative process have to be defined with the complete lifts of the connections).
If M is endowed with a connection V, then it will be shown that, as in the flat
case, the topology of semimartingales and the topology of uniform convergence in
probability on compact sets coincide on the set of martingales. Using these results it
will be possible to prove commutativity of antidevelopment and differentiation.

AcKkNOWLEDGEMENT. — We would like to thank Michel Emery for his comments
and suggestions to improve this paper.
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2. Topologies of semimartingales and of uniform convergence in
probability on compact sets

2.1. R?%-valued processes

In this section we define topologies of uniform convergence in probability and of
semimartingales for processes with lifetime. We investigate their main properties.

Let (Q, %, (Z:)t>0,P) be a filtered probability space satisfying the usual condi-
tions. If ¢ is a predictable stopping time, we denote by D, (R?; £) the set of continuous
adapted R?-valued processes with lifetime &, and by . (R?; €) the set of R%-valued
continuous semimartingales with lifetime £. These sets are described as follows: an
element of D, (R?;¢) (resp. .7 (R?;€)) is the image under an isomorphic time change
A: 0, €[ — {€ > 0} x [0, 00) of an R%-valued continuous adapted process (resp. semi-
martingale) defined on the probability space ({f > 0}, (yA;1)8>0, P(-[¢ > 0))
They can be endowed with a complete metric space structure, as in the case £ = o0,
which gives respectively the topology of compact convergence in probability and the
topology of semimartingales (see [E1]). Let .7 denote the set of predictable stopping
times and let

Dc(RY) = U De(R%:€), Z(RY) = U S(RYE).
¢ET ¢ET

The sum X + Y, difference X — Y, product (X,Y") of two processes with lifetime
is a process with lifetime the infimum of the lifetimes of the two processes. The
lifetime of a process X will be denoted by £x.

If T is a predictable stopping time, we can define the operations of stopping at
T and killing at T on the sets D (R*) and .#(R%): let X be an element of D, (R%)
or j(R‘i). Then the process X7 stopped at time T is the continuous process with
lifetime 400 1yrce} + Ex Lir>e,} Which coincides with X on [0,T A {x[ and is
constant on [T, 00[ N {T < &x}; the process X T~ killed at time T is the continuous
process which has lifetime T' A {x and coincides with X on [0,T A {x[. If £ is any
predictable stopping time, then by T' < ¢ we will mean T' < { on {{ > 0} and T =0
on {¢{ = 0}.

Let us define a topology on the sets Do(R?) and . (R%). If X € D (R?) with
lifetime {x, T a predictable stopping time such that T" < £x and € > 0, one defines
neighbourhoods of X with the sets

Vep(X, Tye) = {Y € Do(RY), E[l A sup [|Y; — Xt||] < 8}
0<t<T

(with the convention that sup©® = 0 and || Z;|| = o0 if t > £z) and

Wep (X, €) = {Y € Do(RY), P({gy > &x+epn{ lim X, exists}) < s}

(the second condition will insure that the topology is separated).
Analogously, one defines neighbourhoods of X € .7 (R?) by setting

V(X,T,e) = {V e ZR?), E[1 Av(Y - X)r] < e}
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where if Z7 = Zy + M + A is the canonical decomposition of 7 € j(R‘i),

d t
w2y = Y (121 + <artarsl + [aa)
i=1 0
(with the convention that v(7); = +o0 if t > £z) and

W(X,e) = {Y e .Z(R%), P({gy >Ex +epn {tlig X exists}) < s} :

PROPOSITION AND DEFINITION 2.1. — The basis of neighbourhoods

Vep (X, Tye) N Wep(X,€'), X € Do(R?) e,¢' >0, T predictable
stopping time such that T < {x,

(resp. V(X,T,e)NW(X,e'), X € j(Rd))

defines a separated topology on Do(R?) (resp. #(R%)) such that every point has a
countable basis of neighbourhoods. This topology will be called the topology of compact
convergence in probability (resp. the topology of semimartingales).

REMARKS. — 1) If for the topology in D¢ (R%) (resp. .7 (R%)) (X™)pen converges
to X, then &xn» A £x converges in probability to £x and {x» converges to {x in
probability on the set {lim;_,¢ X exists}.

2) Let ¢ € 7. The topology of the complete metric space (D(R?%, &), d.,) (resp.
(L (R4, €), dgm)) defined in [E1] is exactly the topology induced by D.(R%) (resp.
7 (R%4)) on D (R, €) (resp. .7 (R, ¢)).

Proof of Proposition 2.1. — We are going to prove this for D (R%). To see that
every point has a countable basis of neighbourhoods, one shows that it is sufficient to
consider an increasing sequence of predictable stopping times (T}, )men converging
to £x and such that T, < &x for all m.

Let us show that the topology is separated. If X # Y, then two situations can
occur. Either there exists ¢ > 0 and a predictable stopping time T' with T' < £x A&y

and E[1 A sup ||V; — Xt||] > 2¢ in which case Vi (X, T,¢) N Vip(Y, Tye) = O, or
0<t<T

Y™ = X7 with P(éy < €x) > 0 and there exists € > 0 and a predictable stopping
time T satisfying T < £x such that P({gy $2e < T, lim Y, exists}) > %: in this
—{y

case, one verifies that Ve, (X, T,e) N Wep(Y,e) = 0. []

REMARK. — Convergence for the topology of semimartingales implies compact
convergence in probability.

For 1 < p < ooand ¢ € .7, let SP(RY,¢) denote the Banach space of processes
X € D.(R%,¢€) such that || X || gpra¢) = | X¢ e < o0, where X = sup,, || X on
0<t<¢&andsup® = 0. Let SP(R?) = Uge 7 SP(R?, €).
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DEFINITION 2.2. — We say that a sequence (X™)nen in De(R%) converges to
X € D.(R?) locally in Do(R?) (resp. SP(R%)) if the following two conditions are
satisfied:

(i) There exists an increasing sequence of stopping times (Ty, )men converging to x
such that for any m, Ty, < &x, (X™)Tm" belongs to D.(R%, Tp,) (resp. SP(RY, Ty,))
forn sufficiently large and converges in D¢(R%, Ty,,) (resp. SP(RY, T,,)) to XTm~.

(ii) The lifetimes Exn converge in probability to the lifetime {x on the set
{limy_¢, X; exists}.

For 1 <p<ooand¢ € .7, let HP(RY,€) be the space of processes X € .7 (R%, €)
such that || X||grrd ¢y = ||v(X)el|zr < 00. Let HP(R?) = Uge 7 HP (R, €).

DEFINITION 2.3. — We say that a sequence (X™)nen in .7 (RY) converges to
X € SR locally in .#(RY) (resp. HP(RY)) if the following two conditions are
satisfied:

(i) There exists an increasing sequence of stopping times (Ty, )men converging to x
such that for any m, Ty, < x, (X™)Tn" belongs to ./ (R?, Ty,) (resp. HP (R, T,))
forn sufficiently large and converges in .7 (R, Ty,) (resp. HP(R?, T,,,)) to XTm™.

(ii) The lifetimes Exn converge in probability to the lifetime {x on the set
{limy_¢, X} exists}.

Note that local convergences are not derived from topologies. Their relation
to topologies is described in the following proposition which is the analogue for
processes with lifetime of [E1] Proposition 1 and Theorem 2.

PROPOSITION 2.4. — Let p € [1,00] and let E C D(R%) (resp. E C .Z(R%)).
Let F be the sequential closure of E for local convergence in Do(R%) (resp. .7 (R%)),
let G be the closure of E for the topology of compact convergence in probability (resp.
for the topology of semimartingales), and let K, be the sequential closure of E for
local convergence in SP(R%) (resp. HP(R%)).

Then F = G = K.

REMARK. — Proposition 2.4 can be rewritten as follows: let (X™),en be a
sequence of elements of D, (R?) (resp. .%(R?)). Then the following three conditions
are equivalent:

(i) for every subsequence (Y"),¢n, there exists a subsubsequence (Z™),en which
converges to X locally in D, (R%) (resp. j(Rd)),

(ii) (X™)pen converges to X in the topology of compact convergence in proba-
bility (resp. in the topology of semimartingales),

(iii) for every subsequence (Y™),¢cn, there exists a subsubsequence (Z™), ey which
converges to X° locally in SP(R%) (resp. H? (R%)).

Proof of Proposition 2.4. — 1) Second equality: We will give the proof for compact
convergence in probability. The proof for semimartingale convergence is similar.

To prove K; C G, it is sufficient to verify that if X™ converges to X locally
in S L(R?), then X™ converges to X for the topology of compact convergence in
probability, and this is almost evident.
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We are left to prove that G C K, i.e. that for every sequence X" converging to
X for the topology of compact convergence in probability, there exists a subsequence
which converges to X locally in $°°(R%). One easily shows that condition (ii) of
local convergence is satisfied, without extracting a subsequence. By extracting a
subsequence to obtain an a.s. convergence of {x» A {x and by stopping at a time
smaller than £x but close to {x in probability, one may assume that all the terms
of the sequence belong to D.(R?,00). One can also assume that X = 0. It is
then sufficient to show that we can find a stopping time T as big as we want for
the topology of convergence in probability and a subsequence (X™)ien such that
(X™)T converges to 0 in S (R?, 00) (a sequence of stopping time increasing to oo
and a diagonal subsequence give then the result). But for every M € N*, (X")%,
converges in probability to 0. By extracting a subsequence one can assume that the
convergence is almost sure. The end of the proof is similar to the proof of Egoroff’s
theorem: let e > 0, T72 = M Ainf{t > 0, ||(X™);]| > 1/m}, Sr = infy>, T, n(m)
such that ]P’(S,’fl(m) <M-1)< i and R = inf,,cn- S™™) Then R is as close

to oo as we want and (X™)® converges a.s. uniformly to 0.
2) The proof of the first equality is identical as the one for infinite times. []

As a corollary, using the demonstration of Theorem 2 in [E1], one can show that
a sequence (X™),en of elements of . (R?) converges to X € .7 (R?) if and only if it
converges in D.(R?) and for all bounded predictable process H with values in R?,

. E - R .
( / HdX ") 8 converges in D.(R) to / HdX (compare with the definition of the
0 0

topology of semimartingales in [E1]).

DEFINITION 2.5. — Let E,F = Do(R%) or /(R%), and let ¢: E — F be a map.
We will say that ¢ is lower semicontinuous if for every sequence (X™)nen of elements
in E converging to X € E, the sequence (((15()("‘))5¢’<X>')nEN converges to ¢(X).

An important example of a lower semicontinuous map is X — p(¢(X)) € .7 (R?)
if X = ¢(X) € .Z(R™4") is continuous and p: R*% — R? the canonical projection.

Note also that if X — ¢(X) is lower semicontinuous, and if both X and ¢(X) are
in D, (or.#) and the lifetime of ¢(X) is greater or equal to the lifetime of X, then
X = (X, ¢(X)) is continuous.

With Proposition 2.4, one can investigate continuity properties for operations
on the sets of continuous adapted processes and of semimartingales. For m € N,
let C™(R?) denote the set of real-valued C™ functions on R?, endowed with the
topology of uniform convergence on compact sets of the derivatives up to order m.

ProposITION 2.6. — 1) The map

A

CO(R?) x D.(R?) — D¢(R)
(h, X) ¥— h(X)

18 lower semicontinuous.
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2) The maps

A

C?(R?) x .Z(R%) — . (R)
(h, X) — h(X)

and
SR — S (R)
X — Mt AY, <M, M7>
are lower semicontinuous, where X = Xqg+ M + A is the decomposition of X into
the value at 0, a local martingale and a process with finite variation.

3) Let T be a predictable stopping time. The map

De(R%) (resp. ' (R?)) — De(R?) (resp. ./ (R%))
X — XT-

18 continuous, and

De(R?) (resp. 7 (R*)) — D(R?) (resp. #(R?))
X — XT

18 lower semicontinuous and continuous at the points X with lifetime £x such that
Péx =T)=0.

4) Let U be an open subset of R%. If X belongs to Do(R?), let Ty (X) denote the
exit time of X from U, i.e., Ty(X) =inf{t > 0, X; € U} (with inf @ = +00). Then

D.(RY) (Z(R%)) — Do(R?) (S (R%))
X s XTv(X)

18 lower semicontinuous, and

D.(R?) (#(R*)) — D.(U) (#(U))
X — XTv(X)-

18 continuous.

In part 4), D (U) (#(U)) is the set of elements of D,(R?) (.#(R%)) which take
their values in U, endowed with a topology defined in the same manner.

Proof. — 1) By Proposition 2.4, is sufficient to show that for every sequence
(h™, X™) converging to (h,X), there exists a subsequence (h™, X™k) such that
7k (X7 ) satisfies condition (i) of local convergence to k(X)) in $>°(R%). But using
again Proposition 2.4, by extracting a subsequence, we can assume that the X" are
locally bounded and converge locally a.s. uniformly to X. We conclude using the
fact that A is uniformly continuous on compact sets and A™ converges to h uniformly
on compact sets.
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2) The proof is analogous to 1) using the equality

1/2
v(h(X)) = |h(Xo)| + </0 D;h(X)D;h(X) d<Mi,Mj>>

~Dijh(X)d<M* M7> + D;h(X) dA*

+ 13
ol2

and condition (i) of local convergence in H* (R%).

3) The proof is left to the reader.

4) We only give a sketch of the proof for the second assertion. It is sufficient
to prove that for every T satisfying T < Ty(X) A €x, Tu(X™) AT converges
in probability to T, and that Ty (X™) converges in probability to Ty (X) on the

event { lim X; exists in U } But this is a consequence of the existence
t—)gx/\TU(X)

for every subsequence (X™*)ien of a subsubsequence which converges locally a.s.

uniformly. []

A consequence of 1) is that if F is a closed subspace of R?, then taking
h(z) = dist(z, F') shows that the subset of D¢ (R%) (. (R%)) consisting of F-valued
processes is closed. This topological subspace will be denoted by D (F) (. (F)).

Property 4) is very useful for the study of manifold-valued processes and stochastic
differential equations. It removes problems in connection with the exit time from
domains of definition. It allows localization in time.

We are now interested in differentiability properties.

DEFINITION 2.7. — Let a — X (a) € .7 (R%) be defined on some interval I in R.
1) The map a — X (a) is differentiable in . (R?) at ag € I if it is continuous at aq
. X(a) — X .
and if there exists Y € . (R?) such that (a) (a0) converges in ./ (R?) to Y as
a — ap
a — ag. Then (X (ag),Y) is called the derivative of X at ag.

2) The map a — X (a) is C* in .S (RY) if for allag € I, a — X (a) is differentiable
in . (R?) at ag, and if the derivative a + Y (a) is continuous in . (R*?). The
semimartingale Y (a) is denoted by 0,X (a).

3) Fork > 1, the map a — X(a) is C*¥1 in P (RY) if a — X (a) is C! in .7 (RY)
and 0, X (a) is C* in .7 (R??).

REMARKS. — 1) In the first part of the definition, one asks a — X(a) to be
continuous at ag only to guarantee that {x(,) converges in probability to {x(4,) on

the set { lim  X;(ap) exists}.

t—)&(ao
2) In the same manner, replacing .%(R%) by D.(R%) in Definition 2.7, the notion
of a map a — X (a) € D.(R?) being C* in D.(R?) can be defined.

The following proposition says that regularity of paths implies regularity in
De(R%).
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PROPOSITION 2.8. — Let k > 0. Suppose a — X (a) € Do(R?), with lifetime &(a),
is defined on an open interval I in R. Assume that w-almost surely, a — &(a)(w) is

lower semicontinuous and continuous at ag if lim  Xy(ag) exists, a — X¢(a)(w)
t—¢(ao)(w)

is of class C* on its domain for all t, and that the map (t,a) — 9% (Xi(a)(w)),
defined on {(t,a) e Ry x I, 0 <t < {(a)(w)}, is continuous.
Then a + X (a) is C* in D.(R?).

Proof. — Let us first consider the case k = 0. Let (ag)een be a sequence of
elements of I converging to ap € I. Then {(ay) converges almost surely to £(aop)

on the set { El(im)( )Xt(ao) exists}, hence for ¢ > 0, X (az) € Wep (X (ao),¢) for £
t—&(ap) (w
sufficiently large. Since &(ag) A £(ag) converges almost surely to £(ag), the stopping

times T}, = infy>m, {(ao) A §(ar) are predictable, increasing in m, and converge still
almost surely to £(ag). Thus there exists a sequence of predictable stopping times
(Ton)men+ increasing almost surely to &£(ag), such that almost surely, for all m,
T,, < T' on {T', > 0}.

By the second part of Proposition 2.4, it is sufficient to show that X (as)Tm"
converges in D.(R?) to X (ag)Tm" as £ tends to co. But on {T},, > 0}, almost surely,
there exists ¢(w) > 0 such that the map

[0, T (w)] X [ag — £(w), ap + e(w)] — R?
(t,a) — Xi(a)(w)

is well-defined and uniformly continuous. Thus lim sup || Xi(as) — X¢(ag)|| =0
{—00 0<t<T),

almost surely on {7}, > 0}, and this gives the convergence of X (a;)T™" to X (ao)
in D.(R?). Hence we have the result.

If £ =1, let ag, (ar)een, (Tm)men= be as above. It is sufficient to prove that for
every m,

T~

X" (ag) = XT" (ag)
Ay — ag

converges to 9, X T (ag) in De(R%), as £ tends to co. Almost surely on {7}, > 0},
there exists £(w) > 0 such that the map

[0, Ty (w)] X [ag — e(w), ag + e(w)] — R?
(t,a) — 0, X¢(a)(w)

is defined and uniformly continuous. But, for such w, t, a, we have

X - X
‘ t(a) ¢(ao) — 0 X, (a0)|| < sup HaaXt(b) — 8aXt(a0)H ,
a — ao lb—aol|<[la—aol|
hence
sup Xi(ae) = Xi(ao) — 0, X¢(ap)
0<t<Ty, a¢ — Qo
< sup sup  ||0aX¢(b) — 0aX¢(ao)||

lb—aol|<[las—aoll 0<t<Tn
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and the left-hand side converges almost surely to 0 as £ tends to oco. It implies that
XTm™(ag) — X (ao)
ag — ag

converges to J, XTm™(ag) in D (R%), as £ tends to oo.

If £ > 2, one can prove in the same way by induction that for £ < k, a — X(a) is
C*in D(R*), and almost surely, for all £, (05X), = 05(Xy). []

REMARK. — Proposition 2.8 is false with . (R%).

2.2. Manifold-valued processes

Let M be a connected smooth manifold endowed with a connection V. With
respect to some fixed filtered probability space (Q,.%, (%:)i>0,P), for every pre-
dictable stopping time &, let let D (M, &) denote the set of M-valued adapted
continuous processes with lifetime £, and .7 (M, ) the set of M-valued continuous
semimartingales with lifetime £. The spaces D.(F; &), . (F;¢&), ﬁC(F), LSZ(F), where
F'is a closed subset of M are defined by analogy with the previous definitions.

Let ¢: M — R? be a smooth proper embedding. Then ¢(M) is a closed subset
of R4, As a consequence, (De(¢p(M)),dep), Tesp. ((¢(M)), dgm), is a topological
subspace of Dg(R%), resp. j(Rd). By means of the diffeomorphism ¢: M — ¢(M),
we obtain complete topological space structures on Do (M) and . (M).

DEFINITION 2.9. — Let ¢: M — R? be a smooth proper embedding.

1) The topology of compact convergence in probability on ﬁc(M) 18 the topology
induced by the diffeomorphism ¢: M — ¢(M) and the topological space ﬁc(¢(M))

2) The topology of semimartingales on (M) is the topology induced by the
diffeomorphism ¢: M — (M) and the topological space . ($(M)).

Since every smooth function on M is of the form go ¢ for some smooth g: R* — R,
it is easy to see that the induced structures are independent of the choice of the
proper embedding ¢.

Independent of the proper embedding ¢ are also the notions of local convergence
in S°(¢(M)) and of local convergence both in S*°(¢(M)) and in H*®(¢(M)). This
is of great importance in the sequel.

With a proper embedding ¢, we can also define differentiability for families of
processes in Do(M) (vesp. . (M)). In this case, if a — ¢(X(a)) is differentiable
at ag and Z is the derivative of ¢(X(a)) at ag, then it is easy to verify that
Z takes its values in T¢(TM) and the derivative of X (a) at ag is the process
82X (ag) = (T¢)~'(Z) with values in D(TM) (resp. .7 (TM)).

Let .#v(M) be the set of continuous martingales with lifetime in D, (M). By
[E4 4.43], A (M) is closed in D.(M). This implies that it is also closed in . (M).

ProposiTioN 2.10. — On //ZV(M), the topology of compact convergence in
probability and the topology of semimartingales coincide.

To establish this result, we need some lemmas.
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LEmMA 2.11. — FEvery point x of M has a compact neighbourhood V', contained
in the domain of a chart h, together with a smooth convex function ¢: V x V — R,
which satisfies the following conditions:

1) Forallz,y € V, ¢(z,y) =0 if and only if x = y,

2) There exists a constant ¢ > 0 such that for all (X,Y) € T,M xT,M, z,y €V,
with coordinates X = dh(X), Y = dh(Y) € R?,

(V& V)d(z,y)((X,Y),(X,Y)) > c]]Y = X|]?,

3) For every Riemannian metric & on V there exists a constant A > 0 such that

P < A2,

It is proven in [K] that convex geometry (the existence of a convex function 1
satisfying 1)) implies that every V-valued martingale has almost surely a limit at
infinity.

Proof. — We show that the function ¢ defined in [E4 4.59] has the desired
properties. For xq € M, take an exponential chart (h, V') centered at x(, and define

P(r,5) = 5 (2 + [19(@) + b)) () ~ b2

Note that ¢ satisfies 1) and 3). It is proven in [E4 4.59] that, if V' is sufficiently
small, one can choose e > 0 and 0 < 8 < 1 such that if U = (Uy,Us) e TV®TV isa
tangent vector with coordinates (X,Y) € R? @ R? where X = dh(U1), Y = dh(Us),

then
(V& V)dy(U,U) B) (21X = Y|I> + |h(z) — h(y)|I*1X + Y ||?)

B)e* | X - Y|~

(1
(1

>
>

This gives 2). []

LEMMA 2.12. — Let V, ) be as in Lemma 2.11. There exists a constant C' > 0
such that if Y and Z are V-valued martingales, h(Y) = (Y,....Y%) and h(Z) =
(ZY,...,Z%) in coordinates, then

d
E|Y <Y'=Z'Y'— Z'>| < CE[6*(Yoo, Zoo)] -
i=1
REMARK. — In particular, applying this result with a constant 7, we deduce

that the expectation of the quadratic Riemannian variation of Y is bounded by a
constant independent of Y.

Proof of Lemma 2.12. — Let 1 be as in Lemma 2.11. The It6 formula applied to
¢ and (Y, Z) gives
VVeus Zoc) = 9(¥0 Za) + [ (%27 (¥, 2))
0

+ % /OO (V@ V)dyp(Y, Z)(d(Y, Z) © d(Y, Z))
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where dV®V denotes the Ito differential with respect to the product connection in
M x M. Using the fact that (Y, Z) is a martingale, we obtain

Bl (Ve Zoc)] = B[V Z0)] + 5E| [ (V0 Dianv, 2)(a. 2y w v, 2)

hence by 2) and 3) of Lemma 2.11, we have

d
N <Y - ZLY - 7>

i=1

AE [6*(Yoo, Zoo)] > E[¢(Yao, Zoo)] > = E

N O

This gives the result, with C = 2A4/c. []

Proof of Proposition 2.10. — We may assume that M is a closed subset of R?, and
have to show that every sequence (X™),en of V-martingales converging in D, (M)
to a V-martingale X converges in S (M) to the same limit. By means of the second
equality of Proposition 2.4 with p = 1, it is sufficient to prove the existence of a
subsequence which converges to X locally in H'(R?, c0). Since we are allowed to
extract subsequences and since we have to prove only local convergence, by using
the second equality of Proposition 2.4 with p = oo, we may assume that (X™),en
converges to X in S (R?, 0o). Still using the fact that it is sufficient to prove local
convergence, we may further assume the existence of a finite increasing sequence of
stopping times such that if S and T are two consecutive times in this sequence, then
on [S,T[ all the (X™),en and X take values in a compact set V' as considered in
Lemma 2.11. Finally, since the sequence of stopping times is finite, it is sufficient
to prove convergence on one of the intervals [S, T[. Hence we assume that (X™),en
is a sequence of V-valued V-martingales converging to X in S®°(R?, c0), and it is
sufficient to prove its convergence to X locally in H*(R?, 00).

Since we are dealing with martingales, the finite variation parts of the coordinates
satisfy

—~—

d(Xn)t = — [ (X™) d<(X™)7, (X™)F>

1

(NN

NERINGE

B

Xt = — i (X) d<X7, X*>

1

(NN
B
I

7
where F; i are the Christoffel symbols of the connection. This gives the bound

d d
Dol(XME = X§ Y <(X™) - X (X" - XS
i=1

=1

IX™ = X ||z ooy < E

d oo
£ (\%(X”)—r;-k(X)\\d<Xﬂ,X'ﬂ>\

i,j, k=1

+ D5 (XM (Jd<(X7) = X7, (X™)*>] + [d<X, (X™)* ~ X’“>\>>
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The Christoffel symbols are Lipschitz on V, hence by dominated convergence,
Z?,j,k:l fOOO‘I‘;k(X") - F;-k(X)Hd<Xj,Xk>‘ converges to 0 almost surely, and
still by dominated convergence and the remark after Lemma 2.12, its expectation
converges to 0. Since the Christoffel symbols are bounded on V, the last terms can
be bounded by

d
3 (XM - X (XM - XS (<(X")j, (X™)i>Y2 4 <X, Xﬂ'>;{2)

i,j=1

CE

with a constant C' > 0. Using Holder’s inequality and uniform boundedness of the

expectations of the quadratic variations of V-valued martingales, we are led to
d

show that E <(X™) - X' (X™) — X*> | converges to 0. But, by means of
1

7
Lemma 2.12,

d
Z<(Xn)z _Xiv (Xn)z _Xi>oo

=1

E <CE[§*(XZ, Xoo)]

with a constant C' > 0, and this gives the result. []

3. Regularity of solutions of stochastic differential equations

Let M and N be connected smooth manifolds. In this section, we will study
stability of second order stochastic differential equations of the type

DZ = f(X,Z) DX (3.1)

where f € T(7(M)* ® 7(N)) is a Schwartz morphism, X belongs to .%(M) and Z
to .Z(N).

REMARK. — If P is a submanifold of M x N such that the canonical projection
P — M is a surjective submersion, and if f is only defined on P and constrained

to P (see [E3]), then one can extend f in a smooth way to M x N, and one knows
that a solution (X, Z) of (3.1) with (X, Zy) € P will stay on P.

PROPOSITION 3.1. — Let (X™)nen be a sequence of elements in . (M) converging
to X in. (M), let (Z)nen be a sequence of N-valued random variables converging
to Zy in probability, and let (f™)nen be a sequence of locally Lipschitz Schwartz
morphisms in T'(1(M)* ® 7(N)) with uniform Lipschitz constant on compact sets,
converging to a Schwartz morphism f € T'(t(M)* @ 7(N)). If Z™ is the mazimal
solution starting from Z§ to DZ™ = f™(X™, Z")DX"™, then (X", Z™) converges in

(M x N) to (X, Z) where Z is the solution to DZ = f(X,Z) DX starting from Z.
Moreover, if Exn converges in probability to {x then Z™ converges to Z in . (N).



Stability of stochastic differential equations in manifolds 201

Proof. — Let £z be the lifetime of Z. We will show that (Z")%2 converges
to Z and that lim;_,¢, Z; does not exist on {{z < £x}, which is stronger than the
results of Proposition 3.1. The second point is known, let us prove the first one.
We have to show that there exists a stopping time 7' as close to £z as we want
and a subsequence Z™ converging to Z. Hence we can assume that X", X take
their values in a compact subset Kjs, Z7 in a compact subset Ky and that X"
converge in H>®(Kjys,00) and in S (K, 00) to X. We can also assume that Z
takes its values in K and has lifetime co. Consider Schwartz morphisms fz, fx
satisfying the same convergence assumptions as f™ and f, with compact support
K containing a neighbourhood of the product Kj; x Kpy. Using the continuity
results of Proposition 2.6 and [E2] theorem 0, we obtain that the solution Z% of
DZ} = fRr(X™ Z%)DX™ with (Z%)o = Z{ converge in .(N, 00) to the solution
Zk of D7k = fr(X,Zk) DX with (Zg)o = Zp. This implies that a subsequence
converges locally in H>(N) and in $%°(N), but then locally, for indices sufficiently
large, the solutions to the truncated equation coincide with the solutions to the
original equation. This gives the claim. []

Immediate consequences of Proposition 3.1 are the following results.

COROLLARY 3.2.— 1) Let T (1(M)*®7(N)) be the set of C' Schwartz morphisms
endowed with the topology of uniform convergence on compact sets of the maps and
their derivatives, and let L°(N) be the set of N-valued random variables endowed
with the topology of convergence in probability. Then the map

S (M) x THr(M)* @ 7(N)) x L°(N) — .%(M x N),

defined by (X, f, Zo) — (X, Z) with Z the mazimal solution of DZ = f(X,Z) DX,
18 continuous.

2) Let TY(1(M)*) be the set of C* forms of order 2 endowed with the topology of
uniform convergence on compact sets of the maps and their derivatives. Then the
map

T (r(M)*) x (M) — .7 (R)
(0, X) —s / (0(X), DX)

18 lower semicontinuous.

ExaMPLE. — Here we give an example of a sequence of deterministic paths
converging uniformly to a constant path, but such that parallel transports above
the elements of this sequence do not converge. This shows in particular that in 1)
we cannot replace the topology of semimartingales in 7 (M) by the topology of
compact convergence in probability, unless we restrict for instance to the sets of
martingales with respect to a given connection.

Let M be a simply connected surface endowed with a rotationally invariant
metric about o € M, represented in polar coordinates as ds? = dr? + g2(r) d9? for
some smooth function g. Let t — z(t) € M be a path in M, defined on the unit
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interval [0, 1], with polar coordinates r(t) = ¢ and J(t) = at for some a > 0. A
straightforward calculation shows that the rotational speed of a parallel transport
above x in polar coordinates is —ayg’(¢). Hence the rotational speed in an exponential
chart with centre o which realizes an isometry at o is a(1 — ¢'(¢)) (note that this
gives 0 if the metric is flat).

In the following, M is taken to be an open subset of the sphere S2. Thus we have
g(r) =sinr, and a(1 —g¢'(¢)) = a(1 —cose). Consider the sequence of paths (z"),en
defined in polar coordinates by 9™ (t) = 2wnt and r"(t) = e, = arccos(1— 5= ) (hence
2mn(1 — cosey,) = m). Since €, — 0, we get uniform convergence of (z™),en to the
constant path o. But for all n, the rotation at time 1 of a parallel transport above
2™ is w. Hence parallel transports above z" do not converge to a parallel transport

above o.

In the sequel we are seeking differentiability results. This requires some geometric
preliminaries. We will use the maps ¢: M x N x M — N defined by Cohen [C1]
and [C2] to describe stochastic differential equations in manifolds with cadlag
semimartingales.

DerFINITION 3.3. — Let k € N. A Schwartz morphism f € T'(r(M)* ® 7(N))
(resp. a section e € T(TM* ® TN)) is said to be of class C’Ifip if f (resp. e) is C¥
with locally Lipschitz derivatives of order k.

We say that a measurable map ¢: M x N x M — N is of class C’fi’go if there
exists a neighbourhood of the submanifold {(z,z,x), (x,z) € M x N} on which ¢
18 C°° with respect to the third variable and all the derivatives with respect to this
variable are C* with locally Lipschitz derivatives of order k (with respect to the three

variables).

LEMMA (AND DEFINITION) 3.4. — Let k € N. For every Schwartz morphism
fel(r(M)*®T1(N)) of class C”Ifip, there exists a map ¢: M x N x M — N of class

C”Ei’go such that for all (x,z) € M x N

f(l’,Z) = T3 d)(l’,z,l‘)

where T3¢ denotes the second order derivative of ¢ with respect to the third variable.
Such a map ¢ will be called a Cohen map associated to f.

In particular, a Cohen map satisfies ¢(x, z,z) = z for all (z,z) € M x N.

Proof. — First, we remark that it is sufficient to construct ¢ in a neighbourhood
of the submanifold {(z, 2z, x), (z,2) € M x N} and to extend it then in a measurable
way to M x N x M.

Let VM (resp. VIV) be a connection on M (resp. N). There exists a neighbourhood
of the diagonal of M x M on which the maps (z, z) — v(z, z) = (0) and (z, z) —
u(z, z) = 4(0) are smooth, where v is the geodesic such that v(0) = z and (1) = z.
There exists a neighbourhood of the null section in TN on which the exponential
map, denoted by exp”, is smooth. If u € 7N is a second order vector, denote by
F(u) € TN its first order part with respect to the connection V¥ (see [E4] for the
definition).
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Thus there exists a neighbourhood V' of {(x,y,x), (r,y) € M x N} such that
the map

V- N

(r,:2) = e () vl 2) 4 3 F(F(,9) uz, 2)))

is defined and satisfies the regularity assumptions. We have to verify the equation
T3p(x,y,x) = f(x,y). For this, it is sufficient to check that these maps coincide on
elements of 7, M of the form 4(0) and 4(0) where « is a geodesic with v(0) = x and
(1) = z. A change of time gives

8, 1,7(0) = o™ (¢ £(,0) 0w, 2) + 5 F (1 (@) u(z, 2)

Taking successively first and second order derivatives with respect to ¢ at time 0
gives the result. []

THEOREM 3.5. — Leta — X (a) be C* from I to .# (M), let f € T(r(M)*®7(N))
be a Schwartz morphism of class Cﬁip, and a — Z(a) the mazimal solution of

DZ(a) = f(X(a), Z()) DX (a) (3:2)

where a — Zy(a) is C1 in probability. Then the map a — (X (a), Z(a)) defined on I
and with values in .7 (M x N) is C*, and the process 0, Z(a) is the mazimal solution
of
DI Z(a) = ['(0.X(a),0.Z(a)) DO X (a) (3.3)

with initial condition 0, Zo(a) where f' is the Schwartz morphism of class C’Eip defined
as follows: if f(x,2) = 13 ¢p(x, z, z) with a Cﬁigo Cohen map ¢ associated to f, then
f(u,v) = 3Toh(u,v,u) for (u,v) € TM x TN, i.e, T is a C’Eigo Cohen map
associated to f'. If moreover a — {x (4 s continuous in probability, then a — Z(a)
is C1in j(N)

REMARK. — If P is a submanifold of M x N such that the canonical projection
P — M is a surjective submersion, and if f is only defined on P and is constrained
to P, then one can show that f’ is constrained to T'P. As a consequence, by the
remark at the beginning of this section, if (9,X¢(a), 0.Z0(a)) belongs to TP, then
(0.X(a),0.7(a)) takes its values in T'P.

LEmMMA 3.6. — Let P, Q, R, S be manifolds, ©: Q — P and ¢: R — S maps,
and let ¢: Q x Rx (@ — R and ¢': Px S x P — S be Cohen maps such that

¢ o (p, 1, 9) =1 o¢. Then, forall (z,y) € Q x R, we have
73 (0(2), 9 (1), () 0 To(x) = T (y) 0 T3p(2, Y, ).

If semimartingales X, Z take values in ), resp. R, and satisfy the equation

DZ =13¢(X,Z,X)DX, thenU = p(X) and V = 1)(Z) satisfy
DV = 156/ (U, V,U) DU.

Proof. — 1t is sufficient and easy to prove the first equality with second order
derivatives of curves. The second equality is a consequence of the first one. []
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Proof of Theorem 3.5. — Assume that 0 € I. Using Proposition 3.1, it is sufficient
to prove that a — (X (a), Z(a)) is differentiable at a = 0 and that the derivative of
a — Z(a) is the maximal solution of (3.3).

Let VM be a connection on M. There exists an open neighbourhood AM of the
diagonal AM in M x M such that for a # 0 the function

o't AT — U, = 3" (Ay)

1 _
(2. y) — ~ (exp)) ™'y

is well-defined and a diffeomorphism. The same objects on N are denoted with the

superscript N. Let ¢ be a Cﬁ;;o Cohen map associated to f. It is easy to see that

D(Z(0), Z(a)) = 73 (6, ¢) ((X(0), X (a)), (Z(0), Z(a)), (X (0), X (a))) D(X(0), X (a)).

Let T™ (a) be the exit time of (X (0), X (a)) of AM, X (a) = (X(0), X (a))T" (@ and
Z(a) be the maximal solution to

DZ(a) = 73 (4, $)(X(a), Z(a), X (a))) DX (a)

with initial condition (Zo(0), Zo(a)). Let then TV (a) be the exit time of Z(a) of AV,
Using Proposition 2.6, it is easy to see that T (a) NEx 0y converges in probability to
£x(0) as a tends to 0, and then that TN (a) A £z(0) converges in probability to £z(g)-

By Lemma 3.6, defining V(a) = ¢ (E(a)TN(a)') and Y (a) = oM ()?(a)TN(“)')
for a # 0, we have that V(a) is the maximal solution in .& (T M) of

DV (a) = 3(y o () o ((2h") 7" (02) " (0d) 1)) (Y (@), V(a), Y (a)) DY (a)

with initial condition Vo(a) = N (Z0(0), Zo(a)) on {(Zy(0), Zo(a)) € AY}. For
u € UM (resp. u € UY), denote by £ (u) (resp. £~ (u)) the second coordinate of
(©M)=L(u) (resp. (X )~1(u)). Then the mapping

(a, u, v, w) N { 90¢Izv (é(ﬂ(u), 71'(1)), 71'(10)), ¢(£¢Iz\l(u)’ gtlzv(v)v gé\l(w))) %f a#0,
Tp(u, v, w) ifa =0,
defined on an open subset of (—1,1) x TM x TN x TM containing the elements
of the form (0,u,v,u) with (u,v) € TM x TN, depends C*> on the last vari-
able and its derivatives with respect to this variable are locally Lipschitz (as
functions of all four variables). This implies the convergence of 75(pl o (¢, ¢) o
(@)= ()71, (9M)71)) to 73T¢ as a — 0, and the existence of uniform
Lipschitz constants on compact sets. Since a — X (a) is differentiable at a = 0,
TM(a) A {x(0) converges in prob%bility to {x (o) and TN (a) A £z(0) converges in
probability to £7(g), we have that Y (a) converges to Y (0)5® with Y (0) := 9, X (0);
on the other side, V;(a) converges in probability to 9, Zy(0) = Vo (0) on {€2(0) > 0};
hence we get by Proposition 3.1 that (Y (a), V(a)) converges to (Y/(0),V(0)) where
V(0) is the maximal solution of

DV (0) =13 T¢(Y(0),V(0),Y(0)) DY (0)

with initial condition V5(0) = 0,Z0(0). This implies that a — (X(a),Z(a)) is
differentiable at a = 0 and that its derivative is (Y (0),V(0)). []
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We now want to investigate Stratonovich and It6 equations. In the following,
if (t,a) — x(t,a) is a map defined on an open subset of R? and with values in
a manifold M, &(¢,a) will denote its derivative with respect to ¢, and #(¢,a) will
denote the second order tangent vector such that for all smooth function g on M,
i(t,a)(g) = 0% (gox)(t,a). For a smooth function g on M, d?g will denote the second
order form defined by (d%g,i(t,a)) = @(t,a)(g) (see [E4]).

LEMMA 3.7. — Let J, I be two intervals in R. Suppose that (t,a) — x(t,a) € M
and (t,a) — z(t,a) € N are C* maps defined on J x I, and satisfy for each a

7(0,a) = 13 ¢(x(0,a), 2(0,a), 2(0,a)) Z(0, a) (3.4)
where ¢: M X N X M — N is a C’ﬁ;;o Cohen map. Then
(822)"(0,a) = T3 Tp(9,2(0, a), ,2(0, a), D,z(0, a)) (9uz) (0, a).
Proof. — Tt is sufficient to prove
(d?2,(8,2)°(0,a)) = (d®£, 73 T$(9,2(0, a), 0,2(0, a), 0az(0,a)) (9,2) (0,a)) (3.5)
and
(de, (8a2) (0,a))* = (dl, T3 T$(0a2(0, a), 042(0,a), 0,2(0,a)) (Daz) (0,a))* (3.6)

for/{ =gom: TN - Rand £/ =dg: TN — R where g: N — R is smooth. Equations
(3.5) and (3.6) for L=gom: TN — R, g € C°(N,R) are direct consequences
of assumption (3.4). To establish (3.5) for £ =dg: TN — R, we define 2/(t,a) =
qS(x(O, a),z(O,a),x(t,a)). Then
(d?L,(9,2)"(0,a)) = 8704 (g 0 2)(0,a) = 0,07 (g 0 2)(0,a) = 9,(d*g, (0, a))
= 8a,<d2,g, T3 ¢(x(07 a), Z(O, a)7 ZL'(O, a’))x([)? a)>
= 0u(d?g, (2')'(0,a)) = 0,07 (g 0 2')(0, a) = 87Da(g 0 2) (0, a)
= 07dg o T$(0,7(0,a),0,2(0,a),dsx(t, a))
= (d*¢, 73 T¢(0a(0,a), 0,2(0,a), 0,2(0,a)) (3az) (0,a)).
Finally, to verify (3.6) for £ = dg: TN — R, we have to prove that
(8:0a(g 02)(0,a))* = (8:0a(g 0 2')(0,a))>.
We first derive from (3.4) that
(9¢(g 0 2)(0,a))* = (39 0 2)(0,a))?,
and by taking the square of the derivative with respect to a,

(94(g 0 2)(0,a))*(940a(g 0 2)(0, a))* = (9(g 0 2')(0,a))* (A19a(g © )(0,0))*.

Let ag € I.1f (0;(g02)(0, ap))* # 0, equality (3.6) is satisfied for a = ao. Now consider
the case (0;(g02)(0,a0))? = 0.If (9;9.(g02) (0, ag))? # 0 or (0:94(g02")(0,a0))* # 0,
then we have (9;(g 0 2)(0,a))? # 0 in a neighbourhood of ag (ag excepted) and (3.6)
is satisfied for a = ag by continuity. []
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DerFiniTION  3.8. — A Cohen map ¢: M x N x M — N 1is said to be a
Cohen map of Stratonovich type if in addition it has the following property:
if a C? curve (v,a) in M x N satisfies &(t) = Tzp(y(t), a(t),v(t))¥(t) then
a(t) = 3 ¢ (v(t), a(t), (1) 3(t).-

ProposITION 3.9. — Let k > 1 and e be a C”Ijip section of the vector bundle
T*M x TN over M x N. Then there exists a C’Ilfi;l’oo Cohen map ¢ of Stratonovich

type such that e(x, z) = Tsp(x, z,z) forall (x,z) € M x N. If ¢ is a C”Iji’go Cohen map
of Stratonovich type, then T¢: TM X TN x TM — TN 1is a C’Ilfigl’oo Cohen map of
Stratonouvich type.

Proof. — The existence of ¢ of class C’Ei;l’oo is a consequence of [E3 Theorem 8],
which gives the existence of a unique Schwartz morphism of Stratonovich type f of
class C”E;l associated to e, together with Lemma 3.4.

Let ¢ be a C’ﬁi’go Cohen map of Stratonovich type; we want to show that T'¢ is
also a Cohen map of Stratonovich type. Let ¢ — (3(t) be a smooth curve with values
in TN and t — 4(t) a smooth curve with values in TM such that

B(t) = TaTH(5(t), B(t),5(t)) d(t). (3.7)

We have to prove that

Bt) = s TH(3(t), B(t), 6(t)) O(t).

This will be done by means of Lemma 3.7. More precisely, let (¢,a) — x(t, a) satisfy
0,x(t,0) = 6(t), and let (¢,a) — 2(t,a) € M be a solution of

#(t,a) = Ts¢(x(t, a), 2(t, a), z(t, a)) (t, a) (3.8)

with the property 0,2(0,0) = 3(0). It is easy to verify that S(t) = 0,2(¢,0) then
already for all ¢, by exploiting uniqueness of solutions to (3.7) with given initial
conditions and by calculating (dh, (0,2) (t,0)) for h = dg and h = g o m where
g: N — R is smooth. Since ¢ is a Cohen map of Stratonovich type, together with
equation (3.8), we get from Lemma 3.7

(022)"(t,a) = T3 Th(0az(t, a), 0az(t, a), 0az(t, a)) (0az) (¢, a)
which can be rewritten for a = 0 as

B(t) = 3 TH(5(t), B(t), 8(t)) (1)

This proves that T'¢ is indeed a Cohen map of Stratonovich type. []

Rephrased in terms of Cohen maps of Stratonovich type, the following result is a
consequence of [E3 Theorem 8].
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ProrosiTioN 3.10. — Let k > 1 and let e be a C’Ifip section of T*M x TN
over M x N. Let ¢ be a C’Ei;l’oo Cohen map satisfying e(x,z) = Ts¢(x, z,2). The
equations 67 = Tsp(X,Z,X)0X and DZ = 15 ¢(X, Z, X) DX are equivalent if and
only if ¢ is a Cohen map of Stratonovich type.

For the rest of this section we assume that both M and N are endowed with
connections VM and V. On the tangent bundles TM and TN we consider the
corresponding complete lifts (VM) and (VV)’ of these connections (see [Y-I] for a
definition).

We will say that a Schwartz morphism f € T'(7(M)* ® 7(IN)) is semi-affine if
for every VM-geodesic v with values in M and defined at time 0, for every y € N,
f(7(0),y) #(0) is the second derivative of a V¥ -geodesic in N (see [E3] for details).
In fact f(v(0),y)7(0) is the second order derivative (0) of the geodesic o which
satisfies a(0) = y and &(0) = f(v(0), a(0)) 4(0).

DerFINITION 3.11. — We say that a Cohen map ¢ is a Cohen map of Ité type (with
respect to the connections VM and V) if 13 ¢(z, z,2): 7o M — 7, N is a semi-affine
morphism.

ProprosiTiON 3.12. — Let k > 0 and let e be a C’Ifip section of T*M x TN over

M x N. There exists a C’fi’go Cohen map ¢ of Ité type such that e(x, z) = Ts¢(x, z, x)
forall (z,z) € M x N. Ifk > 1 and ¢ is a C”Iji’go Cohen map of Ito type, then T¢ is

a C’Ilfi;l’oo Cohen map of Ité type (with respect to the connections (VM) and (VN)').

Proof. — The existence of ¢ is a consequence of [E3 Lemma 11] which gives the
existence of a unique Schwartz morphism of It6 type associated to e, together with
Lemma 3.4.

Let ¢ be a Cohen map of It type; we want to show that T'¢ is also a Cohen
map of It6 type. We have to prove that for all (yo,ve) € TM X TN, 73 T$(yo, vo, Yo)
is semi-affine, i.e., if ¢t — y(t) is a (VM)'-geodesic in TM with y(0) = yo, then
the (V¥)'-geodesic ¢t + v(t) in TN with 9(0) = T3T¢(yo,vo,yo) ¥(0) satisfies
5(0) = 73 T'p(yo, vo, Yo) §(0).

Let (t,a) — z(t,a) € M satisfy 0,|q—0 z(t,a) = y(t) and such that ¢ — z(t,a) is
a VM_geodesic for all a. Note that this is possible because y is a Jacobi field. Let
(t,a) > 2z(t,a) € N be such that for all a, t — z(t,a) is a VV¥-geodesic with

2(0,a) = T3¢((0,a), 2(0,a),z(0,a)) (0, a)

and 0g|qa=0 2(0,a) = v(0). Since ¢t — x(t,a) and t — z(t,a) are geodesics and
T3¢ (z, 2z, x) is semi-affine, we deduce that

5(0,a) = 75 6((0, a), £(0, 0), 2(0, 0)) (0, a).
Now we can apply Lemma 3.7 to obtain

(022)7(0,a) = 13 Th(0,2(0,a),0,2(0,a), daz(0,a)) (0.2) (0, a). (3.9)
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It remains to prove that (9,2) (0,0) = ©(0) and (9,2) (0,0) = 4(0). But t — 0,2(t, a)
and t +— 0,2(t,a) are geodesics for (VV)" and (VM)’, hence it is sufficient to know
that (042) (0,0) = 9(0) and (92) (0,0) = (0) (the last equality is already known).
For this, we want to calculate (dh,(0,2) (0,a)) for h = dg and h = g o m with
g: N — R smooth (we will do the verification only for h = dg). Let h = dg, then

(dh, (042) (0,a)) = 8t|t=0<dg, D 2(t, a)>
= Olt=00a(g © 2)(t, a) 0 8t|t 0(902)(t,a)
= 0,0¢|t=0(g 0 )(x ))
= O¢|t=00a(g 0 )(x ))
= O¢|t=0 <dg,T¢>((9a 8 z(O a) 8a$(t,a))>
= (dh, T5T$(0a(0, a), 6 z((] a), 0,2(0,a))(9,2) (0,a)).

In particular, for a = 0, this gives

(dh, (942) (0,0)) = (dh, T3T¢ (y0,v0,y0) (0)).
Since 9(0) = T5T¢(yo, vo, yo) ¥(0) we obtain 9(0) = (942) (0,0) which finally gives
with (3.9)
i(0) = (952)"(0,0) = 73 T (yo, vo, ¥o) §i(0).
This proves that T'¢ is a Cohen map of Itd type. []

Rewritten with Cohen maps of Ito type, we get the following result as a
consequence of [E3 Theorem 12].

ProprosiTION 3.13. — Letk > 0 ande be aC”ﬂip section of T* M xTN over M x N.
Let ¢ be a C > Cohen map satisfying e(x, 2) = Tad(z, z,x) for all (x,2) € M x N.
Then the equatwns dV'z = T36(X, Z, X) V"X and DZ = 15 #»(X,Z,X)DX are
equivalent if and only if ¢ is a Cohen map of Ito type.

The main motivation in our study of Cohen maps of Stratonovich and Ito6 type is
the following result.
CoROLLARY 3.14. — 1) Let k > 0 and e be a C’Ifi';l section of the vector bundle

T*M x TN over M x N. Assume that a — X (a) is C* in (M), anda — Z(a) is
the mazximal solution of

6Z(a) =e(X(a), Z(a)) 6X (a) (3.10)

where a — Zy(a) is C* in probability. Then a — (X (a), Z(a)) is C* in S (M x N),
and if k > 1, the derivative 0,7 (a) is the mazximal solution of

00,7 (a) = €' (0.X (a),0,7(a)) 60, X (a) (3.11)
with initial condition 0,Zy(0) where €' is the C”ﬁlp section of T*TM x TTN over

TM x TN defined as follows: if e(x, z) = Tz¢(x, z,x) with a C’Efgl "> Cohen map ¢
then €' (u,v) = T3Tdp(u,v,u) for (u,v) € TM x TN. If moreover a — Ex(q) 05

continuous in probability, then a — Z(a) is C* in /(N).
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2) Letk > 0 and e be a C’Ifip section of the vector bundle T*M x TN over M x N.
Assume that M (resp. N) is endowed with a connection VM (resp. VV), and denote
by (VM) (resp. (VN)') the complete lift of VM (resp. V) in TM (resp. TN).
Assume that a — X (a) is C* in (M), a— Z(a) is the mazimal solution of

dV"Z(a) = e(X(a), Z(a)) d¥" X (a) (3.12)

where a — Zy(a) is C* in probability. Then a — (X (a), Z(a)) is C* in S (M x N),
and the derivative 0,7 (a) is the mazimal solution of

AV, 7(a) = € (0.X (), 0.7 (a)) dV )0, X (a) (3.13)
with initial condition 0,7y(0) where €’ is the C’Ifi;)l section of T*TM x TTN over
TM x TN defined in 1). If moreover a — {x(q) is continuous in probability, then
a v Z(a) is C* in .7 (N).

REMARK. — We like to stress the pleasant point that both Stratonovich and It6
equations differentiate like equations involving smooth paths.

Proof of Corollary 3.14. — 1) We only have to consider the case k& > 1. Let ¢
be a C’ﬁi’go Cohen map of Stratonovich type such that Ts¢(z, z,z) = e(x, z) for all
(x,2z) € M x N. By Proposition 3.10, equation (3.10) is equivalent to

DZ(a) =13 $(X (a), Z(a), X (a)) DX (a).
Applying Theorem 3.5, we can differentiate with respect to a and we get
DI Z(a) = 3 Th(9.X (a), 0.Z(a),0,X (a)) DI X (a). (3.14)
But by Proposition 3.9, T'¢ is a CF~1:°° Cohen map of Stratonovich type, and again

Lip
by Proposition 3.10, equation (3.14) is equivalent to

00,7 (a) = TsT$(0.X (a), 0aZ(a), 0. X (a)) 60, X (a)

which is precisely equation (3.11).
2) The proof of 1) carries over verbatim, replacing Stratonovich by It6, Proposi-
tion 3.10 by Proposition 3.13, and Proposition 3.9 by Proposition 3.12. []

We want to rephrase equation (3.13) in terms of covariant derivatives. For this
we need some definitions and lemmas. Let RM denote the curvature tensor of
the connection VM on M, which is assumed here to be torsion-free. If .J is a
semimartingale with values in TM endowed with the horizontal lift (VM)h of VM
(see [Y-I] for a definition), let D.J denote its covariant derivative, i.e. the projection
of the vertical part of dV")" J, thus D.J = 7' (dV")" J)” with v;: T,M — T;,TM
denoting the vertical lift for j € T, M. We observe that also D.J = //0,.d(//(:_1J)
where //, , means parallel translation along 7(.J). Indeed, this equality is verified if
J is a smooth curve, and since by [Y-I] (9.2) p. 114, .J is a geodesic if and only if
(w(J), //0_,.1J) is a geodesic in M x Ty (z,yM for the product connection, using [E3]
corollary 16, it extends to semimartingales as an [t6 equation.
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LEMMA 3.15. — Let J be a semimartingale with values in TM, and X = ©(J) its
projection to M. Then

, 1
A" g =a"" g 4 5 v (BM(J.dX)dX) (3.15)

where v;(u) is the vertical lift above j € T, M of a vector uw € T, M.

Proof. — Following [E3], if V is a connection on TM, the Ité differential

dV.J may be written as FY(DJ) where FV:7TM — TTM is the projection
defined as follows: if A and B are vector fields on TM, then F(A) = A and
F(AB) = %(%AB + VpA + [A, B]). The result is a direct consequence of the
following Lemma. []

For £ € M, let b({) € TM ® TM denote its symmetric bilinear part, i.e.,
(df ® dg,b(£)) = % [E(fg) — fllg) — gf(f)} for f, g smooth functions on M.

LEmMA 3.16. — Let L be an element of 7,TM withu € T,M. Then
<F(VM)I _ F(vM)h) (L) =, ((RM(U, . ) . )b(ﬂ’*L)>

where w,: TTM — ™M is induced by m: TM — M.

Proof. — Tt is sufficient to prove this for L, = (AB), with A and B horizontal
or vertical vector fields. But since among these possibilities (VM)", B and (VM)A B

coincide except if both A and B are horizontal, we can restrict to this case. Let A
(resp. B) be the horizontal lift of A (resp. B). Then by [Y-]],

(VM);luB - (VM)IZLLB = Uy (RM(uaﬁm)Bm)
(

where z = 7(u), and this gives the result, since b(m,L,) =

I

CoROLLARY 3.17. — Let k > 0 and e be a C’Ifip section of the vector bundle
T*M x TN over M x N. Assume that M (resp. N) is endowed with a torsion-free
connection VM (resp. V). Assume that a — X (a) is C* in (M), a v~ Z(a) the

mazimal solution of
dV"Z(a) = e(X (a), Z(a)) d¥" X (a) (3.16)

where a — Zo(a) is C* in probability. Then a — (X (a), Z(a)) is C* in (M x N),
and the derivative 0,7 (a) is the maximal solution of the covariant stochastic diffe-
rential equation

D07 = e(X, Z) D3y X + Ve(0,X,0,7)dv " X
(3.17)
+ % <e(X, Z)RM (9,X,dX)dX — RN (0,7, (X, Z)dX)e(X, Z)dX)

with initial condition 0,Z0(0). If moreover a — §x(a) 18 continuous in probabilily,

then a — Z(a) is C* in S/ (N).
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REMARKS. — 1) If VM and V¥ are allowed to have torsion, one can write first a
covariant equation of the form (3.17) with respect to the symmetrized connections
VM and V. With the obvious notations, expressing D9, X, D9, X, RM and RN
in terms of D9, X, DI, X, RM, RN and the torsion tensors, one obtains then a
covariant equation with respect to VM and V.

2) Starting with (3.11) in Corollary 3.14, one can also easily determine a
Stratonovich covariant equation, identical to the equation for smooth processes.

Proof of Corollary 3.17. — Applying Lemma 3.15 to part 2) of Corollary 3.14
gives the following equation for 0, 2:

1
AV0,7 = ¢ (0,X,0u2) (47" 0,X + S 05, x (RM (9.X, dX)dX))
1
— §v3aZ(RN(8aZ, dZ)dZ).

But, if u,w € T,M, z € TN, we have € (u, z)v,(w) = v, (e(m(u), (z))w), and by
definition, if Y " (w) € T,TM is the horizontal lift of w, then v, (Ve(u,z)w) is
the vertical part of e’ (u, z)leM (w). These equalities applied to u = 0, X, z = 0,7,
and successively to w = D0, X, w = dV"X and w = %RM(OQX, dX)dX, give the
desired equation. []

As an application of Corollary 3.14, we get differentiability results for stochastic
integrals, considered as particular instances of stochastic differential equations:

COROLLARY 3.18. — 1) Let k > 0 and o be a C’ﬁ;l section of the vector bundle
T*M. Assume that a — X (a) is C* in &/ (M).

Thena|—> / <a )>> is C* in .7 (M x R).

2) Let k > 0 and o be a C”Ijlp section of the vector bundle T*M x TN over M x N.

Assume that M (resp. N) is endowed with a connection VM. Assume that a — X (a)
is C* in (M

Then a — ( /<a ),d¥ " X (a )>> is C% in .#(M x R).

4. Application to antidevelopment

If M is a manifold, we will denote by s: TTM — TT M the following canonical
isomorphism: if (¢,a) — z(t,a) is a smooth M-valued map defined on some open
subset of R?, then 0;0,2(t,a) = s (0,0;x(t,a)).

THEOREM 4.1. — Let M be a manifold endowed with a connection V. Denote
by V' the complete lift of V on TM. Let A" denote the antidevelopment with respect
toV'. Let a — X (a) € .#(M) be a map of class C* defined on some interval I of R.
Then a — (X (a), A(X(a))) € S (TM x TM) is of class C* and

$(0,A(X (a)) = A (0.X (a)).
Moreover, if a — Ex(q) is continuous in probability, then a — A(X(a)) is ok
in .7 (TN).
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Before proving this result we introduce some definitions and lemmas. Let M be
a manifold of dimension m. If V is a connection on M, we consider the complete
lift V' of V on TM, which is characterized by the relation V.Y = (VxY)° valid
for all vector fields X,Y € T'(T'M). Here X° denotes the complete lift of X, i.e. the
vector field in T'(TTM) defined by X¢ = s(TX (u)) (see [Y-I] for details). Recall
that the geodesics for V' are the Jacobi fields for V.

Let L(M) be the principal bundle of linear frames on TM: thus L, (M) is the set
of linear isomorphisms R™ — T, M for each € M. There is a canonical embedding
9: TL(M) — L(TM) defined as follows: if W € TL(M) is equal to (9,U)(0) where
a — Uf(a) is a smooth path in L(M), and if v € TR™ = R®>™ is equal to (9,2)(0)
where a — z(a) is a smooth path in R™, then one has j(W)v = s ((0,(Uz))(0)).
Let (e1,...,€em,€1,...,€r) be the standard basis of TR™. Then 3((9,U)(0))e, =
5 ((0a(Ueq))(0)) and 3((9,U)(0))es is the vertical lift (Ue,)?(0) of (Uey)(0) above
Oa(mo U)(0) where m: L(M) — M is the canonical projection.

LEMMA 4.2, — If a = X(a) € S(M) is C* and U(a) € L (L(M)) is a
horizontal lift of X (a) such that a — Up(a) is C in probability, then a — U(a)
is C* in .S (L(M)) and 7(9,U(a)) is a horizontal lift of 0,X (a) with respect to the
connection V'.

Proof. — The fact that a — U(a) is C? is a direct consequence of Corollary 3.14
and the fact that {limt_)gU(a) Ui(a) exists} is included in {limt_%x(a) Xi(a) exists}.
Another consequence of Corollary 3.14 is that it suffices to prove the assertion with
both X;(a) = z(t,a) and a — Up(a) = u(0,a) deterministic and smooth. Write
u(t,a) = U(a).

It is sufficient to verify that for all i € {1,...,m}, t — 3(9,u(t,a))e; and
t — 7(0au(t, a)) e; are parallel transports. But by [Y-I chapt. I, prop. 6.3], we have

zaam)-(t,a)s(aa(u(t, a)e;)) =5 (0o (Vig,ayult,a)e;)) =0
and
/(Bam)'(t,a) (u(t,a)e;)’ = (Vﬁ(t,a)u(t,a)ei)v =0.

This proves Lemma 4.2. []

Proof of Theorem 4.1. — The fact that a — (X(a), A(X(a))) is C* is a conse-
quence of Corollary 3.14. We can calculate as if dealing with smooth deterministic
paths. Let a — Up(a) € Lx,(4) (M) be C! in probability and denote by U(a) the
parallel transport of Up(a) along X (a). Write Z(a) = A(X(a)). Then we have the
equation

U(a)Uo_l(a)p(&Z(a)) =0X(a)

where if z € T, M and v € T,TM is a vertical vector, p(v) denotes its canonical
projection onto T, M.
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Denoting by m the dimension of M, we define a family of R™-valued processes R(a)
by R(a) = Uy '(a)Z(a), hence

SR(a) = Uy (a) p(0Z(a)). (4.1)

We have U(a)0R(a) = §X(a) and by differentiation with respect to a, using the
definition of ,

1(0.U(a)) 5(60aR(a)) = 604X (a). (4.2)

On the other hand, differentiation of (4.1) gives

7(8.Uo(a)) s(60,R(a)) = p'(65(0.Z(a))) (4.3)

where p’ on the vertical vectors to TTM is defined like p. Putting together (4.2) and
(4.3) gives

2(0.U(0)) (3(0aUo(0))) ™9 (65(0aZ(a))) = 684X (a).

But 7(8,U(a)) is the parallel transport of 3(Up(a)) above 9,X (a) by Lemma 4.2,
hence 5(9,Z(a ) (a)). [

CoROLLARY 4.3. — Let J be a T M -valued semimartingale with lifetime & = £(0).
There ezists a C* family (X (a))acr of elements in . (M) such that the equality
J = 0,X(0) is satisfied. In particular, if £(a) is the lifetime of X (a), then&(a)AE(0)
converges in probability to £(0) as a tends to 0. The semimartingale J is a V'-
martingale if and only if one can choose (X (a))qer such that X (a) is a V-martingale
for each a € R.

Proof. — With the notations of Theorem 4.1 define V' = A’(J), and for a € R,

Z(a) = T exp(s(as(V))).

Note that the lifetime of Z(a) can be 0 if exp a.Jy is not defined. A straightforward
calculation shows that s(0,Z(0)) = V. Define now X (a) as the stochastic devel-
opment of Z(a). We have the relation Z(a) = A(X(a)); by Corollary 3.14, the
map a — (Z(a), X (a)) is C* in .#(M) and in particular, £(a) A £(0) converges in
probability to £(0) as a tends to 0. By Theorem 4.1, the antidevelopment of the
derivative of @ — X (a) at a = 0 is s(8,Z(0)) = V. This implies that 9, X (0) = J.

If J is a martingale, then V' is a local martingale (with possibly finite lifetime).
It is easy to see that for each a € R, Z(a) is also a local martingale, hence its
development X (a) is a martingale. []
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