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Abstra
t. | We extend the so-
alled topology of semimartingales to 
ontinuous

semimartingales with values in a manifold and with lifetime, and prove that if the

manifold is endowed with a 
onne
tion r then this topology and the topology of


ompa
t 
onvergen
e in probability 
oin
ide on the set of 
ontinuous r-martingales.

For the topology of manifold-valued semimartingales, we give results on di�erentia-

tion with respe
t to a parameter for se
ond order, Stratonovi
h and Itô sto
hasti


di�erential equations and identify the equation solved by the derivative pro
esses.

In parti
ular, we prove that both Stratonovi
h and Itô equations di�erentiate

like equations involving smooth paths (for the Itô equation the tangent bundles

must be endowed with the 
omplete lifts of the 
onne
tions on the manifolds).

As appli
ations, we prove that di�erentiation and antidevelopment of C

1

families

of semimartingales 
ommute, and that a semimartingale with values in a tangent

bundle is a martingale for the 
omplete lift of a 
onne
tion if and only if it is the

derivative of a family of martingales in the manifold.

1. Introdu
tion

Let (
; (F

t

)

0�t<1

;P) denote a �ltered probability spa
e,M a smooth 
onne
ted

manifold endowed with a 
onne
tion r. Then the tangent bundle TM inherits a


onne
tion r

0

(usually denoted by r




), the 
omplete lift of r (see [Y-I℄ for details).

Let X be a 
ontinuous semimartingale with values inM . The antidevelopment of X
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in T

X

0

M is the semimartingale Z solving the Stratonovi
h equation

p(ÆZ) = U

0

U

�1

ÆX; Z

0

= 0; (1:1)

where U is a horizontal lift of X taking values in the frame bundle onM and p is the


anoni
al proje
tion in TM of a verti
al ve
tor of TTM . The map A will denote the

antidevelopment with respe
t to r and A

0

the antidevelopment with respe
t to r

0

.

The initial motivation of this paper was to answer the following question: For

some open interval I in R, 
onsider a family (X

t

(a))

a2I; t2[0;�(a)[

of 
ontinuous

martingales X(a) in M , ea
h with lifetime �(a), di�erentiable in a for the topology

of 
ompa
t 
onvergen
e in probability. Is then also

�

X(a);A(X(a))

�

di�erentiable in

a, and if the answer is positive, do we have the relation s

�

�

a

A(X(a))

�

= A

0

(�

a

X(a))

(where �

a

denotes di�erentiation with respe
t to a and s is the map TTM ! TTM

de�ned by s(�

a

�

t

x(t; a)) = �

t

�

a

x(t; a), if (t; a) 7! x(t; a) is smooth and takes its

values in M)?

A positive answer will be given to this question, and this result will be obtained as

a parti
ular 
ase of general theorems on stability of sto
hasti
 di�erential equations.

In this paper equations of the general type

DZ(a) = f

�

X(a); Z(a)

�

DX(a) (1:2)

between two manifolds M and N are studied, where DX(a) denotes the (formal)

di�erential of order 2 of X(a), and f is a S
hwartz morphism between the se
ond

order bundles �M and �N . The topology of semimartingales, de�ned in [E1℄ for R-

valued pro
esses, will be adapted to manifold-valued semimartingales with lifetime.

In parti
ular, it will be shown that the map (X; f; Z

0

) 7! (X;Z) is 
ontinuous, where

Z is the maximal solution starting from Z

0

to DZ = f(X;Z)DX, with appropriate

topologies on both sides.

When applied to a 
ertain family of semimartingales and an appropriate S
hwartz

morphism, this result will tell us that if a 7! X(a) is C

1

in the topology of

semimartingales, and further if f is C

1

with lo
ally Lips
hitz derivative, Z(a) the

maximal solution to (1.2) with (Z

0

(a))

a2I

C

1

in probability, then a 7! (X(a); Z(a))

is C

1

in the topology of semimartingales and the derivative �

a

Z(a) is the maximal

solution to

D�

a

Z(a) = f

0

�

�

a

X(a); �

a

Z(a)

�

D�

a

X(a) (1:3)

where f

0

is a S
hwartz morphism between the se
ond order bundles �TM and �TN .

As a 
orollary, we obtain results on di�erentiability of solutions to Stratonovi
h

and Itô equations. It will be shown that they 
an be di�erentiated in the same way

as solutions to ordinary di�erential equations (for the Itô 
ase, the Itô di�erentials of

the derivative pro
ess have to be de�ned with the 
omplete lifts of the 
onne
tions).

If M is endowed with a 
onne
tion r, then it will be shown that, as in the 
at


ase, the topology of semimartingales and the topology of uniform 
onvergen
e in

probability on 
ompa
t sets 
oin
ide on the set of martingales. Using these results it

will be possible to prove 
ommutativity of antidevelopment and di�erentiation.
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2. Topologies of semimartingales and of uniform 
onvergen
e in

probability on 
ompa
t sets

2.1. R

d

-valued pro
esses

In this se
tion we de�ne topologies of uniform 
onvergen
e in probability and of

semimartingales for pro
esses with lifetime. We investigate their main properties.

Let (
;F ; (F

t

)

t�0

;P) be a �ltered probability spa
e satisfying the usual 
ondi-

tions. If � is a predi
table stopping time, we denote byD




(R

d

; �) the set of 
ontinuous

adapted R

d

-valued pro
esses with lifetime �, and by S (R

d

; �) the set of R

d

-valued


ontinuous semimartingales with lifetime �. These sets are des
ribed as follows: an

element of D




(R

d

; �) (resp. S (R

d

; �)) is the image under an isomorphi
 time 
hange

A: [0; �[! f� > 0g � [0;1) of an R

d

-valued 
ontinuous adapted pro
ess (resp. semi-

martingale) de�ned on the probability spa
e

�

f� > 0g;

�

F

A

�1

s

�

s�0

; P( � j� > 0)

�

.

They 
an be endowed with a 
omplete metri
 spa
e stru
ture, as in the 
ase � =1,

whi
h gives respe
tively the topology of 
ompa
t 
onvergen
e in probability and the

topology of semimartingales (see [E1℄). Let T denote the set of predi
table stopping

times and let

^

D




(R

d

) =

S

�2T

D




(R

d

; �) ;

^

S (R

d

) =

S

�2T

S (R

d

; �) :

The sum X + Y , di�eren
e X � Y , produ
t (X;Y ) of two pro
esses with lifetime

is a pro
ess with lifetime the in�mum of the lifetimes of the two pro
esses. The

lifetime of a pro
ess X will be denoted by �

X

.

If T is a predi
table stopping time, we 
an de�ne the operations of stopping at

T and killing at T on the sets

^

D




(R

d

) and

^

S (R

d

): let X be an element of

^

D




(R

d

)

or

^

S (R

d

). Then the pro
ess X

T

stopped at time T is the 
ontinuous pro
ess with

lifetime +1 1

fT<�

X

g

+ �

X

1

fT��

X

g

whi
h 
oin
ides with X on [0; T ^ �

X

[ and is


onstant on [T;1[ \ fT < �

X

g; the pro
ess X

T -

killed at time T is the 
ontinuous

pro
ess whi
h has lifetime T ^ �

X

and 
oin
ides with X on [0; T ^ �

X

[. If � is any

predi
table stopping time, then by T < � we will mean T < � on f� > 0g and T = 0

on f� = 0g.

Let us de�ne a topology on the sets

^

D




(R

d

) and

^

S (R

d

). If X 2

^

D




(R

d

) with

lifetime �

X

, T a predi
table stopping time su
h that T < �

X

and " > 0, one de�nes

neighbourhoods of X with the sets

V


p

(X;T; ") =

�

Y 2

^

D




(R

d

); E

h

1 ^ sup

0<t�T

kY

t

�X

t

k

i

< "

�

(with the 
onvention that sup� = 0 and kZ

t

k = +1 if t � �

Z

) and

W


p

(X; ") =

�

Y 2

^

D




(R

d

); P

�

�

�

Y

> �

X

+ "

	

\

�

lim

t!�

X

X

t

exists

	

�

< "

�

(the se
ond 
ondition will insure that the topology is separated).

Analogously, one de�nes neighbourhoods of X 2

^

S (R

d

) by setting

V (X;T; ") =

n

Y 2

^

S (R

d

); E

�

1 ^ v(Y �X)

T

�

< "

o
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where if Z = Z

0

+M +A is the 
anoni
al de
omposition of Z 2

^

S (R

d

),

v(Z)

t

=

d

X

i=1

�

jZ

i

0

j+<M

i

;M

i

>

1=2

t

+

Z

t

0

jdA

i

j

�

(with the 
onvention that v(Z)

t

= +1 if t � �

Z

) and

W (X; ") =

�

Y 2

^

S (R

d

); P

�

�

�

Y

> �

X

+ "

	

\

�

lim

t!�

X

X

t

exists

	

�

< "

�

:

PROPOSITION AND DEFINITION 2.1. | The basis of neighbourhoods

V


p

(X;T; ") \W


p

(X; "

0

) ; X 2

^

D




(R

d

)

�

resp. V (X;T; ") \W (X; "

0

) ; X 2

^

S (R

d

)

�

)

"; "

0

> 0 ; T predi
table

stopping time su
h that T < �

X

;

de�nes a separated topology on

^

D




(R

d

) (resp.

^

S (R

d

)) su
h that every point has a


ountable basis of neighbourhoods. This topology will be 
alled the topology of 
ompa
t


onvergen
e in probability (resp. the topology of semimartingales).

Remarks. | 1) If for the topology in

^

D




(R

d

) (resp.

^

S (R

d

)) (X

n

)

n2N


onverges

to X, then �

X

n

^ �

X


onverges in probability to �

X

and �

X

n


onverges to �

X

in

probability on the set flim

t!�

X

X

t

existsg.

2) Let � 2 T . The topology of the 
omplete metri
 spa
e (D




(R

d

; �); d


p

) (resp.

(S (R

d

; �); d

sm

)) de�ned in [E1℄ is exa
tly the topology indu
ed by

^

D




(R

d

) (resp.

^

S (R

d

)) on D




(R

d

; �) (resp. S (R

d

; �)).

Proof of Proposition 2.1. | We are going to prove this for

^

D




(R

d

). To see that

every point has a 
ountable basis of neighbourhoods, one shows that it is suÆ
ient to


onsider an in
reasing sequen
e of predi
table stopping times (T

m

)

m2N


onverging

to �

X

and su
h that T

m

< �

X

for all m.

Let us show that the topology is separated. If X 6= Y , then two situations 
an

o

ur. Either there exists " > 0 and a predi
table stopping time T with T < �

X

^ �

Y

and E

h

1 ^ sup

0<t�T

kY

t

� X

t

k

i

> 2" in whi
h 
ase V


p

(X;T; ") \ V


p

(Y; T; ") = �, or

Y

�

X

-

= X

�

Y

-

with P(�

Y

< �

X

) > 0 and there exists " > 0 and a predi
table stopping

time T satisfying T < �

X

su
h that P

�n

�

Y

+ 2" < T; lim

t!�

Y

Y

t

exists

o�

> 2"; in this


ase, one veri�es that V


p

(X;T; ") \W


p

(Y; ") = �.

Remark. | Convergen
e for the topology of semimartingales implies 
ompa
t


onvergen
e in probability.

For 1 � p � 1 and � 2 T , let S

p

(R

d

; �) denote the Bana
h spa
e of pro
esses

X 2 D




(R

d

; �) su
h that kXk

S

p

(R

d

; �)

= kX

�

�

k

L

p

< 1, where X

�

t

= sup

s<t

kX

s

k on

0 � t � � and sup� = 0. Let

^

S

p

(R

d

) = [

�2T

S

p

(R

d

; �).
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DEFINITION 2.2. | We say that a sequen
e (X

n

)

n2N

in

^

D




(R

d

) 
onverges to

X 2

^

D




(R

d

) lo
ally in

^

D




(R

d

) (resp.

^

S

p

(R

d

)) if the following two 
onditions are

satis�ed :

(i) There exists an in
reasing sequen
e of stopping times (T

m

)

m2N


onverging to �

X

su
h that for any m, T

m

< �

X

, (X

n

)

T

m

-

belongs to D




(R

d

; T

m

) (resp. S

p

(R

d

; T

m

))

for n suÆ
iently large and 
onverges in D




(R

d

; T

m

) (resp. S

p

(R

d

; T

m

)) to X

T

m

-

.

(ii) The lifetimes �

X

n


onverge in probability to the lifetime �

X

on the set

flim

t!�

X

X

t

existsg.

For 1 � p � 1 and � 2 T , let H

p

(R

d

; �) be the spa
e of pro
esses X 2 S (R

d

; �)

su
h that kXk

H

p

(R

d

; �)

= kv(X)

�

k

L

p

<1. Let

^

H

p

(R

d

) = [

�2T

H

p

(R

d

; �).

DEFINITION 2.3. | We say that a sequen
e (X

n

)

n2N

in

^

S (R

d

) 
onverges to

X 2

^

S (R

d

) lo
ally in

^

S (R

d

) (resp.

^

H

p

(R

d

)) if the following two 
onditions are

satis�ed :

(i) There exists an in
reasing sequen
e of stopping times (T

m

)

m2N


onverging to �

X

su
h that for any m, T

m

< �

X

, (X

n

)

T

m

-

belongs to S (R

d

; T

m

) (resp. H

p

(R

d

; T

m

))

for n suÆ
iently large and 
onverges in S (R

d

; T

m

) (resp. H

p

(R

d

; T

m

)) to X

T

m

-

.

(ii) The lifetimes �

X

n


onverge in probability to the lifetime �

X

on the set

flim

t!�

X

X

t

existsg.

Note that lo
al 
onvergen
es are not derived from topologies. Their relation

to topologies is des
ribed in the following proposition whi
h is the analogue for

pro
esses with lifetime of [E1℄ Proposition 1 and Theorem 2.

PROPOSITION 2.4. | Let p 2 [1;1℄ and let E �

^

D




(R

d

) (resp. E �

^

S (R

d

)).

Let F be the sequential 
losure of E for lo
al 
onvergen
e in

^

D




(R

d

) (resp.

^

S (R

d

)),

let G be the 
losure of E for the topology of 
ompa
t 
onvergen
e in probability (resp.

for the topology of semimartingales), and let K

p

be the sequential 
losure of E for

lo
al 
onvergen
e in

^

S

p

(R

d

) (resp.

^

H

p

(R

d

)).

Then F = G = K

p

.

Remark. | Proposition 2.4 
an be rewritten as follows: let (X

n

)

n2N

be a

sequen
e of elements of

^

D




(R

d

) (resp.

^

S (R

d

)). Then the following three 
onditions

are equivalent:

(i) for every subsequen
e (Y

n

)

n2N

, there exists a subsubsequen
e (Z

n

)

n2N

whi
h


onverges to X

0

lo
ally in

^

D




(R

d

) (resp.

^

S (R

d

)),

(ii) (X

n

)

n2N


onverges to X

0

in the topology of 
ompa
t 
onvergen
e in proba-

bility (resp. in the topology of semimartingales),

(iii) for every subsequen
e (Y

n

)

n2N

, there exists a subsubsequen
e (Z

n

)

n2N

whi
h


onverges to X

0

lo
ally in

^

S

p

(R

d

) (resp.

^

H

p

(R

d

)).

Proof of Proposition 2.4. | 1) Se
ond equality: We will give the proof for 
ompa
t


onvergen
e in probability. The proof for semimartingale 
onvergen
e is similar.

To prove K

1

� G, it is suÆ
ient to verify that if X

n


onverges to X lo
ally

in

^

S

1

(R

d

), then X

n


onverges to X for the topology of 
ompa
t 
onvergen
e in

probability, and this is almost evident.
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We are left to prove that G � K

1

, i.e. that for every sequen
e X

n


onverging to

X for the topology of 
ompa
t 
onvergen
e in probability, there exists a subsequen
e

whi
h 
onverges to X lo
ally in

^

S

1

(R

d

). One easily shows that 
ondition (ii) of

lo
al 
onvergen
e is satis�ed, without extra
ting a subsequen
e. By extra
ting a

subsequen
e to obtain an a.s. 
onvergen
e of �

X

n

^ �

X

and by stopping at a time

smaller than �

X

but 
lose to �

X

in probability, one may assume that all the terms

of the sequen
e belong to D




(R

d

;1). One 
an also assume that X = 0. It is

then suÆ
ient to show that we 
an �nd a stopping time T as big as we want for

the topology of 
onvergen
e in probability and a subsequen
e (X

n

k

)

k2N

su
h that

(X

n

k

)

T


onverges to 0 in S

1

(R

d

;1) (a sequen
e of stopping time in
reasing to 1

and a diagonal subsequen
e give then the result). But for every M 2 N

�

, (X

n

)

�

M


onverges in probability to 0. By extra
ting a subsequen
e one 
an assume that the


onvergen
e is almost sure. The end of the proof is similar to the proof of Egoro�'s

theorem: let " > 0, T

n

m

=M ^ inf

�

t > 0; k(X

n

)

�

t

k � 1=m

	

, S

n

m

= inf

k�n

T

k

m

, n(m)

su
h that P

�

S

n(m)

m

< M � 1

�

<

"

2

m

, and R = inf

m2N

�

S

n(m)

m

. Then R is as 
lose

to1 as we want and (X

n

)

R


onverges a.s. uniformly to 0.

2) The proof of the �rst equality is identi
al as the one for in�nite times.

As a 
orollary, using the demonstration of Theorem 2 in [E1℄, one 
an show that

a sequen
e (X

n

)

n2N

of elements of

^

S (R

d

) 
onverges to X 2

^

S (R

d

) if and only if it


onverges in

^

D




(R

d

) and for all bounded predi
table pro
ess H with values in R

d

,

�

Z

.

0

HdX

n

�

�

X

-


onverges in

^

D




(R) to

Z

.

0

HdX (
ompare with the de�nition of the

topology of semimartingales in [E1℄).

DEFINITION 2.5. | Let E;F =

^

D




(R

d

) or

^

S (R

d

), and let �: E ! F be a map.

We will say that � is lower semi
ontinuous if for every sequen
e (X

n

)

n2N

of elements

in E 
onverging to X 2 E, the sequen
e

�

(�(X

n

))

�

�(X)

-

�

n2N


onverges to �(X).

An important example of a lower semi
ontinuous map is X 7! p(�(X)) 2

^

S (R

d

)

ifX 7! �(X) 2

^

S (R

d+d

0

) is 
ontinuous and p: R

d+d

0

! R

d

the 
anoni
al proje
tion.

Note also that if X 7! �(X) is lower semi
ontinuous, and if both X and �(X) are

in

^

D




(or

^

S ) and the lifetime of �(X) is greater or equal to the lifetime of X, then

X 7! (X;�(X)) is 
ontinuous.

With Proposition 2.4, one 
an investigate 
ontinuity properties for operations

on the sets of 
ontinuous adapted pro
esses and of semimartingales. For m 2 N ,

let C

m

(R

d

) denote the set of real-valued C

m

fun
tions on R

d

, endowed with the

topology of uniform 
onvergen
e on 
ompa
t sets of the derivatives up to order m.

PROPOSITION 2.6. | 1) The map

C

0

(R

d

)�

^

D




(R

d

) �!

^

D




(R)

(h;X) 7�! h(X)

is lower semi
ontinuous.
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2) The maps

C

2

(R

d

)�

^

S (R

d

) �!

^

S (R)

(h;X) 7�! h(X)

and

^

S (R

d

) �!

^

S (R)

X 7�!M

i

; A

i

; <M

i

;M

j

>

are lower semi
ontinuous, where X = X

0

+M + A is the de
omposition of X into

the value at 0, a lo
al martingale and a pro
ess with �nite variation.

3) Let T be a predi
table stopping time. The map

^

D




(R

d

) (resp.

^

S (R

d

)) �!

^

D




(R

d

) (resp.

^

S (R

d

))

X 7�! X

T -

is 
ontinuous, and

^

D




(R

d

) (resp.

^

S (R

d

)) �!

^

D




(R

d

) (resp.

^

S (R

d

))

X 7�! X

T

is lower semi
ontinuous and 
ontinuous at the points X with lifetime �

X

su
h that

P(�

X

= T ) = 0.

4) Let U be an open subset of R

d

. If X belongs to

^

D




(R

d

), let T

U

(X) denote the

exit time of X from U , i.e., T

U

(X) = infft > 0; X

t

62 Ug (with inf � = +1). Then

^

D




(R

d

) (

^

S (R

d

)) �!

^

D




(R

d

) (

^

S (R

d

))

X 7�! X

T

U

(X)-

is lower semi
ontinuous, and

^

D




(R

d

) (

^

S (R

d

)) �!

^

D




(U) (

^

S (U))

X 7�! X

T

U

(X)-

is 
ontinuous.

In part 4),

^

D




(U) (

^

S (U)) is the set of elements of

^

D




(R

d

) (

^

S (R

d

)) whi
h take

their values in U , endowed with a topology de�ned in the same manner.

Proof. | 1) By Proposition 2.4, is suÆ
ient to show that for every sequen
e

(h

n

; X

n

) 
onverging to (h;X), there exists a subsequen
e (h

n

k

; X

n

k

) su
h that

h

n

k

(X

n

k

) satis�es 
ondition (i) of lo
al 
onvergen
e to h(X) in

^

S

1

(R

d

). But using

again Proposition 2.4, by extra
ting a subsequen
e, we 
an assume that the X

n

are

lo
ally bounded and 
onverge lo
ally a.s. uniformly to X. We 
on
lude using the

fa
t that h is uniformly 
ontinuous on 
ompa
t sets and h

n


onverges to h uniformly

on 
ompa
t sets.
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2) The proof is analogous to 1) using the equality

v(h(X)) =

�

�

h(X

0

)

�

�

+

�

Z

0

D

i

h(X)D

j

h(X) d<M

i

;M

j

>

�

1=2

+

Z

0

�

�

�

�

1

2

D

ij

h(X) d<M

i

;M

j

>+D

i

h(X) dA

i

�

�

�

�

and 
ondition (i) of lo
al 
onvergen
e in

^

H

1

(R

d

).

3) The proof is left to the reader.

4) We only give a sket
h of the proof for the se
ond assertion. It is suÆ
ient

to prove that for every T satisfying T < T

U

(X) ^ �

X

, T

U

(X

n

) ^ T 
onverges

in probability to T , and that T

U

(X

n

) 
onverges in probability to T

U

(X) on the

event

n

lim

t!�

X

^T

U

(X)

X

t

exists in U

o

. But this is a 
onsequen
e of the existen
e

for every subsequen
e (X

n

k

)

k2N

of a subsubsequen
e whi
h 
onverges lo
ally a.s.

uniformly.

A 
onsequen
e of 1) is that if F is a 
losed subspa
e of R

d

, then taking

h(x) = dist(x; F ) shows that the subset of

^

D




(R

d

) (

^

S (R

d

)) 
onsisting of F -valued

pro
esses is 
losed. This topologi
al subspa
e will be denoted by

^

D




(F ) (

^

S (F )).

Property 4) is very useful for the study of manifold-valued pro
esses and sto
hasti


di�erential equations. It removes problems in 
onne
tion with the exit time from

domains of de�nition. It allows lo
alization in time.

We are now interested in di�erentiability properties.

DEFINITION 2.7. | Let a 7! X(a) 2

^

S (R

d

) be de�ned on some interval I in R.

1) The map a 7! X(a) is di�erentiable in

^

S (R

d

) at a

0

2 I if it is 
ontinuous at a

0

and if there exists Y 2

^

S (R

d

) su
h that

X(a)�X(a

0

)

a� a

0


onverges in

^

S (R

d

) to Y as

a! a

0

. Then (X(a

0

); Y ) is 
alled the derivative of X at a

0

.

2) The map a 7! X(a) is C

1

in

^

S (R

d

) if for all a

0

2 I, a 7! X(a) is di�erentiable

in

^

S (R

d

) at a

0

, and if the derivative a 7! Y (a) is 
ontinuous in

^

S (R

2d

). The

semimartingale Y (a) is denoted by �

a

X(a).

3) For k � 1, the map a 7! X(a) is C

k+1

in

^

S (R

d

) if a 7! X(a) is C

1

in

^

S (R

d

)

and �

a

X(a) is C

k

in

^

S (R

2d

).

Remarks. | 1) In the �rst part of the de�nition, one asks a 7! X(a) to be


ontinuous at a

0

only to guarantee that �

X(a)


onverges in probability to �

X(a

0

)

on

the set

n

lim

t!�(a

0

)

X

t

(a

0

) exists

o

.

2) In the same manner, repla
ing

^

S (R

d

) by

^

D




(R

d

) in De�nition 2.7, the notion

of a map a 7! X(a) 2

^

D




(R

d

) being C

k

in

^

D




(R

d

) 
an be de�ned.

The following proposition says that regularity of paths implies regularity in

^

D




(R

d

).
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PROPOSITION 2.8. | Let k � 0. Suppose a 7! X(a) 2

^

D




(R

d

), with lifetime �(a),

is de�ned on an open interval I in R. Assume that !-almost surely, a 7! �(a)(!) is

lower semi
ontinuous and 
ontinuous at a

0

if lim

t!�(a

0

)(!)

X

t

(a

0

) exists, a 7! X

t

(a)(!)

is of 
lass C

k

on its domain for all t, and that the map (t; a) 7! �

k

a

�

X

t

(a)(!)

�

,

de�ned on

�

(t; a) 2 R

+

� I; 0 � t < �(a)(!)

	

, is 
ontinuous.

Then a 7! X(a) is C

k

in

^

D




(R

d

).

Proof. | Let us �rst 
onsider the 
ase k = 0. Let (a

`

)

`2N

�

be a sequen
e of

elements of I 
onverging to a

0

2 I. Then �(a

`

) 
onverges almost surely to �(a

0

)

on the set

n

lim

t!�(a

0

)(!)

X

t

(a

0

) exists

o

, hen
e for " > 0, X(a

`

) 2 W


p

�

X(a

0

); "

�

for `

suÆ
iently large. Sin
e �(a

0

) ^ �(a

`

) 
onverges almost surely to �(a

0

), the stopping

times T

0

m

= inf

`�m

�(a

0

) ^ �(a

`

) are predi
table, in
reasing in m, and 
onverge still

almost surely to �(a

0

). Thus there exists a sequen
e of predi
table stopping times

(T

m

)

m2N

�

in
reasing almost surely to �(a

0

), su
h that almost surely, for all m,

T

m

< T

0

m

on fT

0

m

> 0g.

By the se
ond part of Proposition 2.4, it is suÆ
ient to show that X(a

`

)

T

m

-


onverges in

^

D




(R

d

) to X(a

0

)

T

m

-

as ` tends to 1. But on fT

m

> 0g, almost surely,

there exists "(!) > 0 su
h that the map

[0; T

m

(!)℄� [a

0

� "(!); a

0

+ "(!)℄ �! R

d

(t; a) 7�! X

t

(a)(!)

is well-de�ned and uniformly 
ontinuous. Thus lim

`!1

sup

0�t�T

m

kX

t

(a

`

) � X

t

(a

0

)k = 0

almost surely on fT

m

> 0g, and this gives the 
onvergen
e of X(a

`

)

T

m

-

to X(a

0

)

T

m

-

in

^

D




(R

d

). Hen
e we have the result.

If k = 1, let a

0

, (a

`

)

`2N

�

, (T

m

)

m2N

�

be as above. It is suÆ
ient to prove that for

every m,

X

T

m

-

(a

`

)�X

T

m

-

(a

0

)

a

`

� a

0


onverges to �

a

X

T

m

-

(a

0

) in

^

D




(R

d

), as ` tends to 1. Almost surely on fT

m

> 0g,

there exists "(!) > 0 su
h that the map

[0; T

m

(!)℄� [a

0

� "(!); a

0

+ "(!)℄ �! R

d

(t; a) 7�! �

a

X

t

(a)(!)

is de�ned and uniformly 
ontinuous. But, for su
h !, t, a, we have













X

t

(a)�X

t

(a

0

)

a� a

0

� �

a

X

t

(a

0

)













� sup

kb�a

0

k�ka�a

0

k







�

a

X

t

(b)� �

a

X

t

(a

0

)







;

hen
e

sup

0�t�T

m













X

t

(a

`

)�X

t

(a

0

)

a

`

� a

0

� �

a

X

t

(a

0

)













� sup

kb�a

0

k�ka

`

�a

0

k

sup

0�t�T

m







�

a

X

t

(b)� �

a

X

t

(a

0

)
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and the left-hand side 
onverges almost surely to 0 as ` tends to 1. It implies that

X

T

m

-

(a

`

)�X

T

m

-

(a

0

)

a

`

� a

0


onverges to �

a

X

T

m

-

(a

0

) in

^

D




(R

d

), as ` tends to1.

If k � 2, one 
an prove in the same way by indu
tion that for ` � k, a 7! X(a) is

C

`

in

^

D




(R

d

), and almost surely, for all t,

�

�

`

a

X

�

t

= �

`

a

(X

t

).

Remark. | Proposition 2.8 is false with

^

S (R

d

).

2.2. Manifold-valued pro
esses

Let M be a 
onne
ted smooth manifold endowed with a 
onne
tion r. With

respe
t to some �xed �ltered probability spa
e (
;F ; (F

t

)

t�0

;P), for every pre-

di
table stopping time �, let let D




(M; �) denote the set of M -valued adapted


ontinuous pro
esses with lifetime �, and S (M; �) the set of M -valued 
ontinuous

semimartingales with lifetime �. The spa
es D




(F ; �),S (F ; �),

^

D




(F ),

^

S (F ), where

F is a 
losed subset of M are de�ned by analogy with the previous de�nitions.

Let �: M ! R

d

be a smooth proper embedding. Then �(M) is a 
losed subset

of R

d

. As a 
onsequen
e, (

^

D




(�(M)); d


p

), resp. (

^

S (�(M)); d

sm

), is a topologi
al

subspa
e of

^

D




(R

d

), resp.

^

S (R

d

). By means of the di�eomorphism �: M ! �(M),

we obtain 
omplete topologi
al spa
e stru
tures on

^

D




(M) and

^

S (M).

DEFINITION 2.9. | Let �: M ! R

d

be a smooth proper embedding.

1) The topology of 
ompa
t 
onvergen
e in probability on

^

D




(M) is the topology

indu
ed by the di�eomorphism �: M ! �(M) and the topologi
al spa
e

^

D




(�(M)).

2) The topology of semimartingales on

^

S (M) is the topology indu
ed by the

di�eomorphism �: M ! �(M) and the topologi
al spa
e

^

S (�(M)).

Sin
e every smooth fun
tion onM is of the form gÆ� for some smooth g: R

d

! R,

it is easy to see that the indu
ed stru
tures are independent of the 
hoi
e of the

proper embedding �.

Independent of the proper embedding � are also the notions of lo
al 
onvergen
e

in

^

S

1

(�(M)) and of lo
al 
onvergen
e both in

^

S

1

(�(M)) and in

^

H

1

(�(M)). This

is of great importan
e in the sequel.

With a proper embedding �, we 
an also de�ne di�erentiability for families of

pro
esses in

^

D




(M) (resp.

^

S (M)). In this 
ase, if a 7! �(X(a)) is di�erentiable

at a

0

and Z is the derivative of �(X(a)) at a

0

, then it is easy to verify that

Z takes its values in T�(TM) and the derivative of X(a) at a

0

is the pro
ess

�

a

X(a

0

) = (T�)

�1

(Z) with values in

^

D




(TM) (resp.

^

S (TM)).

Let

^

M

r

(M) be the set of 
ontinuous martingales with lifetime in

^

D




(M). By

[E4 4.43℄,

^

M

r

(M) is 
losed in

^

D




(M). This implies that it is also 
losed in

^

S (M).

PROPOSITION 2.10. | On

^

M

r

(M), the topology of 
ompa
t 
onvergen
e in

probability and the topology of semimartingales 
oin
ide.

To establish this result, we need some lemmas.
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LEMMA 2.11. | Every point x of M has a 
ompa
t neighbourhood V , 
ontained

in the domain of a 
hart h, together with a smooth 
onvex fun
tion  : V � V ! R

+

whi
h satis�es the following 
onditions :

1) For all x; y 2 V ,  (x; y) = 0 if and only if x = y,

2) There exists a 
onstant 
 > 0 su
h that for all (X;Y ) 2 T

x

M �T

y

M , x; y 2 V ,

with 
oordinates

�

X = dh(X);

�

Y = dh(Y ) 2 R

d

,

(r
r)d (x; y)

�

(X;Y ); (X;Y )

�

� 
 k

�

Y �

�

Xk

2

;

3) For every Riemannian metri
 Æ on V there exists a 
onstant A > 0 su
h that

 � AÆ

2

.

It is proven in [K℄ that 
onvex geometry (the existen
e of a 
onvex fun
tion  

satisfying 1)) implies that every V -valued martingale has almost surely a limit at

in�nity.

Proof. | We show that the fun
tion  de�ned in [E4 4.59℄ has the desired

properties. For x

0

2M , take an exponential 
hart (h; V ) 
entered at x

0

, and de�ne

 (x; y) =

1

2

�

"

2

+ kh(x) + h(y)k

2

�

kh(x)� h(y)k

2

:

Note that  satis�es 1) and 3). It is proven in [E4 4.59℄ that, if V is suÆ
iently

small, one 
an 
hoose " > 0 and 0 < � < 1 su
h that if U = (U

1

; U

2

) 2 TV �TV is a

tangent ve
tor with 
oordinates (

�

X;

�

Y ) 2 R

d

� R

d

where

�

X = dh(U

1

),

�

Y = dh(U

2

),

then

(r
r)d (U;U) � (1� �)

�

"

2

k

�

X �

�

Y k

2

+ kh(x)� h(y)k

2

k

�

X +

�

Y k

2

�

� (1� �) "

2

k

�

X �

�

Y k

2

:

This gives 2).

LEMMA 2.12. | Let V; Æ be as in Lemma 2.11. There exists a 
onstant C > 0

su
h that if Y and Z are V -valued martingales, h(Y ) = (Y

1

; : : : ; Y

d

) and h(Z) =

(Z

1

; : : : ; Z

d

) in 
oordinates, then

E

"

d

X

i=1

<Y

i

� Z

i

; Y

i

� Z

i

>

1

#

� C E

�

Æ

2

(Y

1

; Z

1

)

�

:

Remark. | In parti
ular, applying this result with a 
onstant Z, we dedu
e

that the expe
tation of the quadrati
 Riemannian variation of Y is bounded by a


onstant independent of Y .

Proof of Lemma 2.12. | Let  be as in Lemma 2.11. The Itô formula applied to

 and (Y; Z) gives

 (Y

1

; Z

1

) =  (Y

0

; Z

0

) +

Z

1

0




d ; d

r
r

(Y; Z)

�

+

1

2

Z

1

0

(r
r)d (Y; Z)

�

d(Y; Z)
 d(Y; Z)

�
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where d

r
r

denotes the Itô di�erential with respe
t to the produ
t 
onne
tion in

M �M . Using the fa
t that (Y; Z) is a martingale, we obtain

E [ (Y

1

; Z

1

)℄ = E [ (Y

0

; Z

0

)℄ +

1

2

E

�

Z

1

0

(r
r)d (Y; Z)

�

d(Y; Z)
 d(Y; Z)

�

�

;

hen
e by 2) and 3) of Lemma 2.11, we have

A E

�

Æ

2

(Y

1

; Z

1

)

�

� E [ (Y

1

; Z

1

)℄ �




2

E

"

d

X

i=1

<Y

i

� Z

i

; Y

i

� Z

i

>

1

#

:

This gives the result, with C = 2A=
.

Proof of Proposition 2.10. | We may assume thatM is a 
losed subset of R

d

, and

have to show that every sequen
e (X

n

)

n2N

of r-martingales 
onverging in

^

D




(M)

to a r-martingale X 
onverges in

^

S (M) to the same limit. By means of the se
ond

equality of Proposition 2.4 with p = 1, it is suÆ
ient to prove the existen
e of a

subsequen
e whi
h 
onverges to X lo
ally in H

1

(R

d

;1). Sin
e we are allowed to

extra
t subsequen
es and sin
e we have to prove only lo
al 
onvergen
e, by using

the se
ond equality of Proposition 2.4 with p = 1, we may assume that (X

n

)

n2N


onverges to X in S

1

(R

d

;1). Still using the fa
t that it is suÆ
ient to prove lo
al


onvergen
e, we may further assume the existen
e of a �nite in
reasing sequen
e of

stopping times su
h that if S and T are two 
onse
utive times in this sequen
e, then

on [S; T [ all the (X

n

)

n2N

and X take values in a 
ompa
t set V as 
onsidered in

Lemma 2.11. Finally, sin
e the sequen
e of stopping times is �nite, it is suÆ
ient

to prove 
onvergen
e on one of the intervals [S; T [. Hen
e we assume that (X

n

)

n2N

is a sequen
e of V -valued r-martingales 
onverging to X in S

1

(R

d

;1), and it is

suÆ
ient to prove its 
onvergen
e to X lo
ally in H

1

(R

d

;1).

Sin
e we are dealing with martingales, the �nite variation parts of the 
oordinates

satisfy

d

g

(X

n

)

i

= �

1

2

d

X

j;k=1

�

i

jk

(X

n

) d<(X

n

)

j

; (X

n

)

k

> ;

d

e

X

i

= �

1

2

d

X

j;k=1

�

i

jk

(X) d<X

j

; X

k

>

where �

i

jk

are the Christo�el symbols of the 
onne
tion. This gives the bound

kX

n

�Xk

H

1

(R

d

;1)

� E

"

d

X

i=1

�

�

(X

n

)

i

0

�X

i

0

�

�

d

X

i=1

<(X

n

)

i

�X

i

; (X

n

)

i

�X

i

>

1=2

1

+

d

X

i;j;k=1

Z

1

0

 

�

�

�

i

jk

(X

n

)� �

i

jk

(X)

�

�

�

�

d<X

j

; X

k

>

�

�

+

�

�

�

i

jk

(X

n

)

�

�

�

�

�

d<(X

n

)

j

�X

j

; (X

n

)

k

>

�

�

+

�

�

d<X

j

; (X

n

)

k

�X

k

>

�

�

�

!#

:
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The Christo�el symbols are Lips
hitz on V , hen
e by dominated 
onvergen
e,

P

d

i;j;k=1

R

1

0

�

�

�

i

jk

(X

n

) � �

i

jk

(X)

�

�

�

�

d<X

j

; X

k

>

�

�


onverges to 0 almost surely, and

still by dominated 
onvergen
e and the remark after Lemma 2.12, its expe
tation


onverges to 0. Sin
e the Christo�el symbols are bounded on V , the last terms 
an

be bounded by

C E

"

d

X

i;j=1

<(X

n

)

i

�X

i

; (X

n

)

i

�X

i

>

1=2

1

�

<(X

n

)

j

; (X

n

)

j

>

1=2

1

+<X

j

; X

j

>

1=2

1

�

#

with a 
onstant C > 0. Using H�older's inequality and uniform boundedness of the

expe
tations of the quadrati
 variations of V -valued martingales, we are led to

show that E

"

d

X

i=1

<(X

n

)

i

� X

i

; (X

n

)

i

� X

i

>

1

#


onverges to 0. But, by means of

Lemma 2.12,

E

"

d

X

i=1

<(X

n

)

i

�X

i

; (X

n

)

i

�X

i

>

1

#

� C E

�

Æ

2

(X

n

1

; X

1

)

�

with a 
onstant C > 0, and this gives the result.

3. Regularity of solutions of sto
hasti
 di�erential equations

Let M and N be 
onne
ted smooth manifolds. In this se
tion, we will study

stability of se
ond order sto
hasti
 di�erential equations of the type

DZ = f(X;Z)DX (3:1)

where f 2 �(�(M)

�


 �(N)) is a S
hwartz morphism, X belongs to

^

S (M) and Z

to

^

S (N).

Remark. | If P is a submanifold of M �N su
h that the 
anoni
al proje
tion

P ! M is a surje
tive submersion, and if f is only de�ned on P and 
onstrained

to P (see [E3℄), then one 
an extend f in a smooth way to M �N , and one knows

that a solution (X;Z) of (3.1) with (X

0

; Z

0

) 2 P will stay on P .

PROPOSITION 3.1. | Let (X

n

)

n2N

be a sequen
e of elements in

^

S (M) 
onverging

to X in

^

S (M), let (Z

n

0

)

n2N

be a sequen
e of N -valued random variables 
onverging

to Z

0

in probability, and let (f

n

)

n2N

be a sequen
e of lo
ally Lips
hitz S
hwartz

morphisms in �(�(M)

�


 �(N)) with uniform Lips
hitz 
onstant on 
ompa
t sets,


onverging to a S
hwartz morphism f 2 �(�(M)

�


 �(N)). If Z

n

is the maximal

solution starting from Z

n

0

to DZ

n

= f

n

(X

n

; Z

n

)DX

n

, then (X

n

; Z

n

) 
onverges in

^

S (M �N) to (X;Z) where Z is the solution to DZ = f(X;Z)DX starting from Z

0

.

Moreover, if �

X

n


onverges in probability to �

X

then Z

n


onverges to Z in

^

S (N).
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Proof. | Let �

Z

be the lifetime of Z. We will show that (Z

n

)

�

Z

-


onverges

to Z and that lim

t!�

Z

Z

t

does not exist on f�

Z

< �

X

g, whi
h is stronger than the

results of Proposition 3.1. The se
ond point is known, let us prove the �rst one.

We have to show that there exists a stopping time T as 
lose to �

Z

as we want

and a subsequen
e Z

n

k


onverging to Z. Hen
e we 
an assume that X

n

, X take

their values in a 
ompa
t subset K

M

, Z

n

0

in a 
ompa
t subset K

N

and that X

n


onverge in H

1

(K

M

;1) and in S

1

(K

M

;1) to X. We 
an also assume that Z

takes its values in K

N

and has lifetime 1. Consider S
hwartz morphisms f

n

K

, f

K

satisfying the same 
onvergen
e assumptions as f

n

and f , with 
ompa
t support

K 
ontaining a neighbourhood of the produ
t K

M

� K

N

. Using the 
ontinuity

results of Proposition 2.6 and [E2℄ theorem 0, we obtain that the solution Z

n

K

of

DZ

n

K

= f

n

K

(X

n

; Z

n

K

)DX

n

with (Z

n

K

)

0

= Z

n

0


onverge in S (N;1) to the solution

Z

K

of DZ

K

= f

K

(X;Z

K

)DX with (Z

K

)

0

= Z

0

. This implies that a subsequen
e


onverges lo
ally in

^

H

1

(N) and in

^

S

1

(N), but then lo
ally, for indi
es suÆ
iently

large, the solutions to the trun
ated equation 
oin
ide with the solutions to the

original equation. This gives the 
laim.

Immediate 
onsequen
es of Proposition 3.1 are the following results.

COROLLARY 3.2. | 1) Let �

1

(�(M)

�


�(N)) be the set of C

1

S
hwartz morphisms

endowed with the topology of uniform 
onvergen
e on 
ompa
t sets of the maps and

their derivatives, and let L

0

(N) be the set of N -valued random variables endowed

with the topology of 
onvergen
e in probability. Then the map

^

S (M)� �

1

(�(M)

�


 �(N))� L

0

(N) �!

^

S (M �N);

de�ned by (X; f; Z

0

) 7! (X;Z) with Z the maximal solution of DZ = f(X;Z)DX,

is 
ontinuous.

2) Let �

1

(�(M)

�

) be the set of C

1

forms of order 2 endowed with the topology of

uniform 
onvergen
e on 
ompa
t sets of the maps and their derivatives. Then the

map

�

1

(�(M)

�

)�

^

S (M) �!

^

S (R)

(�;X) 7�!

Z

0

h�(X);DXi

is lower semi
ontinuous.

Example. | Here we give an example of a sequen
e of deterministi
 paths


onverging uniformly to a 
onstant path, but su
h that parallel transports above

the elements of this sequen
e do not 
onverge. This shows in parti
ular that in 1)

we 
annot repla
e the topology of semimartingales in

^

S (M) by the topology of


ompa
t 
onvergen
e in probability, unless we restri
t for instan
e to the sets of

martingales with respe
t to a given 
onne
tion.

Let M be a simply 
onne
ted surfa
e endowed with a rotationally invariant

metri
 about o 2 M , represented in polar 
oordinates as ds

2

= dr

2

+ g

2

(r) d#

2

for

some smooth fun
tion g. Let t 7! x(t) 2 M be a path in M , de�ned on the unit
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interval [0; 1℄, with polar 
oordinates r(t) � " and #(t) = �t for some � > 0. A

straightforward 
al
ulation shows that the rotational speed of a parallel transport

above x in polar 
oordinates is ��g

0

("). Hen
e the rotational speed in an exponential


hart with 
entre o whi
h realizes an isometry at o is �(1 � g

0

(")) (note that this

gives 0 if the metri
 is 
at).

In the following,M is taken to be an open subset of the sphere S

2

. Thus we have

g(r) = sin r, and �(1�g

0

(")) = �(1� 
os "). Consider the sequen
e of paths (x

n

)

n2N

de�ned in polar 
oordinates by #

n

(t) = 2�nt and r

n

(t) � "

n

= ar

os(1�

1

2n

) (hen
e

2�n(1� 
os "

n

) = �). Sin
e "

n

! 0, we get uniform 
onvergen
e of (x

n

)

n2N

to the


onstant path o. But for all n, the rotation at time 1 of a parallel transport above

x

n

is �. Hen
e parallel transports above x

n

do not 
onverge to a parallel transport

above o.

In the sequel we are seeking di�erentiability results. This requires some geometri


preliminaries. We will use the maps �: M �N �M ! N de�ned by Cohen [C1℄

and [C2℄ to des
ribe sto
hasti
 di�erential equations in manifolds with 
�adl�ag

semimartingales.

DEFINITION 3.3. | Let k 2 N. A S
hwartz morphism f 2 �(�(M)

�


 �(N))

(resp. a se
tion e 2 �(TM

�


 TN)) is said to be of 
lass C

k

Lip

if f (resp. e) is C

k

with lo
ally Lips
hitz derivatives of order k.

We say that a measurable map �: M �N �M ! N is of 
lass C

k;1

Lip

if there

exists a neighbourhood of the submanifold f(x; z; x); (x; z) 2 M � Ng on whi
h �

is C

1

with respe
t to the third variable and all the derivatives with respe
t to this

variable are C

k

with lo
ally Lips
hitz derivatives of order k (with respe
t to the three

variables).

LEMMA (AND DEFINITION) 3.4. | Let k 2 N. For every S
hwartz morphism

f 2 �(�(M)

�


 �(N)) of 
lass C

k

Lip

, there exists a map �: M �N �M ! N of 
lass

C

k;1

Lip

su
h that for all (x; z) 2M �N

f(x; z) = �

3

�(x; z; x)

where �

3

� denotes the se
ond order derivative of � with respe
t to the third variable.

Su
h a map � will be 
alled a Cohen map asso
iated to f .

In parti
ular, a Cohen map satis�es �(x; z; x) = z for all (x; z) 2M �N .

Proof. | First, we remark that it is suÆ
ient to 
onstru
t � in a neighbourhood

of the submanifold f(x; z; x); (x; z) 2M �Ng and to extend it then in a measurable

way to M �N �M .

Letr

M

(resp.r

N

) be a 
onne
tion onM (resp.N). There exists a neighbourhood

of the diagonal of M �M on whi
h the maps (x; z) 7! v(x; z) = _
(0) and (x; z) 7!

u(x; z) = �
(0) are smooth, where 
 is the geodesi
 su
h that 
(0) = x and 
(1) = z.

There exists a neighbourhood of the null se
tion in TN on whi
h the exponential

map, denoted by exp

N

, is smooth. If u 2 �N is a se
ond order ve
tor, denote by

F (u) 2 TN its �rst order part with respe
t to the 
onne
tion r

N

(see [E4℄ for the

de�nition).
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Thus there exists a neighbourhood V of

�

(x; y; x); (x; y) 2 M � N

	

su
h that

the map

�: V ! N

(x; y; z) 7! exp

N

�

f(x; y) v(x; z) +

1

2

F

�

f(x; y)u(x; z)

�

�

is de�ned and satis�es the regularity assumptions. We have to verify the equation

�

3

�(x; y; x) = f(x; y). For this, it is suÆ
ient to 
he
k that these maps 
oin
ide on

elements of �

x

M of the form _
(0) and �
(0) where 
 is a geodesi
 with 
(0) = x and


(1) = z. A 
hange of time gives

�(x; y; 
(t)) = exp

N

�

t f(x; y) v(x; z) +

t

2

2

F

�

f(x; y)u(x; z)

�

�

Taking su

essively �rst and se
ond order derivatives with respe
t to t at time 0

gives the result.

THEOREM 3.5. | Let a 7! X(a) be C

1

from I to

^

S (M), let f 2 �(�(M)

�


�(N))

be a S
hwartz morphism of 
lass C

1

Lip

, and a 7! Z(a) the maximal solution of

DZ(a) = f

�

X(a); Z(a)

�

DX(a) (3:2)

where a 7! Z

0

(a) is C

1

in probability. Then the map a 7! (X(a); Z(a)) de�ned on I

and with values in

^

S (M �N) is C

1

, and the pro
ess �

a

Z(a) is the maximal solution

of

D�

a

Z(a) = f

0

�

�

a

X(a); �

a

Z(a)

�

D�

a

X(a) (3:3)

with initial 
ondition �

a

Z

0

(a) where f

0

is the S
hwartz morphism of 
lass C

0

Lip

de�ned

as follows : if f(x; z) = �

3

�(x; z; x) with a C

1;1

Lip

Cohen map � asso
iated to f , then

f

0

(u; v) = �

3

T�(u; v; u) for (u; v) 2 TM � TN , i.e., T� is a C

0;1

Lip

Cohen map

asso
iated to f

0

. If moreover a 7! �

X(a)

is 
ontinuous in probability, then a 7! Z(a)

is C

1

in

^

S (N).

Remark. | If P is a submanifold of M �N su
h that the 
anoni
al proje
tion

P !M is a surje
tive submersion, and if f is only de�ned on P and is 
onstrained

to P , then one 
an show that f

0

is 
onstrained to TP . As a 
onsequen
e, by the

remark at the beginning of this se
tion, if

�

�

a

X

0

(a); �

a

Z

0

(a)

�

belongs to TP , then

�

�

a

X(a); �

a

Z(a)

�

takes its values in TP .

LEMMA 3.6. | Let P; Q; R; S be manifolds, ': Q ! P and  : R ! S maps,

and let �: Q� R�Q ! R and �

0

: P � S � P ! S be Cohen maps su
h that

�

0

Æ (';  ; ') =  Æ �. Then, for all (x; y) 2 Q�R, we have

�

3

�

0

�

'(x);  (y); '(x)

�

Æ �'(x) = � (y) Æ �

3

�(x; y; x):

If semimartingales X; Z take values in Q, resp. R, and satisfy the equation

DZ = �

3

�(X;Z;X)DX, then U = '(X) and V =  (Z) satisfy

DV = �

3

�

0

(U; V; U)DU:

Proof. | It is suÆ
ient and easy to prove the �rst equality with se
ond order

derivatives of 
urves. The se
ond equality is a 
onsequen
e of the �rst one.
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Proof of Theorem 3.5. | Assume that 0 2 I. Using Proposition 3.1, it is suÆ
ient

to prove that a 7! (X(a); Z(a)) is di�erentiable at a = 0 and that the derivative of

a 7! Z(a) is the maximal solution of (3.3).

Let r

M

be a 
onne
tion on M . There exists an open neighbourhood �

M

1

of the

diagonal �

M

in M �M su
h that for a 6= 0 the fun
tion

'

M

a

: �

M

1

�! U

M

a

:= '

M

a

(�

1

)

(x; y) 7�!

1

a

(exp

N

x

)

�1

y

is well-de�ned and a di�eomorphism. The same obje
ts on N are denoted with the

supers
ript N . Let � be a C

1;1

Lip

Cohen map asso
iated to f . It is easy to see that

D(Z(0); Z(a)) = �

3

(�; �)

�

(X(0); X(a)); (Z(0); Z(a)); (X(0);X(a))

�

D

�

X(0); X(a)

�

:

Let T

M

(a) be the exit time of (X(0); X(a)) of �

M

1

,

e

X(a) = (X(0); X(a))

T

M

(a)-

and

e

Z(a) be the maximal solution to

D

e

Z(a) = �

3

(�; �)

�

e

X(a);

e

Z(a);

e

X(a))

�

D

e

X(a)

with initial 
ondition (Z

0

(0); Z

0

(a)). Let then T

N

(a) be the exit time of

e

Z(a) of �

N

1

.

Using Proposition 2.6, it is easy to see that T

M

(a)^�

X(0)


onverges in probability to

�

X(0)

as a tends to 0, and then that T

N

(a) ^ �

Z(0)


onverges in probability to �

Z(0)

.

By Lemma 3.6, de�ning

e

V (a) = '

N

a

�

e

Z(a)

T

N

(a)-

�

and

e

Y (a) = '

M

a

�

e

X(a)

T

N

(a)-

�

for a 6= 0, we have that

e

V (a) is the maximal solution in

^

S (TM) of

D

e

V (a) = �

3

�

'

N

a

Æ (�; �) Æ

�

('

M

a

)

�1

; ('

N

a

)

�1

; ('

M

a

)

�1

���

e

Y (a);

e

V (a);

e

Y (a)

�

D

e

Y (a)

with initial 
ondition

e

V

0

(a) = '

N

a

�

Z

0

(0); Z

0

(a)

�

on f(Z

0

(0); Z

0

(a)) 2 �

N

1

g. For

u 2 U

M

a

(resp. u 2 U

N

a

), denote by `

M

a

(u) (resp. `

N

a

(u)) the se
ond 
oordinate of

('

M

a

)

�1

(u) (resp. ('

N

a

)

�1

(u)). Then the mapping

(a; u; v; w) 7!

�

'

N

a

�

�

�

�(u); �(v); �(w)

�

; �

�

`

M

a

(u); `

N

a

(v); `

M

a

(w)

��

if a 6= 0,

T�(u; v; w) if a = 0,

de�ned on an open subset of (�1; 1) � TM � TN � TM 
ontaining the elements

of the form (0; u; v; u) with (u; v) 2 TM � TN , depends C

1

on the last vari-

able and its derivatives with respe
t to this variable are lo
ally Lips
hitz (as

fun
tions of all four variables). This implies the 
onvergen
e of �

3

�

'

N

a

Æ (�; �) Æ

�

('

M

a

)

�1

; ('

N

a

)

�1

; ('

M

a

)

�1

��

to �

3

T� as a ! 0, and the existen
e of uniform

Lips
hitz 
onstants on 
ompa
t sets. Sin
e a 7! X(a) is di�erentiable at a = 0,

T

M

(a) ^ �

X(0)


onverges in probability to �

X(0)

and T

N

(a) ^ �

Z(0)


onverges in

probability to �

Z(0)

, we have that

e

Y (a) 
onverges to Y (0)

�

Z(0)

with Y (0) := �

a

X(0);

on the other side,

e

V

0

(a) 
onverges in probability to �

a

Z

0

(0) = V

0

(0) on f�

Z

(0) > 0g;

hen
e we get by Proposition 3.1 that (

e

Y (a);

e

V (a)) 
onverges to (Y (0); V (0)) where

V (0) is the maximal solution of

DV (0) = �

3

T�

�

Y (0); V (0); Y (0)

�

DY (0)

with initial 
ondition V

0

(0) = �

a

Z

0

(0). This implies that a 7! (X(a); Z(a)) is

di�erentiable at a = 0 and that its derivative is (Y (0); V (0)).
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We now want to investigate Stratonovi
h and Itô equations. In the following,

if (t; a) 7! x(t; a) is a map de�ned on an open subset of R

2

and with values in

a manifold M , _x(t; a) will denote its derivative with respe
t to t, and �x(t; a) will

denote the se
ond order tangent ve
tor su
h that for all smooth fun
tion g on M ,

�x(t; a)(g) = �

2

t

(g Æx)(t; a). For a smooth fun
tion g onM , d

2

g will denote the se
ond

order form de�ned by hd

2

g; �x(t; a)i = �x(t; a)(g) (see [E4℄).

LEMMA 3.7. | Let J; I be two intervals in R. Suppose that (t; a) 7! x(t; a) 2 M

and (t; a) 7! z(t; a) 2 N are C

2;1

maps de�ned on J � I, and satisfy for ea
h a

�z(0; a) = �

3

�

�

x(0; a); z(0; a); x(0; a)

�

�x(0; a) (3:4)

where �: M �N �M ! N is a C

1;1

Lip

Cohen map. Then

(�

a

z)�(0; a) = �

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)�(0; a):

Proof. | It is suÆ
ient to prove




d

2

`; (�

a

z)�(0; a)

�

=




d

2

`; �

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)�(0; a)

�

(3:5)

and




d`; (�

a

z)_ (0; a)

�

2

=




d`; T

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)_ (0; a)

�

2

(3:6)

for ` = g Æ �: TN ! R and ` = dg: TN ! R where g: N ! R is smooth. Equations

(3.5) and (3.6) for ` = g Æ �: TN ! R, g 2 C

1

(N;R) are dire
t 
onsequen
es

of assumption (3.4). To establish (3.5) for ` = dg: TN ! R, we de�ne z

0

(t; a) =

�

�

x(0; a); z(0; a); x(t; a)

�

. Then

hd

2

`; (�

a

z)�(0; a)i = �

2

t

�

a

(g Æ z)(0; a) = �

a

�

2

t

(g Æ z)(0; a) = �

a




d

2

g; �z(0; a)

�

= �

a




d

2

g; �

3

�

�

x(0; a); z(0; a); x(0; a)

�

�x(0; a)

�

= �

a




d

2

g; (z

0

)�(0; a)

�

= �

a

�

2

t

(g Æ z

0

)(0; a) = �

2

t

�

a

(g Æ z

0

)(0; a)

= �

2

t

dg Æ T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(t; a)

�

=




d

2

`; �

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)�(0; a)

�

:

Finally, to verify (3.6) for ` = dg: TN ! R, we have to prove that

�

�

t

�

a

(g Æ z)(0; a)

�

2

=

�

�

t

�

a

(g Æ z

0

)(0; a)

�

2

:

We �rst derive from (3.4) that

�

�

t

(g Æ z)(0; a)

�

2

=

�

�

t

(g Æ z

0

)(0; a)

�

2

;

and by taking the square of the derivative with respe
t to a,

�

�

t

(g Æ z)(0; a)

�

2

�

�

t

�

a

(g Æ z)(0; a)

�

2

=

�

�

t

(g Æ z

0

)(0; a)

�

2

�

�

t

�

a

(g Æ z

0

)(0; a)

�

2

:

Let a

0

2 I. If

�

�

t

(gÆz)(0; a

0

)

�

2

6= 0, equality (3.6) is satis�ed for a = a

0

. Now 
onsider

the 
ase

�

�

t

(gÆz)(0; a

0

)

�

2

= 0. If

�

�

t

�

a

(gÆz)(0; a

0

)

�

2

6= 0 or

�

�

t

�

a

(gÆz

0

)(0; a

0

)

�

2

6= 0,

then we have

�

�

t

(g Æ z)(0; a)

�

2

6= 0 in a neighbourhood of a

0

(a

0

ex
epted) and (3.6)

is satis�ed for a = a

0

by 
ontinuity.
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DEFINITION 3.8. | A Cohen map �: M �N �M ! N is said to be a

Cohen map of Stratonovi
h type if in addition it has the following property :

if a C

2


urve (
; �) in M � N satis�es _�(t) = T

3

�

�


(t); �(t); 
(t)

�

_
(t) then

��(t) = �

3

�

�


(t); �(t); 
(t)

�

�
(t).

PROPOSITION 3.9. | Let k � 1 and e be a C

k

Lip

se
tion of the ve
tor bundle

T

�

M � TN over M �N . Then there exists a C

k�1;1

Lip

Cohen map � of Stratonovi
h

type su
h that e(x; z) = T

3

�(x; z; x) for all (x; z) 2M�N . If � is a C

k;1

Lip

Cohen map

of Stratonovi
h type, then T�: TM � TN � TM ! TN is a C

k�1;1

Lip

Cohen map of

Stratonovi
h type.

Proof. | The existen
e of � of 
lass C

k�1;1

Lip

is a 
onsequen
e of [E3 Theorem 8℄,

whi
h gives the existen
e of a unique S
hwartz morphism of Stratonovi
h type f of


lass C

k�1

Lip

asso
iated to e, together with Lemma 3.4.

Let � be a C

k;1

Lip

Cohen map of Stratonovi
h type; we want to show that T� is

also a Cohen map of Stratonovi
h type. Let t 7! �(t) be a smooth 
urve with values

in TN and t 7! Æ(t) a smooth 
urve with values in TM su
h that

_

�(t) = T

3

T�

�

Æ(t); �(t); Æ(t)

�

_

Æ(t): (3:7)

We have to prove that

�

�(t) = �

3

T�

�

Æ(t); �(t); Æ(t)

�

�

Æ(t):

This will be done by means of Lemma 3.7. More pre
isely, let (t; a) 7! x(t; a) satisfy

�

a

x(t; 0) = Æ(t), and let (t; a) 7! z(t; a) 2M be a solution of

_z(t; a) = T

3

�

�

x(t; a); z(t; a); x(t; a)

�

_x(t; a) (3:8)

with the property �

a

z(0; 0) = �(0). It is easy to verify that �(t) = �

a

z(t; 0) then

already for all t, by exploiting uniqueness of solutions to (3.7) with given initial


onditions and by 
al
ulating hdh; (�

a

z)_ (t; 0)i for h = dg and h = g Æ � where

g: N ! R is smooth. Sin
e � is a Cohen map of Stratonovi
h type, together with

equation (3.8), we get from Lemma 3.7

(�

a

z)�(t; a) = �

3

T�

�

�

a

x(t; a); �

a

z(t; a); �

a

x(t; a)

�

(�

a

x)�(t; a)

whi
h 
an be rewritten for a = 0 as

�

�(t) = �

3

T�

�

Æ(t); �(t); Æ(t)

�

�

Æ(t):

This proves that T� is indeed a Cohen map of Stratonovi
h type.

Rephrased in terms of Cohen maps of Stratonovi
h type, the following result is a


onsequen
e of [E3 Theorem 8℄.
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PROPOSITION 3.10. | Let k � 1 and let e be a C

k

Lip

se
tion of T

�

M � TN

over M � N . Let � be a C

k�1;1

Lip

Cohen map satisfying e(x; z) = T

3

�(x; z; x). The

equations ÆZ = T

3

�(X;Z;X) ÆX and DZ = �

3

�(X;Z;X)DX are equivalent if and

only if � is a Cohen map of Stratonovi
h type.

For the rest of this se
tion we assume that both M and N are endowed with


onne
tions r

M

and r

N

. On the tangent bundles TM and TN we 
onsider the


orresponding 
omplete lifts (r

M

)

0

and (r

N

)

0

of these 
onne
tions (see [Y-I℄ for a

de�nition).

We will say that a S
hwartz morphism f 2 �(�(M)

�


 �(N)) is semi-aÆne if

for every r

M

-geodesi
 
 with values in M and de�ned at time 0, for every y 2 N ,

f(
(0); y) �
(0) is the se
ond derivative of a r

N

-geodesi
 in N (see [E3℄ for details).

In fa
t f(
(0); y) �
(0) is the se
ond order derivative ��(0) of the geodesi
 � whi
h

satis�es �(0) = y and _�(0) = f(
(0); �(0)) _
(0).

DEFINITION 3.11. |We say that a Cohen map � is a Cohen map of Itô type (with

respe
t to the 
onne
tions r

M

and r

N

) if �

3

�(x; z; x): �

x

M ! �

z

N is a semi-aÆne

morphism.

PROPOSITION 3.12. | Let k � 0 and let e be a C

k

Lip

se
tion of T

�

M � TN over

M �N . There exists a C

k;1

Lip

Cohen map � of Itô type su
h that e(x; z) = T

3

�(x; z; x)

for all (x; z) 2M �N . If k � 1 and � is a C

k;1

Lip

Cohen map of Itô type, then T� is

a C

k�1;1

Lip

Cohen map of Itô type (with respe
t to the 
onne
tions (r

M

)

0

and (r

N

)

0

).

Proof. | The existen
e of � is a 
onsequen
e of [E3 Lemma 11℄ whi
h gives the

existen
e of a unique S
hwartz morphism of Itô type asso
iated to e, together with

Lemma 3.4.

Let � be a Cohen map of Itô type; we want to show that T� is also a Cohen

map of Itô type. We have to prove that for all (y

0

; v

0

) 2 TM � TN , �

3

T�(y

0

; v

0

; y

0

)

is semi-aÆne, i.e., if t 7! y(t) is a (r

M

)

0

-geodesi
 in TM with y(0) = y

0

, then

the (r

N

)

0

-geodesi
 t 7! v(t) in TN with _v(0) = T

3

T�(y

0

; v

0

; y

0

) _y(0) satis�es

�v(0) = �

3

T�(y

0

; v

0

; y

0

) �y(0).

Let (t; a) 7! x(t; a) 2 M satisfy �

a

j

a=0

x(t; a) = y(t) and su
h that t 7! x(t; a) is

a r

M

-geodesi
 for all a. Note that this is possible be
ause y is a Ja
obi �eld. Let

(t; a) 7! z(t; a) 2 N be su
h that for all a, t 7! z(t; a) is a r

N

-geodesi
 with

_z(0; a) = T

3

�

�

x(0; a); z(0; a); x(0; a)

�

_x(0; a)

and �

a

j

a=0

z(0; a) = v(0). Sin
e t 7! x(t; a) and t 7! z(t; a) are geodesi
s and

T

3

�(x; z; x) is semi-aÆne, we dedu
e that

�z(0; a) = �

3

�

�

x(0; a); z(0; a); x(0; a)

�

�x(0; a):

Now we 
an apply Lemma 3.7 to obtain

(�

a

z)�(0; a) = �

3

T�(�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)) (�

a

x)�(0; a): (3:9)
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It remains to prove that (�

a

z)�(0; 0) = �v(0) and (�

a

x)�(0; 0) = �y(0). But t 7! �

a

z(t; a)

and t 7! �

a

x(t; a) are geodesi
s for (r

N

)

0

and (r

M

)

0

, hen
e it is suÆ
ient to know

that (�

a

z)_ (0; 0) = _v(0) and (�

a

x)_ (0; 0) = _y(0) (the last equality is already known).

For this, we want to 
al
ulate hdh; (�

a

z)_ (0; a)i for h = dg and h = g Æ � with

g: N ! R smooth (we will do the veri�
ation only for h = dg). Let h = dg, then

hdh; (�

a

z)_ (0; a)i = �

t

j

t=0




dg; �

a

z(t; a)

�

= �

t

j

t=0

�

a

(g Æ z)(t; a) = �

a

�

t

j

t=0

(g Æ z)(t; a)

= �

a

�

t

j

t=0

(g Æ �)

�

x(0; a); z(0; a); x(t; a)

�

= �

t

j

t=0

�

a

(g Æ �)

�

x(0; a); z(0; a); x(t; a)

�

= �

t

j

t=0




dg; T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(t; a)

��

=




dh; T

3

T�

�

�

a

x(0; a); �

a

z(0; a); �

a

x(0; a)

�

(�

a

x)_ (0; a)

�

:

In parti
ular, for a = 0, this gives




dh; (�

a

z)_ (0; 0)

�

=




dh; T

3

T� (y

0

; v

0

; y

0

) _y(0)

�

:

Sin
e _v(0) = T

3

T�(y

0

; v

0

; y

0

) _y(0) we obtain _v(0) = (�

a

z)_ (0; 0) whi
h �nally gives

with (3:9)

�v(0) = (�

a

z)�(0; 0) = �

3

T�(y

0

; v

0

; y

0

) �y(0):

This proves that T� is a Cohen map of Itô type.

Rewritten with Cohen maps of Itô type, we get the following result as a


onsequen
e of [E3 Theorem 12℄.

PROPOSITION 3.13. | Let k � 0 and e be a C

k

Lip

se
tion of T

�

M�TN overM�N .

Let � be a C

k;1

Lip

Cohen map satisfying e(x; z) = T

3

�(x; z; x) for all (x; z) 2M �N .

Then the equations d

r

N

Z = T

3

�(X;Z;X) d

r

M

X and DZ = �

3

�(X;Z;X)DX are

equivalent if and only if � is a Cohen map of Itô type.

The main motivation in our study of Cohen maps of Stratonovi
h and Itô type is

the following result.

COROLLARY 3.14. | 1) Let k � 0 and e be a C

k+1

Lip

se
tion of the ve
tor bundle

T

�

M � TN overM �N . Assume that a 7! X(a) is C

k

in

^

S (M), and a 7! Z(a) is

the maximal solution of

ÆZ(a) = e

�

X(a); Z(a)

�

ÆX(a) (3:10)

where a 7! Z

0

(a) is C

k

in probability. Then a 7! (X(a); Z(a)) is C

k

in

^

S (M �N),

and if k � 1, the derivative �

a

Z(a) is the maximal solution of

Æ�

a

Z(a) = e

0

�

�

a

X(a); �

a

Z(a)

�

Æ�

a

X(a) (3:11)

with initial 
ondition �

a

Z

0

(0) where e

0

is the C

k

Lip

se
tion of T

�

TM � TTN over

TM � TN de�ned as follows : if e(x; z) = T

3

�(x; z; x) with a C

k+1;1

Lip

Cohen map �

then e

0

(u; v) = T

3

T�(u; v; u) for (u; v) 2 TM � TN . If moreover a 7! �

X(a)

is


ontinuous in probability, then a 7! Z(a) is C

k

in

^

S (N).
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2) Let k � 0 and e be a C

k

Lip

se
tion of the ve
tor bundle T

�

M � TN overM �N .

Assume thatM (resp. N) is endowed with a 
onne
tion r

M

(resp. r

N

), and denote

by (r

M

)

0

(resp. (r

N

)

0

) the 
omplete lift of r

M

(resp. r

N

) in TM (resp. TN).

Assume that a 7! X(a) is C

k

in

^

S (M), a 7! Z(a) is the maximal solution of

d

r

N

Z(a) = e

�

X(a); Z(a)

�

d

r

M

X(a) (3:12)

where a 7! Z

0

(a) is C

k

in probability. Then a 7! (X(a); Z(a)) is C

k

in

^

S (M �N),

and the derivative �

a

Z(a) is the maximal solution of

d

(r

N

)

0

�

a

Z(a) = e

0

�

�

a

X(a); �

a

Z(a)

�

d

(r

M

)

0

�

a

X(a) (3:13)

with initial 
ondition �

a

Z

0

(0) where e

0

is the C

k�1

Lip

se
tion of T

�

TM � TTN over

TM � TN de�ned in 1). If moreover a 7! �

X(a)

is 
ontinuous in probability, then

a 7! Z(a) is C

k

in

^

S (N).

Remark. | We like to stress the pleasant point that both Stratonovi
h and Itô

equations di�erentiate like equations involving smooth paths.

Proof of Corollary 3.14. | 1) We only have to 
onsider the 
ase k � 1. Let �

be a C

k;1

Lip

Cohen map of Stratonovi
h type su
h that T

3

�(x; z; x) = e(x; z) for all

(x; z) 2M �N . By Proposition 3.10, equation (3.10) is equivalent to

DZ(a) = �

3

�

�

X(a); Z(a); X(a)

�

DX(a):

Applying Theorem 3.5, we 
an di�erentiate with respe
t to a and we get

D�

a

Z(a) = �

3

T�

�

�

a

X(a); �

a

Z(a); �

a

X(a)

�

D�

a

X(a): (3:14)

But by Proposition 3.9, T� is a C

k�1;1

Lip

Cohen map of Stratonovi
h type, and again

by Proposition 3.10, equation (3.14) is equivalent to

Æ�

a

Z(a) = T

3

T�

�

�

a

X(a); �

a

Z(a); �

a

X(a)

�

Æ�

a

X(a)

whi
h is pre
isely equation (3.11).

2) The proof of 1) 
arries over verbatim, repla
ing Stratonovi
h by Itô, Proposi-

tion 3.10 by Proposition 3.13, and Proposition 3.9 by Proposition 3.12.

We want to rephrase equation (3.13) in terms of 
ovariant derivatives. For this

we need some de�nitions and lemmas. Let R

M

denote the 
urvature tensor of

the 
onne
tion r

M

on M , whi
h is assumed here to be torsion-free. If J is a

semimartingale with values in TM endowed with the horizontal lift (r

M

)

h

of r

M

(see [Y-I℄ for a de�nition), let DJ denote its 
ovariant derivative, i.e. the proje
tion

of the verti
al part of d

(r

M

)

h

J , thus DJ = v

�1

J

(d

(r

M

)

h

J)

v

with v

j

: T

x

M ! T

j

TM

denoting the verti
al lift for j 2 T

x

M . We observe that also DJ = ==

0;.

d(==

�1

0;.

J)

where ==

0;t

means parallel translation along �(J). Indeed, this equality is veri�ed if

J is a smooth 
urve, and sin
e by [Y-I℄ (9.2) p. 114, J is a geodesi
 if and only if

(�(J); ==

�1

0;.

J) is a geodesi
 in M � T

�(J

0

)

M for the produ
t 
onne
tion, using [E3℄


orollary 16, it extends to semimartingales as an Itô equation.
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LEMMA 3.15. | Let J be a semimartingale with values in TM , and X = �(J) its

proje
tion to M . Then

d

(r

M

)

0

J = d

(r

M

)

h

J +

1

2

v

J

�

R

M

(J; dX)dX

�

(3:15)

where v

j

(u) is the verti
al lift above j 2 T

x

M of a ve
tor u 2 T

x

M .

Proof. | Following [E3℄, if

e

r is a 
onne
tion on TM , the Itô di�erential

d

e

r

J may be written as F

e

r

(DJ) where F

e

r

: �TM ! TTM is the proje
tion

de�ned as follows: if A and B are ve
tor �elds on TM , then F (A) = A and

F (AB) =

1

2

�

e

r

A

B +

e

r

B

A + [A;B℄

�

. The result is a dire
t 
onsequen
e of the

following Lemma.

For ` 2 �M , let b(`) 2 TM � TM denote its symmetri
 bilinear part, i.e.,

hdf 
 dg; b(`)i =

1

2

�

`(fg)� f `(g)� g `(f)

�

for f; g smooth fun
tions on M .

LEMMA 3.16. | Let L be an element of �

u

TM with u 2 T

x

M . Then

�

F

(r

M

)

0

� F

(r

M

)

h

�

(L) = v

u

�

�

R

M

(u;

.

)

.

�

b(�

�

L)

�

where �

�

: �TM ! �M is indu
ed by �: TM !M .

Proof. | It is suÆ
ient to prove this for L

u

= (AB)

u

with A and B horizontal

or verti
al ve
tor �elds. But sin
e among these possibilities (r

M

)

0

A

B and (r

M

)

h

A

B


oin
ide ex
ept if both A and B are horizontal, we 
an restri
t to this 
ase. Let A

(resp. B) be the horizontal lift of

�

A (resp.

�

B). Then by [Y-I℄,

(r

M

)

0

A

u

B � (r

M

)

h

A

u

B = v

u

�

R

M

(u;

�

A

x

)

�

B

x

�

where x = �(u), and this gives the result, sin
e b(�

�

L

u

) =

1

2

�

�

A

x




�

B

x

+

�

B

x




�

A

x

�

.

COROLLARY 3.17. | Let k � 0 and e be a C

k

Lip

se
tion of the ve
tor bundle

T

�

M � TN over M � N . Assume that M (resp. N) is endowed with a torsion-free


onne
tion r

M

(resp. r

N

). Assume that a 7! X(a) is C

k

in

^

S (M), a 7! Z(a) the

maximal solution of

d

r

N

Z(a) = e

�

X(a); Z(a)

�

d

r

M

X(a) (3:16)

where a 7! Z

0

(a) is C

k

in probability. Then a 7!

�

X(a); Z(a)

�

is C

k

in

^

S (M �N),

and the derivative �

a

Z(a) is the maximal solution of the 
ovariant sto
hasti
 diffe-

rential equation

D�

a

Z = e(X;Z)D�

a

X +re(�

a

X; �

a

Z) d

r

M

X

+

1

2

�

e(X;Z)R

M

�

�

a

X; dX

�

dX � R

N

�

�

a

Z; e(X;Z)dX

�

e(X;Z)dX

�

(3:17)

with initial 
ondition �

a

Z

0

(0). If moreover a 7! �

X(a)

is 
ontinuous in probability,

then a 7! Z(a) is C

k

in

^

S (N).
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Remarks. | 1) If r

M

and r

N

are allowed to have torsion, one 
an write �rst a


ovariant equation of the form (3.17) with respe
t to the symmetrized 
onne
tions

�

r

M

and

�

r

N

. With the obvious notations, expressing

�

D�

a

X,

�

D�

a

X,

�

R

M

and

�

R

N

in terms of D�

a

X, D�

a

X, R

M

, R

N

and the torsion tensors, one obtains then a


ovariant equation with respe
t to r

M

and r

N

.

2) Starting with (3.11) in Corollary 3.14, one 
an also easily determine a

Stratonovi
h 
ovariant equation, identi
al to the equation for smooth pro
esses.

Proof of Corollary 3.17. | Applying Lemma 3.15 to part 2) of Corollary 3.14

gives the following equation for �

a

Z:

d

(r

N

)

h

�

a

Z = e

0

�

�

a

X; �

a

Z

�

�

d

(r

M

)

h

�

a

X +

1

2

v

�

a

X

�

R

M

(�

a

X; dX)dX

�

�

�

1

2

v

�

a

Z

�

R

N

(�

a

Z; dZ)dZ

�

:

But, if u;w 2 T

x

M , z 2 TN , we have e

0

(u; z)v

u

(w) = v

z

�

e

�

�(u); �(z)

�

w

�

, and by

de�nition, if h

r

M

u

(w) 2 T

u

TM is the horizontal lift of w, then v

z

�

re(u; z)w

�

is

the verti
al part of e

0

(u; z)h

r

M

u

(w). These equalities applied to u = �

a

X, z = �

a

Z,

and su

essively to w = D�

a

X, w = d

r

M

X and w =

1

2

R

M

(�

a

X; dX)dX, give the

desired equation.

As an appli
ation of Corollary 3.14, we get di�erentiability results for sto
hasti


integrals, 
onsidered as parti
ular instan
es of sto
hasti
 di�erential equations:

COROLLARY 3.18. | 1) Let k � 0 and � be a C

k+1

Lip

se
tion of the ve
tor bundle

T

�

M . Assume that a 7! X(a) is C

k

in

^

S (M).

Then a 7!

�

X(a);

Z

.

0




�(X(a)); ÆX(a)

�

�

is C

k

in

^

S (M � R).

2) Let k � 0 and � be a C

k

Lip

se
tion of the ve
tor bundle T

�

M �TN overM �N .

Assume thatM (resp. N) is endowed with a 
onne
tion r

M

. Assume that a 7! X(a)

is C

k

in

^

S (M).

Then a 7!

�

X(a);

Z

.

0




�(X(a)); d

r

M

X(a)

�

�

is C

k

in

^

S (M � R).

4. Appli
ation to antidevelopment

If M is a manifold, we will denote by s: TTM ! TTM the following 
anoni
al

isomorphism: if (t; a) 7! x(t; a) is a smooth M -valued map de�ned on some open

subset of R

2

, then �

t

�

a

x(t; a) = s (�

a

�

t

x(t; a)).

THEOREM 4.1. | Let M be a manifold endowed with a 
onne
tion r. Denote

by r

0

the 
omplete lift of r on TM . Let A

0

denote the antidevelopment with respe
t

to r

0

. Let a 7! X(a) 2

^

S (M) be a map of 
lass C

1

de�ned on some interval I of R.

Then a 7!

�

X(a);A(X(a))

�

2

^

S (TM � TM) is of 
lass C

1

and

s

�

�

a

A(X(a))

�

= A

0

�

�

a

X(a)

�

:

Moreover, if a 7! �

X(a)

is 
ontinuous in probability, then a 7! A(X(a)) is C

1

in

^

S (TN).
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Before proving this result we introdu
e some de�nitions and lemmas. Let M be

a manifold of dimension m. If r is a 
onne
tion on M , we 
onsider the 
omplete

lift r

0

of r on TM , whi
h is 
hara
terized by the relation r

0

X




Y




= (r

X

Y )




valid

for all ve
tor �elds X;Y 2 �(TM). Here X




denotes the 
omplete lift of X, i.e. the

ve
tor �eld in �(TTM) de�ned by X




u

= s

�

TX(u)

�

(see [Y-I℄ for details). Re
all

that the geodesi
s for r

0

are the Ja
obi �elds for r.

Let L(M) be the prin
ipal bundle of linear frames on TM : thus L

x

(M) is the set

of linear isomorphisms R

m

! T

x

M for ea
h x 2M . There is a 
anoni
al embedding

|: TL(M) ! L(TM) de�ned as follows: if W 2 TL(M) is equal to (�

a

U)(0) where

a 7! U(a) is a smooth path in L(M), and if v 2 TR

m

= R

2m

is equal to (�

a

z)(0)

where a 7! z(a) is a smooth path in R

m

, then one has |(W )v = s ((�

a

(Uz))(0)).

Let (e

1

; : : : ; e

m

; e

�

1

; : : : ; e

�n

) be the standard basis of TR

n

. Then |((�

a

U)(0))e

�

=

s ((�

a

(Ue

�

))(0)) and |((�

a

U)(0))e

��

is the verti
al lift (Ue

�

)

v

(0) of (Ue

�

)(0) above

�

a

(� Æ U)(0) where �: L(M)!M is the 
anoni
al proje
tion.

LEMMA 4.2. | If a 7! X(a) 2

^

S (M) is C

1

and U(a) 2

^

S (L(M)) is a

horizontal lift of X(a) su
h that a 7! U

0

(a) is C

1

in probability, then a 7! U(a)

is C

1

in

^

S (L(M)) and | (�

a

U(a)) is a horizontal lift of �

a

X(a) with respe
t to the


onne
tion r

0

.

Proof. | The fa
t that a 7! U(a) is C

1

is a dire
t 
onsequen
e of Corollary 3.14

and the fa
t that

�

lim

t!�

U(a)

U

t

(a) exists

	

is in
luded in

�

lim

t!�

X(a)

X

t

(a) exists

	

.

Another 
onsequen
e of Corollary 3.14 is that it suÆ
es to prove the assertion with

both X

t

(a) = x(t; a) and a 7! U

0

(a) = u(0; a) deterministi
 and smooth. Write

u(t; a) = U

t

(a).

It is suÆ
ient to verify that for all i 2 f1; : : : ;mg, t 7! |(�

a

u(t; a)) e

i

and

t 7! |(�

a

u(t; a)) e

�{

are parallel transports. But by [Y-I 
hapt. I, prop. 6.3℄, we have

r

0

(�

a

x)_ (t;a)

s

�

�

a

(u(t; a)e

i

)

�

= s

�

�

a

�

r

_x(t;a)

u(t; a)e

i

��

= 0

and

r

0

(�

a

x)_(t;a)

�

u(t; a)e

i

�

v

=

�

r

_x(t;a)

u(t; a)e

i

�

v

= 0:

This proves Lemma 4.2.

Proof of Theorem 4.1. | The fa
t that a 7!

�

X(a);A(X(a))

�

is C

1

is a 
onse-

quen
e of Corollary 3.14. We 
an 
al
ulate as if dealing with smooth deterministi


paths. Let a 7! U

0

(a) 2 L

X

0

(a)

(M) be C

1

in probability and denote by U(a) the

parallel transport of U

0

(a) along X(a). Write Z(a) = A(X(a)). Then we have the

equation

U(a)U

�1

0

(a) p

�

ÆZ(a)

�

= ÆX(a)

where if z 2 T

x

M and v 2 T

z

TM is a verti
al ve
tor, p

�

v

�

denotes its 
anoni
al

proje
tion onto T

x

M .
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Denoting by m the dimension ofM , we de�ne a family of R

m

-valued pro
esses R(a)

by R(a) = U

�1

0

(a)Z(a), hen
e

ÆR(a) = U

�1

0

(a) p

�

ÆZ(a)

�

: (4:1)

We have U(a)ÆR(a) = ÆX(a) and by di�erentiation with respe
t to a, using the

de�nition of |,

|

�

�

a

U(a)

�

s

�

Æ�

a

R(a)

�

= Æ�

a

X(a): (4:2)

On the other hand, di�erentiation of (4.1) gives

|

�

�

a

U

0

(a)

�

s

�

Æ�

a

R(a)

�

= p

0

�

Æs

�

�

a

Z(a)

��

(4:3)

where p

0

on the verti
al ve
tors to TTM is de�ned like p. Putting together (4.2) and

(4.3) gives

|

�

�

a

U(a)

� �

|

�

�

a

U

0

(a)

��

�1

p

0

�

Æs

�

�

a

Z(a)

��

= Æ�

a

X(a):

But |

�

�

a

U(a)

�

is the parallel transport of |(U

0

(a)) above �

a

X(a) by Lemma 4.2,

hen
e s

�

�

a

Z(a)

�

= A

0

(�

a

X(a)).

COROLLARY 4.3. | Let J be a TM -valued semimartingale with lifetime � = �(0).

There exists a C

1

family (X(a))

a2R

of elements in

^

S (M) su
h that the equality

J = �

a

X(0) is satis�ed. In parti
ular, if �(a) is the lifetime of X(a), then �(a)^�(0)


onverges in probability to �(0) as a tends to 0. The semimartingale J is a r

0

-

martingale if and only if one 
an 
hoose (X(a))

a2R

su
h that X(a) is a r-martingale

for ea
h a 2 R.

Proof. | With the notations of Theorem 4.1 de�ne V = A

0

(J), and for a 2 R,

Z(a) = T exp

�

s

�

as(V )

��

:

Note that the lifetime of Z(a) 
an be 0 if exp aJ

0

is not de�ned. A straightforward


al
ulation shows that s

�

�

a

Z(0)

�

= V . De�ne now X(a) as the sto
hasti
 devel-

opment of Z(a). We have the relation Z(a) = A

�

X(a)

�

; by Corollary 3.14, the

map a 7! (Z(a); X(a)) is C

1

in

^

S (M) and in parti
ular, �(a) ^ �(0) 
onverges in

probability to �(0) as a tends to 0. By Theorem 4.1, the antidevelopment of the

derivative of a 7! X(a) at a = 0 is s

�

�

a

Z(0)

�

= V . This implies that �

a

X(0) = J .

If J is a martingale, then V is a lo
al martingale (with possibly �nite lifetime).

It is easy to see that for ea
h a 2 R, Z(a) is also a lo
al martingale, hen
e its

development X(a) is a martingale.
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