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Abstract.

We prove a variational principle for stochastic flows on manifolds. It ex-
tends V. Arnold’s description of Lagrangian Euler flows, which are geodesics

for the L2 metric on the manifold, to the stochastic case. Here we obtain

stochastic Lagrangian flows with mean velocity (drift) satisfying the Navier-
Stokes equations.

We study the stability properties of such trajectories as well as the evolution

in time of the rotation between the underlying particles. The case where the
underlying manifold is the two-dimensional torus is described in detail.
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1. Introduction

The Lagrangian approach to hydrodynamics in the non-viscous incompressible
case consists in studying the configuration of the underlying particles, namely the
solutions of equations

d

dt
g(t)(x) = u(t, g(t)(x)), g(0) = x

where the velocity field u satisfies Euler equations

∂

∂t
u+∇uu = −∇p, div u = 0

and p is the pressure. The integral flows g are usually called Lagrangian flows.
V. I. Arnold ([3]) discovered that these flows can be characterized as geodesics on

an (infinite-dimensional) group of diffeomorphisms. They are, in particular, critical
1
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paths of the action functional

S(g) =
1

2

∫ T

0

∫
M

|| d
dt
g(t)(x)||2dµ(x)dt

where µ is the volume element associated with the metric.
This point of view allows in particular to derive various properties of the geodesics

(the Lagrangian flows) such as stability, through the study of the geometry of the
group ([9], [4]).

When the fluid is viscous, namely for the Navier-Stokes equation, one can de-
scribe the Lagrangian trajectories as realizations of a stochastic process and inter-
pret the associated drift, solving Navier-Stokes, as an expectation over this process.
This probabilistic approach, which we follow here, is inspired by [11], [12]. It is in-
trinsically probabilistic in the sense that there is no random perturbation of the
Navier-Stokes equations: in our model the velocity is, as it should be, determinis-
tic; only the position is described by stochastic flows. Similar stochastic models are
used for example in [6]. In this framework the trajectories remain, in an appropriate
sense, geodesics as they are almost sure solutions of a variational principle. This
was shown in [5] for the two-dimensional torus. We call these processes stochastic
Lagrangian flows.

More recently an analogous stochastic least action principle was derived in [7].
The main differences are that there the author considers backward rather than
forward semimartingales and also that the variations are assumed to be of bounded-
variation type, which is not the case of those we use.

The purpose of this paper is twofold. On one hand we extend the variational
principle for the Lagrangian Navier-Stokes diffusions, derived in [5] for the two-
dimensional torus, to compact manifolds. Moreover we study the stability prop-
erties of these diffusion processes, more precisely the evolution in time of their
distance. The behaviour of the stochastic Lagrangian flows concerning their (L2)
distance depends on the intensity of the noise as well as on the metric of the un-
derlying manifold. The example of the torus is studied in detail, and in this case
we observe that, at least for short times, the flows spread out more than the deter-
ministic classical Navier-Stokes Lagrangian paths. This type of phenomenon was
illustrated by some simulations in [2]. Finally we also describe the evolution in time
of the rotation between stochastic Lagrangian particles.

The general outline of this paper is as follows. In Theorem 3.2 of Section 3
we prove the variational principle on a general compact oriented manifold with-
out boundary. This principle gives rise to the Lagrangian stochastic flows to be
analysed afterwards. The following three sections are devoted to the derivation of
formulae for the distance of two flows. In Section 4 the case of the torus with the
Euclidean distance is considered. Proposition 4.2 gives the Itô formula for the L2

distance between two flows. Proposition 4.4 yields a lower bound for the equation
of the distance. Finally Theorem 4.5 proves chaotic behaviour of trajectories, more
precisely exponential growth of the L2 distance, under the condition that the L∞

one has a sufficiently small upper bound. This upper bound is needed due to the
presence of cutlocus in the torus. To overcome the calculation with the cutlocus the
torus is endowed in section 5 with the extrinsic distance. Example 5.1 shows that
that without the uniform bound on the L∞ distance it may happen that the L2

distance between two flows is very small, however its drift is negative, meaning the
conclusion of Theorem 4.5 is not valid here. In Proposition 6.1 of Section 6 the Itô
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differential of the L2 distance between two flows in a general Riemannian manifold
is computed. From this formula it can be deduced that negative curvature together
with a uniform bound on the distance implies exponential growth of L2-distance.
In the last section we study the stochastic process that describes the evolution in
time of the rotation between particles and how this rotation depends on the dif-
fusion coefficients. Lemma 7.1 yields the Itô covariant differential of the rotation
vector between the particles. It is proven in Proposition 7.2 that if a certain series
involving the coefficients diverges then the rotation becomes faster and faster when
the distance between the particles converges to zero.

2. General setting

Let (M,g) be a compact oriented Riemannian manifold without boundary.
Recall that the Itô differential of an M -valued semimartingale Y is defined by

(2.1) dYt = P (Y )t d

(∫ ·
0

P (Y )
−1
s ◦ dYs

)
t

where

(2.2) P (Y )t : TY0M → TYtM

is the parallel transport along t 7→ Yt. Alternatively, in local coordinates,

(2.3) dYt =

(
dY it +

1

2
Γijk(Yt)dY

j
t ⊗ dY kt

)
∂i

where Γijk are the Christoffel symbols of the Levi-Civita connection.
If the semimartingale Yt has an absolutely continuous drift, we denote it by

DYt dt: for every 1-form α ∈ Γ(T ∗M), the finite variation part of

(2.4)

∫ ·
0

〈α(Yt), dYt〉

is

(2.5)

∫ ·
0

〈α(Yt), DYt dt〉

Let Gs, s ≥ 0 be the infinite dimensional group of homeomorphisms on M which
belong to Hs, the Sobolev space of order s. For s > m

2 + 1, m = dimM , Gs is
a C∞ Hilbert manifold. The volume preserving homeomorphism subgroup will be
denoted by GsV :

GsV = {g ∈ Gs, : g∗µ = µ},
with µ the volume element associated to the Riemannian metric. We denote by G s

(resp. G s
V ) the Lie algebra of Gs (resp. GsV ). See [9] for example.

On M we consider an incompressible Brownian flow gu(t) ∈ G0
V with covariance

a ∈ Γ(TM � TM) and time dependent drift u(t, ·) ∈ Γ(TM). We assume that for
all x ∈M , a(x, x) = 2νg−1(x) for some ν > 0. This means that

(2.6) dgu(t)(x)⊗ dgu(t)(y) = a (gu(t)(x), gu(t)(y)) dt,

(2.7) dgu(t)(x)⊗ dgu(t)(x) = 2νg−1 (gu(t)(x)) dt,

the drift of gu(t)(x) is absolutely continuous and satisfiesDgu(t)(x) = u(t, gu(t)(x)).
The generator of this process is
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Lu = ν∆ + ∂u

where ∆ is the Laplace-Beltrami operator on M . The parameter ν will be called
the speed of the Brownian flow.

Such incompressible flows are known to exist on compact symmetric spaces and
on compact Lie groups.

If the time is indexed by [0, T ] for some T > 0, we define the action functional
by

S(gu) =
1

2
E

[∫ T

0

(∫
M

‖Dgu(t)(x)‖2 dµ(x)

)
dt

]
.

From now on, for simplicity, we shall simply write dx for integration on the manifold.

3. The variational principle

Define

(3.1) H =
{
v ∈ C1([0, T ], G∞V ), v(0, ·) = 0, v(T, ·) = 0

}
Given v ∈H , consider the following ordinary differential equation

det(v)

dt
= v̇(t, et(v))

e0(v) = e
(3.2)

where e is the identity of G∞V . Since v is divergence free, e·(v) is a G∞V -valued
deterministic path.

We denote by P the set of continuous G0
V -valued semimartingales g(t) such that

g(0) = e. Then for all v ∈H , we have et(v) ◦ gu(t) ∈P.

Definition 3.1. Let J be a functional defined on P and taking values in R. We
define its left and right derivatives in the direction of h(·) = e·(v), v ∈ H at a
process g ∈P respectively, by

(DL)hJ [g] =
d

dε
J [e·(εv) ◦ g(·)]|ε=0,

(DR)hJ [g] =
d

dε
J [g(·) ◦ e·(εv)]|ε=0.

(3.3)

A process g ∈P wil be called a critical point of the functional J if

(3.4) (DL)hJ [g] = (DR)hJ [g] = 0, ∀h = e(v), v ∈H .

Theorem 3.2. Let (t, x) 7→ u(t, x) be a smooth time-dependent divergence-free
vector field on M , defined on [0, T ]×M . Let gu(t) a stochastic Brownian flow with
speed ν > 0 and drift u. The stochastic process gu(t) is a critical point of the energy
functional S if and only if the vector field u(t) verifies the Navier-Stokes equation

(3.5)
∂u

∂t
+∇uu = ν�u−∇p

where � = dd∗ + d∗d is the damped Laplacian.

The damped Laplacian, associated to the damped connection ∇c, is also known
as the Laplace-de Rham operator. We recall that when computed on forms and,
in particular, on vector fields, it differs from the usual Levi-Civita Laplacian by a
Ricci curvature term (this is the content of the Weitzenböck formula). Therefore,
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on flat manifolds such as the torus, as the curvature vanishes, the two Laplacians
coincide and reduce to the usual one.

For the construction of weak solutions of Navier-Stokes equations on Riemannian
manifolds we refer to [10].

Proof. of Theorem 3.2. Since the functional S is right invariant, it is enough to
consider the left derivative. So we need to compute

(3.6)
d

dε
|ε=0S(e·(εv)(gu)).

We let

(3.7) f(ε) = S(e·(εv)(gu)).

Then

(3.8) f(ε) =
1

2

∫
M

(
E

[∫ T

0

(
‖Det(εv)(gu)(t)(x)‖2

)
dt

])
dx

which yields

(3.9) f ′(0) =

∫
M

(
E

[∫ T

0

(〈∇ε|ε=0Det(εv) (gu(t)(x)) , u(t, gu(t)(x))〉) dt

])
dx.

We need to compute

(3.10) ∇ε|ε=0Det(εv) (gu(t)(x)) .

We have

∇t
d

dε
|ε=0et(εv) = ∇ε|ε=0

det(εv)

dt
= ∇ε|ε=0εv̇(t, et(εv))

= v̇(t, e).

Together with v(0, ·) = 0, this implies

d

dε
|ε=0et(εv)(x) = v(t, x).(3.11)

Consequently

(3.12)
d

dε
|ε=0et(εv) (gu(t)(x)) = v (t, gu(t)(x)) .

By Itô equation,

det(εv)(gu(t)(x))

= 〈det(εv)(·), dgu(t)(x)〉+
1

2
∇det(εv)(gu(t)(x)) (dgu(t)(x)⊗ dgu(t)(x))

= 〈det(εv)(·), dgu(t)(x)〉+ ν∆et(εv)(gu(t)(x)) dt.

(3.13)

Here ∆et(εv)(·) denotes the tension field of the map et(εv) : M →M . This yields

Det(εv)(gu(t)(x)) = 〈det(εv)(·), Dgu(t)(x)〉+ ν∆et(εv)(gu(t)(x))

+ εv̇(t, et(εv)(gu(t)(x)))

= 〈det(εv)(·), u(t, gu(t)(x))〉+ ν∆et(εv)(gu(t)(x))

+ εv̇(t, et(εv)(gu(t)(x))).

(3.14)

Differentiating with respect to ε at ε = 0, we get
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∇ε|ε=0Det(εv)(gu(t)(x))

= 〈∇ε|ε=0det(εv)(·), u(t, gu(t)(x))〉+ ν∇ε|ε=0∆et(εv)(gu(t)(x))

+
∂v

∂t
(t, gu(t)(x))

=

〈
∇·

d

dε
|ε=0et(εv)(·), u(t, gu(t)(x))

〉
+ ν�

d

dε
|ε=0et(εv)(gu(t)(x))

+
∂v

∂t
(t, gu(t)(x))

= 〈∇·v(t, ·), u(t, gu(t)(x))〉+ ν�v(t, ·)(gu(t)(x)) +
∂v

∂t
(t, gu(t)(x))

= ∇u(t,gu(t)(x))v(t, ·) + ν�v(t, ·)(gu(t)(x)) +
∂v

∂t
(t, gu(t)(x)).

(3.15)

We used the commutation formula ∇ε|ε=0∆ = � d
dε . Alternatively,

(3.16) �v = ∆hv + Ric](v).

For a TM -valued semimartingale Jt which projects onto the M -valued semi-
martingale Yt, we denote by DJt the Itô covariant derivative:

(3.17) DJt = P (Y )td
(
P (Y )−1t Jt

)
.

Then Itô equation yields

(3.18) Du(t, gu(t)(x)) ' ∂u

∂t
(t, gu(t)(x)) dt+∇dgu(t)(x)u+ ν∆hu(t, gu(t)(x)) dt

and

(3.19) Dv(t, gu(t)(x)) ' ∂v

∂t
(t, gu(t)(x)) dt+∇dgu(t)(x)v + ν∆hv(t, gu(t)(x)) dt.

where the notation ' means ”equal up to a martingale”; and∫ ·
0

P (gu(·))−1t Du(t, gu(t)(x))

−
∫ ·
0

P (gu(·))−1t
(
∂u

∂t
(t, gu(t)(x)) dt+∇dgu(t)(x)u+ ν∆hu(t, gu(t)(x)) dt

)
is a local martingale.

On the other hand, writing ut = u(t, gu(t)(x)) and vt = v(t, gu(t)(x)) we have

(3.20) 〈uT , vT 〉 =

∫ T

0

〈Dut, vt〉+

∫ T

0

〈ut, Dvt〉+

∫ T

0

〈Dut, Dvt〉.

Let us denote by Dvt the drift of vt with respect to the damped connection ∇c on
TM , whose geodesics are the Jacobi fields. It is known that,

(3.21)
(
Dut − ν Ric](ut)

)
dt is the drift of Dut

and

(3.22)
(
Dvt − ν Ric](vt)

)
dt is the drift of Dvt.

As can be seen from (3.15), (3.19) and (3.22), the drift Dvt commutes with the
derivative with respect to a parameter, so it satisfies

(3.23) Dvt = ∇ε|ε=0Det(εv)(gu(t)(x)).
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Taking the expectation in (3.20) and using (3.23), (3.21) and (3.22), we get by
removing the martingale parts

E [〈uT , vT 〉] = E

[∫ T

0

〈∂u
∂t

(t, gu(t)(x)) +∇utu+ ν∆hu(t, gu(t)(x)), vt〉 dt

]

+ E

[∫ T

0

〈ut, ∇ε|ε=0Det(εv)(gu(t)(x))− ν Ric](vt)〉 dt

]

+ E

[
2ν

∫ T

0

tr 〈∇·u, ∇·v〉 (t, gu(t)(x)) dt

]
.

(3.24)

Then using the facts that vT = 0, together with

(3.25) 〈ut,Ric](vt)〉 = 〈Ric](ut), vt〉
and (3.16), we get

E

[∫ T

0

〈ut, ∇ε|ε=0Det(εv)(gu(t)(x))〉 dt

]

= −E

[∫ T

0

〈∂u
∂t

(t, gu(t)(x)) +∇utu+ ν�u(t, gu(t)(x)), vt〉 dt

]

− E

[
2ν

∫ T

0

tr 〈∇·ut, ∇·vt〉 (t, gu(t)(x)) dt

]
.

(3.26)

Integrating with respect to x yields

f ′(0)

= −E

[∫ T

0

(∫
M

〈((
∂

∂t
+∇u + ν�

)
u

)
(t, gu(t)(x)), v(t, gu(t)(x))

〉
dx

)
dt

]

− E

[
2ν

∫ T

0

(∫
M

tr 〈∇·u, ∇·v〉 (t, gu(t)(x)) dx

)
dt

]
.

(3.27)

Now we use the fact that gu(t)(·) is volume preserving:

f ′(0)

= −E

[∫ T

0

(∫
M

〈((
∂

∂t
+∇u + ν�

)
u

)
(t, x), v(t, x)

〉
dx

)
dt

]

− E

[
2ν

∫ T

0

(∫
M

tr 〈∇·u, ∇·v〉 (t, x) dx

)
dt

]
.

(3.28)

Since M is compact and orientable, an integration by parts gives

(3.29)

∫
M

tr 〈∇·u, ∇·v〉 (t, x) dx = −
∫
M

〈�u, v〉 (t, x) dx.

Replacing in (3.28) we obtain

f ′(0) = −E

[∫ T

0

(∫
M

〈((
∂

∂t
+∇u − ν�

)
u

)
(t, x), v(t, x)

〉
dx

)
dt

]
.(3.30)
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The process gu(t) is a critical point of the energy functional S if and only if f ′(0) =
0, which by equation (3.30) is equivalent to

(3.31)

(
∂

∂t
+∇u − ν�

)
u = −∇p

for some function p on [0, T ]×M . This achieves the proof. �

4. Stability: the two-dimensional torus endowed with the Euclidean
distance

We study the evolution in time of the L2 distance between two Lagrangian
flows in the two dimensional torus. Notice that, in order to interpret the diffusion
processes as a solution of the variational principle described in section 2, there is
no canonical choice for the Brownian motion, as far as it corresponds to the same
generator. We make here a particular choice.

On the two-dimensional torus T = R/2πZ × R/2πZ we consider the following
vector fields

Ak(θ) = (k2,−k1) cos k.θ, Bk(θ) = (k2,−k1) sin k.θ

and the Brownian motion

(4.1) dW (t) =
∑
k∈Z

λk
√
ν(Akdxk +Bkdyk)

where xk, yk are independent copies of real Brownian motions. We assume that∑
k |k|2λ2k < ∞, a necessary and sufficient condition for the Brownian flow to be

defined in L2(T). Furthermore we consider λk = λ(|k|) to be nonzero for a equal
number of k1 and k2 components. In this case the generator of the process is equal
to

Lu = Cν∆ +
∂

∂t
+ ∂u

with 2C =
∑
k λ

2
k (c.f.[5] Theorem 2.2). We shall assume C to be equal to one.

Let us take two Lagrangian stochastic trajectories starting from different diffeo-
morphisms φ and ψ and write

(4.2) dgt = (odW (t)) + u(t, gt)dt, dg̃t = (odW (t)) + u(t, g̃t)dt

with

g0 = φ, g̃0 = ψ, φ 6= ψ

We consider the L2 distance of the particles defined by

ρ2(φ, ψ) =

∫
T
|φ(θ)− ψ(θ)|2 dθ.

where dθ stands for the normalized Lebesgue measure on the torus.
Denoting ρt = ρ(gt, g̃t) and τ(g, g̃) = inf{t > 0 : ρt = 0}, we have the following

result:

Lemma 4.1. The stopping time τ(g, g̃) is infinite.
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Proof. By uniqueness of the solution of the sde for g̃t, for all t > 0 we can write
g̃t(θ) = gt((φ

−1 ◦ ψ)(θ)). Since gt, ϕ and ψ are diffeomorphisms, if ϕ(θ) 6= ψ(θ)
then gt(θ) 6= gt((φ

−1 ◦ ψ)(θ)).
As φ 6= ψ, the set {θ ∈ T, g̃t(θ) 6= gt(θ)} has positive measure and this implies

that ρt > 0, which in turn implies that τ(g, g̃) is infinite. �

Denote by Lt(θ) the local time of the process |gt(θ) − g̃t(θ)| when (gt(θ), g̃t(θ))
reaches the cutlocus of T. By Itô calculus we have

dρt =
1

ρt

∑
k

λk
√
ν 〈gt − g̃t, (Ak(gt)−Ak(g̃t)) dxk(t) + (Bk(gt)−Bk(g̃t)) dyk(t)〉T

+
1

ρt
〈gt − g̃t, u(t, gt)− u(t, g̃t)〉T dt−

1

ρt

∫
T
|gt − g̃t|(θ)dLt(θ)

+
1

2ρt

∑
k

λ2kν
(
‖Ak(gt)−Ak(g̃t)‖2T + ‖Bk(gt)−Bk(g̃t)‖2T

)
dt

− 1

2ρ3t

∑
k

λ2kν
(
〈gt − g̃t, Ak(gt)−Ak(g̃t)〉2T + 〈gt − g̃t, Bk(gt)−Bk(g̃t)〉2T

)
dt

where 〈·, ·〉T and ‖ · ‖T denote, resp., the L2 inner product and norm. We shall use
the following notation,

(4.3) δu(t) =
1

ρt
(u(t, gt)− u(t, g̃t)) .

We have

(4.4) Ak(gt)−Ak(g̃t) = −2 sin
k · (gt + g̃t)

2
sin

(
k · (gt − g̃t)

2

)
k⊥,

(4.5) Bk(gt)−Bk(g̃t) = 2 cos
k · (gt + g̃t)

2
sin

(
k · (gt − g̃t)

2

)
k⊥,

where we have noted k⊥ = (k2,−k1). Then, for k 6= 0 we define

(4.6) nk =
k

|k|
, and ng(t) =

1

ρt
(gt − g̃t).

This yields

(4.7) Ak(gt)−Ak(g̃t) = −2|k|2ρt sin
k · (gt + g̃t)

2

sin

|k|ρt

(
k · (gt − g̃t)

2

)
nk⊥ ,

(4.8) Bk(gt)−Bk(g̃t) = 2|k|2ρt(cos
k · (gt + g̃t)

2

sin

|k|ρt

(
k · (gt − g̃t)

2

)
nk⊥ .
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With these notations we get

dρt

= ρt
√
ν
∑
k

λk|k|2
∫
T

2 (nk⊥ · ng(t, θ))
sin

|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
×
(
− sin

k · (gt(θ) + g̃t(θ))

2
dxk(t) + cos

k · (gt(θ) + g̃t(θ))

2
dyk(t)

)
dθ

+ ρt 〈ng(t), δu(t)〉T dt− ρt
∫
T
|ng(t, θ)|

1

ρt
dLt(θ)

+ 2νρt
∑
k

λ2k|k|4
∥∥∥∥ sin

|k|ρt

(
k · (gt − g̃t)

2

)∥∥∥∥2
T
dt

− 2νρt
∑
k

λ2k|k|4

×
(∫

T
(nk⊥ · ng(t, θ)) sin

(
k · (gt(θ) + g̃t(θ))

2

)
sin

|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

)2

dt

− 2νρt
∑
k

λ2k|k|4

×
(∫

T
(nk⊥ · ng(t, θ)) cos

(
k · (gt(θ) + g̃t(θ))

2

)
sin

|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

)2

dt.

And, finally, we obtain the following formula for the L2 distance ρt between two
Lagrangian flows gt and g̃t:

Proposition 4.2. The Itô equation for the distance ρt between the diffeomorphisms
gt and g̃t satisfies the equation

(4.9) dρt = ρt
(
σtdzt + bt dt+ 〈ng(t), δu(t)〉T dt− dat

)
where zt is a real valued Brownian motion, σt > 0 is given by

σ2
t =4ν

∑
k

λ2k|k|4

×
(∫

T
(nk⊥ · ng(t, θ)) sin

(
k · (gt(θ) + g̃t(θ))

2

)
sin

|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

)2

+ 4ν
∑
k

λ2k|k|4

×
(∫

T
(nk⊥ · ng(t, θ)) cos

(
k · (gt(θ) + g̃t(θ))

2

)
sin

|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

)2

,

(4.10)

the process bt satisfies

bt +
1

2
σ2
t =2νρt

∑
k

λ2k|k|4
∥∥∥∥ sin

|k|ρt

(
k · (gt − g̃t)

2

)∥∥∥∥2
T
dt(4.11)

and at is defined by

a0 = 0, dat =

∫
T
|ng(t, θ)|

1

ρt
dLt(θ).(4.12)
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From the sde satisfied by the distance ρt and Girsanov’s Theorem, we deduce
that for all 0 < t0 < t,

ρt = ρt0 exp

(∫ t

t0

σs dzs +

∫ t

t0

(
bs −

1

2
σ2
s + 〈ng(s), δu(s)〉T

)
ds− (at − at0)

)
.

(4.13)

We introduce the notation

(4.14) δk = δk(t, θ) =
ρt(ng · nk)

|gt(θ)− g̃tθ)|
.

and notice that

δ2k + δ2k⊥ = 1.

We obtain the following estimates,

Lemma 4.3. We have

σ2
t ≤ 4ν

∑
k

λ2k|k|4
∫
T
δ2k⊥

sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
dθ(4.15)

and

(4.16) bt ≥ 2ν
∑
k

λ2k|k|4
∫
T
(ng · nk)2 dθ

∫
T

sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
dθ,

In particular bt ≥ 0.
Let R > 0. Assuming that λk = 0 for all k such that |k| > R then on the set

{
ω | ∀θ ∈ T, |gt(θ)− g̃t(θ)| ≤

π

R

}

we have

bt −
1

2
σ2
t ≥ 0.
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Proof. Using Cauchy Schwartz inequality,

σ2
t ≤ 4

∑
k

λ2k|k|4ν
∫
T
|(ng · nk⊥)| sin2

(
k · (gt(θ) + g̃t(θ))

2

)
| sin |
|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

×
∫
T
|(ng · nk⊥)|) | sin |

|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

+ 4
∑
k

λ2k|k|4ν
∫
T
|(ng · nk⊥)| cos2

(
k · (gt(θ) + g̃t(θ))

2

)
| sin |
|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

×
∫
T
|(ng · nk⊥)| | sin |

|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

= 4ν
∑
k

λ2k|k|4
(∫

T
|(ng · nk⊥)| | sin |

|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

)2

= 4ν
∑
k

λ2k|k|4
(∫

T

δk⊥ |gt(θ)− g̃tθ)|
ρt

| sin |
|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

)2

≤ 4ν
∑
k

λ2k|k|4
∫
T

|gt(θ)− g̃t(θ)|2

ρ2t
dθ

∫
T
δ2k⊥

sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

= 4ν
∑
k

λ2k|k|4
∫
T
δ2k⊥

sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
dθ.

On the other hand,

bt +
1

2
σ2
t = 2ν

∑
k

λ2k|k|4
∫
T

sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
dθ,

Hence, using the bound

σ2
t ≤ 4ν

∑
k

λ2k|k|4
(∫

T
|(ng · nk⊥)| | sin |

|k|ρt

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

)2

≤ 4ν
∑
k

λ2k|k|4
∫
T
(ng · nk⊥)2 dθ

∫
T

sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

we deduce that

bt ≥ 2ν
∑
k

λ2k|k|4
∫
T
(ng · nk)2 dθ

∫
T

sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
dθ

where we have used the identity∫
T
(ng · nk)2 dθ +

∫
T
(ng · nk⊥)2 dθ = 1.

Since λk depends only on |k|, we have λk = λk⊥ for all k. Then combining the
terms corresponding to k and k⊥ we obtain

bt +
1

2
σ2
t = ν

∑
k

λ2k|k|4

×
∫
T

(
sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
+

sin2

|k|2ρ2t

(
k⊥ · (gt(θ)− g̃t(θ))

2

))
dθ,
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From this equality, using the bound for σ2
t as well as the identity δ2k + δ2k⊥ = 1, we

derive

bt −
1

2
σ2
t ≥ ν

∑
k

λ2k|k|4

×
∫
T
(δ2k − δ2k⊥)

(
sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
− sin2

|k|2ρ2t

(
k⊥ · (gt(θ)− g̃t(θ))

2

))
dθ

= ν
∑
k

λ2k|k|4

×
∫
T
(δ2k − δ2k⊥)

(
sin2

|k|2ρ2t

(
δk
|k||gt − g̃t|(θ)

2

)
− sin2

|k|2ρ2t

(
δk⊥
|k||gt − g̃t|(θ)

2

))
dθ

Assuming that λk = 0 whenever |k| > R, on the set{
ω|∀θ ∈ T, |gt(θ)− g̃t(θ)| ≤

π

R

}
the functions inside the integral in the expression are nonegative. As a result,

bt −
1

2
σ2
t ≥ 0.

�

Let us write

(4.17) `(x) =
sinx

x
for x 6= 0, `(0) = 1.

From Lemma 4.3 we easily obtain the following result,

Proposition 4.4. Let R ≥ 1. On the set{
ω|∀θ ∈ T, |gt(θ)− g̃t(θ)| ≤

π
√

2

R

}
we have,

dρt ≥ ρt
(
σtdzt − ‖δu(t)‖T dt−

∫
T
|ng(t, θ)|

1

ρt
dLt(θ) + cR dt

)
(4.18)

where

cR =
ν

8
`2
(
π√
2

) ∑
|k|≤R

λ2k|k|4.

Moreover assuming that λk = 0 whenever |k| > R, on the set{
ω|∀θ ∈ T, |gt(θ)− g̃t(θ)| ≤

π

2R

}
we have,

dρt ≥ ρt
(
σtdzt +

1

2
σ2
t dt− ‖δu(t)‖T dt+ c′R dt

)
(4.19)

where

c′R =
1

8
ν inf
|v|=1

∑
|k|≤R

λ2k|k|4
(
(nk · v)2 − (nk⊥ · v)2

)2
.
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Proof. If |gt(θ)− g̃t(θ)| ≤
π
√

2

R
then for all k such that |k| ≤ R,

`2
(
k · (gt(θ)− g̃t(θ))

2

)
≥ `2

(
π√
2

)
and this implies

sin2

|k|2ρ2t

(
k · (gt(θ)− g̃t(θ))

2

)
≥ 1

4
`2
(
π√
2

)
(nk · ng)2.

Therefore using (4.16) we get

bt ≥
1

2
`2
(
π√
2

)
ν
∑
|k|≤R

λ2k|k|4
(∫

T
(ng · nk)2 dθ

)2

≥ 1

4
`2
(
π√
2

)
ν
∑
|k|≤R

λ2k|k|4
((∫

T
(ng · nk)2 dθ

)2

+

(∫
T
(ng · nk⊥)2 dθ

)2
)

≥ 1

8
`2
(
π√
2

)
ν
∑
|k|≤R

λ2k|k|4

(again we have used equality
∫
T(ng ·nk)2 dθ+

∫
T(ng ·nk⊥)2 dθ = 1). This establishes

(4.18).

If |gt(θ) − g̃t(θ)| ≤
π

2R
, from the proof of Lemma 4.3 we deduce the following

inequalities,

bt −
1

2
σ2
t ≥ ν

∑
|k|≤R

λ2k|k|4

×
∫
T
(δ2k − δ2k⊥)

(
sin2

|k|2ρ2t

(
δk
|k||gt − g̃t|(θ)

2

)
− sin2

|k|2ρ2t

(
δk⊥
|k||gt − g̃t|(θ)

2

))
dθ

≥ ν
∑
|k|≤R

λ2k|k|4
∫
T
(δ2k − δ2k⊥)2

|gt − g̃t|2(θ)

8ρ2t
dθ

≥
∫
T

|gt − g̃t|2(θ)

ρ2t
c′R dθ = c′R.

This establishes (4.19). �

We can now describe how the distance of two stochastic Lagrangian flows evolve
along the time. They will get exponentially apart, thus exibiting a kind of chaotic
behavior, at least during some time interval. This is the content of next theorem.
When one compares the separation of the stochastic trajectories with the one of
the deterministic integral flows for the Navier-Stokes equations, the spread out of
the stochastic trajectories is larger, at least for small times. We refer to [2] for
examples and simulations.

Theorem 4.5. Let t > 0, R ≥ 1 and

Ωt =
{
ω ∈ Ω, ∀s ≤ t, ∀θ ∈ T, |(gs(θ)(ω)− g̃s(θ)(ω))| ≤ π

2R

}
.

If we assume the initial conditions for the L2 distance and the L2 norm of the initial
velocity to be related as c = ρ0 − 2‖u0‖T > 0, and suppose that

∫
T u = 0, then on
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the set Ωt we have,

(4.20) ∀s ≤ t, ρs ≥ e
∫ t
0
σs dzs+c

′
Rt

(
ρ0 − 2‖u0‖T

∫ t

0

e−
∫ s
0
σr dzr−(c′R+ ν

2 )s ds

)
as long as the right hand side stays positive.

On the other hand if we assume that there exist constants c1, c2 > 0 such that
for all θ ∈ T and s ∈ [0, t] ,

(4.21) |∇u(t, θ)| ≤ c1e−c2t,

then on Ωt we have the more precise lower bound, holding ∀s ≤ t,

(4.22) ρs ≥ ρ0 exp

(∫ t

0

σs dzs + c′Rt−
c1
c2

(
1− e−c2t

))
.

Proof. Assume that ρ0 − 2‖u0‖T > 0. From inequality (4.19) we deduce that on
the set Ωt, for s ≤ t,

dρs ≥ ρs
(
σsdzs + (c′R +

1

2
σ2
s) ds

)
− 2‖u(s, ·)‖T ds.(4.23)

Using the fact that u(t, .) satisfies Navier-Stokes equation together with Poincaré
inequality,

d

ds
||u(s, .)||2T = −2ν||∇u(s, .)||2T

≤ −ν||u(s, .)||2T.

Therefore we have

||u(s, .)||T ≤ e−
ν
2 s||u0||T.

We obtain

dρs ≥ ρs
(
σsdzs + (c′R +

1

2
σ2
s) ds

)
− 2e−

ν
2 s||u0||T ds.(4.24)

Comparison theorems for solutions of sde’s yield (4.20).
Now assume (4.21). To prove (4.22) we start with (4.19), and remark that

‖δu(t)‖T ≤ sup
θ∈T
|∇u(t, θ)|. Then from the bound on ∇u(t, θ) we derive

dρt ≥ ρt
(
σtdzt +

1

2
σ2
t dt− c1e−c2t dt+ c′R dt

)
.

Integrating the right hand side between t0 and t gives the result. �

Remark 4.6. The bound (4.21) is satisfied for instance for solutions u(t, ·) of the

form e−ν|k|
2tAk.

Remark 4.7. Assumption (4.21) implies that the velocity decays to zero at ex-
ponential rate. On the contrary the stochastic Lagrangian flows, describing the
position of the fluid, get apart exponentially, at least for short times.

Remark 4.8. Also notice that, by the expression of the constant c′R, the stochastic
Lagrangian trajectories for a fluid with a given viscosity constant tend to get apart
faster when the higher Fourier modes (and therefore the smaller lenght scales) are
randomly excited.
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5. Stability: the two-dimensional torus endowed with the extrinsic
distance

It seems difficult to deal with the local time term in Proposition 4.2. To cir-
cumvent this problem we propose here to endow the torus T with a distance ρT
which is equivalent to the one of section 5, but such that ρ2T is smooth on T × T.
The assumptions of Theorem 4.5 are not fulfilled and the behaviour of the distance
of two diffeomorphisms can be completely different even if their distance is small.
The uniform control of the distance in Theorem 4.5 looks therefore as a necessary
condition for obtaining an exponential growth of the distance.

The map

R/2πZ× R/2πZ→ [0, 2]

(θ1, θ2) 7→ 2

∣∣∣∣sin(θ2 − θ12

)∣∣∣∣
defines a distance on the circle R/2πZ: it is the extrinsic distance on the circle
embedded in the plane. We can define the corresponding product distance on the
torus T as

ρT((θ1, θ2), (θ′1, θ
′
2)) = 2

(
sin2

(
θ′1 − θ1

2

)
+ sin2

(
θ′2 − θ2

2

))1/2

.

Notice that

ρ2T((θ1, θ2), (θ′1, θ
′
2)) = 2 (2− cos(θ′1 − θ1)− cos(θ′2 − θ2)) .

The distance ρ2T is smooth on T× T.
Now let φ and ψ be two diffeomorphisms on the torus T: we define ρ(φ, ψ) via

the formula

ρ2(φ, ψ) =

∫
T
ρ2T(φ(θ), ψ(θ)) dθ

= 2

∫
T

(
2− cos(φ1(θ)− ψ1(θ))− cos(φ2(θ)− ψ2(θ))

)
dθ

= 4

∫
T

(
sin2

(
φ1(θ)− ψ1(θ)

2

)
+ sin2

(
φ2(θ)− ψ2(θ)

2

))
dθ

Denote

ρt = ρ(gt, g̃t).

Because of the smoothness of ρ2T, the formula for ρt does not involve a local time.
More precisely, writing

δg = gt(θ)− g̃t(θ),

δ cos k · g = cos k · gt(θ)− cos k · g̃t(θ),

δ sin k · g = sin k · gt(θ)− sin k · g̃t(θ),

sin δg = (sin(δgt)1(θ), sin(δgt)2(θ)),

δu = (u(t, gt)− u(t, g̃t))
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we get from Itô calculus,

dρt = ρt
∑
k

λk

〈
sin δg

ρt
, (k2,−k1)

(
δ cos k · g

ρt
dxk +

δ sin k · g
ρt

dyk

)〉
T

+ ρt

〈
sin δg

ρt
,
δu

ρt

〉
T
dt

+
ρt
2

(∑
k

λ2k

∫
T

(
k22 cos δg1 + k21 cos δg2

) (δ cos k · g)2 + (δ sin k · g)2

ρ2t
dθ

)
dt

− ρt
2

∑
k

λ2k

(∫
T

(
k2

sin δg1
ρt

− k1
sin δg2
ρt

)
δ cos k · g

ρt
dθ

)2

dt

− ρt
2

∑
k

λ2k

(∫
T

(
k2

sin δg1
ρt

− k1
sin δg2
ρt

)
δ sin k · g

ρt
dθ

)2

dt.

Clearly the Itô differential of the distance ρt has the form

dρt = ρt (σt dzt + bt dt)

where σt and bt are bounded processes and zt is a real- valued Brownian motion.
However the drift may be negative even if ρt is small, as the following example
shows.

Example 5.1. Let α > 0 be small and ε > 0 satisfying ε << α. Take φ = id and
assume that there exist two subsets E1 and E2 of T such that E1 ⊂ E2, E1 has
measure α, E2 has measure α+ε, ψ(θ) = θ for all θ ∈ T\E2 and ψ(θ) = (θ1 +π, θ2)
for all θ ∈ E1. Since ε can be as small as we want, we have

ρ20 ' 4α, (sin δg)0 ' 0, (δg0)2 ' 0, (δ sin k · g)0 ' 0,

on T\E2, (δ cos k · g)0 = 0,

on E1, (δ cos k · g)0 = −2 if k1is odd, (δ cos k · g)0 = 0 if k1 is even,

Therefore at time t = 0 we have ,

dρt ' −
ρt
2

 ∑
k1 odd

λ2kk
2
2

 dt.

In order to construct a diffeomorphism like ψ, one can cut an annulus E1 of

width
α

2π
in T and rotate it by π. This yields a one to one map on T. Then

smoothen it around the boundary of the annulus to get ψ. For the set E2 one can

take an annulus of width
α+ ε

2π
containing E1.

6. Stability: a formula for the distance of two particles on a
general Riemannian manifold

Let Bt = (B`t )`≥0 be a family of independent real Brownian motions, σ =
(σ`)`≥0, with, for all ` ≥ 0, σ` a divergence free vector field on M . We furthermore
assume that

(6.1) σ(x)σ∗(y) = a(x, y).
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In particular

(6.2) σ(x)σ∗(x) = 2νg−1(x).

We let ϕ,ψ ∈ G0
V . In this section we assume that

(6.3) dgt(x) = σ(gt(x)) dBt + u(t, gt(x)) dt, g0 = ϕ

and

(6.4) dg̃t(x) = σ(g̃t(x)) dBt + u(t, g̃t(x)) dt, g̃0 = ψ

For simplicity we write xt = gt(x), yt = g̃t(x) and

ρt(x) = ρM (xt, yt)

For x, y ∈ M such that y does not belong to the cutlocus of x, we consider a 7→
γa(x, y), the minimal geodesic in time 1 from x to y (γ0(x, y) = x, γ1(x, y) = y)).
For a ∈ [0, 1] let Ja = Tγa be the tangent map to γa. In other words, for v ∈ TxM
and w ∈ TyM , Ja(v, w) is the value at time a of the Jacobi field along γ· which
takes the values v at time 0 and w at time 1.

We first consider the case where yt does not belong to the cutlocus of xt. We
note Ta = Ta(t) = γ̇a(xt, yt) and γa(t) = γa(xt, yt).

Letting P (γa)t be the parallel transport along γa(t), the following formula for
the Itô covariant differential holds,

D γ̇a(t) := P (γa)td
(
P (γa)−1t γ̇a(t)

)
= ∇dγa(t)γ̇a +

1

2
∇dγa(t) · ∇dγa(t)γ̇a(t).

On the other hand the Itô differential dγa(t) satisfies

dγa(t) = Ja(dxt, dyt) +
1

2

(
∇(dxt,dyt)Ja

)
(dxt, dyt).

So we get

(6.5) D γ̇a(t) = ∇Ja(dxt,dyt)γ̇a+∇ 1
2 (∇(dxt,dyt)

Ja)(dxt,dyt)γ̇a+
1

2
∇dγa(t) ·∇dγa(t)γ̇a(t).

Let e(t) ∈ TxtM be the unit vector satisfying T0(t) = ρt(x)e(t). For ` ≥ 0 we let
a 7→ J`a(t, x) be the Jacobi field such that J`0(t, x) = σ`(gt(x)), J`1(t) = σ`(g̃t(x)).
Moreover we assume that ∇J`0(t,x)J

`
0(t, x) = 0 and ∇J`1(t,x)J

`
1(t, x) = 0.

With these notations, equation (6.5) can be written as

DTa = ∇Ja(dxt,dyt)Ta +
1

2

∑
`≥0

∇∇
J`a
J`a
Ta dt+

1

2

∑
`≥0

∇J`a · ∇J`aTa dt

= J̇a(dxt, dyt) +
1

2

∑
`≥0

∇J`a∇J`aTa dt.
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We have

dρt(x) = d

((∫ 1

0

〈Ta(t), Ta(t)〉 da
)1/2

)

=
1

2ρt(x)

(
2

∫ 1

0

〈DTa(t), Ta(t)〉 da+

∫ 1

0

〈DTa(t),DTa(t)〉 da
)

− 1

8ρt(x)3
d
(
‖T0‖2

)
· d
(
‖T0‖2

)
=
∑
`≥0

〈
J̇`0(t, x), et(x)

〉
dB`t +

〈
J̇0(u(t, gt(x)), u(t, g̃t(x))), et(x)

〉

+
1

2ρt(x)

∫ 1

0

∑
`≥0

〈
∇J`a∇J`aTa, Ta

〉
da dt+

∑
`≥0

∫ 1

0

‖J̇`a‖2 da


− 1

2ρt(x)

∑
`≥0

〈J̇`0(t, x), et(x)〉2.

Note that

∫ 1

0

〈
∇J`a∇J`aTa, Ta

〉
da =

∫ 1

0

〈
∇J`a∇TaJ

`
a, Ta

〉
da

=

∫ 1

0

〈
∇Ta∇J`aJ

`
a, Ta

〉
da−

∫ 1

0

〈
R(Ta, J

`
a)J`a, Ta

〉
da

=

∫ 1

0

Ta
〈
∇J`aJ

`
a, Ta

〉
da−

∫ 1

0

〈
R(Ta, J

`
a)J`a, Ta

〉
da

=
[〈
∇J`aJ

`
a, Ta

〉]1
0
−
∫ 1

0

〈
R(Ta, J

`
a)J`a, Ta

〉
da

= −
∫ 1

0

〈
R(Ta, J

`
a)J`a, Ta

〉
da

where we used the fact that ∇J`aJ
`
a = 0 for a = 0, 1. Hence,

dρt(x) =
∑
`≥0

〈
J̇`0(t, x), et(x)

〉
dB`t

+
〈
J̇0(u(t, gt(x)), u(t, g̃t(x))), et(x)

〉
+

1

2ρt(x)

∫ 1

0

∑
`≥0

(
‖J̇`,Na ‖2 −

〈
R(Ta(t, x), J`,Na (t, x))J`,Na (t, x), Ta(t, x)

〉)
da

 dt

with J`,Na (t, x) the part of J`a(t, x) normal to Ta.
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Removing the assumption that yt does not belong to the cutlocus of xt, it is well
known (see [8] for a similar argument) that the formula becomes

dρt(x) =
∑
`≥0

〈
J̇`0(t, x), et(x)

〉
dB`t

+
〈
J̇0(u(t, gt(x)), u(t, g̃t(x))), et(x)

〉
− dLt(x)

+
1

2ρt(x)

∫ 1

0

∑
`≥0

(
‖J̇`,Na ‖2 −

〈
R(Ta(t, x), J`,Na (t, x))J`,Na (t, x), Ta(t, x)

〉)
da

 dt

where −Lt(x) is the local time of ρt(x) when (gt(x), g̃t(x)) visits the cutlocus. Then
writing

ρt = ρ(gt, g̃t) =

(∫
M

ρ2t (x) dx

)1/2

,

we obtain

dρt =
1

ρt

∑
`≥0

(∫
M

ρt(x)
〈
J̇`0(t, x), et(x)

〉
dx

)
dB`t

+
1

ρt

∫
M

ρt(x)
〈
J̇0(u(gt(x)), u(g̃t(x))), et(x)

〉
dx dt− 1

ρt

∫
M

ρt(x)Lt(x) dx

+
1

2ρt

∫
M

∑
`≥0

(∫ 1

0

(
‖J̇`,Na ‖2 −

〈
R(Ta(t, x), J`,Na (t, x))J`,Na (t, x), Ta(t, x)

〉)
da

)
dx

 dt

+
1

2ρt

∫
M

∑
`≥0

〈
J̇`0(t, x), et(x)

〉2
dx dt

− 1

2ρ3t

∑
`≥0

(∫
M

ρt(x)
〈
J̇`0(t, x), et(x)

〉
dx

)2

dt.

For a vector w ∈ Tgt(x)M , we denote wT the part of w which is tangential to
T0(t, x). Writing

cos
(
J̇`,T0 (t, ·), T0(t, ·)

)
=

∫
M

〈
J̇`,T0 (t, x), T0(t, x)

〉
dx

ρt

(∫
M

∥∥∥J̇`,T0 (t, x)
∥∥∥2 dx)1/2

(observe that ρ2t =

∫
M

‖T0(t, x)‖2 dx), we have therefore proved the following re-

sult:
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Proposition 6.1. The Itô differential of the distance ρt between gt and g̃t is given
by

dρt =
1

ρt

∑
`≥0

(∫
M

ρt(x)
(
Pg̃t(x),gt(x)(σ

T
` (g̃t(x)))− σT` (gt(x)

)
dx

)
dB`t

+
1

ρt

∫
M

ρt(x)
(
Pg̃t(x),gt(x)(u

T (g̃t(x))))− uT (gt(x))
)
dx dt− 1

ρt

∫
M

ρt(x)dLt(x) dx

+
1

2ρt

∫
M

∑
`≥0

(∫ 1

0

(
‖J̇`,Na ‖2 −

〈
R(Ta(t, x), J`,Na (t, x))J`,Na (t, x), Ta(t, x)

〉)
da

)
dx

 dt

+
1

2ρt

∑
`≥0

(
1− cos2

(
J̇`,T0 (t, ·), T0(t, ·)

))∫
M

∥∥∥J̇`,T0 (t, x)
∥∥∥2 dx dt.

In the case of manifolds with negative curvature we may observe a similar phe-
nomena to the one of the torus with the Euclidean distance treated in Section
4: as long as the L∞ norm stays sufficiently small to avoid the cut-locus of the
manifold, the L2 mean distance between the stochastic particles tends to increase
exponentially fast.

Let us mention that in [1] another approach, using coupling methods, was de-
veloped for the study of the distance between stochastic Lagrangian flows.

7. The rotation process

In the following we would like to study the rotation of two particles gt(x) and
g̃t(x) when their distance is small. Recall that we have denoted xt = gt(x), yt =
g̃t(x). We shall keep here the definitions and notations of last section.

We always assume that the distance from xt to yt is small: we are interested in
the behaviour of e(t) as ρt(x) converges to zero. We let

(7.1) dmx(t)N = σ(xt)dBt − 〈σ(xt)dBt, e(t)〉e(t)

and

(7.2) dmy(t)N = σ(yt)dBt − 〈σ(yt)dBt, Pxt,yte(t)〉Pxt,yte(t)

where Pxt,γa(t) denotes the parallel transport along γa.
From Itô formula we have

(7.3) DT0 = ρt(x)De(t) + dρt(x)e(t) + dρt(x)De(t)
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and this yields

De(t) =
1

ρt(x)
DT0 −

1

ρt(x)
dρt(x)e(t)− 1

2

1

ρt(x)
dρt(x)De(t)

=
1

ρt(x)
J̇0(dmx(t)N , dmy(t)N )

+
1

ρt(x)
J̇0(u(t, xt), u(t, yt)) dt+

1

2ρt(x)

∑
`≥0

∇J`0∇J`0T0 dt

− 1

ρt(x)
〈Pyt,xt(u(t, yt))− u(t, xt), e(t)〉 e(t)

− 1

2ρt(x)2

∫ 1

0

∑
`≥0

(
‖∇TaJ`a‖2 −R(Ta, J

`
a)J`a, Ta

)
da

 e(t)

− 1

2

1

ρt(x)
dρt(x)De(t)

=
1

ρt(x)
J̇0(dmx(t)N , dmy(t)N ) +

1

ρt(x)
J̇0(uN (t, xt), u

N (t, yt))

+
1

2ρt(x)

∑
`≥0

∇J`0∇J`0T0 dt

− 1

2ρt(x)2

∫ 1

0

∑
`≥0

(
‖∇TaJ`a‖2 −R(Ta, J

`
a)J`a, Ta

)
da

 e(t)

where we used the fact that dρt(x)De(t) = 0, and where uN denotes the part of u
which is normal to the geodesic γa. As before,

∇J`0∇J`0T0 = ∇T0∇J`0J
`
0 −R(T0, J

`
0)J`0.

Finally we obtain the following

Lemma 7.1.

De(t) =
1

ρt(x)
J̇0(dmx(t)N , dmy(t)N ) +

1

ρt(x)
J̇0(uN (t, xt), u

N (t, yt))

+
1

2ρt(x)

∑
`≥0

∇T0
∇J`J` −R(T0, J

`
0)J`0 dt

− 1

2ρt(x)2

∫ 1

0

∑
`≥0

(
‖∇TaJ`a‖2 −R(Ta, J

`
a)J`a, Ta

)
da

 e(t).

From now on we assume that M = T the two dimensional torus.
In this situation the curvature tensor vanishes and the following formulas hold:

Ja(v, w) = v + a(w − v), J̇a(v, w) = w − v.
We immediately get

de(t) = De(t) =
1

ρt(x)

(
dmy(t)N − dmx(t)N

)
+

1

ρt(x)

(
(uN (t, yt)− uN (t, xt)

)
dt

− 1

2ρt(x)2

∑
`≥0

‖σ`(yt)− σ`(xt)‖2 dt e(t)



NAVIER-STOKES EQUATION AND DIFFUSIONS OF HOMEOMORPHISMS 23

where we used the fact that ∇T0∇J`J` = 0, as a consequence of ∇J`0J
`
0 = 0,

∇J`1J
`
1 = 0, and R ≡ 0.

Let us specialize again to the case where the vector fields are given by

Ak(θ) = (k2,−k1) cos k.θ, Bk(θ) = (k2,−k1) sin k.θ

and the Brownian motion is of the form

(7.4) dW (t) =
∑
k∈Z

λk
√
ν(Akdxk +Bkdyk)

where xk, yk are independent copies of real Brownian motions. As in section 5 we
assume that

∑
k |k|2λ2k <∞ and we consider λk = λ(|k|) to be nonzero for a equal

number of k1 and k2 components. Again we write

(7.5) dgt = (odW (t)) + u(t, gt)dt, dg̃t = (odW (t)) + u(t, g̃t)dt

with

g0 = φ, g̃0 = ψ, φ 6= ψ.

Changing the notation to gt = gt(θ) = xt, g̃t = g̃t(θ) = yt, we get

de(t) =
1

ρt(θ)

∑
|k|6=0

λk
√
ν (cos k · g̃t − cos k · gt) k⊥,Ndxk

+
1

ρt(θ)

∑
|k|6=0

λk
√
ν (sin k · g̃t − sin k · gt) k⊥,Ndyk

+
1

ρt(θ)

(
(uN (t, g̃t)− uN (t, gt)

)
dt

− 1

2ρ2t (θ)

∑
|k|6=0

λ2kν|k⊥,N |2
(

(cos k · g̃t − cos k · gt)2 + (sin k · g̃t − sin k · gt)2
)
e(t) dt

=
1

ρt(θ)

∑
|k|6=0

λk
√
νk⊥,N

(
2 sin

k · (g̃t − gt)
2

)
dzk

+
1

ρt(θ)

(
(uN (t, g̃t)− uN (t, gt)

)
dt

− 2

ρ2t (θ)

∑
|k|6=0

λ2kν|k⊥,N |2 sin2(
k · (g̃t − gt)

2
)e(t) dt

where zk is the Brownian motion defined by

dzk = − sin
k · (g̃t + gt)

2
dxk + cos

k · (g̃t + gt)

2
dyk.
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Denoting |k⊥,N |2 = |k|2(nk · e(t))2, we obtain

de(t) =
1

ρt(θ)

∑
|k|6=0

|k|λk
√
ν(nk · e(t))e′(t)

(
2 sin

k · (g̃t − gt)
2

)
dzk

+
1

ρt(θ)

(
(uN (t, g̃t)− uN (t, gt)

)
dt

− 2

ρ2t (θ)

∑
|k|6=0

|k|2λ2kν(nk · e(t))2 sin2 k · (g̃t − gt)
2

e(t) dt

(7.6)

where e′(t) is a unit vector in T orthonormal to e(t). Now for every K > 0, if

ρt(θ) ≤
π

2K
, then for all k such that |k| ≤ K,

sin2 k·(g̃t−gt)
2

|k|2ρ2t (θ)(nk · e(t))2
≥ 1

π2
.

Since |k| = |k⊥| and (nk · e(t))2 + (nk⊥ · e(t))2 = 1, we get

(7.7)
2

ρ2t (θ)

∑
|k|6=0

|k|2λ2kν(nk · e(t))2 sin2 k · (g̃t − gt)
2

≥ ν

2π2

∑
0<|k|<K

λ2k|k|4.

Observe that the term in the left is the second part of the drift in equation (7.6) as
well as the derivative of the quadratic variation of e(t). This yields the following
result,

Proposition 7.2. Identifying TT with C, we have e(t) = eiXt where Xt is a real-
valued semimartingale with quadratic variation satisfying

(7.8) d[X,X]t =
4

ρ2t (θ)

∑
|k|6=0

|k|2λ2kν(nk · e(t))2 sin2 k · (g̃t − gt)
2

dt

and drift given by

(7.9)

∫ t

0

1

ρs(θ)
〈u(s, g̃s)− u(s, gs), ie(s)〉 ds.

For all K > 0, on the set
{
ρt(θ) ≤

π

2K

}
, we have

(7.10) d[X,X]t ≥
ν

π2

∑
0<|k|<K

λ2k|k|4.

If
∑
|k|6=0

λ2k|k|4 = +∞, then as g̃t(θ) gets closer and closer to gt(θ), the rotation e(t)

becomes more and more irregular in the sense that the derivative of the quadratic
variation of Xt tends to infinity.
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