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COMPLETE LIFTS OF CONNECTIONS
AND STOCHASTIC JACOBI FIELDS

By M. ARNAUDON and A. THALMAIER

ABSTRACT. — Differentiable families of V-martingales on manifolds are investigated: their infinitesimal variation
provides a notion of stochastic Jacobi fields. Such objects are known [2] to be martingales taking values in
the tangent bundle when the latter is equipped with the complete lift of the connection V. We discuss various
characterizations of 7'M -valued martingales. When applied to specific families of V-martingales which appear in
connection with the heat flow for maps between Riemannian manifolds, our results allow to establish formulas
giving a stochastic representation for the differential of solutions to the nonlinear heat equation. As an application,
we prove local and global gradient estimates for harmonic maps of bounded dilatation. © Elsevier, Paris

1. Introduction

Let M be a smooth manifold endowed with a connection V. The tangent bundle
TM inherits a connection V', the complete lift of V (see [31]), which appears naturally
when dealing with variations of V-martingales: The derivative of an M-valued martingale
depending differentiably on a parameter (with respect to uniform convergence in probability
on compact sets) is a 7'M -valued V’-martingale (see [2]). This connection on 7'M has the
property that its geodesics are the Jacobi fields on M with respect to V.

In a certain sense, the stochastic analogue to geodesics on a manifold M with a
connection V is constituted by the class of M-valued V-martingales. Their infinitesimal
variations define a notion of stochastic Jacobi fields in the same way as variations of
geodesics in classical differential geometry lead to the class of (deterministic) Jacobi fields.

Let Mart(M, V) denote the set of M-valued V-martingales defined on a given filtered
probability space (§2,(F;)tcr,.P). It is shown in [2] that on Mart(M,V) the so-
called topology of semimartingales coincides with the topology of uniform convergence
in probability on compact intervals. Furthermore [2], if an M-valued continuous
semimartingale depends on a parameter a in a differentiable manner (with respect to
the topology of semimartingales) then also its anti-development depends differentiably on
a; the same is true for horizontal lifts to initial conditions varying C! in probability in
the parameter . Moreover, the operations of taking anti-developments and horizontal lifts
commute with differentiation if the tangent bundle TM is endowed with the complete
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284 M. ARNAUDON AND A. THALMAIER

lift V' of the connection V on M. See Bismut [3], Meyer [24] for background on
semimartingales taking values in vector bundles.

Vector fields on the path space of AM-valued Brownian motion or continuous
semimartingales have attracted the attention of many authors, e.g. [7], [14], [17], [13], [5],
[20]. Recently, T. Lyons and Z.-M. Qian [21] studied vector fields along semimartingales
obtained by varying a metric connection. In this paper we characterize variational fields
of M-valued semimartingales which give rise to martingales in 7'M with respect to
canonically lifted connections. As observed in [2], smooth variations of M-valued V-
martingales lead to V'-martingales in 7'M, and under mild regularity assumptions, all
V’-martingales on T'M are obtained in this way.

Canonical examples for differentiable families of martingales on Riemannian manifolds
are of the form u(X, (a))secas where u : M — N is a harmonic map, or more generally,
of the form u(t—., X, (a)),ensr where w : [0,¢] x M — N is a smooth solution to the
nonlinear heat equation; in both cases X, (a) is a BM(M, g) starting from « at time ¢ = 0.
When specialized to such situations, our results lead to stochastic representations for the
differential of u, extending well-known derivative formulae from the linear case N = R»
to general targets.

When applied to the nonlinear heat equation, the corresponding Jacobi fields allow to
establish differentiation formulas which are appropriate tools for a priori estimates of the
harmonic heat flow. We exemplify our methods by proving explicit gradient estimates for
harmonic maps of bounded dilatation. Well-known Liouville type theorems follow directly
as corollaries from these estimates.

2. Complete lifts of connections on the frame bundle

We shall exploit the following fact (see [25]): If 7 : P — M is a principal fibre bundle
with structure group G, then, in a natural way, T'r : TP — TM is a principal fibre bundle
with structure group T'G. Note that the tangent bundle 7'G of a Lie group G is a Lie group
by the tangent operation on 7'G as group multiplication. Moreover, each G-connection
on w: P — M lifts in a canonical way to a T'G-connection on Tw : TI> - TM. The
complete lift of a linear connection on M to its tangent bundle 7'M, as described in [31],
derives naturally from this construction in the case of the frame bundle 7 : L(M) — M
with G = GL(m,R). We start with a brief sketch of these concepts to fix the notation
and to clarify the setting.

A G-connection on a principal fibre bundle 7 : P — M with structure group G is
most concisely described as a G-invariant splitting % of the following exact sequence of
vector bundles over P:

0 — kerTn — TP I% x*TM — 0,
(2.1) N
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ie, Troh =1id and (TR,)h = h for all g € G, where R, is the right action of g on P.
Such a splitting induces a G-invariant decomposition

TP =kerTr®h(rx*TM)=V o H

of TP in a vertical and a horizontal subbundle. From this point of view, a G-connection
is a selection of a horizontal space H, at each v € P in a G-invariant way, ie.,
H,,= (T R,)H, for all g € G. According to TP =V & H, vector fields X € I'(TP)
are decomposed as X = XV°'' + X1o' The bundle isomorphism

(2.2) he ©°TM 5 H, by ToyM = H,, u€ P,

is the horizontal lift of the G-connection (see [19]). Note that each v € P defines an
embedding I,,: G — P, g — u - g, and thus, via the differential of I, at e € G,

(2.3) T.I,: T.G — T,P, A~ A(u),

a canonical identification «,: g = V, of the Lie algebra g = 7.G with the vertical fibre
Vi = {v € T,P: (T'r)v = 0} at u; in particular, ker Tr = P X g.

A G-invariant splitting of (2.1) may equivalently be expressed in terms of a bundle
homomorphism @ : TP — ker T'm such that @o¢ = id, and by this way, ©@ = (prp,w) with
prp : TP — P canonically, it defines an equivariant g-valued 1-form w € I'(T*P ® g)
on P, the connection 1-form on P:

(2.4) wa(Xy) = kIHXYY) | X e I(TP).

In these terms, G-invariance of the splitting translates to equivariance of w, ie.
Riw = Ad(g~")w for all g € G.

If P is a subbundle of the frame bundle L{M ), then a canonical trivialization of TP over
P is given as follows: The horizontal subbundle H is trivialized by the standard-horizontal
vector fields L1,..., L,, € T(T'P) with L;(u) = h,(ue;), the vertical subbundle V by the
standard-vertical vector fields A € I'(T'P) defined in (2.3), where A runs through a basis
of g, see [19]. In this situation, we have canonically TP = P x R™ x g.

We now specialize to the case of the frame bundle = : L(M) — M over a manifold
M with structure group GL(m,R). Linear connections on M uniquely correspond to
GL(m, R)-connections on L{M). By definition, see [19], a G-structure on M where G is
a Lie subgroup of GL(m,R) is a reduction of the structure group GL(m,R) of L(M) to
G. This paper relies on the following construction: To each G-structure on M there is an
associated G'-structure on 7'M where G’ is a certain subgroup of GL(2m, R). Moreover,
ifm: P — M is a G-structure on M and ' : P/ — T M the induced G’-structure on TM,
then G-connections on P naturally lift to G’-connections on P’. Roughly speaking, these
lifts are obtained by differentiating all maps in (2.1). To give a more precise formulation,
the following Lemma is needed.
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286 M. ARNAUDON AND A. THALMAIER

LemMa 2.1. — There is a natural injection vpr: T(L(M)) — L(T'M) as follows: Given
the GL(m,R)-principal bundle = : L(M) — M and the GL(2m,R)-principal bundle
7 : L(TM) — TM, then there exists an embedding t,,: TGL(m,R) — GL(2m,R) and a
bundle homomorphism 5y of T(L(M)) into L(T'M) such that both

TL(M) —— L(TM)
(2.5) T 7
TJM -, T£4
and
TL(M) x TGL(m,R) —— TL(M)
(2.6) e | e
L(TM) x GL(2m,R) —— L(TM)
are commutative diagrams.

Proof. — We sketch the construction for further reference, see [25] for details. First,
TGL(m,R) is considered as a Lie subgroup of GL(2m,R) in the usual way: If
p : GL(m,R) x R™ — R™ denotes the natural operation of GL(m,R) on R™, then
TGL(m,R) operates on TR™ = R™ @& R™ by the tangent operation

Tp : TGL(m,R) x TR™ — TR™.

Elements Y € TGL(m,R) may be represented as ¥ = (g, A) with g € GL(m,R) and
A € gl(m,R) such that Y = (R,).A € T,GL(m,R) where R, denotes right translation
by g in GL(m,R). Then, the tangent operation of TGL(m,R) on R™ @ R™ is given by
Y - (z,v) = (gz, Agz + gv) for (z,v) € R™ @ R™. In these terms:

b (V) = (jg 2) € GL(2m.R).

The injection tps: TL(M) — L(TM) is most easily described relying on local
trivializations. For a fixed coordinate neighbourhood V in M, with the notation
L(M)/V = L(V) and TL(M)/TV = TL(V), we have

ov: L(V) 5 V x GL(m,R)
and Tyy: TL(V) 5 TV x TGL(m,R); in the same way,
év: L(TV) = TV x GL(2m,R).
The embedding ¢y, restricted to TL(V) is given as composition of the following maps:

TL(V) —= TV x TGL(m,R) —— TV x GL(2m,R) —— L(TV).

Tpv (id ey, ) d’;]

The fact that ¢y and ¢y are constructed with the same trivialization provides the intrinsic
nature of ¢3;. The claimed commutativity is an immediate consequence of the described
construction. O
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Notation 2.2. — For a differentiable manifold F let sy : TTF — TTF be the canonical
isomorphism which makes the following diagram commutative:

TTF 2, TTF

(2.7) 3
’ TlF -, Tll

where pry and pryp are the projections TF — F, resp. T(TF) — TF. In explicit terms,
the isomorphism sz is described as follows: if v = 0,0:z(t,a) for some smooth map
(t,a) — z(t,a) € F, then sp(v) = 0i0,z(t,a).

Remark 2.3. — The canonical embedding ¢p; : TL(M) — L(T'M) in diagram (2.5)
may equivalently be described as follows: Let W = 4(0) € TL(M) for some smooth
curve a — u(a) € L(M), and v = b(0) € TR™ = R™ & R™ for some smooth curve
a — bla) € R™, then

LJ\I(W) V= Spng ((’11- b) (U)) s

where sp; : TTM — TTM is given by (2.7).

DEerINITION 2.4. — Let G be a Lie subgroup of GL(m,R) and ¢’ = +,,(TG) = TG
the corresponding Lie subgroup of GL(2m,R). Let 7 : P — M be a G-structure on M.
We denote by 7’ the restriction of the projection 7 : L(T'M) — TM to the subbundle
P" := 1p(TP) of L(TM). Then «’ : P’ — TM provides a G'-structure on TM, the
canonical lift of the G-structure PP on M to the tangent bundle T'M.

Remark 2.5. — Let w7 : P — M be a G-structure on M where G is a Lie subgroup of
GL(m,R), and let 7’ : P' — T'M be the induced G’-structure on T'M. Assume there is a
G-connection on P splitting the following sequence of vector bundles over P:

0-—-—>PXg—*—>TP—IE‘>7T*TM———>U,
(2.8) ~ S

~ o -

@=(prp,w)
defining a connection 1-form w € I'(T*P ® g) on P. Differentiation of (2.8) gives a
G'-connection on P’ via:

0 —— TP x Tg 2% 77P ZI% (Tx)*TTM —> 0

2.9) ("M»T"mosG)P T"Mlz lz
0 — P'xg TP I (#/)*TTM —— 0,

where the isomorphisms sp : TTP — TTP and s¢ : TTG — TTG are defined by (2.7).

Note that the elements of T'g are vertical in TT'G, hence s maps 1'g to ToTG where
0 € T.G = g, and obviously 7,7'G is mapped to g’ = 171G’ under T't,,. The first line in
(2.9) is a sequence of vector bundles over TP, the second over P’
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288 M. ARNAUDON AND A. THALMAIER

From (2.9) we can see that each G-invariant splitting of (2.8) gives rise to a natural
G'-connection on P’ which is usually called complete lift of the G-connection on P to P,
e.g. [4]. The following lemma summarizes its main properties.

LemmMA 2.6 (Characterizations of the complete lift). — Let 7 : P — M be a G-structure
on M where G is a Lie subgroup of GL(m,R) and let 7’ : P’ — TM be the induced
G'-structure on T M. The complete lift to P’ of a G-connection on P is the G'-connection
on P’ which is characterized as follows:

(i) Its connection 1-form ' € T'(T*P' @ ¢’) is determined by
(2.10) thyw' =T, 0sg0Two sp,

where w € I(T*P ® g) is the connection 1-form on P and Tw the differential of w when
considered as a mapping w : TP — g. In other words, w' o Tivps and T(i,, o w) agree
up to canonical identification.

(ii) Its horizontal lift h' : (x')*TTM — TP’ is determined by the horizontal lift
h : m*TM — TP of the connection on P via

(2.11) tifh = TigospoThosyy,

where (13/ '), = B,y for w € TP.

(iii) The splitting of TP’ in a vertical and a horizontal subbundle over P' is given
by TP = (Tips 0 8p)(TV) & (Tipgosp)(TH) =V @ H if TP = V & H is the
corresponding splitting of TP over P.

In addition, if 9 € T(T*P @ R™) denotes the canonical 1-form of the connection on P,

(2.12) Do (Xy) = w Y T,m)X,, ueP, X e(TP),

then the canonical 1-form ¢ € T (TP’ @ TR™) of the induced connection on P’ is
determined by

(2.13) 1y =Tdosp,

where TV is the differential of 9 when considered as mapping ¥ : TP — R"™.

In this paper we are mainly interested in the following two cases:

(i) The frame bundle 7 : L(M) — M over a manifold M with structure group
GL(m,R), and its canonical lift to a TGL(m, R)-structure ' : L'(M) — TM on TM.

(ii) The orthonormal frame bundle = : O(M) — M over a Riemannian manifold (M, g)
with structure group O(rm), and its canonical lift to a TO(m)-structure «’ : O'(M) — TM
on TM.

Let again w : P — M be a G-structure on M equipped with a G-connection, where G is a
certain Lie subgroup of GL(m, R), e.g. G = GL(m, R) itself or G = O(m) corresponding
to P = L(M), resp. P = O(M). Each G-connection on P induces a linear connection
on M, i.e. a connection in the vector bundle £/ = T'M, splitting the exact sequence of
vector bundles over TM,

Tp
(2.14) 0 — p*E — TE —— p*TM — 0,
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COMPLETE LIFTS OF CONNECTIONS AND STOCHASTIC JACOBI FIELDS 289
with p : £ — M denoting the canonical projection. In explicit terms, the decomposition
(2.15) TE=p'FaoHE)=V(E)® H(E)

in the vertical and horizontal subbundle is given as follows: Let ¢ € £ and choose
u € Ppe). Note that u§ = ¢ for precisely one { € R™. Reading { as a map £ : P — E,
we consider its differential 7,,€ at w. Then, induced from the splitting TP = V & H
of TP, we have

(2.16) T.F = E,,(p) & H.(F),

where H,.(FE) is the image of H, under T,£. The corresponding covariant derivative V
is given by

VX}" = I)rV(E)TYX

with pry- (g, denoting the projection of T'E onto V(E) = p*E.

In the same way, each G’-connection on P’ induces a linear connection on TM, i.e.
a connection in the vector bundle £ = TE = TTM over E = TM. The splitting
TE' = V'(E) @ H'(E) over E’ again is essentially given by taking tangent spaces in
(2.15), i.e. TE' = sg(TV(E)) & sg(TH(FE)) with sg : TTE — TTFE defined by (2.7).
The corresponding covariant derivative V' is characterized by the following property: For
a vector field X € I'(TM) on M denote by X' € T(TTM) its complete lift to TM,
i.e., X' = Snf TX. Then

f\'rY’ - pI.Sp;(T‘/’(E))TY/XI = (prV(E)TYXy = (VA\"Y)’.

in accordance with the definition in [31]. The covariant derivative V'’ is called the
complete lift of V to TM.

3. Differentiable families of semimartingales

In this section we consider again P = L(M), resp. P = O(M), with structure group
G = GL(m,R), resp. G = O(m), more generally, P may be a G-structure on M where
G is a certain Lie subgroup of GL(m,R). In either case, we suppose that = : P — M is
endowed with a GG-connection. As explained in the previous section, we have a covariant
derivative V on M and its complete lift V' on TM.

Let X be a continuous M -valued semimartingale. Recall that, by definition, a P-valued
semimartingale U is a horizontal lift of X if 7o U = X and fU w = 0, almost surely;
here [, w = [w(6U) denotes the (Stratonovich) integral of the connection 1-form w along
U. Furthermore, the anti-development A(X') of X takes values in 7x, M and is given by
A(X) = Uy [, 9 where U is a horizontal lift of X. Each horizontal lift U of X is uniquely
determined by its initial value Uy, the parallel transport //, , = UyoUy " : T, M — Tx M
along X, is consequently independent of the choice of Uy, and so is the anti-development
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290 M. ARNAUDON AND A. THALMAIER

A(X) of X (see [8], [12] for details); [,, ¥ = [9(6U) itself will be called anti-development
of X into R™ with initial frame U.

Now consider families (X (2))qe; of continuous semimartingales on M, differentiable
(i.e. C') in the topology of semimartingales. The index set I is allowed to be an
arbitrary differentiable manifold. As shown in [2], on the set of continuous martingales this
topology coincides with the topology of compact convergence in probability. We denote by
X' =TX the family (X'(v)),.crr of T M-valued semimartingales where X'(v) := (7, X )v
if v € T,1. The following theorem adapts a similar result obtained in [2].

THEOREM 3.1. — Let (X (a))ues be a C -family of continuous semimartingales on M (for
simplicity, each with infinite lifetime), and let U(a) be a horizontal lift of X (a) to P such
that o — Uy(a) is C' in probability.

(i) Then a — Ul(a) is C" in the topology of semimartingales, and U’ = 13, TU is the
horizontal lift of TX to P with U] = 13, TU,.

(ii) If Z(a) = A(X(a)) is the anti-development of X (a), then a — Z(a) is C* in the
topology of semimartingales. Moreover, for v € TI, denoting by Z'(v) = A'(TX(v)) the
anti-development of T X (v) (with respect to complete lift of the connection to P'), we get
Z'(v) = sp(TZ)v, in other words,

A(TX) = sy TAX),

where sp; : TTM — TTM is the isomorphism defined by diagram (2.7).
Proof. — The fact that a — U(a) and @ — Z(a) are C? in the topology of semimartingales
follows from [2]. We check the claimed identities.

i) Here it is enough to show that U’ is above TX, ie., 7' o U’ = TX, and horizontal,
ie, ' (8U')=0.But 7’ olU' = 7olU' =701y oTU =T7noTU =T(roU) =TX. On
the other hand, since w(6U) = 0, we get by differentiation, 0 = (Twosp)(§TU), and thus

W (BU') = W' (Tea 6TU) = (T, 0 5g 0 Tw 0 sp)(§TU) = 0.

ii) Let Z(a) = [9(6U(a)) be the anti-development of X (a) into R™ with initial frame
Up(a). Since by definition of ¢s; (see Remark 2.3)

(](/] TZ = [A[(TUO)(TZ) = SM T(U()Z).
it suffices to verify that
(3.1) (TZ)v = Z'(v),

where Z'(v) = [9'(6U'(a)) is the anti-development of TX(v) into R™ & R™ with
initial frame U/(a). But, using the explicit form of ¥ given in (2.13), we immediately
get T (9(8U)) = (T9 0 sp)(6(TU)) = (¢ o Tiag)(8(TU)) = 9 (8 TU)) = &' (8U)
which concludes the proof. O

We give P’ a linear connection V which has the following property: If /~/0’. is the
parallel transport with respect to V along a curve ¢ — u(t) in P, and //, , the parallel
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transport with respect to V along ¢ — x(t) = w(u(t)) in M, then the following diagram
is supposed to commute:

/o,
Hyo) —— Hyg
(3.2) hu(mTE E‘T"u(n,

TZ(O)M //O.t Tx(t)M

where H C TP denotes the horizontal subbundle. Note that, for instance, the canonical
flat connection V2t on P, induced by the trivialization of TP over P:

TP=H®V =span{Ly,....L,} ® span{/i : A € basis of g},
ie, VIY = Y X(a') L + X, X (W) A; if Y = 3, a'Li + 3, ;b9 A € T(TP),

has property (3.2). Also the horizontal lift V" of V to P (see [4]) satisfies (3.2). It is
easily checked that (3.2) is equivalent to

VanYh = (VY)Y for X,Y € I(TM),

where X" € I'(TP), X! = hy(Xr(u)), u € P, is the horizontal lift of X to P. Given a
linear connection ¥V on P with property (3.2), it is immediately seen that the horizontal lift
U to P of a V-martingale X on M is a V-martingale on P: Indeed, for the corresponding
anti-developments we have

AX)(U) = hy, (A(X)).

In the same way, replacing the roles of M, V, H by TM, V', H', we give P’ a connection
V'’ which satisfies the analogous property to (3.2).

COROLLARY 3.2. — Let M be a manifold with a linear connection V and (X (a))acr a
family of M-valued continuous semimartingales, C* in the topology of semimartingales.
Let a + Up(a) € P be C* in probability such that ©(Us(a)) = X(a). Let (U(a))aer
be the horizontal lifts of (X(a))eer to P, and (Z(a))eer the antidevelopments. As in
Theorem (3.1), consider the families X'(v),err on TM, U'(v)yery on P' and Z'(v)yerr
on TT M., In this situation the following constructions commute:

oT
bM U’

o

U
]
(3.3) X —I 5 x,
J4
A

«]
ZI
where h.l. stands for the horizontal lift to P induced by V¥, resp. to P’ induced by V'. In

addition, if one of the families in (3.3) consists of martingales (with respect to the specified
connection) then already all others are martingales.

sy oT

Note that each family in (3.3) allows to construct the whole diagram.
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4. Stochastic Jacobi fields

We begin by studying T'M-valued semimartingales which are martingales, either with
respect to the horizontal lift V or with respect to the complete lift V’ of a connection V on
M. Recall that the horizontal lift V* of V is the linear connection on TM determined by
the following condition [31]: If ¢t — J(¢) is a curve in TM, and ¢ — X (t) = w(J(t)) the
projection to M, then the parallel transport // g’tW along J (with respect to V") of a vector
W € TyyTM (with decomposition W = WYt @ W in T\ TM = V) & Hy(o))
is given by

(4.1) //g,tW = V) © //(l,t o (Vi) W @ hJ(t o //o ¢ hI(O) H(wher)

where v: 7*TM = V and hV: 7*TM = H denote vertical, resp. horizontal lift, and /oo
parallel transport on 7'M along t — X(t).

For any vector field A € I'(X*TM) on M along ¢ — X (¢) with covariant derivative

(4.2) VDA = [y flon A= v (Avm),

let A" AY € I(J*TTM) denote the corresponding horizontally, resp. vertically lifted
vector field on T'M along ¢t + J(t). The following formulae for the covariant derivatives
with respect to V" are immediate from (4.1)

(4.3) VhA" = (VpA)", VLAY = (VpA).

For vector flelds A, B € T'(TM), we get the usual formulae, appearing as definition in
[31] 1T (7.3),

(4.4) VhBY =0, VLB"=0, VAB'=(V4B)", VA&LB"=(V.B)",

where A", AV, B*, BY € I'(TTM) denote the horizontal, resp. vertical lifts of 4, B. Note
however that in [31] the splitting

TTM = V(TM)& H(TM)

in the vertical and horizontal subbundle, which appears in (4.1), is taken with respect to
the adjoint connection

(4.5) ViB:=VA+[A Bl=V.iB-TM(A4,B), A Bel(TM).

where T is the torsion tensor on M. For C € I'(T*M ® TM), let yC € T(TTM) be
defined via (YC)(y,u) = vu(Cx(n)) for all u € T, M. Then, the horizontal lift of a vector
field A as defined in [31] p. 87, corresponds to A" —yT™ (- A) in our notation. This leads
to slightly different formulae in case of connections with torsion. The following formulae,
relating complete and horizontal lift of a connection to each other, will be crucial for our
purpose, see [31] II (7.1) and (7.2):

vl Bv — 0 v/ Bh, — T]\J(A B)v I Bv —_ (VAB)“,

(4.6) " B" = (VAB)" + v(RM(+, A)B + (V. TM)( ,B)).
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for vector fields A, B € T'(TM). Here TM and RM denote the torsion, resp. curvature
tensor of the connection V. In particular, one has

V4B~ V4.B'=V,,B" - V,,B" =0,
(4.7) "B — V4. B" = TM(A,B)",
Bt = V4B = y(RM (-, A)B + (V,ITM)(+, B)).

Similarly, for vector fields A € I'(X*TM) on M along a curve ¢t — X (¢), we get for the
lifted fields A", A" along J with 7 o J = X the formulae:

VpAY = (VpA)',

(48) VAl = (VDA)”' + vy (RM(J, X)A+ Vp(TM(J, A)) — TM(J, VDA)),

hence, by means of Vp(TM(J, A)) = (VpTM)(J, A) + TM(VpJ, A) + TM(J,VpA),

VpA” — VA" =0,

4.9 .
(49) VhAM —VEAr = v, (RM(.J,X)A + (VpTM)(J, A) + TM(VDJ,A)).

Following Emery [12], if V is a connection on M, the It6 differential dVX of a
continuous semimartingale X on M can be written as the projection FV(DX) of the
second order differential DX under the canonical projection FV : M — TM,

FL L for L=AeI(TM),
T\ 2H(VaB+VpA+]A,B]) for L =AB with A,B € T(TM).
2

In this way, each connection V on M gives rise to a splitting of the following exact
sequence of vector bundles over M:

0 — TM —— M — TMOTM — 0,

S F L

(4.10)

here ¢ is the canonical inclusion of TM in M, and TM ©® TM the symmetrical tensor
product.

Lemma 4.1. — Let J be a semimartingale with values in TM and X = wo J its
projection to M. Then

d¥'J=d""] + Tvy (RM(J,V dX)dX + VTM(dX, J,dX) + TM(//O’.d//(;iJ, dX)),
where vy, : Tx,M — T;TM denotes the vertical lift. The covariant derivative

VTM € T(T*M®3QT M) of the torsion TM is given by VIM (A, B,C) = (V,TM)(B, C)
for A,B,C € T(TM).

Proof. — To calculate the difference FV' — F¥" it is sufficient to consider
(F¥' = F¥") Jj(0) and (F¥ —FY").j(0)
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where J is a smooth curve in TM. Clearly (FV — th) J(0) = 0. For the second term,
we have by definition

(F¥ = F¥").J(0) = (V) ~ Vi) ) (0).
By decomposing J according to J = hY (X) 4 u;(VpJ), we conclude from (4.9)
(Vo = Vi) (0) = vy (R (J, X) X + VT (X, J, X) + T (V. X))

which implies the claimed formula. O

THEOREM 4.2. — Let J be a TM-valued semimartingale and X = w o J. The
antidevelopment A"(J) of J with respect to V" is given by

(4.11) A" J) = Y, (AX)) + v, (//oad = Jo),

using the canonical identification T;,TM = H; & V;, & Tx,M & Tx, M via horizontal
lift B : Tx,M — Hj, and vertical lift vy, : Tx,M — Vj,.

Proof. — Let w € T;, TM. By (4.1), //gf w=hy ofl,,0(hy) wifwe Hy, and
//Otw = vy, 0 /[, 0 (vy) )" lw if w € Vj, (indeed, for this, we may assume that J is
just a smooth path, the claim is then equivalent to (4.1)). Further note that Z := A"(J)
is determined by the following Stratonovich equation

(4.12) 82 =(/ly,) 6], Zy=0€ Ty, TM
(with the identification of T;, 7'M and its tangent space). This gives in particular
(4-13) (,UJUIZvert) _ U;OI (//g).)«l(&])vert — //(-):: 'U;l((s.])vert.

On the other hand, (4.2) extends to continuous semimartingales .J as

//0. //0. J) = vll(é*])vert

Thus //, \J—Jy and vy ' (Z¥") satisfy the same stochastic differential equation with
identical starting points, so that they are equal. In the same way, we conclude from (4.12)

6 ((h5,)7220r) = (h3) ™M (/o) ENF = /g o(hT)THED™".
But (AY)~1(8J)r = 6X, since for a vector u € T;TM, j € TM,

(RY) _l(uhor) = m(u)

7

with = : TM — M the canonical projection. Hence, also A(X) and (A} ) ~(Zbor) satisfy
the same stochastic differential equation with identical starting points, they are consequently
equal. O
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Remark 4.3. — Let J be a semimartingale taking values in TM. We denote by DJ the

covariant differential of J, i.e., DJ = [/, ,d(//, 1J) where // 0, is parallel translation

along 7 o J. (Note that this notion is consistent with the notation Vp = % commonly

used in classical differential geometry.) Instead of Stratonovich equation (4.12), the
anti-development Z := A"(.J) of J can also be characterized by means of an It equation:

(4.14) Az = () ) dV), Zy=0€ T, TM.

Analogous to (4.13), this equation gives

(4.15) d(v3,12°) = [f5 o7t (dT Ty,

Combining (4.15) with d(//, iJ )=d (v_;an vert), we see that DJ is the projection of the
vertical part of d¥"J, in other words, DJ = v71(dV"J)vr.

COROLLARY 4.4. — Let M be a manifold endowed with a connection V. Let J be a
continuous semimartingale with values in TM. Then J is a V"-martingale on TM if and

only if
(i) X = woJ is a V-martingale on M and

(i) d(//50d) =20
where = denotes equality modulo differentials of local martingales and //O,t parallel
translation on M along X.

Proof. — The claim follows immediately from Theorem 4.2. O

THEOREM 4.5. — Let J be a TM-valued semimartingale and X = =w o J. The
antidevelopment A'(J) of J with respect to V' is given by

A =I5 LACO) + o 3 = ot [ 1T = T (o ACK))

v [T e gy, )sace,).

where TM, RM is the torsion, resp. curvature tensor of the connection V on M. Thus, the
difference between A'(J) and A*(]) is vertical and coincides with the vertical lift of

/ T (g, 5K, — T (o, AX)) + [] T RM (T 5X) (/] SAX).).

Note that 6X, = //, 6 A(X)s. A similar formula for the derivative of the anti-
development of a semimartingale with respect to a parameter appears in T. Lyons and
Z.-M. Qian [21], Theorem 1; see also [17], Theorem 2.1, for a related result.

Proof. — We start by proving that the parallel transport // 6’. on T'M (with respect to V')
along .J of a vector w € T;,TM with v = m,(w) satisfies

o) w=(/g)w =y, (TM(Jn Hosw) = 10, T (Jo, u))

o (o [ (R 5500 0) ) )
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Let w; denote the right hand side of (4.16), w! = // 0w and u; = // 0.t u. To prove (4.16),
we may assume that J is a smooth path. First, by exploxtmg (4.8), we have

Vol 0™™) = Vi (v, © ffy, 007 @) = 03, (Vo (g, 032 (w™) ) = 0

and in the same way
Vl') (’U_], (//O‘tTAI(J(),U))) = 0,
hence
t
Vi wi = Vp(/fh, wt™) - Vi vJ,(TWJt,ut) oo [ Hab(RY (X us)ds)-
0

Again by (4.9), and the fact that Vpu, = 0, we find
t
Vpw: = vy, (RM(Jt,Xt)ut ~Vp/los / //ai (RM(JS,XS)us)ds)
J0

=uy, (RM(Jt,Xt)ut - //g,t% /Ot /oy (RM(J,, X,) us)ds> =0

which establishes formula (4.16) for the parallel transport. From here we find a formula
for the inverse parallel transport (using the expression of (// g,t)—l on vertical vectors):

oMY = 8™ )+ 0, (#5a T (el ) = T (g ')
o ( / I (RO 8X) //a,ivr*w')))-

Now, to calculate .A’'(J) — A"(.J), we work with Stratonovich equations. By means of

BA(T) = (//o4)71(8)

and

SAMT) = (/) 1(6),

we get

S(A () = A(D) = ((f5.0) ™ = (Jle )2V (8)
= vy, ( //(;jTM(J, T (8J)) = TM (7, //(;im,(aJ))

o[ IR ) Uty 50

=vJo(//a,iT“f(J,6X) T (Jo, SA(X / 1R (1, 6X.)//, g«SA(X))
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Integration with respect to time gives

A'(J) = AMT) + vy, (/{;. //l;,iTM(-}stXs) _ TM(JO,A(X)))

+ oz, ( /0 ) ( /0 CJ/SIRM (., 6X,) //0,,) 6A(X)s>

which is using (4.11) seen to be the claimed formula. |

COROLLARY 4.6. — Let M be a manifold endowed with a connection V. Let J be a
continuous semimartingale with values in TM. Then J is a V'-martingale on TM if and

only if
(i) X = woJ is a V-martingale on M and

G)d(//gad)+ 2 /o (VTM(dX, J,dX)+TM(DJ,dX)+RM(J,dX) dX) 2 0. Here
DJ = //07.d(//5; J) denotes again the covariant differential of J.

Proof. — The claim could be derived from Lemma 4.1. We conclude directly with
Theorem 4.1. Let X be a V-martingale (equivalently, A(X) a local martingale). Since
obviously T (Jg, A(X)) is then a local martingale, it remains to show that

A0 + [ 15 (R (X, U, 64C)0)
= %//[;iVTM(dX, JdX)+ % //(;iTM(DJ, dX) + % //g;RM(J, dX)dX.
Indeed, first note that

AT (1,6X) 2 L J/FAVTM (X, J,dX) + § [/ AT (D, dX).
On the other hand, denoting
amax) =[x, wa 0= [GRY LX)y,
we have
I R85, 8AC0N) = €54 = C A+ IC A
where the bracket [C, A] = Y, ;[Cix, Ax] e (in terms of a basis (e;) of T, M) is given by
[C, A] = /; ) /1o RM(J.dX)dX.
Thus, the claim is a consequence of Theorem 4.5. O

There are characterizations of geodesics in 7'M analogous to the characterizations of
martingales given in Corollary 4.4 and 4.6:
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Remark 4.7 [31]. — Let J be a curve in T'’M and v = 7 o J its projection to M.

(1) The curve J is a V*-geodesic in TM if and only if v is a V-geodesic on M and
J has vanishing second covariant derivative along v, i.e.,

Vpy=0 and V3J=0.
(2) The curve J is a V’-geodesic in TM if and only if
Vpy=0 and V3J+ Vp(TY (%)) +RM(J,4)% = 0.

In other words, V’-geodesics in T'M are just Jacobi fields along geodesics on M. Note
that Vp (TM(J, %)) = (VoTM™)(J,4) + TM(Vpd,¥) since Vpy = 0.

Let V be a linear connection on M and V its symmetrization. By definition,
V= 3(V+ V) where V is the adjoint connection (4.5), i.e.

417 VAB = LV 4B+ V4B)=V4B - 1TM(A,B), A,Bel(TM).
2 2

In terms of V, Corollary 4.6 may be formulated as follows.

CorOLLARY 4.8. — Let M be a manifold endowed with a connection V. Let J be a
continuous semimartingale with values in TM. Then J is a V'-martingale on TM if and
only if

(i) X = moJ is a V-martingale on M and

Qi) d(f/g0d) + 1 /o RM(J.dX)dX 2 0
where /70,. : I, M — Tx, M denotes parallel transport on M along X with respect to the
symmetrized connection ¥, and R the curvature tensor to V.

Proof. — Indeed, since the torsion of the complete lift V' on 7'M is just the complete lift
of the torsion of V on M (see [31] p. 41), we see that symmetrization and complete lift
commute: (V)’ = V’. On the other hand, symmetrization of a connection does not change
the class of martingales, hence the V’'-martingales in T'M are exactly the (V)’-martingales
in TM. By these observations the claim is reduced to Corollary 4.6. O

A special type of V'-martingales in 7'M are those arising as infinitesimal variations of

V-martingales on M, i.e. which are of the form
(4.18) Ji= (T, X )v, veT,l,

where I 5 a — X(a) is a C* family of V-martingales on M. Let a — U,(a) be a horizontal
lift of X,(a) to the frame bundle L{M) over M such that a — Uy(a) is C!, then

(4.19) Horde = Us(a) 9((T.U)v)

with 9 the canonical 1-form of the connection defined by (2.12). In this case, it is possible
to recover condition (ii) of Corollary 4.6 from the structural equations of the connection.

Following the ideas of P. Malliavin [22], [23], a T M-valued V’-martingale J of the
form (4.18) will be called a stochastic Jacobi field on M along X = w o J. As shown
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in [2] each T'M-valued V'-martingale J is a stochastic Jacobi field in the following sense:
Let J be defined up to lifetime ¢. Then there is a C'-family (X (a))qer of V-martingales
on M such that, if (a) is the lifetime of X (a), then {(a) — ¢ in probability as a — 0,
and J = O4|a=0X(a) holds. On a complete Riemannian manifold M one can choose
(X (a))aer such that, in addition, each X (a) is defined on [0, ([.

Example 4.9 (Gradient Brownian motions). — For a Riemannian manifold (M, g) let

J, = (T,X,)v where v € T,M and X(a) is BM(M,g) such that Xo(a) = a. Then
(see [8])

(4:20) Aot d) 2 = 5[5 Ric* (Jo ) dt.

For u € T, M, by definition, Ric*(u, +) € T,M is given through (Ric*(u, *),w) =
Ric(u,w) for all w € T, M.
Example 4.10 (Stratonovich SDE). — Let M be an m-dimensional smooth manifold

endowed with a torsion-free connection V. Given 7 € N, let A € (R @ TM) and
Ag € I(TM). Consider the Stratonovich SDE on M

(4.21) 6X = A(X)6B + Ao(X) dt

where B is an R”-valued Brownian motion on some filtered probability space satisfying
the usual completeness conditions. Solutions X to (4.21) are V-martingales on M if

1 T
Ap + EEVA,Ai =0
where A; = A(*)e; € I(TM) fori = 1,...,r. For some v € T, M let J; = (ToX:)v.
Then [3] we have:

Af5a?) = H5a¥s(A0+ 5 30 Vads)
(4.22) ) i=1 )
- % g JoaBRM (L A(X)) Ai(X)dt + Y [fou(VaAi) dB'.

i=1

Equation (4.22) for the covariant differential DJ = //, ,d//, 1 J of J is a special case
of more general results in [2], dealing with variations of solutions of arbitrary It6 SDE’s,
see [2] Corollary 3.17.

Example 4.11 (Stochastic Jacobi fields on a Lie group). — Let G be a Lie group, g = T.G
its Lie algebra, V the canonical left invariant connection such that VaB=0if Beg
(we identify g and the left invariant vector fields on G in the usual way). The torsion is
given by T(4,, B,) = —[A, B], for A, B € g, the curvature tensor by R = 0. Let M
be a semimartingale with values in 7.G = g such that My = 0, and £(M) its stochastic
exponential, i.e. the solution X of

6 X=X0M, Xo=e
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(writing X 6 M for (Lx).(6M)). Then, to a family X(e) of semimartingales with values
in G, there exist T,G-valued semimartingales M (a) such that X(a) = Xo(a) E(M(a)),
and we have Z(a) = A(X(a)) = Xo(a) M(a). But, see e.g. [1],
E(M(a)) = £((M(a) = M(0)) + M(0))
= 8(/ AdE(M(0)) 6(M(a) — M(O)))E(M(U))
0

which shows
(4.23) X(a) = Xo(a)é“(/o. AdE(M(0)) §(M(a) - M(O)))E(M(O)).
Let J = O,|a=0X. Differentiating (4.23) at « = 0 gives
(4.24) J =X, ([ AdE(M) 5M')£(M) + Jo E(M)
(we omit the parameter a when equal to (). Taking into account that
Hoad = Xo X 1T = Xo (M) X5,
we get from (4.24) the equation
ALEM)Y( X )od) = /0 AdEM) M + X5 0o,

hence

AAEM) (X5 8(//50T)) + S(AEM))(X5 /54 ) = AdE(M) 6M,
or since TAdg = Adg o ad with ad(A)B = [A,B] for A, B € g,

AdE(M) (X(;la( ord) + [6M, X(;l//ojiJ]) = AdE(M) M.
This shows
(4.25) 8(/loed) = T(Z, [/54]) = Xo M’
But XM’ is the vertical part of Z’, thus
) = kT = I+ [ HaTex)

and with s = sg (as defined by (2.7)) we obtain:

o (5(20)7) = [T — T+ / [ T(,6X) ~ T(Jo. 2).
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in accordance with Theorem 4.5. Note that:
,Ur—l ((.A(X)’)“’”) . ,U—l ((AI(J))Vert) — T(']()7 A(X))

THEOREM 4.12. — Let M be a manifold endowed with a connection V. On T'M consider
the complete lift V' of V. Let .J be a continuous semimartingale with values in TM. Then .J
is a V'-martingale on TM if and only if

(i) X = 7moJisa V-martingale on M, and

(i) Og4J = (Op, J+)i>0 is a local martingale
where the linear transports ©¢ 4 Tx M —Tx, M are defined by the following ( V)-covariant
equation along X

(4.26) {d(/ﬁi@o, )=~ 4 [0 RY(8p.0. dX)dX.

(')()_() = id.

with [/, . : Tx,M — Tx, M denoting parallel transport on M along X with respect to the
symmetrized connection V and R the curvature tensor to V.

Moreover, if V is the Levi-Civita connection on a Riemannian manifold M, then
O, : Tx, M — Tx, M on M along X is norm-increasing if all sectional curvatures along X
are nonpositive, and norm-decreasing if nonnegative.

The deformed (damped) parallel transport O, : Tx,M — Ty, M on M along X has
been studied by several authors; in the physical literature it is sometimes called Dohrn-
Guerra parallel translation [6]. P.A. Meyer deals with it in terms of local coordinates under
the name “transport géodésique”, see [24], formula (27); he also notes the monotonicity
of the norm (in the Riemannian case) depending on the sign of the curvature ([24],
Proposition 4). Note that (4.26) reduces to the so-called Ricci flow [8] if X is a Brownian
motion on a Riemannian manifold.

Proof (of Theorem 4.12). — Without loss of generality, we may assume that V is

torsion-free, following the same argumentation as in the proof of Corollary 4.8. It suffices

m

to show that d(©;1.7) = 0 if and only if
(4.27) dffoed + 3 /5 RM(TdX)dX 2 0.

Let 6o = //5,90. : Tx,M — Ty,M. Then

(4.28) o0 = =% /16 B (/] .00, dX)dX,
‘ to.0 = id,

and

(4.29) dboa = 3050 /0B (/oo dX)dX,
' fo.0 = id.
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Indeed, from ;¢ o 6o, = id we get dfj} 8o+ + 05 ; dfo, = 0 and hence

b, =~y dbo, B+
L0571 /oaRM (J g+ dX1)dX,,

i

Thus,
d(O5]) = d(851 //5.4T)
= dfga /00T + 050 d(//50])
= 1058 J/GARM (1, dX)dX + 651 d(/fy ),
which shows that d(651.J) £ 0 if and only if (4.27) holds.

Now assume that V is the Levi-Civita connection on a Riemannian manifold M, let
w € Tx, M. Since O, = //, , lo ¢, it remains to show that [|fo,¢ wl| > 60,0 w]| if RM <0,
and ||6; w|| < ||foow|| if RM > 0. But, by means of (4.28), we have,

—;—d ||00,.w[|2 <(90,.'w, df)o,’zl;}
= =1 (//o.00.0w.RM (/] JHo,0w,dX)dX ),

(4.30)

which gives the claim. a
For a Levi-Civita connection V, the above argument actually shows that the maps

O, :=00,00,L: Tx M — Ty, M, s<t,

are norm-increasing if R < 0, and norm-decreasing if R™ > 0.

Remark 4.13. — Let M be a manifold endowed with a torsion-free connection V. In
terms of the deformed parallel transport (4.26), resp. (4.28), we can rewrite the formula in
Theorem 4.5 for the anti-development of J with respect to V' as

A'(J) = R (AX)) + v, (/U Bo,s A(Og T )

«f ' ( / CSRM (T, 6X,) //O,T) dAX )s)

where the last integral is now an Itd integral, and hence a local martingale if X is a
V-martingale.

(4.31)

5. Families of martingales and the harmonic map heat flow

Let M, N be Riemannian manifolds, each endowed with the Levi-Civita connection,
and ug € C(M, N). We are interested in the deformation of ug under the heat flow

(5.1) Su=17r(u), ul_y = uo.

Recall that 7(f) = trVdf € T'(f*TN) denotes the tension field along a smooth map
f: M — N.Let X(a) be a BM(M, g), started at a € M at time ¢ = 0. Hence, the anti-
development A(X(a)) of X(a) is a (flat) Brownian motion B in T,M. Occasionally
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we will assume (M, g) to be BM-complete, ie., that Brownian motions on (M,g)
have infinite lifetime, but in general M is not required to be (metrically) complete. If
u: [0,¢) x M — N is a smooth solution of (5.1), then

(5.2) X.(a) = u(t~7,X.(a)), 0<r<t aeM,
defines a differentiable family of V'~ -martingales on N, see [28], and consequently
(5.3) T, X, v= Tx (yu(t —7r. )T X,v, 0<r <t veT,N,

a family of martingales in TN with respect to the complete lift of VY to TN. For not
necessarily BM-complete M, the martingales (5.2) and (5.3) are only defined up to t A((a)
where ((a) is the lifetime of X (a).

Remark 5.1. — Let u : [0,t] x M — N be a smooth solution to (5.1). Fixing
v € T,M and writing u, = u(r, -), we get the stochastic Jacobi fields J. = (TX,)v
and J. = TuyJ, = Tuy—.(TX,)v on M, resp. N. By Corollary 4.6, we have

(5-4) dffordr + 5 1500 [RY (T, e o () Tugp(+)] dr 2 0.

Note that equation (4.20) is a special case of (5.4) for M = N and g = id.

THEOREM 5.2. — Let M, N be Riemannian manifolds endowed with the Levi-Civita
connection where M is assumed to be BM-complete. Let u : [0,t] x M — N be a smooth
solution to the heat equation (5.1). For v € T, M, consider the stochastic Jacobi field

J=Tu; . TXv

along the N-valued martingale X = u(t—+, X.(a)) and let ©,e be the linear transport
along X determined by

{d(//ﬁ,'.)*ltao,. = —1(//N) RN (09, dX)dX,

5.5
(55) BOg = id,

where //é\f. is the parallel transport on N along X. Suppose that the local martingale
@aij in Tyi.a)N is already a martingale; then

(Tug)av = Jo =E [0y 1 ,], 0<r<t.
In other words,

(Tue)av = E 65+ (/o) T, (a7 Tu X ]

(5.6) LN
= [E[H()’t (//O,t) Tyf(a)'ll,() TaXf 'U], 0<r S t,

where the linear maps 0., : Ty1,o)N — Toy(1,0) N are determined by the pathwise equation

(5 7) %HO’T = _% (//E’)V;‘)AltrRN (//;,)V:r(}oﬂ" TYP(a)ut—r( : ))T\'T(a)uf—-r( * )1
0()‘0 =id.
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In addition, we have
(5.8) 8o <1 [l > 1], 0<r<t,

if N has nonpositive [nonnegative) sectional curvature.
Note that, equivalently to (5.7), 6, L is determined by

(5.9) {% B = 5000 (0,) ™ RN (/50 T ayttems() T, aytte—n (),
9(1(1) = id.
In Theorem 5.2 the assumption of ©g 1J actually being a martingale in T o) N is
obviously satisfied, if M, N are compact manifolds. In case M is compact, for instance, it
is well-known that we can choose the family of Brownian motions X (a) in such a way that
SuPg<,<¢ | TeX-|| € L? for any 1 < p < cc. Furthermore, by means of (5.8), equation (5.6)
allows to give a priori estimates for u, in terms of u, if the target V is negatively curved.
This provides a stochastic explanation of the famous result of Eells and Sampson that there
is no blow-up in the heat flow for harmonic maps in case of nonpositively curved targets.

Now, we want to extend derivative formulae as developed in [29] to the nonlinear case
of a curved target V. To this end, we consider the linear transport Woe =004 :T,M —
Tx,M along the Brownian motion X,(a) on M, defined by (4.26). For v € T, M,
the T'M-valued process W, o(v) above X(a) satisfies the following covariant equation
along X(a):

(5.10) L Wi, (v) = —1Ric™ (Wo . (v), - )#,
Woo(v) = v.

By definition, 2Wo,(v) = //,, & //(;11 Wo,-(v). Further, denote by
Z(a) = AY (u(t—-, Xo(a))
the anti-development of X,(a) = u(t—+. X,(a)), taking values in Tu(t,)N. Note that
(5.11) dZ(a) = (//g,) " Tult = 5,°) [/, dB,.
Furthermore, for o € M, let
(5.12) Fila):=FX =0{X,(a):0<s <7}
be the filtration generated by X, when started at «.

THEOREM 5.3. — Let M, N be compact Riemannian manifolds, and assume that
u:[0,t] x M — N is a smooth solution of the nonlinear heat equation (5.1). Lerv € T, M.
Then the following formula holds:

(Tou)v = — E [AN (ult—+, Xo(a))), | A f(w(,,,(hs), Ve st>]

+1E [ A ( o)t [RY (Tt W o (), Tty (+)) Tue—o(+))] ds}
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for any bounded F,(a)-adapted process h with sample paths in the Cameron-Martin space
H([0, ], T, M) such that ([ |h||?ds)'/* € L'*< for some € > 0, and the property that
ho = v, hy = 0.

Proof. — We may assume that the Brownian motions X (.) on M (for varying starting
points) are all constructed as solutions of a fixed Stratonovich SDE of the type

(5.13) §X = A(X) 6B + Ao(X) dt

with Ag € I(TM), A €e '(R™ ® TM), and B an R™-valued Brownian motion, m € N,
defined on some filtered probability space (2, (F¢)icr. ,P) satisfying the usual conditions,
such that the Levi-Civita connection VY on M equals the Le Jan-Watanabe connection
induced from (5.13), see [10]. Then, in particular,

B = AM(X(a) = /()'.(//;lﬁ)“A(x,(a)) 4B,

or A(X,(a))dB, = [/, dB,. Using the fact [11], [10] that
(5.14) Wo.,(v) 1= EX (T, X,) 0] = /10 EZ @O [(//65) (T X,) 0]
solves (5.10), it is sufficient to verify the formula
ot
(Towe)v = —E[AN (u(t—=, Xo(a)), | (LX) b, A(X,(a) (u}ﬁ)]
JQ

(5.15) ‘
+iE [ / (N ) e [RY (Tug—y Tu X b, Trtg—a(+)) Tt (4] ds] .
JO

Since h is J(a)-adapted, the formula in Theorem 5.3 follows then upon conditioning
with respect to Fo(a).

Now, for z € M, let A(z)* : T.M — R™ be the adjoint to A(z) : R" — T, M, thus
A(z)A(z)* = idp,pr. As in [29], let HS : M — M, parameterized by 0 < r < £, be
defined as the pathwise solution to

S H(a) = A(H: Ala)*h,.,
(549 {?jo(;)( 0 (AL

Set X:(a) = X,(HZ(a)). Then, in particular X?%(a) = X,(a), and the perturbed process
X¢ satisfies

6X = A(X®) 6B + Ag(X®)dr + (TX,)dH?
with dH: = (%Hf) dr = Hedr. In other words,
5X°(x) = A(X%(a)) [6B + A(X*(0))" (Ta: () X,) dHE ()] + Ao (X (a)) dr

This is an SDE of the same type as (5.13) but with the perturbed driving process
dBe(z) = dB + A(X*(a))*(Th:()X,) dH:(a). Again, as in [29], we compensate
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this perturbation by changing the measure by means of the Girsanov exponential
G = exp(Mg — 3[M*],) where

T

(5.17) M = = [ (A (T X,) HE dB,).

JO
Let X5(a) = u(t -, X:(a)) and Z°(a) = AV (u(t—-, X:(a)). Then Z%(a) - G(a) is
a local martingale in 7, H:(a))N. Consequently,

0 0

I € .GE - N - X, r Ta . .‘s‘ M Bs ‘_ €
bl 7 @) o) = AN e X)), [(TXoha it aB) + 2] z5(a)
is also a local martingale, and so is @, = sj; (%I;OZ;‘((L) -G%(a)) with s,/ being defined
in diagram (2.7). By Theorem 3.1 (ii), we obtain:

, J 5 . Ny 0 Ve

(Gl 7 0) = 4 (2] %)

For a fixed, let X = X(a) and J = 5%‘5:0)25(0,), thus J, = Tu,_, T.X, h,. According
to Theorem 4.5, we have

(AYY(T) = by, (AV(X))
wou (30 A= [0 (®2 s, LA (),)) )
where
[ (® G sxa g, sav0,))
:/0-'/0“‘(//5’]”:,")‘1.(R,N(j7,,55(,.)(//3; dAN(X)S)) +%(//g.)_1RN(J~7dX)dX
But we have:

(/o) "RY(J,dX)dX
= (o) 0 [RY (T s T X b, Tk oyt (+)) T gaytie—o( -] ds.

Now, take the vertical part QV** of the local martingale ) which is easily seen to be
already a martingale under our assumptions. The claimed formula follows by evaluating

|E ((Jxert,) — E (Q:ert),

using the fact that J, = (Toyus)v and J,=0,asa consequence of our assumptions on the
process h. O

Formula (5.15) has been derived by Elworthy [9] in the special case h, = (1 —-s/t).
Note that in the proof of Theorem 5.3 compactness of the manifolds was only needed to
assure that the local martingale Q**'' is actually a martingale. As in [29], this can also
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be achieved by putting appropriate conditions on the process h. For instance, we may
formulate the following modified version to Theorem 5.3.

THEOREM 5.4. — Let M, N be Riemannian manifolds. Let u : [0,t) x M — N be a
smooth solution of (5.1), v € T,M. Then

T{a)At . M
(Taws)v = ~ IE[AN (u(t——- aXO(a)))T(a)At /; <W0,S(h8)% /0,5 dB*‘>J
T(a)At N '
+ % E [/0 (//Oys)'ltr[RN (Tut_s W o(hs), Tue—s( )) Taug—y(* )] ds]

for any bounded F,(a)-adapted process h with sample paths in the Cameron-Martin space
H([0, 1), T, M) such that ( OT(G)M |hs||? ds)/2 € L*** for some e > 0, and the property
that ho = v, hy = 0 for all s > 7(a) At; here T(a) is the first exit time of X (a) from some
relatively compact neighbourhood D of a.

Note that, in contrast to formula (5.6) in Theorem 5.2, the differential Tuq of the initial
map uo does not appear in the formulae of Theorem 5.3 and Theorem 5.4. In terms of
Wo.e(v), a version of Theorem 5.2 may be formulated as follows:

THEOREM 5.5. — Let M, N be Riemannian manifolds, where Ric™ is bounded below by
some constant and the sectional curvatures R™ are bounded above by some constant; in
addition M is supposed to be BM-complete. Let u.: [0,t] x M — N be a smooth solution
to the heat equation such that ||Tul|| is bounded on [0,t] x M, then

(5.18) (Toud)v = E[Og, (Tx,ayto) Wor(v)], v € T.M,

where Wy o : T,M — Tx, M is determined by the following covariant equation along the
Brownian motion X = X(a):

d[(//a) " Woe] = =3 (/) 'R (Woe, dX)dX, Wog = id,

or equivalently

D

(5.19) g

1
WO,r = ‘ERjCM(WO,r, ')#7 WU,(] - 1d~
and ©¢ 4 : Ty(1,0)N — T N by the covariant equation along X = u(t—-. X,(a)):
(5200 A3 O0a] = =3 (V) RN (O0a, dX)AX, g = id.

Proof. — We know that

(5.21) Qs Tx, (ut =7, )T, X, v, 0<r<t,

is a local martingale. Again, we may assume that the Brownian motions X(-) on M
are constructed as solutions of an SDE of the type (5.13). Filtering out extraneous noise,
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by conditioning with respect to Fo(a) as in the proof of Theorem 5.3, shows that with
(5.21) also

(522) (“)Jll T\'I ({,)U(f -7, ') W, Or( ')., 0 S r S f,

is a local martingale, where W, , satisfies (5.19). It remains to show that (5.22) is
already a martingale under the given assumptions. First, since Ric™ is bounded below,
say Ric™ > «, we conclude from (5.19)

(5.23) IWo..(0)]| < [lo]] e="/2.

On the other hand, writing & ; = //(?, to,:, we get for w € Tyy(4,0)N from (4.30)

Ldllbo,wl? = =1 (/5 Borw. R¥ (/] 00 ,w, dX )dX)

= — 3 {/fobo,w tr RN (/)] 0010 T (wytie—(+)) Tx aytte—, () dr.

By assumption, there is an upper bound for R”, say R"Y < /3 for some 3 > 0, and a bound
on the operator norm of T, say ||Tu|| < ¢, which together yields (with 7 = dim M)

; 2 ‘
ﬁ;l]@oyrwllr" > —m 3|00 w|? HT\',.((,,)H,_F(- )H > —m 3|6, w|

Thus. 2 (log |6, w|?) > —3 2, or |y, wll* > [Ju]? =", and hence
(5.24) 165 L] < (]| pmideir/2
which gives the claim. 0

Note that (5.23) and (5.24) show that, in particular, if Ric* > a > 0 and RN < 0,
then u; — w.,, Where u,, is a constant mapping; indeed, by means of (5.18), we have
Tl < E[ITx, ol =]

In contrast to (5.18), the right hand side in formula of Theorem 5.4 expresses the
differential 7', as a sum of two terms. This can be avoided by working with the “deformed
parallel transport” ©¢ 4 : Ty N — T N along X instead of the ordinary parallel transport.
Given a solution « : [0,] x M — N to the nonlinear heat equation (5.1) and ¢ € M, we
continue using the notations X, = u, (X,.(a)) and J, = (Tx, (ayte—r (T X)) hy where
h 1s some bounded F,(a)-adapted process taking sample paths in the Cameron-Martin
space H([0,t], T, M). Note that the proof of Theorem 5.3 relies on the fact that in the
given situation

(/o)™ / (//ae) 'RN(J.dX)dX — AN(X /(Tth J/ol dB,)

is a local martingale. Using this, we see that also
(5.25) 51, - / ()O,d<AA(X / (Tu X, hy, /3L, dB, ))
<0
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is a local martingale. Taking into account that

(5.26) AN (uft—+, Xo(a)), = 4 (o) Tx.@yult = s,°) [ dB.,

we finally get the local martingale property of
(5.27) (—)Ojij.—/ O (T (ayti—s) T X by ds.
Jo

THEOREM 5.6. — Let M, N be Riemannian manifolds. Let v : [0, x M — N be a
smooth solution of (5.1), v € T,M. Then

(5.28) Ope (Tx -y WoaHe — | O5Y (T ue—s) Wy, dH,
JO

is a local Fy(a)-martingale for any F,(a)-adapted process H of locally bounded variation,
taking values in T,M. In particular,

5.29 O (T, Y Woohe — | Og M (T us_s) Wo s by ds
0, . f 0,s s

JO

is a local Fy(a)-martingale for any Fy(a)-adapted process h with sample paths in the
Cameron-Martin space H([0,t], T, M).

Proof. — Of course, the second part can be reduced to (5.27). But we may also argue
more elementary. Indeed, by Itd’s formula

d(@[v):,l T\', Ut — I/VO,‘I" H}) = ((—‘)(Ia Ji\', Ut —p I/l/(],r) dH7 + d((—)ﬂ_ﬂl‘ T\',"“/f—r VI/(],T) HT‘v

hence (5.29) coincides with

/ d(Og 2 Tx (ayue—s Wo,s) H,
Jo

which is a local martingale by Theorem 4.12. O

CoRrOLLARY 5.7. — Let M, N be Riemannian manifolds. Let u : [0,t] x M — N be a
smooth solution of (5.1), v € T,M. Then

T (a)At i
(530) (I1U1)’l) = ~E li/ (")a; (T\'ﬁ(a)ut_g) Wo,s hs dé}
Jo

for any bounded F,(a)-adapted process h with sample paths in the Cameron-Martin space
H([0,t], T, M) such that (for(a)m |hs||? ds)1/2 € L1*¢ for some € > 0, and the property

that hy = v, hy = 0 for all s > T(a) A t; here T(a) is again the first exit time of X (a)
from some relatively compact neighbourhood D of .
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Consider the general sitvation of a manifold M with a linear connection V, and a
continuous semimartingale X taking values in M with anti-development

(5.31) aco = [“iiex.= [Tyt

Replacing formally the parallel transport // 0. along X in (5.31) by the deformed parallel
transport ©g , along X, as defined by equation (4.26), leads to the notion of a “deformed
anti-development”

(5.32) Adet(X) = / gL 6X, = / B dVX,.
J0 0

Remark 5.8. — Returning to the situqtion of Theorem 5.6 and Corollary 5.7, in terms of
the “deformed anti-development” to X = u(t—-, X,.(a)), ie.,

AN ¢ (u(t—+, X (a))), = / 05 T, @ult s, +) /o dB,,

0

formula (5.30) may be rewritten as

T(a)At .
(5.33) (T,u;)v = —E [Af;;f(u(t—- Xe(@)) (ayne /0 (Wo,s hes, /13, dBQ}

giving an expression completely analogous to the linear case RN = 0, with the only
difference that anti-developments are taken with respect to the deformed parallel transport.
Note that the right-hand side of (5.33) does not involve derivatives of u; deformed
anti-developments are well-defined for any continuous semimartingale on V.

6. Gradient estimates for harmonic maps of bounded dilatation

Explicit differentiation formulae, as given in Theorem 5.4, Theorem 5.5 and Corollary 5.7
seem to be appropriate tools in deriving a priori estimates for the harmonic heat flow or
gradient estimates for harmonic maps.

By a well-known theorem [15], originally proved in purely geometric terms, a harmonic
map of bounded dilatation, from a complete Riemannian manifold A with RicM >0to
a Riemannian manifold N with RV < —f < 0, is necessarily constant. Brownian motion
techniques were employed by several authors (e.g. [16], [18], [27]) to obtain results in this
direction; the usual strategy to prove the nonexistence of particular maps is by showing
that they link random processes of incompatible behaviour.

In this section, we demonstrate how the differentiation formulae of section 5, e.g.
formula (5.30), can be directly used to achieve local and global gradient estimates, for
instance, for harmonic maps of bounded dilatation. Under appropriate curvature assumption
these estimates specialize to Liouville type theorems for harmonic maps of bounded
dilatation.
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Let M, N be Riemannian manifolds of dimensions m and n, respectively. Let
f+M — N be a C? map, and denote by

A(p) =2 Aa(p) = ... > An(p) >0

the eigenvalues of T, f* o T, f : T,M — T, M. If there is a positive number K such that
A1(p) < K?Xo(p) for every p € M, the f is said to be of K -bounded dilatation, e.g. [15].
Following Shen [26], the map f : M — N is said to be of generalized K -bounded
dilatation if A\; < K?(Xy + ... ),,) everywhere on M.

Now let u : [0,] x M — N be a smooth solution of the nonlinear heat equation. Assume
that RV < —8 for some £ > 0. Then, using the notions of the last section, we have:

%f_r“eﬂmw‘F = _%<//(J)\fv-90,rw7 tr R'N (//E’)\jreﬂ,?"wa T\',(a)ut—r( * )) T){,.(a)“t-r( . )>

_% <//£)\:'r90,’r'u)7 RN (//[j)\jrﬁ()’,.’l[/, T\',(a)ut——r(ei)) T\',(a)ut—7'(ei)>

=1

m ; . 2
%Zﬂ{ll%,rwllz 1T, (ayws—r(e))* — <//0N,r90,rw»TXr(a)“tvr(e'i» }
=1

I

v

where (e;)1<i<m denotes an orthonormal basis for Tx,(ayM. Choosing (e;) such that
(TU/t~,-)* (Tutvr) e; = )\1 e;

with Ay > ... > A, > 0, and using

Z<//f)\freo,r71~7aT\'r(a)U’tAr(ei)>2 = ||(I\',.(a)ut—r)* //é\{,.ao,ruilp S /\1 “00.7’11)”2:
=1

we get

0l 2 S0P { (30) = 2} = 8100, (35 0.
i=1 =2

Now, specializing to the case of a harmonic mapping f = uo : M — N, hence u, = Uy,
and assuming that uo has generalized K -bounded dilatation, we see that

d ”9(),,‘11}”2 Z ﬁ ”9”’.,-11}”2 /\1/K2.

dr

Thus, we obtain

ol 2 Il exp{ 87K [ 20(X,(0)) s}
Jo
and therefore

(6.1) ”90‘,,1_11)]] < |wl) exp{—ﬂ/(ZKz) /OT/\I(XS(a)) ds}.
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THEOREM 6.1. — Let M be a compact Riemannian manifold of dimension m with nonempty
smooth boundary &M and Ric™ > k for some constant k € R, and let N be an arbitrary
Riemannian manifold with RN < —73 for some constant 3 > 0. Let w : M — N be a

harmonic map of generalized K-bounded dilatation, a € J\c;[ = M ~OM. Then, for any
¢ € C2(M) with o|0M = 0 and ¢ > 0 on M, we have the estimate

2
(6:2) Tl < 7 o 2@ el

where c¢(p) = supzc[{cp2a +3||Voll? — Arp} and o = —(k A0). In particular,

2
(6.3) I Toull? < %C(dist(a,aM)),

where

7?2 T
C(r) = T(m +3)r 2+ 5 a(m—-1rt +a.

If M is a regular geodesic ball B{ay, R) of radius R about ag, contained in a complete
Riemannian manifold, then

2 . MO\
(6.4) I TLull? < % [Sin (-’i‘hité‘;—a—)ﬂ C(R).

Proof. — We work with Corollary 5.7 and the formula
7(a) _
(Tau)v =-E [/ ea,}z (T‘(s(a)u) WO,S hs dS:' )
Jo

where 7(a) now denotes the exit time of X (a) from 1\3[ . Thus

7(a) 7(a) .
| Tul? < EM e (fl’_ys(a)qudsJ -E[/O |Wo.s hs

Since A1(p) = ||T,u||?, we get from (6.1) for the first term

2ds} = A - As.

A < E[/OT(G) A (X.(a)) exp{—ﬁ/Kz/os,\l(X,,(a)) dr) ds} < _f;_z

where the last inequality comes from the fact that

M (Xo(a)) exp{—% /Os/\l(Xr(a)) dr} = _%i—d% exp{—kﬁ—2 ‘/(:sz\l(XT(a)) dr}.

The second term A» can be estimated using the methods of [30]. We confine ourselves to
a brief sketch of the main idea. Consider the strictly increasing process

T(r) = /0" 02 (Xs(a)) ds, r <7(a),
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and define
o(r)y=inf{s > 0:T(s) > r};

then T'(o(r)) = r since 7(a) < oo, and ¢(T(r)) = r for r < 7(a). The time-changed
Brownian motion X! = X,y has generator L' = 1/2¢?A; and lifetime T'(7(a)) which
is infinite by Proposition 2.3 [30]. Now, for some fixed £, > 0, let

(6.5) h = v(l - fgp( [ 07 (X0 (2)) Lrcota)y dr))’

where p € C([0,t0],R) such that p(0) = 0 and p(to) = to. Then hy = v and h, = 0
for s > o(t); in particular h, = 0 for s > 7(a). It is elementary to check that
:(t") ho|[2ds € L'. By means of estimate (5.23) and taking h as given by (6.5)
with a proper choice for #o and p, it is possible to verify A, < =2 c(p), see [30] for
details. This establishes (6.2). Finally, the estimates (6.3) and (6.4) are obtained with a
specific choice for the function ¢; basically one works with

| _( wdist(a, )
(6.6) o(+) = cos(m)

with the minor technical difficulty that (6.6) is not C? on the cut locus of a, see [30]. O

COROLLARY 6.2 [26]. — Let (M, g), (N, h) be Riemannian manifolds where M is complete
with its Ricci curvature bounded below by a nonpositive constant, and the sectional
curvatures of N bounded above by a negative constant, say

(6.7) RicY > —a, RN < -3, a>0, 8>0.

Let w: M — N be a harmonic map of generalized K -bounded dilatation; then

ak?
. *h <
(6.8) u h < 7

g-
In particular, if Ric™ > 0, RN < —f, then harmonic maps u : M — N of generalized
K -bounded dilatation are constant.

Proof. — Inequality (6.8) follows from (6.3) or (6.4) by exhausting the manifold through
a sequence of regular domains (relatively compact open subsets with nonempty smooth
boundary). O

Note that (6.8) in particular says that

vK? ,
distN(u(a:),u(y)) < (—yﬂ— dist™(z,y) for all z,y € M.

Thus w is distance-decreasing if aK? < §.
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