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Abstract— In this paper we investigate the optimal control
approach for the active control of the circular cylinder wake
flow considered in the laminar regime (Re = 200). The objective
is the mean drag minimization of the wake where the control
function is the time harmonic angular velocity of the rotating
cylinder. When the Navier-Stokes equations are used as state
equation, the discretization of the optimality system leads to
large scale discretized optimization problems that represent a
tremendous computational task. In order to reduce the number
of state variables during the optimization process, aProper
Orthogonal Decomposition (POD) Reduced Order Model (ROM)
is then derived to be used as state equation. Since the range
of validity of the POD ROM is generally limited to the vicinity
of the design parameters in the control parameter space, we
propose to use the Trust-Region Proper Orthogonal Decomposi-
tion (TRPOD) approach, originally introduced by Fahl (2000),
to update the reduced order models during the optimization
process. Benefiting from the trust-region philosophy, rigorous
convergence results guarantee that the iterates produced by the
TRPOD algorithm will converge to the solution of the original
optimization problem defined with a high fidelity model. A lot of
computational work is indeed saved because the optimization
process is now based only on low-fidelity models. When the
TRPOD is applied to the wake flow configuration, this approach
leads to a relative mean drag reduction of 30% for reduced
numerical costs.

I. I NTRODUCTION

A. Interest of model reductions in flow control

These last years, the aeronautics and automobile
industries brought a renewed interest to the active control
and aerodynamic shape design in both inviscid and
viscous compressible flows. Formally, these problems
reduce [1] to minimize or maximize an objective functional
J (drag or lift coefficients, concentration of pollutant,
emitted noise, mixing...) according ton parameters
c = (c1, c2, · · · , cn) ∈ R

n (unsteady blowing/suction
velocities, heat flows, design parameters...) under certain
constraints (Navier-Stokes equations, geometric constraints
...). Coarsely, the various existing methods of resolutioncan
be classified in two categories, on the one hand, themethods
of descent typewhich at least require an approximation of
the gradient of the objective functional, and, on the other
hand, thestochastic methodswhose principle consists in
studying the evolution of a population of potential solutions
during successive generations (genetic algorithms, simplex

method...). Whatever the specific method considered, the
numerical costs (CPU and memory) related to these methods
of resolution are so important that they become unsuited
to the applications of active flow control in closed loop,
for which the controller needs to determine his action in
real time. Consequently, an alternative approach is necessary.

In this communication, we propose to solve the afore-
mentioned problem of optimization by an optimal control
approach in which the state equations, usually the Navier-
Stokes equations, are replaced by aProper Orthogonal
Decomposition(POD) Reduced Order Model (ROM) of the
dynamics for the controlled flow. The POD was originally
introduced in Turbulence [2] as an unbiased method of
extraction of the Coherent Structures widely known to exist
in a turbulent flow. Essentially, this technique leads to the
evaluation of POD functions that define a flow basis, optimal
in an energetic sense. Thereafter, these POD modes can be
used through a Galerkin projection on the Navier-Stokes
equations to derive a POD ROM of the controlled flow [3].
The POD basis is determineda posterioriusing experimental
or numerical data previously obtained for the configuration
under study. In first approximation, the POD can be viewed
as a method of information compression. As a consequence,
the ability of POD modes to approximate any state of
a complex system is totally dependent of the information
originally contained in the snapshot set used to generate the
POD functions. Then, despite the energetic optimality of the
POD modes, it seems difficult to build once for all, at the
beginning of the optimization process, a POD ROM able to
approximate correctly the different controlled states encoun-
tered by the flow along the optimal path (see the discussion
in [4]). Some kind of reactualization of the POD basis during
the optimization process seems essential, the main difficulty
consisting in determining the moment when a new resolution
of the Navier-Stokes equations is necessary to evaluate a
new POD basis. Thereafter, we will use an algorithm called
TRPOD for Trust-Region POD[5] which couples a trust-
region method of optimization and reduced order models
based on POD (see section II). The principal advantages of
this approach are, on the one hand, that the radius of the
trust-region corresponding to the POD ROM does not have



to be fixed by the user, but is evaluated automatically during
the optimization process, and that on the other hand, there
are results of convergence proving that the solution obtained
for the problem of optimization, formulated with the POD
ROM, converges towards the solution of the problem defined
by the Navier-Stokes equations.

B. A model problem: the laminar wake flow

In this study, we are interested to control the laminar
regime of the unsteady wake flow downstream from a
circular cylinder (Fig. 1). The objective is the mean drag
minimization of the wake flow by rotary oscillation of the
cylinder. The flow is considered as incompressible and the
fluid is supposed to be viscous and Newtonian. Wake flows
dynamics are characterized [6] by the Reynolds numberRe
and by the natural Strouhal numberStn at which vortices are
shed in the wake of the cylinder (Fig. 2). Traditionally, the
Reynolds number is defined asRe = U∞D/ν whereD is the
cylinder diameter,U∞ the uniform velocity of the incoming
flow andν the kinematic viscosity of the fluid. The natural
Srouhal number is defined asStn = fD/U∞ wheref is the
frequency characteristic of the periodic behavior of the flow.
The rotary control is characterized by the non dimensional
velocity γ(t) defined as the ratio of the tangential velocity
VT to the upstream velocityU∞ i.e. γ(t) = VT (t)/U∞. For
γ = 0, the flow is naturally said uncontrolled. Hereafter, the
control functionγ(t) is sought forRe = 200 as an harmonic
function of the form:

γ(t) = A sin (2πStf t)

where the amplitudeA and theforcing Strouhal numberStf
correspond to two degrees of freedom for the control.
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Fig. 1. Configuration of controlled flow.

Fig. 2. Vorticity contour plot of the wake for the uncontrolled flow(γ = 0)
at t = 100. Dashed lines correspond to negative values.

II. OPTIMIZATION BY TRUST-REGION METHODS AND

POD REDUCED ORDER MODELS

In this section, only the principle of the Trust-Region
Proper Orthogonal Decomposition approach for flow control
is exposed. For all the details of the algorithms and in
particular the proofs of convergence, the reader is referred
to [5], [4].

We consider that the flow control problem discussed in
section I-A can be formulated as an unconstrained optimiza-
tion problem

min
c∈Rn

J (φNS(c), c) (1)

where J : R
m × R

n 7→ R represents the objective
functional and whereφNS andc respectively represent the
state variables obtained by numerical resolution of the state
equations and the control variables. The subscriptNS means
that the state equations which connect the control variables c

to the state variables are the Navier-Stokes equations. Since
an accurate computation of the state variablesφ for givenc is
computationally expensive when the Navier-Stokes equations
are used as the state equations, the evaluation ofJ during the
solution of the optimization process (1) is computationally
expensive. A reduction of numerical cost can be achieved by
employing a POD ROM as the state equation. In such a way
an approximate solutionφPOD of the state variablesφ is
obtained and the optimization problem (1) is then replaced
by a succession of subproblems of the form

min
c∈Rn

J (φPOD(c), c). (2)

Usually, a POD ROM is constructed for a specific flow
configuration, e.g., for an uncontrolled flow or for a flow
altered by a specified control. Therefore, the range of validity
of a given POD ROM is generally restricted to a region
located in the vicinity of the design parameters in the control
parameter space, the so-calledtrust-region. Let ∆k > 0
be the trust-region radius andck be the control parameters
obtained at an iteratek of the optimization process. To
evaluate the functionJ (φNS(ck), ck), it is necessary to de-
termine the variablesφNS(ck). These variables are obtained
by resolution of the high-fidelity model, the Navier-Stokes
equations. Then, we compute snapshots that correspond to
the flow dynamics forced byck. These snapshots form
the input ensemble necessary [2] to generate a POD basis
{Φk

i }i=1,...,NP OD
(here,NPOD corresponds to the number

of POD modes). This POD basis can then be used via
a Galerkin projection of the Navier-Stokes equation onto
the POD eigenvectors to derive a POD ROM forck [3],
[4]. After integration in time of this POD ROM, the state
variablesφPOD(ck) are estimated, and thus the function
J (φPOD(ck), ck) is evaluated. Since this POD ROM can
be employed for an optimization cycle, we define

mk(ck + sk) = J (φPOD(ck + sk), ck + sk), (3)

as a model function for

f(ck + sk) = J (φNS(ck + sk), ck + sk), (4)



on the trust-region‖sk‖ ≤ ∆k aroundck.
One is then brought to solve approximately1 the corre-

sponding trust-region subproblem defined as

min
s∈Rn

mk(ck + s), s.t. ‖s‖ ≤ ∆k. (5)

In order to estimate the quality of the presumed next
control parametersck+1 = ck + sk where sk is an ap-
proximate solution of (5), we compare the actual reduction
in the true objective,aredk = f(ck + sk) − f(ck), to
the predicted reduction obtained with the model function
predk = mk(ck + sk) − mk(ck). Essentially, it is this
comparison that gives a measure for the current models pre-
diction capability. If the trial stepsk yields to a satisfactory
decrease in the original objective functional, the iteration is
called successful, in the opposite case we call the iteration
unsuccessful. When the iteration is successful, the trial step
sk is accepted and the modelmk is updatedi.e. a new
POD ROM is derived that incorporates the flow dynamics
as altered by the new control2. Furthermore, if the achieved
decrease inf indicates a good behavior of the modelmk,
the trust-region radius∆k can be increased. Now, if there is
a limited predicted decrease compared to the actual decrease,
we have the possibility to decrease slightly the value of the
trust-region radius. For unsuccessful iterations, the trial step
sk is not accepted, the trust-region radius∆k is decreased
and the trust-region subproblem (5) is solved again within a
smaller trust-region. With the contraction of the trust-region
it is more likely to have a good approximation to the true
objective functional with the POD ROM. The corresponding
TRPOD algorithm is schematically described in Fig. 3.

III. A PPLICATION TO THE DRAG REDUCTION OF THE

CYLINDER WAKE FLOW

The objective of this section is to implement the TRPOD
approach presented at the section II for minimizing the mean
drag coefficient of the cylinder wake flow.

A. Objective functional and model function

In order to simplify the future notations, one introduces
the drag operatorCD defined as:

CD : R3 7→ R

U 7→ 2

∫

Γc

(
pnx −

1

Re

∂u

∂x
nx −

1

Re

∂u

∂y
ny

)
dΓ,

(6)

whereU = (u, v, p)T denotes the vector corresponding
to the velocity and pressure fields. By definition,CD(U) =
CD(t) where CD represents the instantaneous drag coef-
ficient. The velocity componentu and pressurep present
in the relation (6) can be obtained either by resolution of

1Following the trust-region philosophy [7], it is sufficientto compute a
trial stepsk that achieves only a certain amount of decrease for the model
function.

2Since a new snapshot ensemble is available, a new POD basis canthen
be determined, and finally, a new POD ROM can be derived.

the Navier-Stokes equations, or by estimation using a POD
ROM. In this study, a special care is taken to the development
of the POD ROM. First, a POD basisΦi representative of
the velocity fieldsu andv, as of the pressure fieldp was de-
termined [4]. In addition, in order to improve the robustness
of the POD ROM, the POD basis functions determined for
a given control parameterc, was increased by addingNneq

non-equilibrium modes, following the procedure described
in [8]. Finally, thecontrol function methodintroduced in [9]
is used to determine POD basis functions with homogeneous
boundary conditions. The velocity and pressure fields can
then be expanded into the POD basis functionsΦi as:

U(x, t) =

Ngal∑

i=0

ai(t)Φi(x)

︸ ︷︷ ︸
POD Galerkin modes

+

Ngal+Nneq∑

i=Ngal+1

ai(t)Φi(x)

︸ ︷︷ ︸
non-equilibrium modes

+ γ(c, t)U c(x),
(7)

whereNgal is the number of Galerkin modes and where
U c is called the control function. Mathematically,U c is
determined as a solution of the Navier-Stokes equations
satisfying specific boundary conditions such that the POD
eigenfunctionsΦi satisfy homogeneous boundary condi-
tions [3], [4].

The Galerkin projection of the Navier-Stokes equations
on the space spanned by the firstNgal + Nneq + 1 POD
eigenfunctions yields [4] to

d ai(t)

d t
=

Ngal+Nneq∑

j=0

Bij aj(t) +

Ngal+Nneq∑

j,k=0

Cijk aj(t)ak(t)

+ Di

d γ

d t
+


Ei +

Ngal+Nneq∑

j=0

Fij aj(t)


 γ(c, t)

+ Giγ
2(c, t),

(8a)

with the following initial conditions:

ai(0) = (u(x, 0), Φi(x)). (8b)

The coefficientsBij , Cijk, Di, Ei, Fij and Gi depend
explicitly on Φi andU c. Their expression are given in [4].

Let φNS(c) = (uNS , vNS , pNS)T represent the state
variables obtained by resolution of the Navier-Stokes equa-
tions andφPOD(cPOD) = (uPOD, vPOD, pPOD)T be the
corresponding values estimated with the POD ROM (8), the
objective functional is

f(c) = J (φNS(c)) =
1

T

∫ T

0

CD(φNS(c)) dt,

and the model function, introduced and justified in [4], is

mk(c) = J̃ (φPOD(c)) =
1

T

∫ T

0

Ngal+Nneq∑

i=0

ai(t)Ni dt,
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Fig. 3. TRPOD algorithm.

whereNi = CD(Φi).

These two functions can then be used in a procedure
of optimization coupling trust-region methods and POD
reduced order models, following the method presented in
section II.

To determine a solution of the subproblem of optimiza-
tion (5), the simplest method consists in solving the opti-
mality system based on the POD ROM. By definition [1],
this optimality system is a system of three coupled partial
differential equations [4] :

1) the state equations(8)
2) the adjoint equations

d ξi(t)

dt
= −

Ngal+Nneq∑

j=0

(Bji + γ(c, t)Fji) ξj(t)

−

Ngal+Nneq∑

j,k=0

(Cjik + Cjki) ak(t)ξj(t) −
1

T
Ni,

(9a)

with terminal conditions :

ξi(T ) = 0. (9b)

3) the optimality conditions

∇cL =

∫ T

0




Ngal+Nneq∑

i=0

Li


 ∇c γ dt, (10)

with

Li = −
dξi

dt
Di

+ ξi


Ei +

Ngal+Nneq∑

j=0

Fijaj + 2γ(c, t)Gi


 ,

where L is the Lagrangian functional introduced to
enforce the constraints [4], [1] of the optimization
problem.

This system can be solved using an iterative method
described in [4]. In this study, the directions of descent
are estimated using the Fletcher-Reeves version of the Con-
jugate Gradient Method [10]. The linear search parameter
is computed at each iteration by the backtracking Armijo
method [10], in which the length of the step, along each
direction of descent, checks the constraint imposed by the
trust-region approach.

B. Numerical results

The robustness of the TRPOD approach was evaluated
in [4] by use of various initial control parametersc0 =
(A ; St), namelyc0 = (1.0 ; 0.2), c0 = (1.0 ; 1.0), c0 =
(6.0 ; 0.2) andc0 = (6.0 ; 1.0). Figures 4 and 6 represent for
two couples of initial control parameters taken at random3,
the evolutions of the values of the objective functionalf
during the optimization process. Finally, these results are
synthesized in the control parameter space on Figs. 5 and
7.

3The results are identical for the two other couples of initial conditions.
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Fig. 4. Variation of the cost functionalf with respect to the iteration
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Fig. 5. Evolution of the control parameters during the optimization process.
Initial conditions:A = 1.0 andSt = 0.2.

C. Observations

Finally, the optimal control parameters, obtained when the
numerical convergence of the iterative procedure is achieved,
areA = 4.25 andStf = 0.738 [4]. These values are obtained
in at most ten iterations (10 resolutions of the Navier-
Stokes equations). These results are similar to those predicted
by numerical experimentation (open-loop control approach).
The control parameters, obtained by the TRPOD approach,
converge towards the optimal control parameters determined
numerically, and this, whatever the initial values used for
the control parameters. This proves the performance and the
robustness of the TRPOD approach. Figure 8 represents the
time evolution of the drag coefficient, for an uncontrolled
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Fig. 6. Variation of the cost functionalf with respect to the iteration
numberk. Initial conditions:A = 1.0 andSt = 1.0.
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Fig. 7. Evolution of the control parameters during the optimization process.
Initial conditions:A = 1.0 andSt = 1.0.

flow and the flow forced by the optimal control parameters
determined by TRPOD. These results are compared with the
value obtained for the unstable stationary basic flow. Protas
and Wesfreid argued in [11] that the basic flow generates
the lowest coefficient of drag for the configuration under
study. The mean drag coefficient varies from a value equal
to 1.39 in the uncontrolled case to a value equal to0.99 when
the optimal control parameters are applied corresponding to
a relative drag reduction of30%. The value of the drag
coefficient for the optimally controlled flow approaches that
obtained for the unstable stationary basic flow (CD = 0.94).
In addition, the dynamics of the vorticity has also a similar
behavior (see Fig. 9).
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Fig. 8. Time evolution of drag for the uncontrolled (γ = 0, dashed line),
optimally controlled (γ(t) = γopt(t), dotted line) and basic (γ = 0, solid
line) flows. Control was started at timet = 0.

(a) Optimally controlled flow (γ(t) = A sin(2πStf t), A = 4.25
andStf = 0.738).

(b) Basic flow (γ = 0).

Fig. 9. Vorticity contour plot of the wake for the optimally controlled and
basic flows att = 100. Dashed lines correspond to negative values.

IV. CONCLUSIONS

An optimization procedure coupling a trust-region method
and POD Reduced Order Models was used in order to
minimize the mean drag of the cylinder wake flow. The
optimal control parameters obtained in this way areA = 4.25
and Stf = 0.738. The relative mean drag reduction is
equal to30%. In addition, the use of trust-region methods
mathematically proves the convergence of the control pa-
rameters obtained with the reduced order models towards
the optimal control parameters corresponding to the Navier-
Stokes equations. Moreover, this approach leads to a sig-
nificant reduction of the numerical costs. Indeed, when the
optimality system is based on a POD ROM instead of the
Navier-Stokes equations, a cost reduction factor of 600 is
obtained for the memory and the optimization problem is
solved approximately4 times more quickly.
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for Fluid Dynamics, 2002.

[4] M. Bergmann, “Optimisation arodynamique par rduction de modle
POD et contrle optimal. Application au sillage laminaire d’uncylin-
dre circulaire.” Ph.D. dissertation, Institut National Polytechnique de
Lorraine, Nancy, France, 2004.

[5] M. Fahl, “Trust-region methods for flow control based on Reduced
Order Modeling,” Ph.D. dissertation, Trier university, 2000.

[6] C. Williamson, “Vortex dynamics in the cylinder wake,”Ann. Rev.
Fluid. Mech., vol. 28, pp. 477–539, 1996.

[7] A. Conn, N. Gould, and P. Toint,Trust-region methods. SIAM,
Philadelphia, 2000.

[8] B. Noack, K. Afanasiev, M. Morzýnski, G. Tadmor, and F. Thiele,
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