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HORIZONTAL MARTINGALES IN VECTOR BUNDLES

MARC ARNAUDON AND ANTON THALMAIER�

Abstra
t. Canonical prolongations of manifold-valued martingales to vector bun-

dles over a manifold are considered. Such prolongations require a lift of the connection

from the manifold to the corresponding bundle. Given a continuous semimartingale

X in M , if r is a connection on M (i.e. a covariant derivative on TM ) and r0

the lifted connection on E (i.e. a covariant derivative on TE), we consider semi-

martingales J in E, living above X and linked to X via dr
0

J = h

J

(d

r

X) where

h

J

: T

X

M ! T

J

E is the horizontal lift; drX and dr
0

J denote the Itô differentials

with respect to the given connection. Such semimartingales J inE will be called hori-

zontal semimartingales, resp. horizontal martingales in case whenX is ar-martingale.

There are numerous ways of liftingr tor0 . We mainly deal with horizontal and com-

plete lifts. Horizontal lifts give rise to the notion of covariant Itô differentials. For

covariant Itô differentials a commutation formula with ordinary covariant differentials

is established. As an application, covariant variations of stochastic parallel transport

and their relation to Yang-Mills connections are investigated. On the other side, within

the framework of complete lifts of connections, the martingale property is preserved

under taking derivatives (or exterior derivatives) of families of martingales and is inher-

ited to diffusions on the exterior cotangent bundle with the de Rham-Hodge Laplacian

as generator. Moreover, in a natural way, derivatives of harmonic maps are harmonic

as well.
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1. Introdu
tion and Notations

LetM be a differentiable manifold of dimensionm, endowed with a linear connection

r : �(TM)! �(T

�

M 
 TM); r

V

W � (rW )V;(1.1)

and let � : E !M be a vector bundle overM . Typically,E will be the tangent bundle

TM , the cotangent bundle T �M , the exterior tangent bundle ^TM , resp., cotangent

bundle^T �M , or more generally, some Dirac bundle overM . Let F
0

be a vector space

isomorphic to the typical fiber ofE. We denote by � : L(F
0

; E)!M the vector bundle

of linear maps F
0

! E

x

, x 2 M . In other words, L(F
0

; E) = F

�

0


 E when F
0

is

considered as the trivial bundle over M with fiber F
0

. Let L(M) = L(R

m

; TM).

In this article we shall deal with the following problem: Given a r-martingale X

in M , we are interested in lifting X from M to L(F
0

; E) in such a way that the lifted

process W above X (i.e., � ÆW = X) yields a martingale taking values in the vector

bundleL(F
0

; E), and such that there is a one to one correspondenceZ 7!WZ between

the local martingales in F
0

and the martingales in E which project ontoX . This clearly

requires a connection on E as an additional structure, i.e. a covariant derivative on TE,

r : �(TE)! �(T

�

E 
 TE):(1.2)

The problem of lifting martingales and connections to vector bundles over a manifold

has already been studied in [16] where horizontal and complete lifts to vector bundles

were investigated. Extending our work in the caseE = TM [2], we focus here on various

properties of horizontal and complete lifts, in particular in relation to the variation of

families of semimartingales. We differentiate martingales with respect to a parameter,

take exterior products, to obtain martingales for complete lifts of connections. Finally we

relate our results to the theory of diffusion operators and stochastic flows, as developed

in [10].

Our original motivation comes from the following problem: For functions f 2

C

1

(M) on a Riemannian manifoldM it is well-known that f is harmonic (i.e., �f = 0

where � is the Laplace-Beltrami operator on M ) if and only if the composition f ÆX

with Brownian motions X on M provides real-valued local martingales. Instead of

functions f , one may consider differential forms � 2 �(^T

�

M). We like to find a

connectionr on E = ^T

�

M in the sense of (1.2), such that a similar characterization

holds true: � is harmonic (i.e., �� = 0 where � is the Hodge-de Rham operator on

forms) if and only if � ÆX is an E-valued r-martingale for any Brownian motion X

on M . More generally, if E is a Dirac bundle and D its Dirac operator, we investigate

connections r on E such that a 2 �(E) is harmonic (i.e., �a := �D

2

a = 0) if and

only if all compositions a ÆX with Brownian motions X giver-martingales in E.

These characterizations do not determine the connection in a unique way, as long as

we consider only martingales which project to Brownian motions onM . As well-known,

the full class of r-martingales determines the connection up to torsion.

The paper is organized as follows. In Section 2 we recall some results concerning

complete lifts of connections to tangent and frame bundles. Theorem 2.1 ([16] Corol-

laire 8) gives a one to one correspondenceZ 7! �Z between the set of local martingales

in a tangent space T
X

0

M and the set of martingales in the tangent bundle TM which

project onto a given martingale X in the manifold; here � is not the usual parallel

transport but the geodesic transport along X , see Eq. (2.1) below. Theorem 2.2 ([3]
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Corollary 3.14) guarantees that Itô stochastic differential equations between manifolds

differentiate like ordinary equations, if the tangent bundles are equipped with the com-

plete lifts of the connections in the manifolds. Corollary 2.3 ([3] Theorem 4.1 and [2]

Theorem 3.1) gives a commutation formula between antidevelopment and differenti-

ation with respect to a parameter, and an interpretation of martingales in the tangent

bundle as stochastic Jacobi fields, i.e. as derivatives of families of martingales living in

the manifold.

In Section 3 we continue to work on the tangent bundle of M . The main result is

Theorem 3.1 which says that the commutation formula for antidevelopment and deriva-

tion (Corollary 2.3) still holds true if parallel transport is replaced by deformed parallel

transport (i.e. geodesic transport). Again the key step in the proof is Theorem 2.2.

In Section 4 we consider the situation where a connection r on M and a covariant

derivativerE on the vector bundleE is given. It is well known that there is a canonical

induced connection rh on E, called the horizontal lift of r and rE . Here we give

characterizations of martingales, parallel transport and antidevelopment with respect

torh. In particular, a covariant Itô differential of anE-valued semimartingale is defined.

The main result is a commutation formula for the covariant Itô differential and the

covariant derivative with respect to a parameter (Theorem 4.5). Various applications

related to Yang-Mills connections, and in relation to parallel transport along rescaled

Brownian bridge are given. In particular, the covariant derivative of parallel transport

along a Brownian motion is shown to play the same role in the theory of Yang-Mills

connections, as the image of a Brownian motion under a harmonic map in the theory of

harmonic maps. Also we write a Taylor expansion up to order 3 of the parallel transport

along a rescaled Brownian bridge, and prove that for Yang-Mills connections all the

drifts of the terms of the expansion vanish (Theorem 4.13).

Section 5 is devoted to the study of a class of connections on E which differ from a

horizontal lift by a bilinear map similar to the one we obtain when considering complete

lifts on TM . We describe again martingales, parallel transport, antidevelopment. This

extends Meyer’s results in [16] to connections with torsion on general vector bundles.

Note that for Le Jan-Watanabe connections, which are connections considered in most

of the examples given here, the torsion term cannot be suppressed. We discuss the

construction of dual connections in dual bundles and tensor products. When M is a

Riemannian manifold, a Laplacian on E associated with the considered connection is

defined, and a stochastic interpretation to the heat equation on E (Theorem 5.8 and

Corollary 5.9) is derived.

In Sections 6, 7 and 8 examples of connections constructed in Section 5 are given.

In Section 6 we consider the Levi-Civita connection r[ to the natural pseudo-metric

2dx

i

rp

i

in the cotangent bundle T �M . It is not the dual connection to the complete lift

in TM , as discussed in Section 5. However we remark that when M is a Riemannian

manifold equipped with the Levi-Civita connection, then the natural map (TM;r




)!

(T

�

M;r

[

) is affine.

In Section 7 we define connectionsr
 on the exterior bundles^pTM and by duality

on ^pT �M , which we call complete lifts of r. They naturally extend the definitions

in tangent and cotangent bundles. When M is a Riemannian manifold, the trace of the

bilinear map added to the horizontal lift is the term arising in Weitzenböck’s formula.
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However we are interested in the more general context of Le Jan-Watanabe connections

r (Definition 7.5) associated with diffusion processes X on M . The main result of

this section (Proposition 7.6) says that if X is a r-martingale then TX^p is a r
-

martingale. This is in fact a consequence of a formula established in the proof of

Theorem 3.3.8 in [10], and can be seen as some kind of extension of the stochastic

Jacobi field representation of martingales in the tangent bundle. The principal argument

of our proof is Corollary C.5 in [10]. Besides the stochastic Jacobi field representation,

the aim is to translate the geometric theory of diffusions on manifolds as developed in

Elworthy-Le Jan-Li in [10] into the language of martingales in manifolds.

In Section 8 we deal with complete lifts to Dirac bundles. Again the problem is

to find a bilinear map which gives the complete lift when added to the horizontal lift,

and such that its trace is the Weitzenböck term. There is a natural candidate built from

the Clifford action, which in the particular case of the exterior bundle however does

not respect the graduation, so it does not generalize the complete lift of Section 7. If

the Clifford action is the difference of a creation and an annihilation operator, another

natural candidate differs from the complete lift in Section 7 by an antisymmetric term,

so both connections yield the same class of martingales.

In Section 9 we prove that the derivative of an L-harmonic map u between manifolds

M and (N;r

N

) is a harmonic map M ! T

�

M 
 TN if T �M 
 TN is endowed

with a complete liftr
 constructed along the lines of Section 5, under the condition that

there exists a Le Jan-Watanabe connection rM on M induced from the second order

generator L (Corollary 9.2). The condition is satisfied when M is a Riemannian mani-

fold and rM its Levi-Civita connection. Under a slightly more restrictive assumption,

Corollary 9.2 could also be proved by means of the method of filtering out redundant

noise as in Elworthy-Le Jan-Li ([10]). Here we give a proof based on a geometric Itô

formula involving complete lifts of connections. Corollary 9.2 can be seen as a gener-

alization of the derivation property for geodesics; it illustrates in particular the interplay

between complete lifts and derivations.

In Section 10 we consider some kind of inverse problem to the one of Section 9.

Here we are given an L-harmonic p-form � where L is a second order generator, we

know that h�;�i is a local martingale where � is a horizontal martingale as defined in

Section 5, and we want to prove that h�; TX^p

i is a local martingale if X is a diffusion

with generator L. Proposition 10.1 says that this is true under some Le Jan-Watanabe

condition. Once more this is an illustration of the interaction between complete lifts and

derivations. Proposition 10.1 is due to Elworthy-Li-Le Jan ([10] Theorem 2.4.2). We

give an alternative proof relying on Itô’s formula.

Throughout the paper we adopt the following conventions. By a connection on a

manifold M we mean a covariant derivative on TM as in Eq. (1.1). The manifold M

may be a vector bundleE as well, then a connection on E will be a covariant derivative

on TE in the sense of Eq. (1.2). In many cases E, considered as vector bundle overM ,

may carry a connection

r

E

: �(E)! �(T

�

M 
E):

We refer to this as a covariant derivative on E.

A covariant derivative on E gives rise to the splitting of the bundle TE into the sum

of a horizontal bundle and the vertical bundle. The covariant derivative of a smooth path
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t 7! e(t) 2 E, denoted by r
D

e, will be v�1
e

( _e

vert

) where _e

vert is the vertical part of

_e in this splitting, and v
e

0

: E

�(e

0

)

! T

e

0

E is the vertical lift to e
0

2 E. Let F
0

be a

vector space isomorphic to the typical fiber of E. Then a covariant derivativerE on E

naturally induces a covariant derivative on L(F
0

; E), again denoted byrE , and defined

by (r

E

W )(w) = r

E

(W (w)) where w 2 F

0

and W is a section of L(F
0

; E).

If X is an M -valued continuous semimartingale and � is a section of T �M , we

denote by
R

0

h�; ÆXi the Stratonovich integral of � alongX , and by
R

0

h�; d

r

Xi the Itô

integral. Recall thatX is ar-martingale if and only if, for every�as above,
R

0

h�; d

r

Xi

is a local martingale. In local coordinates, we have

h�; ÆXi = �

i

(X) dX

i

+

1

2

��

i

�x

j

(X) d<X

i

; X

j

>

and

h�; d

r

Xi = �

i

(X)

�

dX

i

+

1

2

�

i

jk

(X) d<X

j

; X

k

>

�

where �i
jk

are the Christoffel symbols of r. Given a covariant derivativerE on E, the

parallel transport inE alongX is the L(E
X

0

; E)-valued semimartingale ==E
0;.

satisfying

==

E

0;0

= id
E

X

0

and Æ==

E

0;t

= h

==

E

0;t

(ÆX

t

)

where h
e

: T

�(e)

M ! T

e

L(E

X

0

; E), e 2 L(E
X

0

; E) denotes the horizontal lift asso-

ciated to rE . Note that ==E
0;t

2 L(E

X

0

; E

X

t

).

Let L be a second order generator on M , N be another manifold endowed with a

connection rN . We say that a smooth map u : (M;L) ! (N;r

N

) is harmonic if

u(X) is a rN -martingale for every diffusion X in M with generator L.

2. Complete Lifts to Tangent Bundles

Let M be a manifold equipped with a connection r. In this section we recall some

facts for the complete lift of connections to the tangent bundle of M , the local charac-

teristics of TM -valued semimartingales and the horizontal TM -valued martingales. In

particular we describe the links between complete lift and derivation. We refer to [19]

for the geometric objects.

For a smooth function f on M , the one-form df can be considered as a function on

TM . This function is called the complete lift of f and denoted by f
. Every vector field

A 2 �(TM) onM induces a vector fieldA
 2 �(TTM) onTM which is characterized

by the propertyA
(f
) = (A(f))


 and called the complete lift ofA. It is shown in [19]

that the formula r


A




B




= (r

A

B)


, where A;B 2 �(TM), defines a connection r


on TM , called the complete lift of r.

Let w 2 TTM . There exists a smooth path t 7! u(t) 2 T

x(t)

M , where x(t) =

�(u(t)), such that w = _u(0). We say that w is horizontal if r
_x(0)

u = 0 (note that this

definition differs from the definition in [19] when the connection has torsion). Every

vector splits into a horizontal and a vertical part, and for u 2 T

x

M we denote by h
u

(resp. v
u

) the horizontal (resp. vertical) lift T
x

M ! T

u

TM .

IfX is anM -valued semimartingale, the deformed parallel translation alongX (also

called Dohrn-Guerra transport or geodesic transport in [16]), denoted by�
0;t

, is a linear
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map T
X

0

M ! T

X

t

M such that t 7! �

0;t

is a semimartingale and solution to the Itô

equation

�

0;0

= id
T

X

0

M

; d

r




�

0;t

= h

�

0;t

(d

r

X

t

)(2.1)

(herer
 is considered as a connection on L(T
X

0

M;TM)).

The TM -valued continuousr
-martingales were first considered by Meyer in [16],

in the case wherer is torsion-free. He obtained the following characterization:

Theorem 2.1. Assume that r is torsion-free. Let J be a TM -valued semimartingale

with projection X . Then J is a r
-martingale if and only if

(i) X is a r-martingale, and

(ii) �

�1

0;.

J is a T
X

0

M -valued local martingale.

Now we investigate the relations between complete lift and derivation. Let N be

another manifold equipped with a connection, also denoted r, and let e be a smooth

section of T �M 
 TN over M � N (i.e., e(x; y) is a linear map T
x

M ! T

y

N for

(x; y) 2M �N ). The following result has been proved in [3]:

Theorem 2.2. LetX(a) be a family ofM -valued semimartingales which isC1 in a 2 I

with respect to the topology of semimartingales, where I is some open interval in R,

and let Y
0

(a) be a family of N -valued random variables, C1 in a 2 I with respect to

the topology of convergence in probability.

Then the solution Y (a), starting at Y
0

(a), to

d

r

Y (a) = e(X(a); Y (a)) d

r

X(a)

is C1 in a with respect to the topology of semimartingales, its derivative �Y (a) starts

from �Y

0

(a) and is solution to

d

r




�Y (a) = e

0

(�X(a); �Y (a)) d

r




�X(a)

where e0 is determined by taking for X a family of smooth deterministic paths.

Note that in [3] the topology of semimartingales is defined on processes with random

lifetime.

Taking as a special case the antidevelopmentZ(a) = A (X(a)) of X(a),

Z(a) =

Z

0

==

�1

0;s

(a) d

r

X

s

(a)

where ==
0;t

(a) is the parallel transport along X(a), the following corollary has been

obtained:

Corollary 2.3. (i) If a 7! X(a) is C1 in the topology of semimartingales, then

�A (X(a)) = s

M

A




(�X(a));(2.2)

whereA 
 is the antidevelopment with respect tor
 and s
M

: TTM ! TTM denotes

the canonical involution (see below before Theorem 3.1 for the precise definition).

(ii) A semimartingale J with values in TM is a r
-martingale if and only if it is of

the form �X(0) where a 7! X(a) is a family of r-martingales, C1 in the topology of

semimartingales.

Corollary 2.3 (ii) gives an interpretation ofr
-martingales as stochastic Jacobi fields.
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3. Deformed Antidevelopment

In this section the manifoldM is assumed to be equipped with a torsion-free connec-

tion r. Let X be an M -valued semimartingale. Define the deformed antidevelopment

of X as the T
X

0

M -valued semimartingale

A

def

(X) :=

Z

0

�

�1

0;s

d

r

X

s

;

where �

0;.

is the deformed parallel translation along X as defined in Section 2. Note

that by [12] Lemma (8.24), the Itô integral can be replaced by a Stratonovich integral.

In this section we show that Eq. (2.2) remains true when antidevelopments are replaced

by deformed antidevelopments.

We first collect some notations. Let m be the dimension of M .

As in [2], for a manifold F , let s
F

: TTF ! TTF be the canonical isomorphism

described as follows: if v = �

a

�

t

x(t; a) for some smooth map (t; a) 7! x(t; a) 2 F ,

then s
F

(v) = �

t

�

a

x(t; a). Denote by L(F ) the frame bundle over F .

A map {
M

: TL(M) ! L(TM) is given as follows: let W = _u(0) 2 TL(M) for

some smooth curve a 7! u(a) 2 L(M) and v = _

b(0) 2 TR

m

= R

2m for some smooth

curve a 7! b(a) 2 R

m , then

{

M

(W )v = s

M

((ub)_(0)) :

The map {
GL(m;R)

will be denoted by {
m

. Further let

� ~� be the canonical projection L(TM)! TM ,

� ! (resp. !
) the connection form associated with r (resp. r
),

� # 2 �(T

�

L(M)
R

m

) (resp. #
 2 �(T

�

L(TM)
R

2m

) the canonical 1-form,

� h (resp. h
) the horizontal lift associated with r (resp. r
),

� G = GL(m;R) and P = L(M).

Theorem 3.1. Let I be an open subset of Rn , (X(a))

a2I

be a C1-family of continuous

semimartingales on M with infinite lifetime, and let �
0;.

(a) be the deformed parallel

translation alongX(a). Let a 7! U

0

(a) 2 P

X

0

(a)

beC1 in probability, and let U
t

(a) =

�

0;t

(a) Æ U

0

(a).

(i) Then a 7! �

0;.

(a) is C1 in the topology of semimartingales, and

�




0;t

(a) :=

�

{

M

TU

t

(a)

�

Æ

�

{

M

TU

0

(a)

�

�1

is the deformed parallel translation along TX(a) with respect to r
.

(ii) IfZ(a) = A
def

(X(a)) is the deformed antidevelopment ofX(a), then a 7! Z(a)

is C1 in the topology of semimartingales, and for v 2 TI , denoting by A 


def

(TX(v))

the deformed antidevelopment of TX(v) with respect to the complete lift r
 of r, we

get

A




def

(TX(v)) = s

M

TA

def

(X)(v):

(iii) Let J = TX; definer
J

�

0;.

: T

X

0

N ! T

X

:

N by

(r

J

�

0;.

)u = v

�1

J

�

�

�




0;.

h

J

0

(u)

�

vert

�

;
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and r
J

Z : T

X

0

N ! T

X

0

N by

(r

J

Z)u = v

�1

J

0

�

(sTZ(u))

vert

�

:

Then

r

J

Z = �

�1

0;.

J � J

0

�

Z

0

�

�1

0;.

(r

J

�

0;.

) dZ:

Proof. We need the following relations which have been established in [2] Lemma 2.6:

{

�

M

!




= T {

m

Æ s

G

Æ T! Æ s

P

;(3.1)

{

�

M

#




= T# Æ s

P

;(3.2)

{

�1

M

h




= T {

M

Æ s

P

Æ Th Æ s

M

:(3.3)

We are now ready to prove the theorem. For (i) and (ii), we may follow the proof of

Theorem 3.1 in [2]; the difference is that Stratonovich differentials are replaced by Itô

differentials, and the crucial result for differentiation with respect to a parameter is now

Theorem 2.2.

(i) Let U 


= {

M

TU . By Eq. (2.1), it is sufficient to show that U 
 is above TX and

d

r





U


 is horizontal or equivalently !
(dr




U




) = 0. To see the first point we write

~� Æ U




= ~� Æ {

M

Æ TU = T (� Æ U) = TX:

For the second point, using the Jacobi field characterization (r
-geodesics are infinites-

imal variations of r-geodesics), it is first of all easy to check that {
M

sends geodesics

in TL(M) to geodesics in L(TM), if both manifolds are endowed with the complete

lift of the complete lift of the connection on M , which is denoted indifferently by r

.

As a consequence, we have

d

r





U




= T {

M

d

r





TU:(3.4)

Since !(dr



U) = 0, we get by differentiation along with Theorem 2.2 (which formally

yields Tdr



U = s

P

Æ d

r





TU )

0 = T! Æ s

P

Æ (d

r





TU);

and thus by Eqs. (3.4) and (3.1)

!




(d

r





U




) = !




(T {

M

d

r





TU) = T {

m

Æ s

G

Æ T! Æ s

P

Æ (d

r





TU) = 0:

(ii) With the canonical projection� : (L(T

X

0

M;TM);r




)! (M;r) being affine,

we get �
�

d

r




U(a) = d

r

X(a). This gives
Z

#

�

d

r




U(a)

�

=

Z

U(a)

�1

�

�

d

r




U(a) =

Z

U(a)

�1

d

r

X(a):

As a consequence, �

Z(a) :=

R

#

�

d

r




U(a)

�

is the deformed antidevelopment of X(a)

into Rm with initial frame U
0

(a). Since by definition of {
M

U




0

T

�

Z � {

M

(TU

0

)(T

�

Z) = s

M

T (U

0

�

Z);

it suffices to verify that

(T

�

Z)v =

�

Z




(v);



HORIZONTAL MARTINGALES IN VECTOR BUNDLES 9

where �

Z




(v) =

R

#




�

d

r





U




(v)

�

. But successively Theorem 2.2, (3.2) and (3.4) yield

T

�

# d

r




U

�

= (T# Æ s

P

) d

r





TU = (#




Æ T {

M

) d

r





TU = #




d

r





U




which concludes the proof.

(iii) We know from [1] or Eq. (5.7) in Proposition 5.3 below

d(�

�1

0;.

J) = �

�1

0;.

�

v

�1

J

�

d

r




J

�

vert

�

:(3.5)

By Theorem 2.2 we have in local coordinates
�

(d

r

X)

i

(d

r




J)

i

�

=

�

�

i

�

0

T�

i

�

�

i

�

��

dZ

�

(dTZ)

�

�

:(3.6)

On the other hand, (ii) yields

d

r




J = �




0;.

d(sTZ):(3.7)

Splitting d(sTZ) into its horizontal and vertical part and then using the expression for

�




0;.

on vertical vectors given in (3.6), we derive from (3.7)

d

r




J = �




0;.

(h

J

0

(dZ) + v

J

0

(dr

J

Z))

= �




0;.

h

J

0

(dZ) + v

J

�

0;.

dr

J

Z:

The vertical part of the last equality gives

v

�1

J

�

d

r




J

�

vert

= r

J

�

0;.

dZ +�

0;.

dr

J

Z;

thus along with Eq. (3.5) we get

dr

J

Z = d

�

�

�1

0;.

J

�

��

�1

0;.

(r

J

�

0;.

) dZ:

Integrating this equation finally gives

r

J

Z = �

�1

0;.

J � J

0

�

Z

0

�

�1

0;.

(r

J

�

0;.

) dZ

which is the desired relation.

4. Horizontal Lifts to Ve
tor Bundles

Let M be a manifold equipped with a connectionr and let � : E !M be a vector

bundle over M equipped with a covariant derivative rE . We denote by R (resp. RE)

the curvature tensor with respect to r (resp. rE). The tangent bundle TE splits into

HE � V E where V E is the vertical bundle and T
e

�jH

e

E is an isomorphism onto

T

�(e)

M for every e 2 E. Leth
e

= (T

e

�jH

e

E)

�1

: T

�(e)

M ! H

e

E be the “horizontal

lift”, and let v
e

be the vertical liftE
�(e)

! V

e

E. Every section s 2 �(E) has a canonical

vertical lift sv 2 �(TE) defined by sv
e

= v

e

(s

�(e)

), and every vector fieldX 2 �(TM)

a horizontal lift Xh

2 �(TE) defined by Xh

e

= h

e

(X

�(e)

).

The following result is well-known ([11]):

Proposition 4.1. There exists a unique connectionrh onE, i.e., a covariant derivative

on TE,

r

h

: �(TE)! �(T

�

E 
 TE);
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satisfying the following properties: for all sections r; s 2 �(E), X;Y 2 �(TM),

r

h

r

v

s

v

= 0; r

h

r

v

Y

h

= 0; r

h

X

h

s

v

=

�

r

E

X

s

�

v

; r

h

X

h

Y

h

= (r

X

Y )

h

:(4.1)

Proof. The uniqueness is obvious: if t 7! x(t) 2M , t 7! r(t) 2 E

x(t)

, t 7! f

`

(t) 2 R,

t 7! X

`

(t) 2 T

x(t)

M , t 7! s

`

(t) 2 E

x(t)

, 1 � ` � r, are smooth paths defined on R,

then

r

h

D

 

r

X

`=1

f

`

(t)X

h

`

(t)

!

=

r

X

`=1

�

f

0

`

(t)h

r(t)

(X

`

(t)) + f

`

(t)h

r(t)

�

(r

D

X

`

)(t)

�

�

and

r

h

D

 

r

X

`=1

f

`

(t) s

v

`

(t)

!

=

r

X

`=1

�

f

0

`

(t) v

r(t)

(s

`

(t)) + f

`

(t) v

r(t)

�

(r

E

D

s

`

)(t)

�

�

:

For the existence, we have to verify that if for all t

r

X

`=1

f

`

(t)X

`

(t) = 0 and

r

X

`=1

f

`

(t) s

`

(t) = 0;

then
r

X

`=1

�

f

0

`

(0)h

r(0)

(X

`

(0)) + f

`

(0)h

r(0)

�

(r

D

X

`

)(0)

�

�

= 0(4.2)

and
r

X

`=1

�

f

0

`

(0) v

r(0)

(s

`

(0)) + f

`

(0) v

r(0)

�

(r

E

D

s

`

)(0)

�

�

= 0:(4.3)

But the left hand side of (4.2) is equal to

h

r(0)

�

r

D

�

r

X

`=1

f

`

X

`

�

(0)

�

;

and the left hand side of (4.3) is equal to

v

r(0)

�

r

E

D

�

r

X

`=1

f

`

s

`

�

(0)

�

;

hence both terms vanish.

The connection rh will be called the horizontal lift of (r;rE

) to E, or simply the

horizontal lift of r if there is a canonical way of deducingrE from r.

Let S be a E-valued semimartingale. The parallel transport ==h
0;t

V of a vector V =

X

h

+ r

v along S
t

with respect to rh is given by

==

h

0;t

V = h

S

t

�

==

0;t

X

�

+ v

S

t

�

==

E

0;t

r

�

(4.4)

where ==
0;t

is parallel translation along �(S
t

) w.r.t. r and ==E
0;t

is parallel translation

along �(S
t

) w.r.t. rE .

Similarly to [2], Theorem 4.2 and Corollary 4.4, we get
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Theorem 4.2. Let J be a continuousE-valued semimartingale and X = � Æ J .

1) The antidevelopment of J with respect to rh is given by the formula

A

h

(J) = h

J

0

(A (X)) + v

J

0

�

==

E

0;.

�1

J � J

0

�

:(4.5)

2) The semimartingale J is a rh-martingale if and only if

(i) X = � Æ J is a r-martingale in M , and

(ii) (==

E

0;t

)

�1

J

t

is a local martingale in E
X

0

.

In the special case E = TM we may compare the horizontal lift rh, as defined in

this section, with the complete lift r
 defined in Section 2. In explicit terms we get for

V;W 2 T

p

TM , p 2 TM ,

(r




�r

h

)(V;W )

= v

p

�

R(p; �

�

V )�

�

W +r

�

�

V

T (p; �

�

W ) + T (v

�1

p

V

vert

; �

�

W )

�
(4.6)

where R : �(TM 
 TM) ! �(End(TM)), resp. T : �(TM 
 TM) ! �(TM),

is the curvature (resp. torsion) tensor to the connection r on M and v
p

: T

�(p)

M !

T

p

TM the vertical lift. Eq. (4.6)yields the following formula relating the Itô differentials

for a TM -valued semimartingale J with projection �(J) = X :

d

r




J = d

r

h

J +

1

2

v

J

�

R(J; dX)dX +rT (dX; J; dX) + T (DJ; dX)

�

(4.7)

where DJ = ==

0;.

d

�

==

�1

0;.

J

�

= v

�1

J

�

(d

r

h

J)

vert

�

(see Eq. (4.8) below).

Remark 4.3. Covariant derivatives on vector bundles induce covariant derivatives on

tensor products and wedge products in a straightforward way: the parallel transport

obtained is the tensor product, respectively wedge product of the given transports. A

covariant derivative is also canonically induced on dual bundles: the associated parallel

transport is the dual of the inverse parallel transport in the vector bundle. All these

operations yield horizontal connections on tensor and wedge products of vector bundles

and on dual vector bundles.

In the remainder of this section we considerC1 families ofE-valued semimartingales

a 7! J(a). We want to find a commutation formula for covariant derivatives with respect

to a and t.

Let rhh be the horizontal lift on TE of the connection rh on E. As we shall see,

the second part of Theorem 4.2 yields a simple characterization of TE-valued rhh-

martingales.

First of all define  : TE ! E by  (W ) = v

�1

w

(W

vert

) for W 2 T

w

E, and

let �
2

be the canonical projection TE ! E. Then, by Theorem 4.2, a TE-valued

semimartingaleW is a rhh-martingale if and only if

(i) �
2

(W ) is an E-valued rh-martingale, and

(ii) (==

h

0;.

)

�1

W is a local martingale.

From Eq. (4.4) we have

(==

h

0;t

)

�1

W

t

= h

�

2

(W

0

)

�

==

�1

0;t

(�

�

W

t

)

�

+ v

�

2

(W

0

)

�

(==

E

0;t

)

�1

( (W

t

))

�

:

By Theorem 4.2, condition (i) above implies that X = (� Æ �

2

)(W ) is a r-martingale;

hence again by Theorem 4.2 (used twice) conditions (i) and (ii) are equivalent to
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(i) �

2

(W ) is an E-valued rh-martingale,

(ii) v  (W ) is an E-valuedrh-martingale, and

(ii) h �

�

(W ) is a TM -valuedrh-martingale,

where rh in item (ii) h is the horizontal lift of r in TM . As a consequence, we

notice that the maps �
2

: (TE;r

hh

) ! (E;r

h

),  : (TE;r

hh

) ! (E;r

h

) and

�

�

: (TE;r

hh

) ! (TM;r

h

) are semi-affine, i.e. they are affine with respect to the

symmetrized connections.

If J is an E-valued semimartingale, we define the covariant (Itô) derivative of J by

DJ :=  

�

d

r

h

J

�

. Equivalently,DJ is characterized by the formula

d

r

h

J = h

J

(d

r

X) + v

J

(DJ):(4.8)

Note that Eq. (4.5) yields

DJ = ==

E

0;.

d

�

==

E

0;.

�1

J

�

:(4.9)

In local coordinates, write rE as d+A and r as d+ �. Since

Æ==

E

0;.

= �A(ÆX; ==

E

0;.

);

we have

Æ

�

==

E

0;.

�

�1

=

�

==

E

0;.

�

�1

A(ÆX; � );

and hence

d

�

==

E

0;.

�

�1

=

�

==

E

0;.

�

�1

A(dX; � ) +

1

2

�

==

E

0;.

�

�1

dA (dX; dX; � )

+

1

2

�

==

E

0;.

�

�1

A (dX;A(dX; � )) :

Thus by Eq. (4.9) we get the following general formula for (DJ)�:

(DJ)

�

= dJ

�

+A

�

(dX; J) +A

�

(dX; dJ)

+

1

2

�

dA

�

(dX; dX; J) +A

�

(dX;A(dX; J))

�

:

(4.10)

Substituting dX = d

r

X �

1

2

�(dX; dX) in the second term of the r.h.s. then gives

(DJ)

�

= dJ

�

+A

�

(d

r

X; J) +A

�

(dX; dJ)

+

1

2

�

dA

�

(dX; dX; J) +A

�

(dX;A(dX; J))�A

�

(�(dX; dX); J)

�

:

(4.11)

Taking into account that (DJ)� � dJ��A�(dX; J) has finite variation, and replacing

dJ by DJ �A(dX; J) in the third term on the right, Eq. (4.11) finally leads to

(DJ)

�

= dJ

�

+A

�

(d

r

X; J) +A

�

(dX;DJ) +

1

2

(rA

�

)(dX; dX; J):

(4.12)

Notation 4.4. If a 7! w(a) 2 E is a C1 path, we denote by r
a

w its covariant deriv-

ative: r
a

w =  (�

a

w) =

Dw

da

where  (W ) = v

�1

w

(W

vert

) if W 2 T

w

E. Slightly

abusing the notation, we just write r
a

0

w for r
a

j

a=a

0

w.

The following theorem describes how covariant derivatives with respect to a and t

commute. We write rRE

(v

1

; v

2

; v

3

) for r
v

1

R

E

(v

2

; v

3

).
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Theorem 4.5. Let I be an open interval inR, and fora 2 I letJ(a) be a semimartingale

with values in the vector bundle E. Assume that a 7! J(a) is C1 in the topology of

semimartingales. Let X(a) = �(J(a)). Then

Dr

a

J = r

a

DJ +R

E

(d

r

X; �

a

X)J

+R

E

(dX; �

a

X)DJ �

1

2

rR

E

(dX; �

a

X; dX)J �

1

2

R

E

(D�

a

X; dX)J:

Remark 4.6. The Stratonovich version of this equation is

D

S

r

a

J = r

a

D

S

J +R

E

(ÆX; �

a

X)J(4.13)

whereDS

J = ==

E

0;.

Æ

�

==

E

0;.

�1

J

�

. In the particular situation when J is parallel transport

along X , Eq. (4.13) is a consequence of formula (4.7.5) in [15]. One could prove

Theorem 4.5 with a Stratonovich to Itô conversion, but we prefer here to give a proof

entirely based on the commutation formula (4.14) below.

Proof. Let rh
 be the complete lift of rh in TE. We shall prove that the wanted

formula is a consequence of the relation

d

r

h


�J = s

�

�d

r

h

J

�

(4.14)

given by Theorem 2.2 (when applied to Itô integrals as special cases of stochastic dif-

ferential equations) and of formula

d

r

hh

�J = d

r

h


�J

�

1

2

V

�J

�

R

h

(�J; dJ) dJ +r

h

T

h

(dJ; �J; dJ) + T

h

(D

h

�J; dJ)

�

(4.15)

which is a consequence of (4.7). Here and in the sequel of the proof, � stands for �
a

,

R

h (resp. T h) is the curvature (resp. torsion) tensor with respect to rh, and V the

vertical lift from TE to TTE. A straightforward calculation using (4.1) shows that if

A

i

, 1 � i � 3 are vectors in T
J

TE satisfying A
i

= h

J

(v

i

) + v

J

(A

i

), then

R

h

(A

1

;A

2

)A

3

= h

J

�

R(v

1

; v

2

)v

3

�

+ v

J

�

R

E

(v

1

; v

2

)A

3

�

;(4.16)

T

h

(A

1

;A

2

) = h

J

�

T (v

1

; v

2

)

�

+ v

J

�

R

E

(v

1

; v

2

)J

�

(4.17)

and

r

h

T

h

(A

1

;A

2

;A

3

) = h

J

�

rT (v

1

; v

2

; v

3

)

�

+ v

J

�

r

v

1

R

E

(v

2

; v

3

)J +R

E

(v

2

; v

3

)A

1

�

:

(4.18)

The relation between dr
hh

�J and Dr
a

J is obtained as follows: from r

a

J =  (�J)

and the fact that  is semi-affine we get dr
h

r

a

J =  

�

d

r

hh

�J which gives

Dr

a

J =  

�

 

�

d

r

hh

�J

�

:(4.19)

One easily verifies that

 Æ  

�

Æ V =  (4.20)
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which allows using Eqs. (4.8) (4.16), (4.17) and (4.18) to calculate the contribution

of the second part of the r.h.s. of (4.15) in the wanted formula. More precisely, this

contribution is seen to be

�R

E

(�X; dX)DJ �

1

2

rR

E

(dX; �X; dX)J �

1

2

R

E

(D�X; dX)J;(4.21)

when taking into account for the last term in the right that Dh

�J projects onto D�X :

D

h

�J = ==

h

0;.

d

�

�

==

h

0;.

�

�1

�J

�

= ==

h

0;.

d

�

h

J

0

==

�1

0;.

�X + v

J

0

�

==

E

0;.

�

�1

r

a

J

�

= ==

h

0;.

�

h

J

0

d ==

�1

0;.

�X + v

J

0

d

�

==

E

0;.

�

�1

r

a

J

�

= h

J

==

0;.

d ==

�1

0;.

�X + v

J

==

E

0;.

d

�

==

E

0;.

�

�1

r

a

J

= h

J

D�X + v

J

Dr

a

J:

Next we calculate  Æ  
�

�

d

r

h


�J

�

. Eqs. (4.14) and (4.8) yield

 Æ  

�

�

d

r

h


�J

�

=  Æ  

�

Æ s

�

�h

J

(d

r

X)

�

+  Æ  

�

Æ s (�v

J

(DJ)) :

We are left to verify that

 Æ  

�

Æ s

�

�h

J

(d

r

X)

�

= R

E

(d

r

X; �X)J(4.22)

and

 Æ  

�

Æ s (�v

J

(DJ)) = r

a

DJ(4.23)

which is easily performed in local coordinates. Summing up the right hand sides of

Eqs. (4.23), (4.22) together with (4.21) yields the claimed formula.

In the next four examples we illustrate all terms in the formula of Theorem 4.5.

Example 4.7. (Variation of parallel translation by a change of connection [5])

LetM be a Riemannian manifold endowed with the Levi-Civita connectionr. Assume

that a 7! r

E

(a) is a C1 family of covariant derivatives on E indexed by a 2 I where I

is an open interval in R containing 0. Let rh

(a) be the horizontal lift of (r;rE

(a));

let rE

= r

E

(0) and rh

= r

h

(0). Denote by �
0

r

E the derivative of a 7! r

E

(a) at

a = 0. By definition, �
0

r

E is a section of T �M 
E

�


E. Now let X be a Brownian

motion on M and W (a)(w) be the parallel transport along X (with respect to rE

(a))

of a vectorw 2 E

X

0

independent of a. Finally denote byDa the Itô covariant derivative

with respect torE

(a) and by D the Itô covariant derivative with respect to rE . Recall

that in local coordinates, by Eq. (4.11), writing rE as d+A,

(DW (a))

�

= dW

�

(a) +A

�

(d

r

X;W (a)) + A

�

(dX; dW (a))

+

1

2

�

dA

�

(dX; dX;W (a)) +A

�

(dX;A(dX;W (a))) �A

�

(�(dX; dX);W (a))

�

:

(4.24)

Since W (a) is the parallel transport with respect to rE

(a), we have Da

W (a) = 0,

hence

DW (a) = (D �D

a

)W (a):(4.25)
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For brevity, we write W for W (0). Differentiating Eq. (4.24) with the help of (4.25)

yields

�

0

(DW (a))

�

= ��

0

A

�

(d

r

X;W )� �

0

A

�

(dX; dW ) +

1

2

�

�d�

0

A

�

(dX; dX;W )

� �

0

A

�

(dX;A(dX;W )) �A

�

(dX; �

0

A(dX;W )) + �

0

A

�

(�(dX; dX);W )

�

:

(4.26)

But DW = 0 implies that dW�

+A

�

(d

r

X;W ) has finite variation, and in particular

�

0

A

�

(dX; dW ) = ��

0

A

�

(dX;A(dX;W )):

Hence Eq. (4.26) gives

�

0

(DW (a))

�

= ��

0

A

�

(d

r

X;W ) +

1

2

�

�d�

0

A

�

(dX; dX;W )

+ �

0

A

�

(dX;A(dX;W ))�A

�

(dX; �

0

A(dX;W )) + �

0

A

�

(�(dX; dX);W )

�

:

(4.27)

Now we replace �
0

A

� by (�
0

r

E

)

� to get the following intrinsic formula,wherer
0

DW

stands again for r
a

j

a=0

DW (a):

r

0

DW = ��

0

r

E

(d

r

X;W )�

1

2

r�

0

r

E

(dX; dX;W ):(4.28)

Since X is a Brownian motion, Eq. (4.28) can be written as

r

0

DW = ��

0

r

E

(d

r

X;W ) +

1

2

d

�

�

0

r

E

(W ) dt(4.29)

where d��
0

r

E

(W ) = � trr�
0

r

E

( � ; � ;W ). The other terms in the r.h.s. of the formula

in Theorem 4.5 vanish, hence

Dr

0

W = ��

0

r

E

(d

r

X;W ) +

1

2

d

�

�

0

r

E

(W ) dt(4.30)

and since r
0

W projects onto X , by (4.8) it is a rh-martingale if �
0

r

E

2 Ker d

�.

Eq. (4.30) along with (4.8) recovers the following equivalence ([5] Proposition 4.2):

�

0

r

E

2 Kerd

� if and only if, for every X and W as above,r
0

W is a rh-martingale.

Example 4.8. (Variation of parallel transport induced by a perturbation of the Brownian

motion along the flow of a vector field [5]) Here M is a Riemannian manifold endowed

with the metric g and Levi-Civita connection r, X is an M -valued Brownian motion,

X(a) = �

a

(X) where (�
a

)

a2I

is the flow to a vector field A 2 �(TM) parameterized

by some open interval I � R about 0. The connection rh is fixed and defined as

horizontal lift of (r;rE

) whererE is a covariant derivative onE. Forw(a) 2 E
X

0

(a)

,

let W (a)(w(a)) be the parallel transport of w(a) along t 7! X

t

(a), i.e.,

W

0

(a)(w(a)) = w(a); � (W (a)(w(a))) = X(a); DW (a)(w(a)) = 0:

Let J(a) = W (a)(w(a)) where a 7! w(a) 2 E

X

0

(a)

is C1. For simplicity, we write

again r
0

J for r
a

j

a=0

J and �
0

X for �
a

j

a=0

X . Theorem 4.5 applied at a = 0 gives

Dr

0

J = R

E

(d

r

X; �

0

X)J �

1

2

rR

E

(dX; �

0

X; dX)J �

1

2

R

E

(D�

0

X; dX)J:

(4.31)
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Now fromX(a) = �

a

(X) we get �
a

X(a) = A

X(a)

which in turn implies thatD�
0

X�

r

d

r

X

A is of finite variation. In particular, since X is a Brownian motion,

D�

0

X ^ dX = tr (r
:

A ^ �) (X) dt:

On the other hand, denoting by ℄ the canonical isometry ^kT �M ! ^

k

TM induced

by the metric and by [ its inverse, a calculation shows that

(dA

[

)

℄

= � tr (r
:

A ^ �) :

Consequently, Eq. (4.31) transforms to

Dr

0

J = R

E

(d

r

X;A(X))J +

1

2

�

�d

�

R

E

(A(X))J + R

E

�

(dA

[

)

℄

�

J

�

dt(4.32)

where again d�RE

(u) = � trrRE

( � ; � ; u) for u 2 TM . Defining

(r

a

W (a))w(a) = r

a

�

W (a)(w(a))

�

�W (a) (r

a

w(a))

and taking into account that DW (a) = 0, Eq. (4.32) yields

Dr

0

W = R

E

(d

r

X;A(X))W +

1

2

�

�d

�

R

E

(A(X))W +R

E

�

(dA

[

)

℄

�

W

�

dt:

(4.33)

Since r
a

W projects onto X at a = 0, it is a rh-martingale if and only if

�

1

2

d

�

R

E

(A) +

1

2

R

E

�

(dA

[

)

℄

�

= 0:

Now assume that A is of gradient type (dA[ = 0). Then we get

Dr

0

W = R

E

(d

r

X;A(X))W �

1

2

d

�

R

E

(A(X))W dt:(4.34)

Moreover Eq. (4.34) yields the following equivalence ([5] Theorem 4.4): rE is Yang-

Mills (d�RE

= 0) if and only if r
0

W is a rh-martingale for every W as above.

Example 4.9. (Covariant derivative of parallel transport and Yang-Mills connections)

M is now a Riemannian manifold, r is the Levi-Civita connection associated with the

metric, E is endowed with a metric which is preserved by rE . Suppose X is an M -

valued BM on M with lifetime �; ==
0;.

is the parallel transport in TM along X ; for

u 2 T

X

0

M , a 7! X

t

(a; u) is the geodesic starting from X

t

with speed
p

t ==

0;t

u at

a = 0, i.e., X
t

(a; u) = exp

X

t

(a

p

t ==

0;t

u). Finally, let W
t

(a; u)( �) denote parallel

translation in E along X
t

(a; u):

� (W

t

(a; u)) = X

t

(a; u); DW (a; u) = 0; W

0

(a; u) = id
E

X

0

:(4.35)

Note that W
t

(a; u)( �) is an isometry under the assumptions above. In terms of the

covariant derivative r
0

W of W we consider the following L(T �
X

0

M 
 End(E
X

0

))-

valued semimartingale:

W

�1

r

0

W : T

X

0

M �! End (E
X

0

)

u 7�!W

�1

r

0

W (u):

Recall thatr
0

� r

a

j

a=0

, thus (W�1

r

0

W )

t

(u) �W

�1

t

(0; u)r

a

j

a=0

W

t

(a; u) where

W

t

(0; u) = ==

E

0;t

.
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Proposition 4.10. The semimartingale W�1

r

0

W has lifetime � and satisfies the Itô

equation

d

�

W

�1

r

0

W

�

t

=W

�1

t

R

E

(d

r

X

t

;

p

t ==

0;t

)W

t

�

1

2

W

�1

t

d

�

R

E

(

p

t ==

0;t

)W

t

dt:

(4.36)

The Riemannian quadratic variation Svar
t

of W�1

r

0

W is given by

S

var
t

=

Z

t

0

2s kR

E

(X

s

)k

2

ds(4.37)

where the norm of RE is the Euclidean norm in L(^2TM;EndE).

The covariant derivative rE is Yang-Mills if and only if, for every W as above,

W

�1

r

0

W is a local martingale.

Remark 4.11. 1) The factor 2 in the r.h.s. of Eq. (4.37) disappears if one takes Euclidean

norm in L(
2

TM;EndE) instead of Euclidean norm in L(^2TM;EndE).

2) The factor
p

t in X
t

(a; u) = exp

X

t

(a

p

t ==

0;t

u) is introduced merely for scaling

reasons. For instance, in caseM = R

m the perturbation isX
t

(a; u) = X

t

+a

p

t u, and

the factor
p

t ensures Brownian scaling of the perturbed process. Note that in Eq. (4.37)

our scaling convention leads to the additional multiplicative factor s.

Proof of Proposition 4.10. Let �(a; u) denote the lifetime of X(a; u) which is also the

lifetime of W (a; u). Then � ^ �(a; u) converges almost surely to � as a tends to 0.

This implies that (W�1

r

0

W )(u) has lifetime � as well. To establish Eq. (4.36) we

computeDr
0

W by means of Theorem 4.5. The only difference to Example 4.8 is that

nowD�

0

X

t

( � ; u) = D(

p

t ==

0;t

u) =

1

2

p

t

==

0;t

u dt is a term of finite variation, with the

consequence that RE

(D�

0

X; dX)W vanishes. Thus we get

Dr

0

W

t

= R

E

(d

r

X

t

;

p

t ==

0;t

)W

t

�

1

2

d

�

R

E

(

p

t ==

0;t

)W

t

dt:

To obtain Eq. (4.36) it is sufficient to invoke (4.9) which gives

W

�1

Dr

0

W = d

�

W

�1

r

0

W

�

:

Eq. (4.37) follows from Eq. (4.36) along with the fact that ==
0;.

and W are isometries

and X is a Brownian motion.

For the last assertion we may proceed as in the proof of [5] Theorem 4.4: if rE

is Yang-Mills, then the drift in Eq. (4.36) disappears and W�1

r

0

W is a local martin-

gale. Conversely, if for every W as above W�1

r

0

W is a local martingale, choosing a

Brownian motion X starting from x 2M , we obtain almost surely

W

�1

t

d

�

R

E

(

p

t ==

0;t

)W

t

= 0 for all t < �.

Finally, dividing in the left by
p

t and then letting t tend to 0, we get d�RE

(x) = 0 as

wanted.
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Example 4.12. (Asymptotics of the parallel transport along a rescaled Brownian bridge)

Let M be a smooth m-dimensional compact Riemannian manifold with its Levi-Civita

connection r and � : E ! M be a vector bundle over M endowed with a connec-

tion rE . Let x
0

2 M , u 2 T

x

0

M , X(a) = X(a; u) satisfy X
0

(a) = exp

x

0

(au) and

for t 2 [0; 1[:

d

r

X

t

(a) = aA(X

t

(a)) dB

t

+ b

t

(a) dt(4.38)

where B is an R

r -valued BM, A 2 �(R

r


 TM) is such that for all x 2 M ,

A(x)A(x)

�

= id
T

x

M

, and rA(x
0

) = 0. Note that such a choice for A is always

possible, locally with an orthonormal frame whose covariant derivative vanishes at x
0

,

and globally with the help of a partition of unity. Finally the drift b
t

in (4.38) is given

by

b

t

(a) = V

t

(a;X

t

(a))(4.39)

where

V

t

(a; x) = a

2

grad

x

log p(a

2

(1� t); x; x

0

)(4.40)

and p(t; x; �) is the density at time t of a BM when started at x at time 0. The process

X(a) is a rescaled Brownian bridge; more precisely t 7! X

t=a

2
(a) is a Brownian motion

starting at exp
x

0

(au) and conditioned to be at x
0

at time a2.

In the sequel we keep the notation �
0

for �
a

j

a=0

andr
0

forr
a

j

a=0

. It is well known

that

b

t

(0) = 0 and r

0

b

t

= �

1

1� t

�

0

X:(4.41)

Differentiating (4.38) with respect to awith the help of Theorem 2.2, taking the covariant

derivative with Eqs. (4.7) and (4.8) gives (since r is torsion-free)

D�

a

X = ar

�

a

X

A(X) dB +A(X) dB +r

a

b dt�

1

2

R (�

a

X; dX) dX:(4.42)

At a = 0, since X
0

(a) = exp

x

0

(au) we get �
0

X

0

= u and

D�

0

X = A(x

0

)dB �

�

0

X

1� t

dt;(4.43)

hence �
0

X is a Brownian bridge in the Euclidean space T
x

0

M , starting at u and ending

up at 0 at time 1. Note that in Eq. (4.43) the covariant differential D�
0

X is equal to

d�

0

X since X(0) � x

0

.

Differentiating Eq. (4.42) at a = 0 with the help of Theorem 4.5, since X(0) � x

0

,

yields

Dr

0

�

a

X = 2r

�

0

X

A(x

0

) dB +r

0

r

a

b dt:(4.44)

But rA(x
0

) = 0, so Eq. (4.44) gives

Dr

0

�

a

X = r

0

r

a

b dt:(4.45)

On the other hand, a 7! X

0

(a) = exp

x

0

(au) is a geodesic, so r
0

�

a

X

0

= 0. In fact a

careful investigation of b shows that

r

0

r

a

b

t

� 0 and r

0

�

a

X

t

� 0:(4.46)
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This will be proved in a forthcoming paper, together with the following theorem which

describes the asymptotics in a at a = 0 (up to order three) of the parallel transport in E

along X(a; u).

Theorem 4.13. Let u 2 T

x

0

M and W (a) = W (a; u) be the parallel transport in E

along X(a; u). Derivatives with respect to a are taken in the topology of semimartin-

gales. The following formulas hold:

W

t

(0) = id
E

x

0

;(4.47)

r

0

W

t

� 0;(4.48)

r

0

r

a

W

t

=

Z

t

0

R

E

(A(x

0

)dB

s

; �

0

X

s

);(4.49)

and hencer
0

r

a

W

t

is a martingale,

r

0

r

a

r

a

W

t

= 2

Z

t

0

rR

E

(�

0

X

s

; A(x

0

) dB

s

; �

0

X

s

)� d

�

R

E

�

Z

t

0

�

0

X

s

ds

�

:

(4.50)

We have the following asymptotic expansion at a = 0

E [W

1

(a) �

0;a

℄ = id
E

x

0

�

a

3

12

d

�

R

E

(u) + O(a

4

)(4.51)

where �
0;a

is the parallel transport in E along a 7! exp

x

0

(au). In particular, the

following three assertions are equivalent:

(i) d�RE vanishes at x
0

(ii) for every u 2 T
x

0

M , r
0

r

a

r

a

W (a; u) is a martingale,

(iii) for every u 2 T
x

0

M ,

E

�

W

1

(a; u) �

0;a

� id
E

x

0

�

= O(a

4

):(4.52)

Remark 4.14. 1) Eq. (4.43) shows that formula (4.49) can be rewritten as

r

0

r

a

W

t

=

Z

t

0

R

E

(Æ�

0

X

s

; �

0

X

s

)(4.53)

which is identical to formula (39) in [4].

Similarly, Eq. (4.50) rewrites as the Stratonovich integral

r

0

r

a

r

a

W

t

= 2

Z

t

0

rR

E

(�

0

X

s

; Æ�

0

X

s

; �

0

X

s

):(4.54)

2) In [18] and [6] the authors obtained a condition similar to (4.52), but in their result

the time is not fixed; it is the first exit time of a ball of radius akuk. Here the full terms

of the asymptotic expansion in a are obtained, and the covariant derivative rE is not

required to be compatible with any metric. The proof is based on successive applications

of Theorem 4.5 together with a careful investigation of the equations obtained. Finally

to derive Eq. (4.52) which involves time 1 where the equations have a singularity, we

use a time-reversal argument and the symmetry of the law of a Brownian bridge.
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5. A General Class of Lifts to Ve
tor Bundles

Let E be a vector bundle equipped with a horizontal connection rh. In this section

we investigate connectionsrS onE of the following type: forA;B 2 �(TE), J 2 E,

let

r

S

A

J

B = r

h

A

J

B +S (A

J

; B

J

)(5.1)

with

S (A

J

; B

J

) = v

J

�

R(�

�

A

J

; �

�

B

J

)J +T

�

v

�1

J

(A

vert

); �

�

B

J

��

(5.2)

where R is a smooth section of T �M 
 T

�

M 
 End(E) over M and T a smooth

section of E� 
 T

�

M 
E over E (and not over M ).

Examples of such connections are given trivially by the horizontal lift itself, and the

complete lift in the case E = TM . In the latter case we have

R(X;Y )J = R(J;X)Y + (r

X

T )(J; Y ) and T (X;Y ) = T (X;Y )(5.3)

where R and T denote the curvature and the torsion tensor of r (here T is considered

as section of T �M 
 T

�

M 
 TM overM ). Other examples will be given in Sections

7 and 8.

Let us consider the three following properties for a connectionr0 on E:

(i) r0 �rh is vertical,

(ii) (r

0

�r

h

)( � ; B) = 0 if B is vertical (which implies that the flat vector spaceE
x

is affinely immersed in (E;r

0

) for each x 2M ).

(iii) (r

0

�r

h

)(h

J

(X); h

J

(Y )) is linear in J for fixed vector fields X;Y 2 �(TM).

The following result is immediate:

Proposition 5.1. A connectionr0 on E is of the formr

S as defined by (5.1) for some

S as in (5.2), if and only if r0 satisfies (i), (ii) and (iii).

Note that connections similar to rS but without torsion have already been studied

in [16].

Let rS be a connection defined by (5.1) and (5.2). An immediate consequence of

Eqs. (5.1) and (5.2) is that the Itô differential of an E-valued semimartingale J satisfies

d

r

S

J = d

r

h

J +

1

2

v

J

�

R(dX; dX)J +T (DJ; dX)

�

(5.4)

where X = �(J) and DJ
t

= ==

E

0;t

d

�

(==

E

0;t

)

�1

J

t

�

= v

�1

J

�

(d

r

h

J)

vert

�

.

IfX is anM -valued semimartingale we define the deformed parallel translation along

X as the semimartingale �
0;t

with values in Hom(E

X

0

; E

X

t

), solution to

�

0;0

= id
E

X

0

; d

r

S

�

0;t

= h

�

0;t

�

d

r

X

t

�

:(5.5)

An equivalent definition to (5.5) is given by

�

0;0

= id
E

X

0

; �(�

0;t

) = X

t

; D�

0;t

= �

1

2

R(dX; dX)�

0;t

:(5.6)

Note that the term T (D�

0;t

; dX

t

) vanishes since D�

0;.

is of finite variation. Also

recall that �
0;.

is defined via a linear equation and has consequently the same lifetime

as X .
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Definition 5.2. A process �

0;.

as defined by Eq. (5.5) is called a horizontal rS -

semimartingale (or a rS -transport in E). It is called a horizontal rS -martingale

if it projects to a r-martingaleX on M .

As a generalization of Theorem 2.1, we get the following proposition. The second

part has been proved in [16] for torsion-free connections:

Proposition 5.3. Let J be a continuous semimartingale with values in E and let X =

�(J). Then

d

r

S

J

t

= h

J

t

�

d

r

X

t

�

+ v

J

t

�

�

0;t

�

d

�

�

�1

0;t

J

t

��

+

1

2

T (DJ

t

; dX

t

)

�

:(5.7)

Consequently, J is a rS -martingale if and only if

(i) X = �(J) is a r-martingale in M , and

(ii) �

�1

0;.

J +

1

2

Z

0

�

�1

0;s

T (DJ

s

; dX

s

) is a local martingale.

Proof. We only need to establish Eq. (5.7), the rest of the proof is an immediate conse-

quence of it. Setting �
0;t

= (==

E

0;t

)

�1

�

0;t

we have

d�

0;t

=

�

==

E

0;t

�

�1

D�

0;t

= �

1

2

�

==

E

0;t

�

�1

R(dX; dX)�

0;t

which gives

d�

�1

0;t

= ��

�1

0;t

d�

0;t

�

�1

0;t

=

1

2

�

�1

0;t

R(dX; dX) ==

E

0;t

:

We get

d

�

�

�1

0;t

J

t

�

= d

�

�

�1

0;t

�

==

E

0;t

�

�1

J

t

�

=

�

d�

�1

0;t

� �

==

E

0;t

�

�1

J

t

+ �

�1

0;t

d

�

�

==

E

0;t

�

�1

J

t

�

=

1

2

�

�1

0;t

R(dX

t

; dX

t

)J

t

+ �

�1

0;t

d

�

�

==

E

0;t

�

�1

J

t

�

= �

�1

0;t

�

1

2

R(dX

t

; dX

t

)J

t

+ v

�1

J

t

�

�

d

r

h

J

t

�

vert

�

�

= �

�1

0;t

�

�

1

2

T (DJ

t

; dX

t

) + v

�1

J

t

�

�

d

r

S

J

t

�

vert

�

�

:

As a consequence, since dr
h

J and dr
S

J have the same horizontal parts, we get similarly

to Eq. (4.8)

d

r

S

J

t

= h

J

t

�

d

r

X

t

�

+ v

J

t

�

�

0;t

�

d

�

�

�1

0;t

J

t

��

+

1

2

T (DJ

t

; dX

t

)

�

which is the wanted result.

Remark 5.4. In most of the considered examples the term T vanishes, then condition

(ii) in Proposition 5.3 simplifies. In some situations we confine ourselves by assumption

to connections on E with T = 0, in order to make operations on the lifts more natural,

but then (for connections with torsion) our set-up does no longer generalize the notion
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of complete lift in tangent spaces, as defined by Eq. (5.3). In these cases however, the

considered semimartingales J will satisfy DJ 
 dX = 0, which implies that we have

nevertheless a consistent generalization as long as one stays in this class of processes.

We continue the investigation of rS by establishing formulas for the stochastic

parallel transport and the antidevelopment. If J is an E-valued semimartingale, let

D

S

J

t

= v

�1

J

t

�

(ÆJ)

vert

�

= ==

E

0;t

Æ

�

(==

E

0;t

)

�1

J

t

�

be the vertical part of its Stratonovich

differential, ==S
0;t

the parallel transport along J with respect to r

S , and A S (J)

(resp.A h

(J)) the antidevelopment of J with respect to rS (resp. rh).

Proposition 5.5. Let J be an E-valued semimartingale.

(1) The parallel transport ==S
0;t

along J is given as follows: For w 2 T

J

0

E with

projection u 2 T
X

0

M , we have

==

S

0;t

w = ==

h

0;t

w � v

J

t

�

==

E

0;t

Z

t

0

(==

E

0;s

)

�1

�

T (D

S

J

s

; ==

0;s

u) +R(ÆX

s

; ==

0;s

u)J

s

�

�

:

(5.8)

(2) The antidevelopmentA S (J) of J satisfies

A

S

(J)

t

= A

h

(J)

t

+ v

J

0

�

Z

t

0

�

Z

s

0

(==

E

0;r

)

�1

�

T (D

S

J

r

; ==

0;r

�) +R(ÆX

r

; ==

0;r

�)J

r

�

�

ÆA (X)

s

�

:

Proof. (1) We may assume thatJ is a smooth deterministic path and replace Stratonovich

differentials by ordinary differentials. Let w
t

denote the r.h.s. of (5.8), and let u
t

=

==

0;t

u. Since rS and rh coincide on vertical vector fields, we have

r

S

D

==

h

0;t

w

vert

= 0:

As a consequence, we get

r

S

D

w

t

= r

S

D

�

==

h

0;t

w

hor

� v

J

t

�

==

E

0;t

Z

t

0

(==

E

0;s

)

�1

�

T (r

D

J

s

; u

s

) +R(

_

X

s

; u

s

)J

s

�

ds

��

:

But Eqs. (4.4), (5.1) and (5.2) yield

r

S

D

==

h

0;t

w

hor

= v

J

t

�

T (r

D

J

t

; u

t

) +R(

_

X

t

; u

t

)J

t

�

;

and from (4.4) and the fact that rS and rh coincide on vertical vectors we get

r

S

D

v

J

t

�

==

E

0;t

Z

t

0

(==

E

0;s

)

�1

�

T (r

D

J

s

; u

s

) +R(

_

X

s

; u

s

)J

s

�

ds

�

= v

J

t

�

==

E

0;t

d

dt

Z

t

0

(==

E

0;s

)

�1

�

T (r

D

J

s

; u

s

) +R(

_

X

s

; u

s

)J

s

�

ds

�

= v

J

t

�

T (r

D

J

t

; u

t

) +R(

_

X

t

; u

t

)J

t

�

:

ThusrS
D

w

t

= 0 which gives the result.
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(2) We first calculate the inverse parallel transport with respect to rS . Letting

w

0

= ==

S

0;t

w, we have

==

h

0;t

w = w

0

+ v

J

t

�

==

E

0;t

Z

t

0

(==

E

0;s

)

�1

�

T (D

S

J

s

; ==

0;s

u) +R(ÆX; ==

0;s

u)J

s

�

�

:

Applying (==

h

0;t

)

�1 on both sides and using formula (4.4) yields with u0 = �

�

w

0,

(==

S

0;t

)

�1

w

0

= (==

h

0;t

)

�1

w

0

+ v

J

0

�

Z

t

0

(==

E

0;s

)

�1

�

T (D

S

J

s

; ==

0;s

==

�1

0;t

u

0

) +R(ÆX

s

; ==

0;s

==

�1

0;t

u

0

)J

s

�

�

:

Now from the formulas

ÆA

h

(J)

t

= (==

h

0;t

)

�1

ÆJ

t

and ÆA

S

(J)

t

= (==

S

0;t

)

�1

ÆJ

t

;

we get

Æ

�

A

S

(J)

t

�A

h

(J)

t

�

=

�

(==

S

0;t

)

�1

� (==

h

0;t

)

�1

�

ÆJ

t

= v

J

0

�

Z

t

0

(==

E

0;s

)

�1

�

T (D

S

J

s

; ==

0;s

==

�1

0;t

�

�

ÆJ

t

) +R(ÆX

s

; ==

0;s

==

�1

0;t

�

�

ÆJ

t

)J

s

�

�

= v

J

0

��

Z

t

0

(==

E

0;s

)

�1

�

T (D

S

J

s

; ==

0;s

�) +R(ÆX

s

; ==

0;s

�)J

s

�

�

ÆA (X)

t

�

:

The proof is achieved by integrating the last formula.

For the remainder of this section we consider connectionsrS with vanishingT and

construct lifts of connections on dual bundles and tensor bundles.

To a given section RE of T �M 
 T

�

M 
 EndE, we first define a section RE

�

of

T

�

M 
 T

�

M 
 EndE� by means of the formula

hR

E

�

(X;Y )�; Ji+ h�;R

E

(X;Y )Ji = 0; X; Y 2 T

x

M; J 2 E

x

; � 2 E

�

x

;

(5.9)

thus RE

�

(X;Y ) = �(R

E

(X;Y ))

�. Now assume that we have two vector bundles

E and F over the same base M (for different base manifolds, say M and N , first

extend everything canonically to M � N ). In addition, assume that sections RE of

T

�

M 
 T

�

M 
 EndE� and RF of T �M 
 T

�

M 
 EndF � are given. We define a

sectionRE
F of T �M 
 T

�

M 
 End(E 
 F ) by linearly extending the formula

R

E
F

(X;Y )(J

1


 J

2

) = (R

E

(X;Y )J

1

)
 J

2

+ J

1


 (R

F

(X;Y )J

2

);(5.10)

where X;Y 2 T

x

M; J

1

2 E

x

; J

2

2 F

x

.

These formulas define connections on E�, resp.E 
F , for simplicity again denoted

byrS , called the dual of the connection onE, resp. the tensor product of the connections

on E and F . Finally, for an M -valued semimartingale X , let �E , �E

�

, resp. �E
F ,

denote the deformed parallel translations along X on E, E�, resp. E 
 F .

Proposition 5.6. (1) �

E

�

=

�

(�

E

)

�1

�

�

(2) �

E
F

= �

E


�

F .
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This result is similar to the results in [16] Sections 5 and 6, but the assumptions are

not the same and the proof is different.

Proof. (1) It is sufficient to prove that

D

�

(�

E

)

�1

�

�

= �

1

2

R

E

�

(dX; dX)

�

(�

E

)

�1

�

�

:(5.11)

But Remark 4.3 and formula (5.6) for the covariant derivative of �E give

D

�

(�

E

)

�1

�

�

=

�

==

E

0;.

�1

�

�

d

�

�

�

==

E

0;.

�1

�

�

�

�1

�

(�

E

)

�1

�

�

�

=

�

==

E

0;.

�1

�

�

d

�

�

==

E

0;.

�

�

�

(�

E

)

�1

�

�

�

=

�

==

E

0;.

�1

�

�

d

�

(�

E

)

�1

==

E

0;.

�

�

=

1

2

�

==

E

0;.

�1

�

�

�

(�

E

)

�1

R

E

(dX; dX)==

E

0;.

�

�

=

1

2

�

==

E

0;.

�1

�

�

(==

E

0;.

)

�

�

R

E

(dX; dX)

�

�

�

(�

E

)

�1

�

�

= �

1

2

R

E

�

(dX; dX)

�

(�

E

)

�1

�

�

which is the desired relation.

(2) The result immediately follows from the relation

D

�

�

E


�

F

�

= D�

E


�

F

+�

E


D�

F

which is established by means of Remark 4.3. There is no bracket since by Eq. (5.6),

(==

E

0;.

)

�1

�

E is of finite variation.

If there is no danger of confusion, we denote the sections RE , RE

�

and RE
F

without differentiation by the same symbolR.

For a Riemannian manifold M , let R = R

E

�

be the section of T �M 
 T

�

M 


End(E�) defined in (5.9). Setting trR =

P

n

i=1

R(e

i

; e

i

), where (e

i

)

1�i�m

is a local

section of the orthonormal frame bundle over M , we define theR-Laplacian as

�

R

:= + trR;(5.12)

where := tr
�

r

T

�

M
E

�

Æ r

E

�

�

is the horizontal Laplacian on forms.

Let �
0;.

denote the rS -transport on E along a semimartingale X . We continue to

assume that T vanishes.

Proposition 5.7. Assume that (M;r) is a Riemannian manifold equipped with the Levi-

Civita connection and letX be anM -valued Brownian motion. For every e 2 E
X

0

, the

restriction of the generator of ==E
0;t

e (resp. �
0;t

e) to sections of E� is 1

2

(resp. 1

2

�

R).

Proof. The parallel translation ==E
0;t

satisfies the equation

d

r

h

==

E

0;t

= h

==

E

0;t

(d

r

X

t

);
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which can be rewritten locally as

d

r

h

==

E

0;t

=

m

X

i=1

e

h

i

�

==

E

0;t

�

dB

i

t

where (e
i

)

1�i�m

is a local section of the orthonormal frame bundle overM and the pro-

cesses Bi are real-valued Brownian motions. The Stratonovich version of this equation

is

Æ==

E

0;t

=

m

X

i=1

e

h

i

�

==

E

0;t

�

ÆB

i

t

�

1

2

m

X

i=1

r

h

e

h

i

e

h

i

�

==

E

0;t

�

dt

Hence ==E
0;t

is seen to be a diffusion with generator

1

2

n

X

i=1

�

(e

h

i

)

2

�r

h

e

h

i

e

h

i

�

=

1

2

n

X

i=1

�

(e

h

i

)

2

� (r

e

i

e

i

)

h

�

:

But if � is a section of E�, u a section of TM with horizontal lift uh, s a section of E

with vertical lift sv, and r a section of E, then

u

h

(�)(r) = hr

E

�

u

�; ri and s

v

(�)(r) = h�; si:(5.13)

The second equality in Eq. (5.13) is obvious. Let us explain the first equality: if t 7! r(t)

is C1 with r(0) = r

0

2 E

x

0

and _r(0) = u

h

(r

0

), then

u

h

(�)(r

0

) =

d

dt

�

�

�

t=0

�(r(t)) =




r

E

�

u

x

0

�; r

0

�

+




�(x

0

);r

E

u

x

0

r

�

=




r

E

�

u

x

0

�; r

0

�

:

The first equation of (5.13) then gives the result for the generator of ==E
0;.

e.

On the other hand, by Eqs. (5.5), (5.1) (5.2), and with the same calculation as before,

�

0;t

e has generator

1

2

n

X

i=1

�

(e

h

i

)

2

� (r

e

i

e

i

)

h

�

�

1

2

(trR)

v

:

The second part of (5.13) with s = trR(r

0

) gives
�

trR(r

0

)

�

v

(�)(r) =




�; trR(r

0

)

�

= �




trR�; r0
�

:

This combined with the same argument as before for the horizontal part gives the claim

for the generator of �
0;t

e.

As a consequence, we have the following result.

Theorem 5.8. Let M be a Riemannian manifold with the Levi-Civita connection r

and � : E ! M a vector bundle equipped with a covariant derivative rE . Let

a : [0; T ℄�M ! E

� be a smooth solution to the heat equation d

dt

a =

1

2

�

R

a. Then

a(T � t;X

t

); 0 � t � T;

is a rS -martingale in E� for any Brownian motion X on M .

In particular, a differential form a 2 �(E

�

) is harmonic (i.e. �Ra = 0) if and only

if a(X) is a rS -martingale for any Brownian motion X in M .
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Proof. This is a direct consequence of Proposition 5.7 which gives the generator of �
0;.

and Proposition 5.6 which characterizes rS -transports in E�, together with Proposi-

tion 5.3 which characterizes martingales.

Identifying (E

�

)

� with E and using again Proposition 5.6 gives immediately the

following result:

Corollary 5.9. Let M be a Riemannian manifold with the Levi-Civita connection r

and � : E ! M a vector bundle equipped with a covariant derivative rE . Let

a : [0; T ℄�M ! E be a smooth solution to the heat equation d

dt

a =

1

2

�

R

a. Then

a(T � t;X

t

); 0 � t � T;

is a rS -martingale in E for any Brownian motion X on M .

6. Complete Lifts to Cotangent Bundles

Let (M;r) be a manifold endowed with a torsion-free connection r. On T �M

consider the induced dual covariant derivative, as in Remark 4.3. In this situation

Proposition 4.1 gives rise to a horizontal connection rh� on T

�

M , i.e. a covariant

derivative on TT �M .

In [19] the authors introduce a connection on T �M which we denote here byr[ and

which they call the complete lift of r: by definition it is the Levi-Civita connection for

the pseudo-Riemannian metric g[ on T �M given by

ds

2

= 2dx

i

(dp

i

� p

k

�

k

ji

dx

j

)

where (x

i

; p

i

) are the local coordinates. This pseudo-Riemannian metric g[ is alterna-

tively described as

g

[

(X




; Y




) = �(r

X

Y +r

Y

X)

v

; X; Y 2 �(TM):

Here X
, Y 


2 �(TT

�

M) denote the complete lifts of X , Y , and Xv

2 C

1

(T

�

M),

X

v

(�) := �(X

�(�)

), the vertical lift of X , see [19], chapt. VII for details.

Define the sectionR 2 �(T

�

M 
 T

�

M 
 End(TM)) by the formula

R(X;Y )J = R(J;X)Y; X; Y; J 2 T

x

M:(6.1)

Recall thatR is associated with the complete lift r
 of r in TM .

A calculation shows that for every V;W 2 �(TT

�

M), p 2 T �M ,

r

[

V

p

W = r

h�

V

p

W + v

p

�


p;R( �; �

�

V

p

)�

�

W

p

��

(6.2)

(see for instance [19], chapt. VIII; in [19], the authors define rh� by means of (6.2)

and prove then the relations in Proposition 4.1). Hence r[ is a connection of the type

r

S , as defined in Section 5, with

S (A

�

; B

�

) = v

�

�

(R(�

�

A

�

; �

�

B

�

))

�

�

�

; A;B 2 T

�

T

�

M:(6.3)

r

[ does not coincide with the adjoint of r
 as in Section 5. Indeed, the adjoint of r


is r(�S ) withS as in (6.3). The adjoint of r
 will also be called the complete lift of

r in T �M , and denoted by r
 when there is no risk of confusion.

In the case where (M; g) is a Riemannian manifold andr the Levi-Civita connection

associated with the metric g, the complete lift r
 of r on TM is the Levi-Civita
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connection associated with the complete lift g
 on TM of g (see [19], g
 is in fact a

pseudo-metric). In this situation, it is easily proved that the map

[ : (TM; g




)! (T

�

M; g

[

); u 7! g(u; �)(6.4)

is an isometry.

Proposition 6.1. Let r be the Levi-Civita connection on a Riemannian manifold M .

Then a TM -valued continuous semimartingale J is a r
-martingale if and only if the

T

�

M -valued process J[ is a r[-martingale.

Proof. This is a consequence of the fact that [ is an isometry. One can also give a proof

based on symmetry relations satisfied by the curvature tensor. Let J be a TM -valued

semimartingale such that X = �(J) is a r-martingale. Then by Eqs. (4.5) and (4.6),

J is a r
-martingale if and only if for every u 2 T
X

0

M




==

�1

0;t

J

t

; u

�

+

1

2

Z

t

0




==

�1

0;s

R(J

s

; dX

s

)dX

s

; u

�

(6.5)

is a local martingale. But since ==
0;t

is an isometry, (6.5) may also be written as

�

J

[

t

==

0;t

; u

�

+

1

2

Z

t

0




R(J

s

; dX

s

)dX

s

; ==

0;s

u

�

;

and using the relation hR(A;B)C;Di = hR(D;C)B;Ai, this writes

�

J

[

t

==

0;t

; u

�

+

1

2

Z

t

0

�

J

[

; R(==

0;s

u; dX

s

)dX

s

�

:

Hence (6.5) is a local martingale for all u if and only if

J

[

t

==

0;t

+

1

2

Z

t

0

�

J

[

; R(==

0;s

; dX

s

)dX

s

�

is a local martingale, or if and only if J[ is ar[ martingale. This achieves the proof.

7. Complete Lifts to Exterior Bundles

In this section (M;r) is a manifold endowed with a connection possibly with torsion

T . We denote by ^

r the adjoint connection given byr� ^

r = T and by ^

R the associated

curvature tensor. Let E = ^

p

TM . On E there is a covariant derivative inherited from

r, and hence, by Proposition 4.1, a covariant derivative rh on TE. Let us define a

sectionRE

2 �(T

�

M 
 T

�

M 
 EndE) as the linear extension of

R

E

(u;w)v

1

^ : : : ^ v

p

=

p

X

k=1

v

1

^ : : : ^ (R(v

k

; u)w +r

u

T (v

k

; w)) ^ : : : ^ v

p

�

X

1�`<k�p

(�1)

k+`

^

R(v

k

; v

`

)u ^ w ^ v

1

^ : : : ^ bv

`

^ : : : ^ bv

k

^ : : : ^ v

p

for u;w; v
1

; : : : ; v

p

2 T

x

M . Note that in case p = 1 this formula coincides with theR

in (5.3). Also note that one has to verify that this definition makes sense, i.e. that the

right hand side vanishes when v
i

= v

j

, i 6= j.
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Definition 7.1. The complete lift of r to E, denoted by r
, is the connection rS on

E associated with R = R

E , as defined above, and T = 0.

The complete lift of r to E�, again denoted by r
, is the connection rS on E�

associated withRE

�

= �(R

E

)

�, also denoted byR, and with T = 0.

If r is torsion-free, then the above definition extends the definitions for p = 1 given

in Sections 2 and 6.

Lemma 7.2. Assume r is torsion-free. If u;w; v
1

; : : : ; v

p

2 T

x

M and � 2 E

�

x

, then

R(u;w)� 2 E

�

x

satisfies

R(u;w)�(v

1

; : : : ; v

p

) =

p

X

k=1

R(v

k

; u)�(v

1

; : : : ; v

k�1

; w; v

k+1

; : : : ; v

p

):(7.1)

Note that (7.1) gives in the particular case � = �

1

^ : : : ^ �

p

R(u;w)�(v

1

; : : : ; v

p

) = �

p

X

k;`=1

�

1

^ : : : ^ �

`�1

^ h�

`

; R(v

k

; u) �i ^ �

`+1

^ : : :

: : : ^ �

p

(v

1

; : : : ; v

k�1

; w; v

k+1

; : : : ; v

p

):

Proof. Since by definition

hR(u;w)�; (v

1

; : : : ; v

p

)i = �h�;R(u;w)(v

1

^ : : : ^ v

p

)i;

it is sufficient to prove that

R(u;w)v

1

^ : : : ^ v

p

=

p

X

k=1

R(v

k

; u) (v

1

^ : : : ^ w ^ : : : ^ v

p

) :(7.2)

But by developing the right hand side of (7.2), isolating the terms with R(v
k

; u)w and

putting together terms with the same pair of indices, we obtain

p

X

k=1

R(v

k

; u) (v

1

^ : : : ^ w ^ : : : ^ v

p

) =

p

X

k=1

v

1

^ : : : ^ R(v

k

; u)w^ : : : ^ v

p

�

X

1�`<k�p

(�1)

`+k

�

R(v

k

; u)v

`

�R(v

`

; u)v

k

�

^ w ^ v

1

^ : : : ^ bv

`

^ : : :

: : : ^ bv

k

^ : : : ^ v

p

:

The result follows by using the Bianchi identity

R(v

k

; u)v

`

�R(v

`

; u)v

k

= R(v

k

; v

`

)u:

As a consequence of Lemma 7.2 and [9] Proposition 8.7, we can state:

Corollary 7.3. Assume thatM is a Riemannian manifold equipped with its Levi-Civita

connection. LetE = ^TM andR be as in (7.1). Let� := �(d+d

�

)

2 be the Laplacian

on �(E

�

), and let �R = + trR be theR-Laplacian on �(E

�

) defined in Section 5.

Then

� = �

R

:(7.3)
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Remark 7.4. Under the assumptions of Corollary 7.3 the following formula holds:

R(u;w)v

1

^ : : : ^ v

p

=

p

X

k=1

v

1

^ : : : ^R(v

k

; u)w ^ : : : ^ v

p

�

X

1�`<k�p

(�1)

k+`

R(v

k

; v

`

)u ^ w ^ v

1

^ : : : ^ bv

`

^ : : : ^ bv

k

^ : : : ^ v

p

:

The second term on the right says that R is not a tensor product as defined in for-

mula (5.10). In other words, the tensor product of deformed parallel transports in TM

is not the deformed parallel transport associated with �. This has been pointed out

in [16] p. 196.

Let E = ^

p

TM . For every x 2M , let X(x) be an M -valued semimartingale with

starting point x. Assume that X is differentiable with respect to x and denote by TX

the derivative of X . We want to calculate the drift of the process TX^p with respect

to the connection r
, and to find sufficient conditions under which the fact that X is a

r-martingale implies that TX^p is a r
-martingale. We have

D(TX

^p

) : = ==

E

0;.

d

�

(==

E

0;.

)

�1

TX

^p

�

= ==

E

0;.

d

�

==

�1

0;.

TX

�

^p

=

p

X

k=1

TX

1

^ : : : ^DTX

k

^ : : : ^ TX

p

+

X

1�`<k�p

TX

1

^ : : : ^DTX

`

^ : : : ^DTX

k

^ : : : ^ TX

p

:

Consider the particular case when X solves an equation of the type

d

r

X = A(X) dB + b(X) dt

whereB is an Rr -valued Brownian motion,A 2 �(R

r


 TM), b 2 �(TM). Differen-

tiating with the help of Theorem 2.2 yields

d

r




TX = A




(TX) dB + b




(TX) dt

or with Eq. (5.3)

d

r

h

TX = A




(TX) dB + b




(TX) dt

�

1

2

v

TX

�

R(TX; dX)dX +rT (dX; TX; dX) + T (DTX; dX)

�

dt:

Projecting onto the vertical part gives

DTX =

^

r

TX

AdB +

^

r

TX

b dt

�

1

2

�

R(TX; dX)dX +rT (dX; TX; dX) + T (DTX; dX)

�

dt:

(7.4)

Definition 7.5. We say that (A;r) satisfies the condition (LJW) if ImA is a subbundle

of TM and the restriction of the adjoint connection ^

r to sections of ImA is the Le Jan-

Watanabe covariant derivative induced by A.
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Recall that the Le Jan-Watanabe covariant derivativerLJW on ImA is characterized

as follows (see [10]): if Z 2 �(ImA), v
0

2 T

x

0

M , then

r

LJW
v

0

Z = A(x

0

)d (A

�

( �)Z( �)) (v

0

)

where the adjointA� is defined with respect to an induced metric on ImA which makes

eachA�(x) an isometric embedding into Rr . The Le Jan-Watanabe covariant derivative

satisfies the property: if x 2 M , e 2 (kerA(x))

?, w 2 T

x

M , then rLJW
w

A( �)e = 0

([10] Proposition 1.1.1).

Note that our notations are not the same as in [10]. Our r is the adjoint of an

extension, as in their Proposition 1.3.1, of their �

r. Hence our restriction of ^

r to ImA

is their �

r.

The most important example is given by gradient Brownian systems: M is a Rie-

mannian manifold isometrically immersed in Rr , A(x) the orthogonal projection of Rr

to T
x

M and rLJW the Levi-Civita connection ([10] Example 1B).

Note that givenA such that ImA is a subbundle of TM , the existence ofr such that

(A;r) satisfies (LJW) is guaranteed by [10] Proposition 1.3.1.

Assume that (A;r) satisfies (LJW). Let x 2 M . Choosing an orthonormal basis

of Rr which splits into an orthonormal basis of kerA(x) and an orthonormal basis of

(kerA(x))

?, we see that tr ^rA(x) 
 A(x) = 0. But with the expression of DTX in

Eq. (7.4) we get DTX 
 dX = tr ^rA(X)
A(X) dt; we conclude that

DTX 
 dX � 0:(7.5)

As a consequence, using the relation

R(v; u)u+ (r

u

T )(v; u) =

^

R(v; u)u; u; v 2 T

x

M;

and again Eq. (7.4), we get

DTX =

^

r

TX

A(X) dB +

^

r

TX

b(X) dt�

1

2

m

X

i=1

^

R

�

TX;A

i

(X)

�

A

i

(X) dt;

and this gives

D(TX

^p

) =

p

X

k=1

TX

1

^ : : : ^

^

r

TX

k

A(X) dB ^ : : : ^ TX

p

+

p

X

k=1

TX

1

^ : : : ^

^

r

TX

k

b(X) dt ^ : : : ^ TX

p

+

p

X

k=1

TX

1

^ : : : ^

�

�

1

2

m

X

i=1

^

R

�

TX

k

; A

i

(X)

�

A

i

(X) dt

�

^ : : : ^ TX

p

+

X

1�`<k�p

(�1)

k+`

m

X

i=1

^

r

TX

k

A

i

(X) ^

^

r

TX

`

A

i

(X) ^ TX

1

^ : : :

: : : ^

d

TX

`

^ : : : ^

d

TX

k

^ : : : ^ TX

p

dt:

The displayed equation in the next proposition already appears in the proof of Theo-

rem 3.3.8 in [10].
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Proposition 7.6. Assume that (A;r) satisfies (LJW). Then

D(TX

^p

) =

p

X

k=1

TX

1

^ : : : ^

^

r

TX

k

A(X) dB ^ : : : ^ TX

p

+

p

X

k=1

TX

1

^ : : : ^

^

r

TX

k

b(X) dt ^ : : : ^ TX

p

�

1

2

m

X

i=1

R(A

i

(X); A

i

(X))TX

^p

dt:

In particular, if X is a r-martingale, then TX^p is a r
-martingale.

Proof. For the claimed equation, considering the formula just before Proposition 7.6

and the definition ofRE , it is sufficient to prove that for all x 2M , v
1

; v

2

2 T

x

M

m

X

j=1

^

R(v

1

; v

2

)A

j

^ A

j

= 2

m

X

j=1

^

r

v

1

A

j

^

^

r

v

2

A

j

;(7.6)

which is a consequence of [10], Corollary C.5. If X is a r-martingale, then b � 0, and

we have by (5.4) and (4.8)

d

r




TX

^p

= d

r

h

TX

^p

+ v

TX

^p

�

1

2

R(dX; dX)TX

^p

�

= h

TX

^p

(d

r

X) + v

TX

^p

(D(TX

^p

)) + v

TX

^p

�

1

2

R(dX; dX)TX

^p

�

= h

TX

^p

(d

r

X) +

p

X

k=1

TX

1

^ : : : ^

^

r

TX

k

A(X) dB ^ : : : ^ TX

p

which shows that TX^p is a r
-martingale.

8. Complete Lifts to Dira
 Bundles

Let D be the Dirac operator on the spinor bundle F over a spin manifold M and

�D

2

= + R the Weitzenböck decomposition of its square. We want to define a

natural connection r
 on F , such that a section (“spinor field”) a 2 �(F ) is harmonic

(i.e., a 2 kerD

2) if and only if a(X) is a r
-martingale for any Brownian motion X

in M .

More generally, we shall deal with the following context.

Definition 8.1. Let M be a Riemannian manifold with Levi-Civita connection and

� : E !M a Riemannian vector bundle overM , endowed with a Riemannian connec-

tion rE :

Xha; bi = hr

E

X

a; bi+ ha;r

E

X

bi; a; b 2 �(E); X 2 �(TM):

Then E is said to be a Dirac bundle if it carries a “Clifford action”


 2 �

�

Hom(TM 
E;E)

�

;(8.1)

written as v � a := 
(v 
 a) 2 �(E) for v 2 �(TM) and a 2 �(E), such that
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(i) hv � a; bi = �ha; v � bi,

(ii) hv � a; v � bi = kvk

2

ha; bi,

(iii) rE

(v � a) = (r

TM

v) � a+ v � (r

E

a)

for all v 2 �(TM) and a; b 2 �(E). The operator

D : �(E)

r

E

�! �(T

�

M 
E)

�

�!

�(TM 
E)




�! �(E)(8.2)

is called Dirac operator of E and � = �D

2 its Laplacian.

Definition 8.1 is equivalent to the one in [13], p. 114. Note that if, for v 2 T
x

M , the

linear map 
(v 
 �) : E

x

! E

x

is denoted by 
(v), then conditions (i) and (ii) amount

to saying 
(v)� = �
(v) and 
(v)
(w) + 
(w)
(v) = �2hv; wi id.

For such generalized Laplacians � there is a Lichnerowicz-Weitzenböck decompo-

sition

�a = a+Ra(8.3)

where in terms of the curvature tensor R
x

: T

x

M � T

x

M ! End(E
x

):

R

x

a = �

1

2

X

i;j

e

i

� e

j

� R

x

(e

i

; e

j

)a(8.4)

for any orthonormal basis (e
1

; : : : ; e

n

) of T
x

M (see [13], p. 155).

Example 8.2. (a) (the de Rham operator) The exterior bundle E = ^T

�

M of a Rie-

mannian manifold with Clifford action v �a = v

[

^a�v

[

a and Levi-Civita connection

is a Dirac bundle, where by definition v[ = hv; �i. The associated Dirac operator is

D = d+ d

� and � = �D

2

= �(dd

�

+ d

�

d) is the de Rham-Hodge Laplacian on E.

(b) (the Dirac operator on a spin manifold) If M is an even-dimensional spin man-

ifold, its spinor bundle F with the Levi-Civita connection is a Dirac bundle. The asso-

ciated Dirac operatorD is referred to as the Dirac operator on M .

(c) (the Dirac operator of a twisted spinor bundle) The spinor bundle F is tensored

with an auxiliary Riemannian/hermitian vector bundle � overM to give a Dirac operator

of the form

D : �(F 
 �)

r

F
�

��! �(T

�

M 
 F 
 �)

�

�!

�(TM 
 F 
 �)



1

��! �(F 
 �):

Again the identification in the middle is given by the metric.

(d) (the �-operator on a Kähler manifold) e.g. [7], p. 135.

Given the situation of Definition 8.1, we now investigate connectionsr
 on TE such

that a(X) is a r
-martingale for a 2 �(E) harmonic andX a Brownian motion onM .

Such connections will be possible candidates for the complete lift r
 of r.

First of all note that one may modify Definition 7.1 by means of the Weitzenböck

term (8.4) as follows: For u; v 2 T
x

M and a 2 E
x

let

R(u; v)a = �

X

j

v � e

j

�R

x

(u; e

j

)a 2 E

x

(8.5)

and define for Y 2 �(TE), X 2 T

a

E, a 2 E,

r




X

Y = r

h

X

Y + v

a

�

R(�

�

X; �

�

Y )a

�

:(8.6)
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This obviously gives a connection r
 with the wanted properties which however does

not coincide with the connections on exterior bundles as defined in Section 7, when

the latter are considered as special instances of Clifford bundles. In addition, there is a

plenty of other connections satisfying the same conditions.

The particular case of exterior bundles already suggests that in case the Dirac bundle

E inherits a natural graduation or filtration, the connection should respect this additional

structure.

Coming back to the case of the exterior bundleE = ^T

�

M of Example (8.2) (a), let


(v) = C

v

� A

v

where C
v

a = v

[

^ a, A
v

a = v

[

a for v 2 T

x

M , a 2 E

x

, and let

prp : E ! E denote the projection onto Ep

:= ^

p

T

�

M . Setting




+

(v)jE

p

= prp+1
(v)jEp




�

(v)jE

p

= prp�1
(v)jEp

;

we get 
+(v) = C

v

and 
�(v) = �A

v

. Moreover, it is straightforward to check that by

defining

R

0

(u; v)a = �

X

i




�

(v) 


+

(e

i

)R(u; e

i

)a 2 E

x

;(8.7)

we get

R

0

(u; v) = R(u; v) +R(u; v)(8.8)

whereR is defined by Eq. (7.1). Taking into account the antisymmetry of the curvature

tensor R(u; v), we see that Eqs. (8.6) and (8.7) define a connection r
 on the exterior

bundleE = ^T

�

M which coincides up to torsion with the one defined in Section 7. In

particular, both connections yield the same class of martingales.

9. Martingales in the Tangent Spa
e Related to Harmoni
 Maps

Let L =

1

2

P

r

i=1

A

2

i

+A

0

be a differential operator on a manifoldM with a connec-

tion. Assume that for every x 2M , one can choose r and the vector fields A
0

; : : : ; A

r

in such a way that for all i � 1, either A
i

(x) = 0 or ^

rA

i

(x) = 0 (this is a local

property). Note this is possible for instance when M is a Riemannian manifold, r is

the Levi-Civita connection and L =

1

2

�+ b, or more generally, when (A;r) satisfies

(LJW) (just make a rotation, depending on x, of the orthonormal basis in Rr ).

Let N be another manifold with a connection also denoted by r. For T > 0 let

u : M � [0; T ℄ ! N be a smooth solution to the heat equation, i.e. u(t � .

; X

.

) is

an N -valued r-martingale for every diffusion X on M with generator L and every

t 2 ℄0; T ℄.

Let X(x) be a diffusion with generator L, satisfying X
0

(x) = x and

ÆX(x) = A(X(x)) ÆB +A

0

(X(x)) dt;

or in the Itô form

d

r

X(x) = A(X(x)) dB + b(X(x)) dt(9.1)

with b = A

0

+

1

2

P

r

i=1

r

A

i

A

i

. Here B is a Brownian motion taking values in Rr .
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Differentiating Eq. (9.1) along with Theorem 2.2 gives

d

r




TX(v) = A




(TX(v)) dB + b




(TX(v)) dt(9.2)

for every v 2 TM , where TX is a diffusion with generator

L




:=

1

2

r

X

i=1

(A




i

)

2

+A




0

:

(Note that L
 depends on the particular choice for A, not just on the operator L.)

LetTu denote the derivative ofuwith respect to the second,and �u the derivative with

respect to the first variable. We know by Corollary 2.3 that s 7! Tu(t� s;X

s

)(TX

s

)

is a r
-martingale in TN .

Let �M be a L(T
x

M;TM)-valued diffusion satisfying �

M

0

= id
T

x

M

and

d

r




�

M

= A

h

(�

M

) dB + b




(�

M

) dt:(9.3)

By means of Eq. (4.7) and relation ^

R(�

M

; A

i

)A

i

= R(�

M

; A

i

)A

i

+rT (A

i

;�

M

; A

i

),

along with the fact that D�

M has finite variation, Eq. (9.3) can be rewritten as

d

r

h

�

M

= A

h

(�

M

) dB + b




(�

M

) dt�

1

2

v

�

M

 

r

X

i=1

^

R(�

M

; A

i

)A

i

!

:

But since

b




= b

h

+ 
(

^

r

:

b) = A

h

0

+

1

2

r

X

i=1

r

h

A

h

i

A

h

i

+ 
(

^

r

:

b)

where 
( ^r
:

b)(w) = v

w

(

^

r

w

b) for w 2 TM , we conclude that �M is a diffusion with

generator

L

r

:=

1

2

r

X

i=1

(A

h

i

)

2

+A

h

0

�

1

2

r

X

i=1




�

^

R( �; A

i

)A

i

�

+ 
(

^

r

:

b):

Since Eq. (9.3) and b
 = b

h

+ 
(

^

r

:

b) imply

d

r




�

M

(v) = h

�

M

(v)

(d

r

X) + v

�

M

(v)

�

^

r

�

M

(v)

b

�

dt;

we see that Lr depends on L andr, but not on the particular choice forA. (Recall that

b is the first order part of L with respect to the connectionr.)

Proposition 9.1. The process Tu(t� .

; X)(�

M

) is a r
-martingale in TN .
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Proof. In the following calculation we will use the identity Ah = A




� 
(

^

rA). The

geometric Itô equation for Tu(t� .

; X)(�

M

) writes

d

r




Tu(t�

.

; X)(�

M

)

=




TTu(t�

.

; X); d

r




�

M

�

+

1

2

r




TTu(t�

.

; X)

�

d

r




�

M


 d

r




�

M

�

� �Tu(t�

.

; X) ds

=




TTu(t�

.

; X)A

h

(�

M

) dB + b




(�

M

) ds

�

� �Tu(t�

.

; X) ds

+

1

2

r




TTu(t�

.

; X)

�

A

h

(�

M

) dB 
A

h

(�

M

) dB

�

m

=




TTu(t�

.

; X); b




(�

M

) ds

�

+

1

2

r




TTu(t�

.

; X)

�

A




(�

M

) dB 
A




(�

M

) dB

�

� �Tu(t�

.

; X) ds

�r




TTu(t�

.

; X)

�

A

h

(�

M

) dB 
 v

�

M

(

^

r

�

MA) dB

�

+

1

2

r




TTu(t�

.

; X)

�

v

�

M

(

^

r

�

MA) dB 
 v

�

M

(

^

r

�

MA) dB

�

where
m

=

means again equality modulo differentials of local martingales. The sum of

the first three lines of the r.h.s. vanishes by means of Eq. (9.2) since Tu(t� .

; X)(TX)

is a r
-martingale for every X as above, and therefore the geometric Itô formula for

TuTX yields: for all w 2 T

x

M ,

0 =




TTu(t�

.

; x); b




(w)

�

+

1

2

trr


TTu(t�

.

; x)

�

A




(w)
A




(w)

�

��Tu(t�

.

; x):

The last line of the r.h.s. vanishes since Tu is linear on the fibers,r
 is flat on the fibers,

and hencer


TTu(w

1

; w

2

) = 0 if w
1

and w
2

are vertical. To prove that the fourth line

of the r.h.s. vanishes, we first remark that (since �M is a diffusion)

d

r




Tu(t�

.

; X)(�

M

)

m

=

F ( �;�

M

) dt

for some continuous map F which does not depend on the choice of A. But the calcu-

lation above gives

d

r




Tu(t�

.

; X)(�

M

)

m

=

�r




TTu(t�

.

; X)

 

r

X

i=1

�

A

h

i

(�

M

)
 v

�

M

�

^

r

�

MA

i

�

�

!

dt

where the right hand side is continuous in �

M . Consequently,

F ( �; w) = �r




TTu(t�

.

; x)

 

r

X

i=1

�

A

h

i

(x)
 v

w

�

^

r

w

A

i

(x)

�

�

!

for all x 2M andw 2 T

x

M . Now choosingA such that for all i � 1, eitherA
i

(x) = 0

or ^

rA

i

(x) = 0, we see that F ( � ; w) = 0, and as a conclusion, that Tu(t� .

; X)�

M is

a r
-martingale.
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Proposition 9.1 provides an alternative to the method of filtering out redundant noise,

as discussed in [10]. Recall that the condition on the connection described at the begin-

ning of the section is satisfied if L =

1

2

P

r

i=1

A

2

i

+ A

0

and (A;r) satisfies condition

(LJW), up to a rotation of the orthonormal basis in Rr . This gives the following result:

Corollary 9.2. Let (A;r) satisfy (LJW) and

L =

1

2

r

X

i=1

A

2

i

+A

0

with A
0

= �

1

2

P

r

i=1

r

A

i

A

i

. Let u : (M;L) ! (N;r) be a smooth harmonic map.

Assume that the connectionsr in M and N are torsion-free.

ThenTu : (M;L)! (T

�

M 
 TN;r




) is harmonic, wherer
 is the tensor product

of the complete lifts of r in TN and T �M .

Remark 9.3. Replacing for instanceM byM�Rwith the product connection ~

r allows

us to differentiate with respect to a parameter. We just have to verify that (A; ~r) satisfies

(LJW). We conclude that Corollary 9.2 is a generalization to harmonic maps of the fact

that Jacobi fields are r
-geodesics.

Proof. Since A
0

= �

1

2

P

r

i=1

r

A

i

A

i

(which implies that any diffusion with generator

L is a r-martingale), the term b in (9.1) vanishes. As a consequence, the �

M satis-

fying Eq. (9.3) is the canonical r
-martingale along X . By Propositions 5.3 and 5.6

it is sufficient to prove that �N

�1

Tu(X)�

M is a local martingale, where �

N is the

horizontal r
-martingale along u(X). But since Tu(X)�

M is a r
-martingale by

Proposition 9.1, applying again Proposition 5.3 gives the result.

10. Martingales in the Exterior Tangent Bundle Related to

Harmoni
 Forms

Let (M;r) be a manifold endowed with a connection possibly with torsion. Let

E = ^

p

TM and let r
 be the complete lift of r to E, as defined in Section 7. Let L

be the generator of an M -valued diffusion process X solving

d

r

X = A(X) dB;

where A 2 �(R

r


 TM) and B is an Rr -valued Brownian motion. In particular, X is

assumed to be a r-martingale. We are interested in the problem inverse to Proposition

9.1 of Section 9. Given a harmonic p-form � on M , we want to find conditions under

which h�; TX^p

i is also a local martingale. The following result is a consequence of

[10], Theorem 2.4.2. Again the proof given here relies on Itô’s formula.

Proposition 10.1. Assume that (A;r) satisfies (LJW). Let � be the horizontal r
-

martingale in E along X . Then the generators of � and TX^p coincide on the set of

p-forms on M . In particular, if � is a harmonic p-form on M , i.e., h�;�i is a local

martingale, then h�; TX^p

i is a local martingale.
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Proof. We only need to prove the first assertion. Since X is a martingale and (A;r)

satisfies (LJW), by Proposition 7.6, TX^p is a r
-martingale solution to

d

r




TX

^p

= A

h

(TX

^p

) dB

+ v

�

p

X

k=1

TX

1

^ : : : ^

^

r

TX

k

A(X) dB ^ : : : ^ TX

p

�

:

(10.1)

On the other hand, � satisfies

d

r




� = A

h

(�) dB:(10.2)

Let Lr be the generator of �, and let � be a p-form on M . The Itô equation for h�;�i

writes

d




�;�

�

=




d�; d

r




�

�

+

1

2

r




d�

�

A

h

(�) dB 
A

h

(�) dB

�

(10.3)

where d� is the differential of � considered as a function on ^pTM . Since � is a

r


-martingale, the drift term in Eq. (10.3) equals 1

2

r




d�

�

A

h

(�) dB 
A

h

(�) dB

�

.

But by definition of the generator, the drift term is also equal to Lr�(�) dt. As a

consequence, we have for any � 2 ^pTM

L

r

�(�) =

1

2

trr


d�

�

A

h

(�)( �)
A

h

(�)( �)

�

:

On the other hand, by means of Eq. (10.1), since TX^p is a r
-martingale, we get the

following consequence of the Itô equation for h�; TX^p

i:

dh�; TX

^p

i

m

=

1

2

r




d� (dTX

^p


 dTX

^p

)

=

1

2

r




d�

�

A

h

(TX

^p

) dB 
A

h

(TX

^p

) dB

�

+r




d�

�

A

h

(TX

^p

) dB 
 v

�

p

X

k=1

TX

1

^ : : : ^

^

r

TX

k

A(X) dB ^ : : : ^ TX

p

��

+

1

2

r




d�

�

�

d

r




TX

^p

�

vert




�

d

r




TX

^p

�

vert

�

:

Now the first line of the r.h.s. is equal to Lr� (TX

^p

) dt. The third line vanishes since

� is linear on the fibers, and finally the second line vanishes since by condition (LJW),

if e 2 (kerAh( �))? then ^

r

:

A( �)e = 0. We get

dh�; TX

^p

i

m

=

L

r

� (TX

^p

) dt;

and this says that Lr coincides with the generator of TXp on the set of p-forms.

Note that Proposition 10.1 generalizes Theorem 5.2 in Malliavin [14] from 1-forms

to p-forms.
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