Control of the cylinder wake in the laminar regime by Trust-Region
methods and POD Reduced Order Models

Michel Bergmanh, Laurent Cordier and Jean-Pierre Brancher
LEMTA, UMR 7563 (CNRS - INPL - UHP)
ENSEM - 2, avenue de la fet de Haye
BP 160 - 54504 Vandoeuvre cedex, France
*M chel . Ber gmann@nsem i npl - nancy. fr
fLaur ent . Cor di er @nsem i npl -nancy. fr
1Jean- Pi erre. Brancher @nsem i npl - nancy. fr

Abstract—In this paper we investigate the optimal control method...). Whatever the specific method considered, the
approach for the active control of the circular cylinder wake  numerical costs (CPU and memory) related to these methods
flow considered in the laminar regime (2e = 200). The objective ¢ ragolytion are so important that they become unsuited
is the mean drag minimization of the wake where the control L . .
function is the time harmonic angular velocity of the rotating to the .appllcatlons of active flow Contml. In C'PSEd _'009’
cylinder. When the Navier-Stokes equations are used as state for which the controller needs to determine his action in
equation, the discretization of the optimality system leads to real time. Consequently, an alternative approach is napess
large scale discretized optimization problems that represent a

tremendous computational task. In order to reduce the number In this communication, we propose to solve the afore-
of state variables during the optimization process, aProper ’

Orthogonal Decomposition (POD) Reduced Order Model (ROM) mentloned. prob]em of opt|m|zat|oq by an optimal contrpl
is then derived to be used as state equation. Since the range @pproach in which the state equations, usually the Navier-
of validity of the POD ROM is generally limited to the vicinity =~ Stokes equations, are replaced byPe#per Orthogonal

of the d::-sign liﬂra_frnet?ré in_thePcontrolor:ﬁramettlerDspace, we Decomposition(POD) Reduced Order Model (ROM) of the
propose to use the Trust-Region Proper Orthogonal Decomposi- ; i

tion (TRPOD) approach, originally introduced by Fahl (2000), .dynamlcs fqr the controlled flow. The POP was originally

to update the reduced order models during the optimization mtroduped in Turbulence [2] as an u.nb|ased method ,Of
process. Benefiting from the trust-region philosophy, rigorous €Xxtraction of the Coherent Structures widely known to exist
convergence results guarantee that the iterates produced byp¢  in a turbulent flow. Essentially, this technique leads to the
TRPOD algorithm will converge to the solution of the original  evaluation of POD functions that define a flow basis, optimal
optimization problem defined with a high fidelity model. A lot of in an energetic sense. Thereafter, these POD modes can be

computational work is indeed saved because the optimization . . .
procgss is now based only on low-fidelity models.pWhen the Used through a Galerkin projection on the Navier-Stokes

TRPOD is applied to the wake flow configuration, this approach €quations to derive a POD ROM of the controlled flow [3].
leads to a relative mean drag reduction of 30% for reduced The POD basis is determin@dposterioriusing experimental

numerical costs. or numerical data previously obtained for the configuration
under study. In first approximation, the POD can be viewed
_ } as a method of information compression. As a consequence,
A. Interest of model reductions in flow control the ability of POD modes to approximate any state of
These last years, the aeronautics and automobiée complex system is totally dependent of the information
industries brought a renewed interest to the active controtiginally contained in the snapshot set used to generate th
and aerodynamic shape design in both inviscid anBOD functions. Then, despite the energetic optimality ef th
viscous compressible flows. Formally, these problemBOD modes, it seems difficult to build once for all, at the
reduce [1] to minimize or maximize an objective functionabeginning of the optimization process, a POD ROM able to
J (drag or lift coefficients, concentration of pollutant,approximate correctly the different controlled statesogme
emitted noise, mixing...) according to» parameters tered by the flow along the optimal path (see the discussion
¢ = (c1,69,-+,¢,) € R™ (unsteady blowing/suction in [4]). Some kind of reactualization of the POD basis during
velocities, heat flows, design parameters...) under certaihe optimization process seems essential, the main difficul
constraints (Navier-Stokes equations, geometric cansra consisting in determining the moment when a new resolution
...). Coarsely, the various existing methods of resolutan of the Navier-Stokes equations is necessary to evaluate a
be classified in two categories, on the one handntkéhods new POD basis. Thereafter, we will use an algorithm called
of descent typavhich at least require an approximation of TRPOD for Trust-Region POD{5] which couples a trust-
the gradient of the objective functional, and, on the otheregion method of optimization and reduced order models
hand, thestochastic methodsvhose principle consists in based on POD (see section II). The principal advantages of
studying the evolution of a population of potential solago this approach are, on the one hand, that the radius of the
during successive generations (genetic algorithms, simpltrust-region corresponding to the POD ROM does not have

I. INTRODUCTION



to be fixed by the user, but is evaluated automatically during Il. OPTIMIZATION BY TRUST-REGION METHODS AND

the optimization process, and that on the other hand, there POD REDUCED ORDER MODELS

are results of convergence proving that the solution obthin | this section, only the principle of the Trust-Region
for the problem of optimization, formulated with the PODproper Orthogonal Decomposition approach for flow control
ROM, converges towards the solution of the problem defingd exposed. For all the details of the algorithms and in
by the Navier-Stokes equations. particular the proofs of convergence, the reader is rederre
B. A model problem: the laminar wake flow to [3], [4].

re é?mt: ISOfSttL;]dey’ uvr\llzt e;;rgy"::gke es t?g\,\to d((:;\:]r:rs?: et:ni I{aromr:"n a; We consider that the flow control problem .discuss_ed' in
circular cylinder (Fig. 1). The objective is the mean draqs_ectlon I-A can be formulated as an unconstrained optimiza-

minimization of the wake flow by rotary oscillation of the ion problem .

cylinder. The flow is considered as incompressible and the CoRn J(@ns(e) €) (1)

fluid is supposed to be viscous and Newtonian. Wake flows where 7 : R™ x R* — R represents the objective
dynamics are characterized [6] by the Reynolds nuniber fynctional and wherep,, ; and ¢ respectively represent the
and by the natural Strouhal numbt,, at which vortices are gtate variables obtained by numerical resolution of theesta
shed in the wake of the cylinder (Fig. 2). Traditionally, theequations and the control variables. The subsa¥igtmeans
Reynolds number is defined & = U, D /v whereDisthe  nat the state equations which connect the control vasable
cylinder diameter[/., the uniform velocity of the incoming 1 the state variables are the Navier-Stokes equationseSin
flow andv the kinematic viscosity of the fluid. The natural 3 gccurate computation of the state variaifidsr givenc is
Srouhal number is defined &8, = fD/U,, wheref is the  computationally expensive when the Navier-Stokes equstio
frequency characteristic of the periodic behavior of th&flo gre ysed as the state equations, the evaluatigharing the
The rotary control is characterized by the non dimensional|ution of the optimization process (1) is computationall
velocity 7(t) defined as the ratio of the tangential velocityeypensive. A reduction of numerical cost can be achieved by
Vr to the upstream velocity/.. i.e. y(t) = Vr(t)/Us. FOr  employing a POD ROM as the state equation. In such a way
~ = 0, the flow is naturally said uncontrolled. Hereafter, they, approximate solutiog ., of the state variableg is
control function(t) is sought forke = 200 as an harmonic gptained and the optimization problem (1) is then replaced

function of the form: by a succession of subproblems of the form
t) = Asin (27 St st
0 2ty min 7 (@pop(e). o) @
where the amplitudel and theforcing Strouhal numbebt CeR™
correspond to two degrees of freedom for the control. Usually, a POD ROM is constructed for a specific flow
configuration, e.g., for an uncontrolled flow or for a flow
y altered by a specified control. Therefore, the range of iglid
of a given POD ROM is generally restricted to a region
0 located in the vicinity of the design parameters in the amntr
parameter space, the so-calladist-region Let Ay > 0
U Vir(t \ be the trust-region radius ang. be the control parameters
e W& obtained at an iteraté& of the optimization process. To
: evaluate the functiot (¢ g (ck), ci), it is necessary to de-
: v : X termine the variable® ;¢ (ci). These variables are obtained
| | by resolution of the high-fidelity model, the Navier-Stokes
\ \ equations. Then, we compute snhapshots that correspond to
%»L% the flow dynamics forced by;. These snapshots form

the input ensemble necessary [2] to generate a POD basis
{@f}izl ,,,,, Nrop (h€re,Npop corresponds to the number

of POD modes). This POD basis can then be used via
a Galerkin projection of the Navier-Stokes equation onto
the POD eigenvectors to derive a POD ROM fgr [3],

[4]. After integration in time of this POD ROM, the state
variables ¢ pp(ci) are estimated, and thus the function
J(dpop(ck), cr) is evaluated. Since this POD ROM can
be employed for an optimization cycle, we define

mg(cx + 8k) = T (Ppop(ck + 8k), ek +8k),  (3)
as a model function for

flek +s,) = T(Pns(ek + 8k), ek + sk), (4)

Fig. 1. Configuration of controlled flow.

Fig. 2. Vorticity contour plot of the wake for the uncontedl flow (v = 0)
att = 100. Dashed lines correspond to negative values.



on the trust-region| s, || < Ax aroundcy. the Navier-Stokes equations, or by estimation using a POD
One is then brought to solve approximafelpe corre- ROM. In this study, a special care is taken to the development

sponding trust-region subproblem defined as of the POD ROM. First, a POD basi®; representative of
the velocity fieldsu andv, as of the pressure fiejdwas de-

min my(ck +8), st |s|| < Ag. (5) termined [4]. In addition, in order to improve the robustes

sekr of the POD ROM, the POD basis functions determined for

In order to estimate the quality of the presumed nex4 given control parameter, was increased by adding,.,
control parameterg,; = ¢, + s, where s; is an ap- non-equilibrium modesfollowing the procedure described
proximate solution of (5), we compare the actual reductioim [8]. Finally, the control function methodhtroduced in [9]
in the true objectiveared, = f(cp + si) — f(ck), 0 is used to determine POD basis functions with homogeneous
the predicted reduction obtained with the model functiomoundary conditions. The velocity and pressure fields can
pred, = my(cr + sp) — mi(ck). Essentially, it is this then be expanded into the POD basis functidnsas:
comparison that gives a measure for the current models pre-

diction capability. If the trial step;, yields to a satisfactory Ngal Ngai+Nneq
decrease in the original objective functional, the itenatis Uz, t)= > ai(t)®i(x) + Y at)®i(x)
called successfylin the opposite case we call the iteration i=0 i=Nyqr+1

unsuccessfulWhen the iteration is successful, the trial step

N————
A ; . POD Galerkin modes - ilibri
s is accepted and the modeb, is updatedi.e. a new non-equilibrium modes

POD ROM is derived that incorporates the flow dynamics + (e, ) Ue(z),
as altered by the new contfolFurthermore, if the achieved (1)
decrease inf indicates a good behavior of the model,, where N, is the number of Galerkin modes and where

the trust-region radiug\;, can be increased. Now, if there isU . is called the control function. Mathematicallyy. is

a limited predicted decrease compared to the actual decreagetermined as a solution of the Navier-Stokes equations
we have the possibility to decrease slightly the value of theatisfying specific boundary conditions such that the POD
trust-region radius. For unsuccessful iterations, tred siep eigenfunctions®; satisfy homogeneous boundary condi-
sy is not accepted, the trust-region radifs is decreased tions [3], [4].

and the trust-region subproblem (5) is solved again within a The Galerkin projection of the Navier-Stokes equations
smaller trust-region. With the contraction of the trugfiod  on the space spanned by the fifSt,; + Npeq + 1 POD

it is more likely to have a good approximation to the trueeigenfunctions yields [4] to

objective functional with the POD ROM. The corresponding

TRPOD algorithm is schematically described in Fig. 3. Ngat+Npeq Ngat+Nneq
100 _ NN Bia 4 S Coras(an(t)
IIl. APPLICATION TO THE DRAG REDUCTION OF THE dt = Y T
CYLINDER WAKE FLOW - e
. . . . . . d’y Ngai+Nneq
The objective of this section is to |mple'm.en_t _the TRPOD 1+ D; o &+ Z Fija;(t) | v(e t)
approach presented at the section Il for minimizing the mean t =0
d fficient of th lind ke flow.
rag coefficient of the cylinder wake flow. + G (e, t),
A. Objective functional and model function (8a)
In order to simplify the future notations, one introduces With the following initial conditions:
the drag operatorCp defined as: a;(0) = (u(z, 0), ®;(x)). (8b)
3 The coefficientsB;;, Cijk, Di, &, Fi; and G; depend
Cp:R*—R explicitly on ®; andU .. Their expression are given in [4].
U — 2/ — 1 Ou — 1 u dr
. Pie = po 5™ T Re ay”y J Let pns(c) = (uns, vns, pvs)? represent the state

(6) variables obtained by resolution of the Navier-Stokes equa
tions andquOD(cPOD) = (uPOD, VPOD, ppOD)T be the
corresponding values estimated with the POD ROM (8), the
lpbjective functional is

whereU = (u, v, p)T denotes the vector corresponding
to the velocity and pressure fields. By definitiah, (U) =
Cp(t) where Cp represents the instantaneous drag coe -
ficient. The velocity component and pressure present o) =7 c)) = l/ C e) dt
in the relation (6) can be obtained either by resolution of /@) (Pns(e)) T Jo p(@ns(e)) dt

and the model function, introduced and justified in [4], is
1Following the trust-region philosophy [7], it is sufficietd compute a
trial stepsy, that achieves only a certain amount of decrease for the model
function. _ 1 T Ngat+Nneq
2Since a new snapshot ensemble is available, a new POD basikeran  my(¢) = J(¢ppop(c)) = = / Z a;(t)N; dt,
be determined, and finally, a new POD ROM can be derived. T Jo —_



Initialization : ¢y, Navier-Stokes resolution?y. k = 0.

Ao

Evaluation of the POD ROM k=k+1

and of the cost functionaﬁ,

Y

Solve the optimality system
based on the POD ROM <

A1 > Ay

Appr < Ay

Crt1 and T4t

Y

Navier-Stokes equations and

under the constrainta k=k+1

Solve the Tist

Ck

poor medium good

Quiality evaluation of the POD ROM

A

estimate a new POD basis

(Tist — Ti) [ (Tip1 — Ti)

Fig. 3. TRPOD algorithm.

where N; = Cp(®;). with
d&i
These two functions can then be used in a procedure Li=- EDi
of optimization coupling trust-region methods and POD Ngat+Nneq
reduced order models, following the method presented in +& | &+ Z Fija; +2v(c, )G; |,
section II. J=0

To determine a solution of the subproblem of optimiza-
tion (5), the simplest method consists in solving the opti-
mality system based on the POD ROM. By definition [1],
this optimality system is a system of three coupled partiad

differential equations [4] :

1) the state equationg)
2) the adjoint equations

Ngal“!‘Nneq
=- Z (Bji + (e, t) Fji) §; (1)
=0
Ngal+Nneq
- Z (Cjik + Ciki) ar (t)&;(t) —

j,k=0

d&;(t)
dt

with terminal conditions :
&(T) = 0.
3) the optimality conditions

Ngal+Nneq

T
V(}C = / Z [,7, VC Y dt7
0 i=0

T

1
Nia

(9a)

(9b)

(10)

where £ is the Lagrangian functional introduced to

enforce the constraints [4], [1] of the optimization

problem.
This system can be solved using an iterative method
escribed in [4]. In this study, the directions of descent
are estimated using the Fletcher-Reeves version of the Con-
jugate Gradient Method [10]. The linear search parameter
is computed at each iteration by the backtracking Armijo
method [10], in which the length of the step, along each
direction of descent, checks the constraint imposed by the
trust-region approach.

B. Numerical results

The robustness of the TRPOD approach was evaluated
in [4] by use of various initial control parameters =
(A; St), namelyey = (1.0; 0.2), ¢g = (1.0; 1.0), ¢y =
(6.0; 0.2) andey = (6.0; 1.0). Figures 4 and 6 represent for
two couples of initial control parameters taken at ranélom
the evolutions of the values of the objective functiorfal
during the optimization process. Finally, these resules ar
synthesized in the control parameter space on Figs. 5 and
7.

3The results are identical for the two other couples of ihitianditions.
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Fig. 5. Evolution of the control parameters during the optatian process.  Fig. 7. Evolution of the control parameters during the optatitm process.
Initial conditions: A = 1.0 and St = 0.2. Initial conditions: A = 1.0 and St = 1.0.

C. Observations flow and the flow forced by the optimal control parameters

Finally, the optimal control parameters, obtained when théetermined by TRPOD. These results are compared with the
numerical convergence of the iterative procedure is aekiev value obtained for the unstable stationary basic flow. Brota
areA = 4.25 andSt; = 0.738 [4]. These values are obtainedand Wesfreid argued in [11] that the basic flow generates
in at most ten iterations (10 resolutions of the Navierthe lowest coefficient of drag for the configuration under
Stokes equations). These results are similar to thosegbeeldi study. The mean drag coefficient varies from a value equal
by numerical experimentation (open-loop control apprdachto 1.39 in the uncontrolled case to a value equad 199 when
The control parameters, obtained by the TRPOD approacthe optimal control parameters are applied corresponding t
converge towards the optimal control parameters detednina relative drag reduction 030%. The value of the drag
numerically, and this, whatever the initial values used focoefficient for the optimally controlled flow approachesttha
the control parameters. This proves the performance and thbtained for the unstable stationary basic flaip(= 0.94).
robustness of the TRPOD approach. Figure 8 represents timeaddition, the dynamics of the vorticity has also a similar
time evolution of the drag coefficient, for an uncontrollechehavior (see Fig. 9).
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(a) Optimally controlled flow {(t) = Asin(2wStst), A = 4.25

and Sty = 0.738). [10]
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(b) Basic flow ¢ = 0).

Fig. 9. Vorticity contour plot of the wake for the optimally mivolled and
basic flows at = 100. Dashed lines correspond to negative values.

IV. CONCLUSIONS

An optimization procedure coupling a trust-region method
and POD Reduced Order Models was used in order to
minimize the mean drag of the cylinder wake flow. The
optimal control parameters obtained in this way Are- 4.25
and Sty = 0.738. The relative mean drag reduction is
equal t030%. In addition, the use of trust-region methods
mathematically proves the convergence of the control pa-
rameters obtained with the reduced order models towards
the optimal control parameters corresponding to the Navier
Stokes equations. Moreover, this approach leads to a sig-
nificant reduction of the numerical costs. Indeed, when the
optimality system is based on a POD ROM instead of the
Navier-Stokes equations, a cost reduction factor of 600 is
obtained for the memory and the optimization problem is
solved approximatelyt times more quickly.

provide us with an original version of their Matlab Navier-
Stokes solver.
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