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Abstract: An Eulerian method to numerically solve incompressible bifluid problems with high
density ratio is presented. This method can be considered as an improvement of the Ghost Fluid
method, with the specificity of a sharp second-order numerical scheme for the spatial resolution of the
discontinuous elliptic problem for the pressure. The Navier–Stokes equations are integrated in time
with a fractional step method based on the Chorin scheme and discretized in space on a Cartesian
mesh. The bifluid interface is implicitly represented using a level-set function. The advantage of this
method is its simplicity to implement in a standard monofluid Navier–Stokes solver while being
more accurate and conservative than other simple classical bifluid methods. The numerical tests
highlight the improvements obtained with this sharp method compared to the reference standard
first-order methods.

Keywords: incompressible Navier–Stokes equations; projection method; finite differences; Cartesian
grid; immersed interfaces; level-set; interface unknowns

1. Introduction

Bifluid problems are ubiquitous in nature and in many industrial applications such as
combustion in engines, water waves energy converters, and jet printers to cite only a few.
In such applications, the density ratio between the two fluids can be large, for instance the
ratio is equal to 1000 between water and air. Accurate numerical modeling and numerical
simulations of these kind of phenomena are then necessary, in particular to optimize
such devices.

In this paper we are thus concerned with the numerical modeling of incompressible
bifluid flows with large density ratios, like air and water, and by the accurate description
of the phenomena occurring at their interface. We present a sharp Cartesian method for
the simulation of incompressible flows with high density and viscosity ratios. This method
is an extension of the second-order Cartesian method for elliptic problems with immersed
interfaces developed in [1].

Cartesian grids are an attractive alternative to body fitted meshes. Indeed, they
avoid complex mesh generation as well as mesh adaptation when unsteady interfaces
are considered. Moreover, the numerical resolution of the governing equations can be
simplified with an easy parallelization and the use of standard linear algebra libraries.
Generally speaking, numerical schemes are easy to implement on a Cartesian mesh because
a dimensional splitting is often possible; however, some numerical modeling is necessary
near a complex interface that does not fit the background Cartesian grid. This is the case for
fluid structure interface and moreover for bifluid interface where the properties of the flow
are discontinuous. Indeed, applying naively a numerical scheme originally devised for a
flow with constant or continuously varying density will lead to a non-consistent treatment
of the interface. Most of the time, it will result in severe stability issues if the density ratio is
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large as highlighted in [2] and references therein; therefore, as already mentioned, one has
to devise specific numerical schemes at the vicinity of the interface. This region is called
narrow band and is the set of numerical points that have at least one neighbor on the other
side of the interface.

Conservative or non-conservative approaches can both be used to face this issue.
Among the non-conservative approaches, one solution is to regularize the properties of
the fluids in the vicinity of the interface, so that the density, viscosity, and their derivatives
are continuous in the whole computational domain. This idea leads to the well-known
"Continuous Surface Force" (CSF) method [3], where the discontinuous quantities are
smoothed near the interface, and in case of a fluid with surface tension, this surface
tension is taken into account as a smooth volume force instead of a surface force. This
method is widely used (see for instance [4,5]) because it offers a straightforward way to
implement the presence of two fluids in an already existing monofluid Navier–Stokes
code. However, the exact way that the regularization should be performed is not always
clear, and spurious oscillations at the bifluid interface can appear due to errors in the
pressure gradient computations. Another non-conservative method introduced by Kang,
Fedkiw, and Liu [6] after the CSF is the Ghost Fluid Method (GFM). It is based on a first-
order method developed in [7] to solve an immersed interface elliptic problem, with a
dimensional splitting making the method easy to implement. The resulting linear system is
symmetric and has the same structure as the usual matrix to discretize a Poisson equation
with variable coefficient on a Cartesian grid. This method has been used successfully in a
lot of works, for instance [8,9]. One drawback is that the method is only first-order accurate
near the interface [2] and a loss of conservativity of the momentum of each fluid near the
interface can occur leading to erroneous velocities.

Non-conservative methods are often associated with a level-set representation of the
interface [4] because the level-set method is itself intrinsically non-conservative at the
discrete level, and convenient to use on a Cartesian grid.

The other family of methods is based on the conservative form of the Navier–Stokes
equations, where mass and momentum fluxes of each fluid are explicitly computed, see for
instance [2,10–13]. An explicit interface representation is necessary even if the interface
do not coincide with grid points. Conservative methods are generally more stable than
non-conservative methods. The price for this increased stability is an additional amount of
numerical developments due to the interface reconstruction, which can be performed from
information carried by Lagrangian markers or by cell quantities such as volume fractions.

Another approach has been developed recently [14,15] to deal with large density ratio.
In this approach, a fully second-order method is obtained at the interface (for both velocity
and pressure) with several physical boundary treatments, including velocity and traction
boundary conditions.

In this paper we aim to preserve as much as possible the simplicity of the Ghost
Fluid method of [6], avoiding an explicit identification of the volume fractions near the
interface, while improving the accuracy and stability of the pressure computation. We thus
propose a method, mainly based on the improvement of the Ghost Fluid method, where
the discontinuities across the interface are taken into account in a sharp way with a second-
order scheme inspired from [1]. This second-order treatment improves the conservativity of
the method, as it will be proved numerically in the section devoted to numerical validations.

After having described the governing equations for the incompressible bifluid flows
that we consider (Section 2), the discretization of these equations in each fluid and at the
interface are presented (Sections 3 and 4). The second-order numerical resolution of the
elliptic problem arising from the computation of the pressure is introduced (Section 5),
and the overall is validated on several two-dimensional numerical test cases (Section 6).
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2. Governing Equations
2.1. Flow Equations

We consider a rectangular domain Ω filled with two viscous incompressible fluids
with different densities and viscosities. The subdomains Ω− and Ω+ corresponding to the
two fluids are separated by an interface Γ as depicted in Figure 1.

In this work, these domains are implicitly defined with a scalar function φ, usually
called the level-set function, see Section 2.2, that takes different values in each subdomain
with a fixed value on the interface. For instance we chose φ = 0 on Γ, φ > 0 in Ω+ and
φ < 0 in Ω−. The unit normal to the interface is denoted n and the unit tangent vector is
denoted η. The density is denoted

ρ = ρ− + H(φ)(ρ+ − ρ−), (1)

and the viscosity is denoted

µ = µ− + H(φ)(µ+ − µ−), (2)

where H is the Heavyside function, i.e., H(φ) = 1 if φ > 0 and H(φ) = 0 if φ < 0. Finally,
the two-dimensional velocity vector is denoted u = (u, v).

The flow is modeled in the whole domain with the incompressible Navier–Stokes equations:

ρ(ut + (u · ∇)u) = −∇p +∇ · τ + ρg − σκ∇H,

∇ · u = 0,

with g the gravitational acceleration vector, τ the viscous stress tensor:

τ = µ(∇u +∇uT), (3)

and the term σκ∇H accounting for the surface tension effects, with σ the surface tension
itself and κ the local curvature of the interface between the fluids. This formulation of
the bifluid incompressible Navier–Stokes equations contains a singular term which is not
trivial to handle.

Ω− (φ < 0)

ρ−, µ−

Ω+ (φ > 0)
ρ+, µ+

Γ (φ = 0)

~n

Figure 1. Sketch of the computational domain.
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Alternatively, the flow can also be modeled in each subdomain with the incompressible
Navier–Stokes equations:

ρ(ut + (u · ∇)u) = −∇p +∇ · τ + ρg,

∇ · u = 0.

The above equations are completed by jump conditions at the interface Γ between the
two fluids. In what follows, jumps are defined by the notation [ψ] = ψ+ − ψ−. The first
jump conditions describe the balance between the normal stresses at the interface and the
surface tension σ, with κ the local curvature of the interface Γ,

[p− 2µ(∇u · n,∇v · n) · n] = σκ, (4)

[µ(∇u · n,∇v · n) · η+ (∇u · η,∇v · η) · n] = 0. (5)

Others jump conditions can be derived from continuity properties across the interface.
For instance, for a viscous fluid, the velocity field is continuous across the interface

[u] = 0, (6)

[v] = 0. (7)

Since the material derivative of (6) and (7) is zero, one can write

0 =
∂[u]
∂t

+ (u · ∇)[u] =
[
−∇p

ρ
+
∇ · τ

ρ
+ g

]
, (8)

which leads to [
∇p
ρ

]
=

[
∇ · τ

ρ

]
. (9)

The jump condition for the pressure p can be simplified. We differentiate the jump on
the velocity in the tangential direction:[

∂u
∂η

]
= 0,[

∂v
∂η

]
= 0.

Moreover, because the velocity is divergent-free on each side of the interface,

0 = [∇ · u] = [(∇u · n,∇v · n) · n + (∇u · η,∇v · η) · η]. (10)

Combining the two last relationships, we obtain

[(∇u · n,∇v · n) · n] = 0. (11)

Consequently

[p] = 2[µ](∇u · n,∇v · n) · n + σκ. (12)

Finally, we will use Equations (9) and (12) to compute the pressure jump at the interface.

2.2. Interface Description

The interface between the two fluid subdomains is implicitly defined by a scalar
function φ. Local geometrical information on the function φ is needed to obtain an accurate
discretization of the interface. To this purpose we use the level set method, introduced
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by Osher and Sethian [16] and described in [17–19]. A common choice for the level-set
function φ is the signed distance function to the interface:

φ(x) =


distΓ(x) if x ∈ Ω+,
−distΓ(x) if x ∈ Ω−,

0 if x ∈ Γ.
(13)

The zero isoline of φ thus represents implicitly the interface Γ immersed in the compu-
tational domain.

We assume that the interface is smooth enough, so that the derivatives of the level-set
function in the vicinity of the interface are well-defined. A useful property of the level-set
function is a straightforward computation of its normal with the formula

n(x) =
∇φ(x)
|∇φ(x)| . (14)

In the same way, the curvature of the interface can be computed with the formula

κ = ∇ · n. (15)

We impose a curvature threshold 1/h, with h the grid spacing, corresponding to the
minimum size of a bubble for a given spatial discretization.

For a moving interface as it is usually the case for bifluid problems, the flow density
and viscosity are updated with φ tracking the interface thanks to the transport equation

φt + û · ∇φ = 0, (16)

where the velocity fields û coincides with the flow velocity field u on the interface Γ.
Different choices for the value of û in Ω+ and Ω− can be a priori used. A natural choice
we have considered is û = u in the whole domain:

φt + u · ∇φ = 0. (17)

Another possible choice is the extension velocity introduced in [20].

3. Navier–Stokes Monofluid Solver and Numerical Method for Interface Evolution

The computational domain is discretized on a two-dimensional uniform Cartesian
grid with a grid spacing ∆x = ∆y = h. However, the following approach stands for nonuni-
form Cartesian meshes. The points on the Cartesian grid are defined as Mi,j = (xi, yj).
Similarly, we denote by uij the approximation of u at the point (xi, yj). In what follows, all
the unknowns are collocated in space on Cartesian meshes. An odd–even coupling can
sometimes be observed when one uses collocated unknowns on a Cartesian grid. This prob-
lem can be fixed using some corrections such as [21,22]. However, in all the applications
considered in this paper we have not observed any odd-even coupling.

In this section we present the numerical solver devised for monofluid incompressible
Navier–Stokes equations that is used in each fluid when the interface is not taken into
account. We also provide information about the numerical methods used to compute the
evolution of the level-set function.

3.1. Flow Computation

We use a classical projection method [23,24] to solve the Navier–Stokes equations in
each fluid outside the narrow band. In what follows, a non-incremental projection method
is used, i.e., the guess value for the pressure in the prediction step is zero.
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We thus compute successively:

u∗ − un

∆t
= −(un · ∇)un +

1
ρ
(∇ · τ)n + g (prediction step), (18)

un+1 − u∗

∆t
= −∇p

ρ
(correction step). (19)

The convective terms are computed with a fifth-order WENO scheme, and the viscous
terms with an explicit second-order centered finite-difference scheme. The time integration
is performed with a first-order explicit Euler scheme, which is consistant with the use of a
non-incremental version of the projection scheme.

The pressure appearing in Equation (19) is computed through the resolution of a
Poisson equation in order to enforce the divergence-free condition. At each point in one
subdomain, the following relationship is satisfied:

∇ ·
(

1
ρ
∇p
)
=
∇ · u∗

∆t
. (20)

We will provide additional details about the jump conditions that have to be satisfied
across the interface for this problem in Section 4. On the exterior boundary of the domain
Ω, Neumann boundary conditions are satisfied:

∇p
ρ

=
ub − u∗

∆t
, (21)

where ub is the value of the velocity to be imposed on the external boundaries.
We compute at each iteration an adaptive time step taking into account the restrictions

due to convection, viscosity, and surface tension. The convective time step restriction is
given by

∆t
(
|u|max

∆x
+
|v|max

∆y

)
≤ 1. (22)

with |u|max and |v|max the maximum magnitudes of the horizontal and vertical velocities.
The viscous time step restriction is given by

∆t
(

max
(

µ−

ρ−
,

µ+

ρ+

)(
2

∆x2 +
2

∆y2

))
≤ 1 (23)

We also apply a time step restriction associated with the surface tension evaluated
only in the narrow band. This time step restriction is similar to the one in [6] and in [8],
and is in this context usually the most restrictive:

∆t

√
σ|κ|

min(ρ+, ρ−)min(∆x2, ∆y2)
≤ 1. (24)

Finally, at each time step, the overall algorithm is the following:

• Prediction: evaluate convective and diffusive fluxes and compute u∗,
• Interface evolution: convect the level-set with velocity u and re-initialize if necessary,
• Construction and resolution of the linear system for the pressure,
• Correction step: update velocity with pressure gradient.

3.2. Numerical Method for the Level-Set Evolution

The computation of the level-set function should be performed very accurately when
one deals with moving interfaces. Indeed, as the level-set method is not intrinsically
conservative, a lack of accuracy in the computation of the level set evolution results often
in a substantial loss of mass for one of the fluids. It can also increase the problem of transfer
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of momentum between both fluids and generate spurious velocity oscillations. Moreover,
if one wants to compute the curvature of the interface from (15), the level-set function
needs to be accurate enough (at least third-order) so that the finite difference formulas used
to discretize (15) are consistent.

Unfortunately, the property of the signed distance function is usually lost when the
interface evolves with the flow velocity. The norm of the level set gradient can be far
from unity. These gradients variations of the level-set are harmful to the accuracy of the
numerical evaluation of the normal to the interface and the curvature. To circumvent the
problem, Sussman et al. [4] introduced a reinitialization algorithm to recover the signed
distance function through the resolution of the eikonal equation

|∇φ| = 1. (25)

Several methods have been developed over the years to perform this reinitialization
step, either by using a relaxation method and searching a stationary solution to a time
dependent Hamilton–Jacobi equation [4] or using a Gauss–Seidel-based method as in fast
marching methods [25,26] or fast sweeping methods [27].

The usual level set strategy for an evolving interface is thus the following:

• Use a transport equation to update φ.
• From time to time, reinitialize φ with the signed distance function.

One of the most widespread option in the literature is to combine a fifth-order WENO
scheme [28] with a RK3 scheme, for the transport and for the reinitialization through a
relaxation equation. It provides a high-order yet stable resolution; however, although the
reinitialization procedure, performed with such a numerical scheme, may improve mass
conservation, it also introduces some error by slightly moving the interface as shown in [29].
For this reason, Russo and Smereka [29] introduced a subcell fix taking into account the
interface location in the reinitialization procedure. This technique was extended to a higher
order accuracy in [30] through the use of third-order ENO schemes near the interface.

Usually, this reinitialization steps are performed uniformly every each n iterations.
A recent study [31] proposes a strategy to sample the reinitialization steps based on
interface deformation criteria. This should also be coupled with the high-order decentered
reinitialization scheme of [30] near the interface.

In what follows, we use the classical option of the fifth-order WENO scheme for the
spatial discretization. Since it is the most commonly used technique in the literature, it will
allow us to distinguish the effects of the new scheme for the pressure computation from
the effects of the reinitialization technique.

4. Navier–Stokes Solver near the Interface
4.1. Notations

Let us introduce some definitions and notations. A grid point is defined to be irregular
if at least one of its neighbors is on the other side of the interface, i.e., if the sign of φ changes
between this point and at least one of its neighbors, see Figure 2. The set of irregular points
is called the narrow band. All the other points are called regular grid points.

We define the interface point Ii,j,E = (x̃i,j,E, yj) as the intersection of the interface Γ and
the East segment [Mij Mi+1j], if it exists. Similarly, the interface points Ii,j,W = (x̃i,j,W , yj),
Ii,j,N = (xi, ỹi,j,N) and Ii,j,S = (xi, ỹi,j,S) are defined as the intersection of the interface and
the West [Mi−1j Mij], North [Mij Mij+1] and South [Mij−1Mij] segments, respectively. With
this notation the same interface point can be described in two different ways

Ii,j,S = Ii,j−1,N or Ii,j,E = Ii+1,j,W . (26)

The set of interface points is denoted Γh, see Figure 2 for an illustration.
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◦ ◦

◦ ◦

◦ ◦
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• •

• •

� �
Ii,j,E = Ii+1,j,W

�
Ii+2,j+1,N = Ii+2,j+2,S

i-1 i i+1 i+2 i+3 i+4 i+5

j-1

j

j+1

j+2

j+3

◦

◦

•

•

•

•

• ••

Figure 2. Example of geometrical configuration, with regular grid points (white circles), irregular
points (black circles), and interface points (diamonds) with the two possible notations.

4.2. Modeling Choices for the Discontinuities across the Interface

In this study, the values of the viscosity and the densities are discontinuous across
the interface; therefore, if the numerical scheme for solving incompressible Navier–Stokes
equations described previously in Section 3.1 was applied on the irregular grid points of
the narrow band, the approximations of the following terms would not be consistent:

• Prediction step: viscous terms.
• Correction step: divergence of the predicted velocity, elliptic operator, and gradient

of the pressure.

This lack of consistency could eventually lead to stability problems.
The computation of the convective terms is not mentioned in the above enumeration

because it is performed with a fifth-order WENO scheme, which automatically provides
spatial adaptivity. Therefore, we assume that the gradients computed with the WENO
scheme are decentered near the interface, and consequently, consistent. Moreover, the level-
set function is classically evolved with such a scheme, because it is crucial to have a good
accuracy in the computation of the interface evolution; thus, it seems coherent to have the
same numerical scheme for the convection of the interface and the convection of the fluids.

In this work, we use two different strategies to handle the lack of consistency near
the interface, one for the viscous terms and another for the pressure computation. For the
viscous term in the prediction step, we follow a continuous approach and regularize the
quantities used for the computation of the viscous terms. It has been proven in [32,33] that
this continuous approach provides correct accuracy for high Reynolds number flows. It has
also been used successfully in [2,3]. A sharp approach for the viscous terms could probably
improve the accuracy of the simulations; however, the complexity of the computations
would be increased due to the treatment of the jump conditions for the viscous terms (5)
implying derivatives of the velocity components in both normal and tangential directions.
Moreover, if one needs to use an implicit treatment of the viscous terms, such a sharp
treatment would become more complex to handle.

The discretization of the prediction step becomes:

u∗ − un

∆t
= −(un · ∇)un +

1
ρ̃

(
∇ · µ̃(∇u +∇uT)

)n
+ g. (27)

In practice the viscosity and the inverse of the density were regularized by a discrete
convolution [2]:
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16 µ̃i,j = 4 µi,j + 2 µi+1,j + 2 µi−1,j + 2 µi,j+1 + 2 µi,j−1

+µi+1,j+1 + µi+1,j−1 + µi−1,j+1 + µi−1,j−1,
16
ρ̃i,j

=
4

ρi,j
+

2
ρi+1,j

+
2

ρi−1,j
+

2
ρi,j+1

+
2

ρi,j−1

+
1

ρi+1,j+1
+

1
ρi+1,j−1

+
1

ρi−1,j+1
+

1
ρi−1,j−1

.

Then, we discretize the viscous terms with a classical second-order centered scheme
as in Section 3.1.

In the correction step, according to the jump conditions (4)–(12) presented in Section 2,
the pressure satisfies an elliptic problem with discontinuous values of the solution and its
derivative across the interface:

∇ ·
(

1
ρ
∇p
)

=
∇ · u∗

∆t
in Ω+ ∪Ω−,

[p] = σ κ + 2[µ] (un, vn) · n on Γ,[
∇p
ρ

]
=

[
∇ · τ

ρ

]
on Γ.

Because the viscous terms in the prediction step are handled with a regularization
approach, we have [µ] = 0 and

[
∇·τ

ρ

]
= 0. Therefore, the pressure computed for the

correction step satisfies rather:

∇ ·
(

1
ρ
∇p
)

=
∇ · u∗

∆t
in Ω+ ∪Ω−, (28)

[p] = σ κ on Γ, (29)[
∇p
ρ

]
= 0 on Γ. (30)

The details of the resolution of this elliptic problem will be provided in Section 5. Let
us remark however that as the values of p are discontinuous across the interface, two values
of p will be created at each point of the interface considered in the numerical scheme.

4.3. Gradient and Divergence for Correction Step

The predicted velocity u∗ obtained after the prediction step (18) is defined only on
grid points. We need to compute the divergence of this predicted velocity in order to solve
the elliptic Equation (20). However, since the two fluids have different properties across the
interface and the derivatives of the velocity are not necessarily continuous, we need to use
a decentered stencil on each side of the interface. Consequently, we have to compute two
values for u∗ on each interface point, one for each side of the interface. In practice, as jump
conditions for u∗ are not available, we perform simply linear extrapolations from the grid
values on the interface points. Then, to compute the divergence of u∗ on an irregular grid
point Mi,j, we use a standard five point stencil, see Figure 3. Formally this is equivalent to
a standard first-order decentered scheme.

More precisely, we denote u∗S the value of the predicted velocity u∗ on the nearest
point to Mi,j in the south direction (possibly an interface point), with coordinates (xS, yS).
Similarly, we define u∗N , u∗W and u∗E and the associated coordinates (xN , yN), (xW , yW) and
(xE, yE). The discretization reads(

∇ · u∗
)

i,j
=

u∗E − u∗W
xE − xW

+
v∗N − v∗S
yN − yS

.
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Similarly, in order to keep a consistent discretization, the gradient of the pressure p
appearing in Equation (19) is also computed with an adapted decentered stencil near the
interface, see Figure 3. More precisely, with the same notations S, N, W and E, as before,
the discretization reads

(∇p)i,j =


pE − pW
xE − xWpN − pS
yN − yS

. (31)

If one of the discretization point is an interface point, we consider the value of the
pressure on this point corresponding to the same subdomain than point Mi,j. Indeed
we recall that, since the pressure is discontinuous across the interface, two pressure un-
knowns (one for each subdomain) are computed at an interface point. If no interface
point is involved, the numerical scheme reduces to the classical second-order central finite
differences scheme.

•

•

•

• • •
Mi+2,j+2

•••

•

•
Mi,j

i-1 i i+1 i+2 i+3 i+4 i+5

j-1

j

j+1

j+2

j+3

Figure 3. Example of geometrical configuration, with points involved in the discretization of the
divergence of the predicted velocity and pressure gradient at grid points Mi,j and Mi+2,j+2 in black.

5. Numerical Resolution of Elliptic Problems with Immersed Interfaces

The elliptic problem with discontinuous values across an interface (28)–(30) is solved
with the second-order method developed in [1]. The interface points are used to impose
the jump conditions across the interface in the numerical scheme. Since the pressure
is discontinuous across the interface, two unknowns are created, one for each side of
the interface. The accuracy of this method is based on the use of unknowns located
at the interface. The size of this linear system is thus augmented with two unknowns
for each interface point. These interface unknowns are used to discretize the flux jump
conditions and the elliptic operator accurately enough to get a second-order convergence
in maximum norm. Actually, to this purpose, near the interface the elliptic operator needs
to be discretized with a first-order truncation error, and the fluxes with a second-order
truncation error. For a visual explanation of the discretization we refer to Figure 4. The
advantage of using this method, compared to the reference work of [6] is that the jump
conditions in the correction step are solved with second-order accuracy instead of first-
order. The drawback is that the linear system is not symmetric anymore and it is solved
with the preconditioned GMRES method.

5.1. Discrete Elliptic Operator

We use a standard five-point stencil including the grid point Mi,j and its nearest
neighbors in each direction: interface or grid points. More precisely, we denote pS the
value of the solution on the nearest point in the south direction, with coordinates (xS, yS).
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Similarly, we define pN , pW , and pE and the associated coordinates (xN , yN), (xW , yW), and
(xE, yE). Since the density is piecewise constant, the discretization reads

(
∇.(

1
ρ±
∇p)

)
i,j
=

1
ρ±

∆p =
1

ρ±

pE − pij

xE − xi
−

pij − pW

xi − xW
xE − xW

2

+
1

ρ±

pN − pij

yN − yj
−

pij − pS

yj − yS
yN − yS

2

, (32)

where ρ± stands for ρ+ or ρ−.

•

• • •
Mi+2,j+2

•

Mi+3,j
••

•

•

•

i-1 i i+1 i+2 i+3 i+4 i+5

j-1

j

j+1

j+2

j+3

•

•

••

•

Ii+1,j+1,N

• •• •
Ii,j−1,E

i-1 i i+1 i+2 i+3

j-1

j

j+1

j+2

Figure 4. Left: points involved in the discretization of the elliptic operator at grid nodes Mi+2,j+2 and Mi+3,j in black, right:
Example of stencils for the discretization of jump conditions. Points involved in the discretization of the x-derivative of the
pressure at interface point Ii,j−1,E and of the y-derivative of the pressure at interface point Ii+1,j+1,N in black. For Ii,j−1,E both
derivatives are expressed with second-order accuracy while for Ii+1,j+1,N the left derivative is expressed with second-order
and the right derivative with first-order accuracy.

5.2. Discrete Flux Transmission Conditions

As written before, at each interface point we create two additional unknowns, called
interface unknowns. We denote them by p±i,j,γ with γ = E, W, N or S. The interface
unknowns carry the values of pressure on each side of the interface.

Contrarily to [1], we do not have a jump condition on the normal derivative, but on the
whole gradient, as expressed in formula (30). To obtain the same number of equations and
unknowns we have to chose in which direction we want to project this gradient equality. As
we use a Cartesian grid, it is easier to discretize the x− and y−derivatives than derivatives
in other directions. Consequently, we discretize the following jump conditions at each
interface point Ii,j,γ, with γ = N, S, W, E.

p+i,j,γ − p−i,j,γ = σ κi,j,γ, (33)

1
ρ+

(∂x p+)i,j,γ −
1

ρ−
(∂x p−)i,j,γ = 0 if γ = E, W. (34)

1
ρ+

(∂y p+)i,j,γ −
1

ρ−
(∂y p−)i,j,γ = 0 if γ = N, S. (35)

We want the truncation error of the discretization of flux equality (34) and (35) to
be second-order accurate in order to solve the problem with a second-order accuracy. A
possible configuration of the interface is illustrated in Figure 4. In the x-direction, it is
straightforward to compute a second-order approximation of the x-derivative with three
a priori nonequidistant points. For example we approximate the flux on the left side of
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interface point Ii,j,E, if it exists, with the values of p on the points Mi−1,j, Mi,j and Ii,j,E with
the formula:

(∂x p±)i,j,E ≈
(pi−1,j − p±i,j,E)(xi − x̃i,j,E)

∆x(xi−1 − x̃i,j,E)
−

(pi,j − p±i,,Ej)(xi−1 − x̃i,j,E)

∆x(xi − x̃i,j,E)
. (36)

The right x-derivative is approximated in the same way.

(∂x p±)i,j,E ≈ −
(pi+2,j − p±i,j,E)(xi+1 − x̃i,j,E)

∆x(xi+2 − x̃i,j,E)
+

(pi+1,j − p±i,,Ej)(xi+2 − x̃i,j,E)

∆x(xi+1 − x̃i,j,E)
. (37)

The same discretization holds for the y-derivative. The formulas (36) and (37) are
consistent if both grid points involved in the formula, for instance Mi−1,j and Mi,j, belong
to the same domain. If on one side of the interface the two closest grid points aligned
with the intersection point do not belong to the same subdomain, then the second-order
discretization is not possible anymore. In this case, we use a first-order discretization
involving only two points: the interface point and the closest grid point on the same side
of the interface. Such a case is illustrated on Figure 4. In fact, this first-order discretization
is equivalent to the Ghost Fluid method [6].

Let us notice that, because we use a dimensional splitting for the jump conditions
across the interface, it is quite straightforward to eliminate the interface unknowns from
the linear system. We simply inject expressions (36) and (37) in the jump condition (34),
and use the resulting equality to express p±i,j,E as a function of pi−1,j, pi,j, pi+1,j and pi+2,j.

This expression for p±i,j,E can then be used in the discretization of the elliptic operator (32).
The local curvature κi,j,γ at the interface point Ii,j,γ is computed in the following way.

We first compute on all irregular grid points the value

κ =
φ2

xφyy + φ2
yφxx − 2φxφyφxy

(φ2
x + φ2

y)
3/2 (38)

with centered second-order finite-difference formulas. Then we perform a one-dimensional
linear interpolation of these values on the interface points.

6. Numerical Results and Validations

This section is devoted to the numerical simulations and validations.
After having studied the well-balanced behavior of the proposed approach, i.e., the

capacity of the method to preserve equilibria state for a bubble, in Section 6.1, we perform
a quantitative validation for the well-known dam break problem from Section 6.2. We then
present other numerical simulations for the rising of bubbles with different sizes that can
qualitatively been compared to some reference results in Section 6.3.

6.1. Equilibria Preservation for a Bubble: the Parasitic Oscillations

This first test case aims to assess the influence of the interface curvature error on the
stability of the numerical scheme. A bubble is located at the center of the computational
domain in Sections 6.1.1 and 6.1.2. Due to the Laplace law and the concavity of the
interface, the pressure inside the bubble is larger than the pressure outside. If the curvature
of the interface is computed numerically, the errors due to the numerical approximation
in the right-hand side of Equation (33) cause small errors in the resolution of the pressure
equation and the system is thus not well balanced. These errors create artificial values of
the velocity near the interface which should theoretically be zero. These artificial velocities
are often called parasitic currents. The amplitude of the parasitic currents is an indication
of the stability and the accuracy of the numerical method, and especially of the pressure
computational step. Indeed, they are the only source of numerical errors.
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In what follows several comparisons with other references methods, the Ghost Fluid
and the CSF methods in Section 6.1.1 and the Volume of Fluid method in Section 6.1.2, are
presented on slightly different test cases.

6.1.1. Comparison with the Ghost Fluid and the CSF Methods

We use the same parameters as in [8], where a Ghost Fluid and a CSF method were
implemented. The amplitude of the parasitic currents, compared to the results in [8], are
reported in Table 1. The L∞ and L2 norms are computed over the whole domain Ω. The
initial configuration is described in Figure 5. As it can be observed, the amplitude of the
parasitic currents generated by our method is several orders of magnitude smaller than
those of the CSF method, and significantly lower than those of the Ghost Fluid method
when the grid is refined. 

L = 2 cm,
R = 1 cm,

ρint = 1000 kg ·m−3,
µint = 10−3 Pa · s,
ρext = 1 kg ·m−3,
µext = 10−5 Pa · s,
σ = 0.1 N ·m−1

(39)

2 L

int

ext

R

Figure 5. Test case of the static bubble with parasitic oscillations.
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Table 1. Comparison between the new method and the numerical results obtained in [8] for the
Ghost Fluid method and the CSF method for parasitic oscillations, at time t = 1.

Ghost Fluid Method CSF New Method
N L∞ Error L2 Error L∞ Error L2 Error L∞ Error L2 Error

16 8.08 ×10−3 1.88 ×10−3 3.55 ×10−2 1.94 ×10−2 5.21 ×10−3 7.31 ×10−5

32 3.42 ×10−4 7.50 ×10−5 3.12 ×10−2 1.18 ×10−2 9.26 ×10−5 1.42 ×10−6

64 5.13 ×10−5 7.97×10−6 2.12 ×10−2 5.44 ×10−3 1.36 ×10−5 1.47 ×10−7

128 2.79 ×10−5 4.74 ×10−6 6.44 ×10−3 1.38 ×10−3 2.22 ×10−6 1.92 ×10−8

6.1.2. Comparison with a Volume of Fluid Method

We now compare the behavior of our method to the Volume of Fluid method devel-
oped in [12]. The density and viscosity ratio are both chosen to be one for this test case.

The coefficient σ is chosen so as to obtain an Ohnesorge number Oh =
µ√
σρD

satisfying

Oh2 =
1

12000
. The maximum velocity is computed for varying grids at non-dimensional

time t∗ =
t
T

= 250, with T =
Dµ

σ
.

L = 1.25 m,
R = 1 m,

ρint = 1 kg ·m−3,
µint = 10−3 Pa · s,
ρext = 1 kg ·m−3,
µext = 10−3 Pa · s,

σ = 0.00012 N ·m−1

(40)

A comparison between our method and the Volume of Fluid method is presented in
Table 2. The new method provides a better accuracy than the Volume of Fluid method for
the coarsest grid. As expected, the Volume of Fluid method outperforms our new approach
for finer meshes due to more sophisticated schemes near the interface. Nonetheless, Table 2
show a second-order accuracy for our new method.

Table 2. Numerical results for parasitic oscillations at non-dimensional time t∗ = 250 for [12] and
our method.

∆x Error L∞ for [12] Error L∞ for Our Method

2.5/16 7.3 ×10−4 7.48 ×10−5

2.5/32 4.5 ×10−6 4.7 ×10−6

2.5/64 5.5 ×10−8 1.26 ×10−6

6.2. Collapse of a Water Column: the Dam Break Problem

This test case is studied in [2,34], and based on experiments conducted in [35]. The
initial configuration is a water column at rest in air. The initial height and width of the
column are both 5.715 cm. The domain size is 40 cm×10 cm. The physical constants
are the same than for the rising bubble (Section 6.1.1). For more details, we refer the
reader to [2]. We present in Figure 6 the interface evolution at non-dimensional times
T = t

√
g/H = 0, 1, 2, 3, 4, with H the initial height of the water column. The computations

are performed with 256× 64 points.
Figure 7 present the temporal evolution of the water front, compared to the experimen-

tal results [35], to results with the Ghost Fluid method used for pressure resolution, and to
the conservative method of Raessi and Pitsch [2]. We observe that the front propagation is
in agreement with the experimental results and the results of the conservative method [2].
This means that, though the method is not strictly conservative, the numerical errors due to
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momentum transfer across the interface are not large enough to slow down the propagation
of the front. It is not the case for instance for the Ghost Fluid method, as it can be noticed
in Figure 7 and has been reported in [2].

Figure 6. Evolution of the interface for the dam break problem at non-dimensional times
T = t

√
g/H = 0, 1, 2, 3, 4.

Figure 7. Evolution of the front of propagation: comparison between experimental data and several
numerical methods: the Ghost Fluid method (non-conservative method), the conservative method
of Raessi and Pitsch and our new method, The dimensionless location of the front z

a is plotted as a
function of the dimensionless time T = t

√
g/H.
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6.3. Rising of Air Bubble in Water

We study the evolution of fluid bubbles rising in an heavier fluid, and compare our
results to several methods in the literature. The initial configuration is described in Figure 8.

6.3.1. Comparison with the Ghost Fluid Method

We consider air bubbles rising in water, as in the test case proposed for the Ghost
Fluid method in [6]. The value of the physical parameters are

R = 1/300 m (small bubble)
R = 1/3 m (large bubble)

ρwater = 1000 kg/m3,
µwater = 1.137× 10−3 kg/ms,

ρair = 1.226 kg/m3,
µair = 1.78× 10−5 kg/ms,

σ = 0.0728 kg/s2,
g = −9.8 m/s2.

(41)

We consider two cases: a small bubble with R = 1/300 m and a large one R = 1/3 m.
In the first case, the surface tension plays an important role in the evolution of the interface
because of the high bubble curvature. In the second case, the surface tension has less
influence, and larger deformations occur. The interface of the small bubble and the vorticity
values are plotted at times t= 0, 0.02, 0.035, 0.05 in Figure 9. The interface of the large
bubble and the vorticity values are plotted at times t= 0, 0.2, 0.35, 0.5 in Figure 10. Our
numerical results are in good agreement with [6].

6 R

9 R in [6]
or 10 R in [36]

2 R in [36]
3 R in [6]

gaz

liquid

R

Figure 8. Initial fluid domain for the test case of the rising bubble in water in the References [6,36].

6.3.2. Comparison with SPH and the Level-Set Method

This test case is taken from [36], and inspired from a test case presented in [4]. It gives
us the opportunity to compare our method to another class of methods, based on the SPH
formulation. The initial configuration is described on Figure 8. The values of the physical
parameters are 

R = 0.025 m,
ρwater = 1000 kg/m3,

µwater = 1.137× 10−3 kg/ms,
ρair = 1.226 kg/m3,

µair = 1.78× 10−5 kg/ms,
σ = 0.0728 kg/s2,

g = −9.8m/s2.

(42)

The evolution of the interface and the vorticity values are plotted on Figure 11,
for 120 × 200 grid points. We observe that the interface deforms in a way similar to
the results in [36].
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Figure 9. Evolution of the interface and vorticity values for the small bubble test case, at times 0, 0.02, 0.035, 0.05, resolution:
40 × 60 (left); 80 × 120 (middle); 160 × 240 (right).
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Figure 10. Evolution of the interface and vorticity values for the large bubble test case, at times 0, 0.2, 0.35, 0.5, resolution:
40 × 60 (left); 80 × 120 (middle); 160 × 240 (right).
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Figure 11. Evolution of the interface and vorticity values for the bubble test case from [36] at non-dimensional times
t ∗
√
−g/0.025 = 0., 2.8, 6, 4., 4.4, 4.8, 5.2, 5.6, 6., resolution 120 × 200.

6.4. Two Air Bubbles in Water

Two air bubble are initially at rest in water, see Figure 12. At the same time that they
are rising, their interaction produces larger deformations than for a single bubble. This test
case is meant to assessing the conservativity of the new method, as the increase in pression
resolution is meant to increase this conservativity.

The value of the physical parameters are

R = 1/30 m,
center of first bubble = (0, 0),

center of second bubble = (−0.04, 0.08),
final time Tf = 0.12,

ρwater = 1000 kg/m3,
µwater = 1.137× 10−3 kg/ms,

ρair = 1.226 kg/m3,
µair = 1.78× 10−5 kg/ms,

σ = 0.0728 kg/s2,
g = −9.8 m/s2.

(43)
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R

6 R

9 R

3 R

gaz

liquid

R

Figure 12. Initial fluid domain for the test case of the two rising bubbles in water.

In Figure 13, the interface evolution and the vorticity values for the Ghost Fluid method
(used for the pressure computation) and the new method are plotted. One observes small
oscillations of the vorticity near the interface between two fluids for the Ghost Fluid method,
but not for the new method. The conservation of the partial mass of air and momentum of
air in each dimension for the new method, and the Ghost Fluid method are depicted in
Figures 14–16 respectively. As air is the less dense fluid, it is more prone to big oscillations
if erroneous mass and momentum transfers between the two fluids occur. One can observe
that with the new method and its second-order pressure resolution, the oscillations of
these quantities are notably less present than for the Ghost Fluid. The partial mass is better
conserved too.

Figure 13. Cont.
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Figure 13. Evolution of the interface and vorticity values for the two bubbles test case at times
t = 0., 0.04, 0.08, 0.12, resolution 120 × 180, (left): new method for pressure, (right): Ghost Fluid
method for pressure.
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(a) (b)

Figure 14. Evolution in time of partial mass of air with N = 60, 90, 120 points in x-direction with
(a) Ghost Fluid method, (b) new method.

(a) (b)

Figure 15. Evolution in time of partial x-momentum of air N = 60, 90, 120 points in x-direction with
(a) Ghost Fluid method, (b) new method.

(a) (b)

Figure 16. Evolution in time of partial y-momentum of air N = 60, 90, 120 points in x-direction with
(a) Ghost Fluid method, (b) new method.

7. Conclusions

We have developed a new method on Cartesian grids for the simulation of incompress-
ible flows with large density ratios. This method relies on a sharp resolution of the pressure
term across the interface defined by a level-set function. The advantage of the proposed
approach is its simplicity to implement in an existing Cartesian monofluid Navier–Stokes
solver as for instance the Ghost Fluid or CSF methods. It is only necessary to modify the
stencil for the pressure equation at some irregular grid points by adding one additional
point. This Cartesian scheme uses thus additional unknowns located on the interface to
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discretize with second-order accuracy the jump conditions across the interface. The viscous
term is treated with a regularizing approach that allows us to eliminate terms in the jump
conditions. Indeed, it has been shown [32,33] that the regularization has no significant
impact on the accuracy of the results. Numerical results show that this method leads to
more accurate and stable results than some reference methods as for instance the well
known Ghost Fluid or CSF methods. The conservation of volume of each phase is also
better conserved. We thus take advantage of both the regularity of the interface defined by
the level-set function (curvature is numerically consistent), and the mass conservation of
each phase. The CLSVOF [11] can also provide good mass conservation and precision of
the interface but with a more complex numerical implementation.

Future works include an extension of the method to three-dimensional problems with
interactions with solids including the numerical simulation of wave energy converters [37,38].
We also aim to study the sensibility of the reinitialization procedure of the level-set function
defining the bifluid interface, as for instance the one developed in [31].
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