
Bioinspiration & Biomimetics

PAPER

Numerical modeling of a self-propelled dolphin
jump out of water
To cite this article: Michel Bergmann 2022 Bioinspir. Biomim. 17 065010

 

View the article online for updates and enhancements.

You may also like
Recent studies of the mortality and cancer
morbidity experience of uranium workers
and a fresh look at depleted uranium
Ronald L Kathren

-

Balancing the production line using the
ergonomic approach
Rosnani Ginting, Muhammad Khatami and
Alfin Fauzi Malik

-

SRP Meeting: Developments in
Operational Health Physics, University of
Birmingham, 25-26 March 1998

-

This content was downloaded from IP address 147.210.215.16 on 28/11/2022 at 15:12

https://doi.org/10.1088/1748-3190/ac8fc8
/article/10.1088/0952-4746/21/2/003
/article/10.1088/0952-4746/21/2/003
/article/10.1088/0952-4746/21/2/003
/article/10.1088/1757-899X/801/1/012107
/article/10.1088/1757-899X/801/1/012107
/article/10.1088/0952-4746/18/3/017
/article/10.1088/0952-4746/18/3/017
/article/10.1088/0952-4746/18/3/017
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuuYubnSQ0gBUG-FSFV7EiecDYPVHJ0c5QZbPi2R3Ow0odqGc00D4L_yrCFL6TFeX8VZo6vgOuwJe9_8iYzrFokn_QQANOgOWPurAKhkOYJXdbFqZnrqDiquIhoxClCJCYua-sxr1kBra33XGzVOtiK1ISigHKgdYs1ImGulHpv7bIYGewCpdj-tKKn9Oh6EcC8FkPsot3qaq-xE05eeW0QL0peg6d-k5RJHHCyAUUWJPuziR6Z8VtbeN4h03w4XmZmug9nt9PIb4p_JFsiEOtnmQUdETYMJnvflAfVhVxtfA&sai=AMfl-YSvwkSyIS165YfeMJ4Bhx3REBBePInNOSXLwot3gF4qDsQLBiZYdDTI48QgBNZKF56FqM7lN9_GGBEOmoEeJA&sig=Cg0ArKJSzFoySwzTv5O0&fbs_aeid=[gw_fbsaeid]&adurl=https://iopscience.iop.org/bookListInfo/iop-series-in-biophysical-society%23series


Bioinspir. Biomim. 17 (2022) 065010 https://doi.org/10.1088/1748-3190/ac8fc8

RECEIVED

10 June 2022

REVISED

26 August 2022

ACCEPTED FOR PUBLICATION

6 September 2022

PUBLISHED

26 October 2022

PAPER

Numerical modeling of a self-propelled dolphin jump
out of water

Michel Bergmann∗

Inria, Memphis Team, 200 Avenue de la Vielle Tour, 33450 Talence, France
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Abstract
A computational model is developed to investigate the jump of a self-propelled dolphin out of
water. This model relies on the Navier–Stokes equations, where a fictitious domain approach with
the volume penalization method is used for fluid-structure coupling, and the continuous surface
force approach is used to model the water–air interface, the latter being tracked in a level-set
framework. The dolphin’s geometry is based on freely available data from the literature. While
body deformation is imposed, the leading linear and angular displacements are computed from
Newton’s laws. Numerical simulations show that it is necessary to generate large propulsives forces
to allow the jump out of water. When the dolphin is out of water, its trajectory follows a purely
ballistic one.

1. Introduction

The study of underwater swimming animals is inter-
esting with regards to understanding the possible
effects related to evolution, in particular to make
links between the geometry of the body, the unsteady
nature of the flow, and the unsteady swimming
deformations imposed by muscles. The latter can be
optimized by using the energy enclosed in incoming
vortices, in active (Gopalkrishnan et al 1994, Tri-
antafyllou et al 2002, Liao et al 2003, Fish and
Lauder 2006) or passive (Beal et al 2006) ways,
or using vortices possibly generated by neighboring
fishes (Bergmann and Iollo 2011, Maertens et al
2017, Gao and Triantafyllou 2018, Li et al 2022).
Vortex-induced control by the caudal tails of vortices
generated along the fish body (Zhu et al 2002) is also
another mechanism to improve swimming efficiency.
The drag reduction and thrust generation are linked
to the generation of an inverse Von Kármán street,
as observed for simple manipulated circular cylinder
wake flow (Bergmann et al 2006).

A detailed comprehension of all these mechanisms
may help to design new concepts of autonomous
underwater vehicles (AUVs). The swimming of a fish
has been considered, following the pioneering but
controversial work of Gray (1936) (later called Gray’s

paradox), as being a very efficient means of locomo-
tion. A review from a fluid mechanics point of view
of Gray’s paradox can be found in Bale et al (2014).
Also, this type of motion allows a maneuverability
never reached by the previous generation of AUVs, of
a torpedo type (Bozkurttas et al 2009).

As already mentioned, a dolphin’s kick in swim-
ming is an efficient way to move in water. Human
swimmers, especially during competitions, try to
mimic a dolphin’s kick during the fully immersed
stage (von Loebbecke et al 2009b, von Loebbecke et al
2009c). A comparison of humans and cetaceans is
given in von Loebbecke et al (2009a).

The swimming of an animal in water is a complex
and beautiful phenomenon that is easy to observe in
nature, but difficult to model numerically. The com-
plexity comes from the reciprocal coupling between
the fluid and the animal’s body. This phenomenon is
even more complex when the animal swims close to
the surface, because it is necessary to take into account
the deformation of the surface of the water and the
forces related to surface tension. The complexity is
greatest when the animal crosses the surface, typically
when it jumps out of the water. High-performance
propulsion together with trajectory control to opti-
mize the position at the early jump are required to
jump out of water. The jumping dynamics of a variety
of aquatic animals are described in Chang et al (2019),
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and a focus on the study of archer fish jumps can be
found in Mendelson and Techet (2020). Examples of
jump spinning (twist) maneuvering can be found in
Fish et al (2006).

The goal of this paper is thus to study a dolphin
jump in a numerical framework. Only a few numer-
ical simulations of dolphin-like swimming have been
reported in the literature, most of them are cited
above. One reason is that it is difficult to define a
realistic dolphin geometry. In this study, we will use
the freely available geometry of the Lagenorhynchus
obliquidens dolphin proposed in Tanaka et al (2019).
The other reason is, as previously mentioned, the
complexity of the numerical modeling. Indeed, it
is necessary to model the unsteady fluid structure
interactions with large interface deformations and
possibly large density ratios (body and water interface
deformations). In this study, we consider a fictitious
domain approach where the computational mesh, i.e.
grid nodes, does not necessarily follow the interfaces.
The dolphin body is considered with the volume
penalization (VP) method (Angot et al 1999), the
fluid-structure interface is followed in a Lagrangian
way, and the water–air interface is tracked in a Eule-
rian way using a level set function (Osher and Sethian
1988, Sethian 1999). Even if it is not a dominant force
at the dolphin’s scale, we consider the surface tension
using the continuous surface force (CSF) method
originally introduced in Brackbill et al (1992). Other
fictitious domain approaches can be used to compute
large density ratios flows such as, for instance, the one
recently proposed in Nangia et al (2019a, 2019b). For
simplicity reasons, no skin effects are considered in
this study, even if they can play an important role in
passive drag reduction (Pavlov 2006).

The paper is organized as follows. After having
introduced the modeling and numerical methods
in section 2, including the description of the flow
configuration, the governing equations, and the asso-
ciated numerical schemes, we present the numerical
results for dolphin jumps out of water in section 3.
Some conclusions and perspectives are finally given
in section 4.

2. Modeling and numerical methods

2.1. Flow configuration
A sketch of the flow configuration is given in figure 1.
The whole domain is Ω = Ω+

f ∪ Ω−
f ∪ Ωs, where Ωs

is the domain for the structure, i.e. the dolphin,
Ω+

f is the domain filled with water, and Ω−
f is the

domain filled with air. The two fluid domains are
separated by an interface Γf , and the structure and the
fluid domains are separated by an interface Γs. The
intersection of Γf and Γs is noted as Σt = Γf ∩ Γs.
For three-dimensional problems, Σt could be a line,
usually called the triple line. The external boundary
of the domain is noted as Γe. In what follows, the

domain Ω is a three-dimensional Cartesian box, and
the external boundary is Γe = Γtop ∪ Γbottom ∪ Γleft ∪
Γright ∪ Γfront ∪ Γback, where each boundary is defined
as indicated by the subscripts. The density of the
dolphin is ρs, the density and dynamic viscosity of
water are ρ+ and μ+, and the density and dynamic
viscosity of air are ρ− and μ−.

The different domains and interfaces introduced
before also depend on time, and are mathematically
defined by two level-set (Osher and Sethian 1988,
Sethian 1999) scalar functions ψf and ψs. Here, the
structure is arbitrarily defined byψs > 0, the interface
Γs byψs = 0, and the fluids (water and air) byψs < 0.
Similarly, the water is arbitrarily defined by ψf > 0,
the interface Γf by ψf = 0, and the air by ψf < 0.

2.2. Governing equations
Without loss of generality, the density ρ ∈ R and
dynamic viscosity μ ∈ R of the fluids can be written
as:

ρ ≡ ρ(ψf) = ρ− + H(ψf)(ρ+ − ρ−), (1)

μ ≡ μ(ψf) = μ− + H(ψf)(μ+ − μ−), (2)

where H is the Heaviside function, i.e. H(x < 0) = 0,
H(x > 0) = 1, and we can define H(x = 0) = 0.5.

The velocity field is u =∈ R
3, p ∈ R is the pres-

sure field, and g ∈ R
3 is the gravity acceleration

vector. The viscous part of the stress tensor is D(u) =
∇u+∇Tu

2 . In what follows, we note u = (u, v,w),
where u, v, and w denote the velocity components
in the x, y, and z directions, respectively. The incom-
pressible Navier–Stokes equations for both fluids in
domain Ω+

f ∪ Ω−
f are:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p +

1

ρ
∇ · 2μD(u)

+ ginΩ+
f ∪ Ω−

f ,
(3)

∇ · u = 0 inΩ+
f ∪ Ω−

f −, (4)

with initial conditions u(x, t = 0) = u0 and p(x, t =
0) = p0, boundary conditions on the external bound-
ary for velocity u(x, t) and pressure p(x, t) for x ∈ Γe,
boundary conditions on the structure boundary Γs,
and conditions through the bi-fluid interface Γf .

On the fluid–structure interface Γs, we have:

u(x, t) = û(x, t) on Γs, (5)

where the velocity û(x, t) will be described later on.
Two jump conditions also have to be satisfied

throughout the bi-fluid interface Γf . The first kine-
matic condition is:

[u] = 0 throught Γf. (6)

The second dynamic jump condition traduces the
equilibrium between pressure forces, the friction
forces, and surface tension:

[−pI + 2μD(u)] · n = σκn throught Γf, (7)

2
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Figure 1. Two-dimensional sketch of the general three-dimensional flow configuration.

where σ is the value of the surface tension, κ is the
curvature of the interface Γf , and n is the unit normal
to the interface Γf pointed to the air.

2.3. Fictitious domain approach
The numerical resolution of the Navier–Stokes
equations (3) and (4) requires a discretization on a
mesh. The difficulty is that the interfaces Γf and Γs,
and thus the domains Ω+

f , Ω−
f , and Ωs, are time-

dependent. Different approaches to take into account
interface conditions (5)–(7) can be envisioned.

This first class of methods is based on body-
fitted grids. In these methods, degrees of freedom
are put on the interfaces, and it is thus possible
to impose directly the interface conditions (5)–(7).
Mesh deformation can be handled with an arbi-
trary Lagrangian–Eulerian method. These methods
are accurate, but require mesh adaptation and a mesh
partitioning for parallel computations.

A second class of methods, which is adopted in
this study, is based on fictitious domain approaches.
In these approaches, the interfaces and associated
domains do not cover the same mesh nodes at each
time step: the interface can cross a fixed mesh, and
no interface markers are thus required. Simple meshes
like Cartesian ones can be used. The drawback is
that the accuracy at interfaces can be degraded,
and extra work has to be performed to model the
interfaces.

The goal of fictitious approaches is to add extra
force-like terms in the momentum equation (3)
to take into account conditions (5)–(7). The con-
dition on the fluid–structure interface is modeled
with an extra term s and the two conditions on
the bi-fluid interface are modeled with the extra
term f.

The system (3)–(7) is thus recast in a system
written in the whole domain Ω:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p +

1

ρ
∇ · 2μD(u)

+ g + s + f inΩ, (8)

∇ · u = 0 inΩ. (9)

The methods used to model the terms s and f have
been inspired by the immersed boundary method
(IBM) introduced by Peskin (1972). In this continu-
ous framework, an infinite force applied on a Dirac
support function is regularized around the interface.
This is mainly done for numerical reasons that will be
explained later on.

In this study, the fluid structure interface is mod-
eled using the VP introduced in Angot et al (1999)
section 2.3.1, and the bi-fluid interface with surface
tension is modeled using the CSF method introduced
in Brackbill et al (1992) section 2.3.2.

2.3.1. Modeling of the conditions on the
fluid–structure interface Γs

Among the most popular fictitious approaches are the
IBMs originally introduced in Peskin (1972) and later
on used in several studies (Mittal and Iaccarino 2005,
Mittal et al 2008, Shirgaonkar et al 2009) and the VP
method introduced in Angot et al (1999) and used, for
instance, in biolocomotion problems (Bergmann and
Iollo 2011, Bergmann et al 2014b, Bergmann and Iollo
2016). Another appraoch combining IBM and VP has
been developed in Bergmann et al (2014a). Here, we
use the VP method with

s =
χ

K
(û − u), (10)

where K � 1 is the penalization parameter, χ =

H(ψs) is the characteristic function, and û is the
velocity of the body (on the boundary and inside the
body). In domainΩ±, we haveψs < 0 and thusχ = 0,
and the Navier–Stokes equations are recovered. In

3
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domain Ωs, we have ψs > 0, and thus χ = 1, and the
dominant term in (3) is χ

K (û − u) leading to u→ K→0û
in Ωs. Here, we chose K = 10−8. The computation of
û will be detailed in section 2.5.

2.3.2. Modeling of the conditions on the bi-fluid
interface Γf

The CSF (continuum surface force) was originally
introduced in Brackbill et al (1992) and developed
in Sussman et al (1994). The CSF is to model the
surface tension term as an extra volume force f in the
momentum equation. The jump,

[−pI + 2μD(u)] · n = σκn throught Γf, (11)

is considered in an integral form and we have:

f =
1

ρ
σκδn, (12)

where σ is the surface tension, κ is the curvature of
the interface, n is the normal to the interface pointing
to the air, and δ is the Dirac distribution.

The normal n and the curvature κ are:

n =
∇ψf

‖∇ψf‖
, (13)

κ = ∇ ·
(

∇ψf

‖∇ψf‖

)
. (14)

The problem is relaxed by regularization of the
Dirac distribution δ in a narrow band with width ε

Hε(ψf) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 si ψf < −ε,

1

2

(
1 +

ψf

ε
+

1

π
sin

(
πψf

ε

))
si |ψf| � ε,

1 si ψf > ε.
(15)

The regularized Dirac distribution is:

δε(ψf) =
dHε(ψf)

dψf

=

⎧⎪⎨
⎪⎩

0 si |ψf| > ε,
1

2ε

(
1 + cos

(
πψf

ε

))
si |ψf| � ε.

(16)

The extra term due to the surface tension is thus
finally

f =
1

ρ
σκδεn. (17)

Finally, due to the continuous framework intro-
duced beforehand, the jump [u] = 0 throughtΓf in
equation (6) is naturally satisfied.

2.4. Interface tracking
The model will be closed with computations of func-
tions ψs and ψf . The definition of these functions
is not unique, and due to its hyper-regularity we
chose ψf to be the signed distance function, i.e.

‖∇ψf (x)‖ = 1∀x. Let d(x) � 0 be the minimal dis-
tance from a given point x to the interface Γf ; we have:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ψf(x) = 0 if x ∈ Γf,

ψf(x) = +d if x ∈ Ω+
f ,

ψf(x) = −d if x ∈ Ω−
f .

(18)

The same holds for ψs. The signed distance allows us
to simplify the computation of the normal and the
curvature of the interface, and to determine in a more
precise way the distance ε defining the narrow band
for CSF regularization.

These interfaces, represented by functions ψf and
ψs, can be transported in Eulerian or Lagrangian
ways. Due to possible large deformations and break
downs, the bi-fluid interface Γf will be defined with
a level set function that is able to track such an
interface with topology changes. The level set ψf is
thus transported by:

∂ψf

∂t
+w · ∇ψf = 0 in Ω±

f , (19)

where w can be any desired velocity fields satisfying
w(x, t) = u(x, t) ∀x ∈ Γf . For simplicity reasons, we
chose w(x, t) = u(x, t) ∀x ∈ Ω, but other choices like
the extension velocities can be used (Adalsteinsson
and Sethian 1999).

The signed distance behavior of the function ψf

can be lost integrating (19), and it is thus necessary
from time to time to reinitialize ψf to recover the
signed distance function ‖∇ψf (x)‖ = 1. One of the
most popular algorithms is the first-order fast march-
ing (Sethian 1996, Sethian 1999), extended later to
higher orders (Ahmed et al 2011).

Another class of method was introduced by Suss-
man (Sussman et al 1994). The goal is to solve a
partial differential equation to recover the property
‖∇ψf (x)‖ = 1. This relaxation method is:

∂ψf

∂τ
+ sign(ψ0

f )(|∇ψf| − 1) = 0, (20)

ψf(x, τ = 0) = ψ0
f = ψf(x, t), (21)

for a temporal horizon 0 � τ � τF such that
|∇ψf (x, τF)| = 1. The sign function is

sign(ψf) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if ψf > 0,

0, if ψf = 0,

−1, if ψf < 0,

(22)

or a regularized version of it.
In what follows, the dolphin surface Γs will be

approximated by a mesh (i.e. with markers), and it is
thus more convenient to use a Lagrangian transport
for any mesh point xh:

dxh

dt
= ûh. (23)

4
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The definition and computation of û will be defined
in section 2.5.

The signed distance function is recovered comput-
ing the minimal distance to the interface:

ψs(x) = min
y∈Γs

‖x − y‖2S(x), (24)

where S(x) denotes the sign applied on a point x,
with S(x) > 0 inside the body, and S(x) < 0 outside.
This sign function can be computed with simple geo-
metric arguments, from the outward normal to the
body.

The triple line Σt, defined as being the intersec-
tion between Γs and Γf , has to be modeled. Indeed,
without special treatment, due to the non-slip bound-
ary condition on Γs, the line would never move on
Γs. In this study, we chose the macroscopic model
introduced by Cox (1986). A local force proportional
to the deviation of the equilibrium angle (Patankar
2003) is added to allow a displacement of the triple
line.

Finally, since the flows under consideration are
turbulent, a turbulence model introduced in Vreman
(2004) is added.

2.5. Dolphin model
The geometry of the Dolphin is built from the stl file
given in the supplementary material of Tanaka et al
(2019). Indeed, the authors have performed a very
productive work and have given a lot of material to
work with. The geometry is reproduced in figure 2.
The two first figures are the exact geometry given
by Tanaka et al (2019), and the two last figures are
the geometry slightly remodeled to fit our numerical
framework with a regular surface mesh.

The body velocity is

û(x, t) = u(x, t) + uθ(x, t) + ũ(x, t) ∀x ∈ Ωs,
(25)

where u(x, t) is the linear velocity, uθ(x, t) is the angu-
lar velocity, and ũ(x, t) is the deformation velocity.
While the deformation ũ(x, t) has to be imposed
by swimmer muscles, the linear and angular veloc-
ities are the results of the loads generated by the
fluid on the body, and are computed from Newton’s
laws.

In order to avoid adding extra forces and torques
due to deformation, a Procrustes analysis is per-
formed. The deformation must not introduce any
linear and angular displacements. We thus compute
the linear and angular displacements induced by the
imposed deformation, and subtract them to the final
admissible deformations. This is actually done in
figure 4.

The deformation velocity ũ(x, t) can be easily
computed following surface markers in a Lagrangian
way, after having performed the Procrustes analysis.
To recover ũ(x, t) values in Ωs, interpolation is per-
formed from values at the boundary Γs.

The swimming law is defined by a deformation of
the swimmer midline, also called the backbone. As we
will see later on, the dolphin jump can be decomposed
in three steps.

• The first is an underwater generation of a
propulsive force using periodic swimming with
a large amplitude and frequency.

• The second corresponds to the jump out of
the water, i.e. when the dolphin is in the air:
the dolphin just imposes (active or passive) a
constant curvature along the midline.

• The third and last step is another periodic
swimming law with a small amplitude when the
dolphin is back in the water.

We consider a backbone deformation in the plan
(0, x, y) of the third figure in figure 2, where point O
is at the front head of the dolphin and x positive to the
right. Moreover, we consider that the midline for the
steady body is 0 � x � �, y = 0, where � is the length
of the swimmer.

Most fishes impose the following periodic swim-
ming law (Barrett et al 1999):

y(x, t) = a(x) sin(k x − ω t), (26)

with a constant phase velocity cp = ω/k, where k =

2π/λ is the wavenumber, corresponding to wave-
length λ, ω is the circular frequency of oscillations,
and a(x) is the envelope defined by a(x) = A/2
(c0 + c1(x − 1) + c2(x2 − 1)). Other kinds of swim-
ming laws can be found in Smits (2019) and Han et al
(2020). The maximal tail amplitude A/2 is an impor-
tant parameter for swimming (Lighthill 1970). Here,
we chose c0 = 1, c1 = −0.825, and c2 = 1.625 for a
unit length fish with 0 � x � 1. These parameters are
used to mimic a thunniform-like swimming. Several
midline deformations are presented in figure 3 for one
stroke, with A = 0.33.

Instead of directly imposing the swimming law
(26), it is simpler to impose a curvature κ(s) along
the midline with a curvilinear abscissa s. The cur-
vature corresponding to the swimming law y(s, t) =
a(s)sin(ks − ωt) for the first and third stage of the
jump is:

κ(s, t) =
∂2y
∂s2(

1 +
(

∂y
∂s

)2
) 3

2
. (27)

The general curvature imposed on the midline is:

κ(s, t) = p(t)κ(s, t) + q(t)κ, (28)

where κ is the curvature imposed for the jump, i.e.
when the dolphin is in the air, and 0 � p(t) � 1 and
0 � p(t) � 1 are two functions, possibly piecewise
defined, allowing us to go smoothly from step 1 to step
2 and from step 2 to step 3.

This swimming law is applied to the dolphin’s
midline (the backbone). All body surface mesh nodes

5
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Figure 2. Geometry of the dolphin built with the stl file from the supplementary material of Tanaka et al (2019). The two bottom
figures show the mesh used in this study.

Figure 3. Periodic swimming law: backbone deformation with A = 0.33.

are displaced with respect to Euler Bernoulli beam
deformation, i.e. each orthogonal section to the
backbone for the undeformed shape remains orthog-
onal to the backbone during the deformation. Eight

snapshots of the deformed body shape corresponding
to (28) over one periodic stroke (p = 1 and q = 0) are
presented in figure 4. Note that a Procrustes analysis
is performed.

6
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Finally, the linear and angular motions are
obtained from Newton’s law⎧⎪⎨

⎪⎩
m

du

dt
= Fext,

dJω

dt
= Mext,

(29)

where m and J are the mass and inertia matrix of the
dolphin, and u and ω denote the linear and angular
velocities.

The forces and the torques are computed by

Fext = −
∫
Γs

T(u, p)n dx + g, (30)

Mext = −
∫
Γs

r ∧ T(u, p)n dx, (31)

where T(u, p) = −pI + μ(∇u +∇uT) is the stress
tensor, n is the unit outward vector to Γs, and r =
x − xG with xG the dolphin’s center of mass. The
rotation velocity is given by uθ = ω ∧ r.

Note that other methods can be used to com-
pute the forces and torques in a fictitious domain
approach when no surface markers are available. For
instance, the surface integrals in (30) and (31) can be
transformed in control volume integrals (Nangia et al
2017).

2.6. Numerical resolution
The Navier–Stokes equations (8) and (9), and asso-
ciated equations like transport and reinitialization
of the level set function, are discretized in space
on a uniform Cartesian mesh using a finite differ-
ences method. The temporal discretization of the
Navier–Stokes equations is based on a fractional step
method introduced in Chorin (1968) and Temam
(1969). The numerical method used in this paper
follows our previous work (Bergmann and Iollo
2011, Bergmann et al 2014a, Bergmann et al 2014b,
Bergmann and Iollo 2016) and we thus recall only the
main steps.

All the differential operators are discretized in
space using centered second-order schemes, except
the convective terms where up-winding is necessary
for stability reasons. The convective terms in the
momentum equations are discretized with a classical
third order finite differences scheme, while the con-
vective term in the level set transport equation (19)
is discretized with a WENO5 (weighted essentially
non-oscillatory) scheme (Liu et al 1994, Jiang and
Shu 1996). A total variation diminishing third order
Runge–Kutta (RK3-TVD) scheme is used to dis-
cretize equation (19) in time. The reinitialization
equation (20) is solved using the subcell fix method
proposed in Russo and Smereka (2000) with exten-
sions developed in Luddens et al (2015). It is not
necessary to perform a reinitialization step at each
time step, and we use the criterion introduced in
Luddens et al (2015) to decide when it is necessary to
perform a reinitialization of the level set function.

The integrals over Γs involved to evaluate the
forces and torques are discretized using the body
surface mesh (that is a tessellation of the surface Γs).
Since the dolphin’s surface mesh nodes do not
coincide with the fluid mesh, the stress tensor is
interpolated from fluid mesh to the body surface
mesh.

2.7. Numerical validations
The numerical approach presented above has already
been validated onto several benchmark problems
in our previous publications. Several validations in
three dimensions complement numerous validations
already performed for two-dimensional problems.
Our previous validations consider mono-fluid prob-
lems, i.e. without a bi-fluid interface. A first validation
is the sedimentation of a sphere (Bergmann et al
2014b) for several sphere diameters and fluid vis-
cosities. For bio-inspiration problems involving large
deformations, another validation was performed in
Bergmann and Iollo (2016) onto an eel swimming,
originally proposed by Kern and Koumoutsakos
(2006) and studied numerically thereafter in Bhalla
et al (2013, 2014). For both validation problems, the
numerical results are in good agreement with the
reference ones.

In what follows, a three-dimensional bi-fluid val-
idation is performed for the entry of a sphere into
water. This problem has been studied experimen-
tally (Aristoff et al 2010, Truscott et al 2014) and
numerically with the commercial software ABAQUS
in Ahmadzadeh et al (2014).

A sphere with diameter D = 0.0254 m impacts the
surface of the water at V0 = 2.17 m s−1. The density of
the sphere is ρs = 1.14ρ+. The densities and dynamic
viscosities of the fluids are ρ+ = 1000 kg m−3 and
μ+ = 10−3 Pa s for the water, and ρ− = 1.2 kg m−3

and 1.87 × 10−5 Pa s for the air. The surface tension
is σ = 0.0728 N m−1.

The computational domain under considera-
tion is a Cartesian box with x ∈ [−6, 6] cm, y ∈
[−20, 10] cm, and z ∈ [−6, 6] cm. At rest, the
air–water interface Γf is located at yI = 0 cm, and the
initial position of the center of mass of the sphere is
xG = (xG, yG, zG) = (0, D/2, 0) m.

The computational domain is discretized by
240 × 600 × 240 ≈ 35 × 106 cells, and the step size
is h = Δx = Δy = Δz = 0.05 cm. The time step is
defined with a CFL (Courant–Friedrichs–Lewy) con-
dition equal to 0.3. Non-slip boundary conditions are
applied on all external boundaries. The flow is initially
at rest, i.e. u(0, x) = 0.

Figure 5 presents the image sequences showing
the water-entry cavity formed by the sphere until t =
65 ms where the pinch-off, which is characterized by
a cavity closure event, occurs. The results are in good
agreement with the experimental results (Aristoff et al
2010) where the pinch-off is observed at t = 63.5 ms,
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Figure 4. Temporal evolution of the dolphin shape over one stroke period τ . This should be read in order (a)–(h). t = 0,
T = τ/8, T = 2τ/8, T = 3τ/8, T = 4τ/8, T = 5τ/8, T = 6τ/8, T = 7τ/8.

Figure 5. Image sequences showing the water-entry cavity formed by the sphere. Times since the sphere center passed the free
surface (t = 0) are shown until the pinch-off at t = 65 ms.

Figure 6. Temporal evolution of the vertical position yG of the center of mass of the sphere.

and with the numerical results (Ahmadzadeh et al
2014) where the pinch-off is observed at t = 64.9 ms.

A time history comparison of experimental
(Aristoff et al 2010), numerical ABAQUS simulation
(Ahmadzadeh et al 2014), and the present numerical
results of sphere center depth are shown in figure 6.
The present numerical results are in good agreement
with the reference results, especially with the experi-
mental ones.

3. Numerical results

3.1. Numerical configuration and parameters
The densities and dynamic viscosities of the fluids are
ρ+ = 1000 kg m−3 and μ+ = 10−3 Pa s for the water,
and ρ− = 1.2 kg m−3 and 1.87 × 10−5 Pa s for the air.
The surface tension is σ = 0.0728 N m−1.

The dolphin geometry is extracted from the sup-
plementary material from Tanaka et al (2019) and the

8
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Figure 7. Temporal evolution of functions p and q and the vertical position of the dolphin’s center of mass yG.

geometry is reproduced in figure 2. Here, the length
of the dolphin is imposed to be � = 3 m, leading to a
total mass m = 316 kg with ρs = 1000 kg m−3.

The computational domain under consideration
is x ∈ [−12, 4] m, y ∈ [−3, 9] m, and z ∈ [−2, 2] m.
At rest, the air–water interface Γf is located at yI =

4.5 m, and the center of mass of the dolphin is xG =

(xG, yG, zG) = (0, 0, 0) m. The initial orientation of
the dolphin is θ = (θx, θy, θz) = (0, 0, θ0). While the
initial angular velocity is ω = 0, the initial dol-
phin linear velocity is u = (uG, vG, wG) = (0, v0, 0),
where v0 can be a positive constant to decrease the
distance to reach a sufficient velocity for a real jump,
and thus to decrease the size of the computational
domain.

The velocity boundary condition on the external
boundaries Γext is as follows. On the side bound-
aries (left, right, front, back), periodic conditions
are imposed, ufront = uback and uleft = uright. No slip
boundary conditions are imposed on the bottom

ubottom = (0, 0, 0), and the streamline type of bound-
ary conditions are imposed on the top, i.e. vtop = 0,
∂utop

∂y =
∂wtop

∂y = 0.
The dolphin surface is discretized with a regular

mesh composed by 200 × 200 = 40 000 cells (see
the two bottom figures in figure 2). Even if large
skewness of mesh near the fins and tails is observed,
the mesh is a tessellation of the body surface on which
integrals (30) and (31) can be discretized. This mesh
is similar to those used in Bergmann and Iollo (2016)
and Bergmann et al (2014b) for carangiform and
thunniform swimmers.

The computational domain is discretized by
640 × 480 × 160 ≈ 50 × 106 cells, and the step size
is h = Δx = Δy = Δz = 0.025 m. The time step is
defined with a CFL condition equal to 0.3.

Due to the large dolphin deformations, boundary
layers are detached and it is thus not necessary to
use a costly boundary layer mesh. The turbulence
model introduced in Vreman (2004) is used. Other

9
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Figure 8. Temporal evolutions of the dolphin’s linear and angular position and velocity, and aerodynamic forces and torques.

10
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Figure 9. Snapshots of the dolphin with water surface for θ0 = 60◦ and v0 = 4 m s−1. Top view.

turbulence models may be used to study the laminar-
turbulence transition (Riedeberger and Rist 2012).

Artificial waves at the air–water interface are gen-
erated by a Kelvin–Helmholtz instability using initial
conditions u(x, 0) = 0 m s−1 in the water (x ∈ Ω+

f )
and u(x, 0) �= 0 m s−1 in the air (x ∈ Ω−

f ).
From the initial water surface position at yI =

4.5 m, we define two other locations: the first one
is over water, y+I = yI + 0.6 m, and the second one
is under water, y−I = yI − 0.8 m. We denote by T =

0.2 s a transition period over p that goes linearly from
0 to 1 or from 1 to 0.

The dolphin’s body deformation is defined
according to the following swimming law.

(a) In order to produce enough propulsive effect to
get out of the water, starting only 4.5 m under the
surface, we imposed a sinusoidal law with large
amplitude and frequency, i.e. A = 1.5 m and f =

ω/(2π) = 4 Hz, with an initial linear transition

of p(0) = 0 and p(T) = 1. This swimming law is
performed until the dolphin’s center of mass yG

reaches y+I at time t+I , and we thus have p(t) = 1
∀t ∈ [T, t+I ]. The periodic swimming law is then
linearly damped to reach p(t+I + T) = 0.

(b) When the periodic swimming is damped from
t = t+I , a mean curvature κ = 1/R with R = 2 m
is progressively added to the whole midline. The
smoothing function q depends on the vertical
position of the center of mass such that maximal
curvature is obtained when the dolphin is in the
air. When yG = yI, at the end of the jump, the
function q is damped and the curvature tends to
decrease to zero.

(c) When the dolphin re-enters the water due to
gravity, more precisely when yG < y−I at t = t−I ,
another periodic swimming with A = 1 m and
f = 2 Hz is activated with a linear transition,
with p(t−I ) = 0 and p(t) = 1 for t � t−I + T.

11
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Figure 10. Snapshots of the dolphin with water surface for θ0 = 60◦ and v0 = 4 m s−1. Front view.

Mathematically, the function p depends on some
temporal intervals defined by:

p(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t/T if 0 � t < T,

1 if T � t < t+I ,

(t+I + T − t)/T if t+I � t < t+I + T,

0 if t+I + T � t < t−I ,

(t − t−I )/T if t−I � t < t−I + T,

1 if t � t−I + T,
(32)

and the function q is linked to the position yG of the
dolphin’s center of mass for t � t−I :

q(t) =
1

max

(
1, 1

(10−4+minmod{0.7(t−t+I ), 1} (yG(t)−y−I ))2

) ,

(33)
where

minmod{a, b} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a if |a| < |b|, ab > 0

b if |b| < |a|, ab > 0

0 otherwise.
(34)

This handcrafted law has been developed from
several numerical experiments to mimic as best as
possible the dolphin’s jump.
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Figure 11. Snapshots of the dolphin with water surface for θ0 = 60◦ and v0 = 4 m s−1. Front view.

3.2. Results
A numerical simulation with θ0 = 60◦ and V =

4 m s−1 is performed using 256 processors. The initial
air velocity is u(x, 0) = −5 m s−1 for (x) ∈ Ω−

f .
The temporal evolution of functions p and q are

given in figure 7(b), where the different times t−I ,
tI, and t+I and the other ones necessary to define
functions p and q are plotted using vertical lines.
These lines depend on the vertical position yG of
the dolphin’s center of mass following (32) and
(33) (see figure 7(a)). The periods with p(t) � 0 are

highlighted in blue, and the period where q(t) � 0
is highlighted in red. Blank zones thus denote an
undeformed body shape.

Figure 8 shows the temporal evolution of the
linear and angular position of the dolphin, the linear
velocity, and the forces and torques exerted by the
fluid on the body. The vertical velocity of the dolphin
goes from vG = 4 m s−1 at t = 0 s to vG = 6.4 m s−1

at t = t+I (see figure 8(b)). Note that we have chosen
an initial velocity of vG > 0 to make use of a smaller
computational domain. After this initial acceleration,
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Figure 12. Comparison of the dolphin’s jump with different initial conditions v0 and θ0. The jump is from right to left.

Figure 13. Comparison of the dolphin’s jump (v0 = 4 m s−1 and θ0 = 70◦) with ballistic trajectories. The jump is from right to
left.

the obtained velocity allows the dolphin to go out of
the water (figure 8(a)). When the dolphin is in the
air (in the red zone in figure 8), the dolphin’s vertical
velocity vG and the angle θz start to decrease due to
the gravity effect and the curvature. After re-entry
into the water, a new sinusoidal swimming law is
performed and the dolphin swims in the water with a
position θz ≈ −10◦ along which a slight acceleration
is observed.

Eight snapshots {Si}i=1,...8 uniformly extracted
during the actual numerical simulation are pre-
sented in figures 9–11. These snapshots correspond
to {ti}i=1,...8 with ti = 0.45(i − 1) + 0.6 s and are
plotted in figure 8 using vertical black lines. While
figures 9 and 10 present visualisations of the dolphin’s
jump through the surface of the water from dif-
ferent views, figure 11 presents snapshots of the
Q-criterion.
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The first two snapshots S1 and S2 correspond
to the first periodic swimming law for propulsion.
Snapshots S3 and S4 correspond to a period in the
air where maximal curvature κ is imposed. The fifth
snapshot, S5, is extracted for an almost undeformed
body shape when re-entering the water. This defor-
mation corresponds to qκ = 0.007 m−1 and p = 0.
Finally, snapshots S6, S7, and S8 correspond to the
second periodic swimming law when the dolphin is
back in the water. In the water, the vortices generated
by the self-propelled dolphin are similar to those
observed for most fish-like swimmers (Triantafyllou
et al 2000, Zhu et al 2002, Liao et al 2003, Bergmann
and Iollo 2016). Other kinds of vortices are generated
in the shear layer at the water–air interface. Indeed,
the initial water and air velocity are, respectively, u =

0 m s−1 and u = −5 m s−1.
Trajectories of the dolphin’s center of mass corre-

sponding to different initial velocities v0 and angles
θ0 are presented in figure 12. As expected, the highest
jumps correspond to the highest initial velocities. The
correlation between the initial velocity and the jump
cannot be easily determined. Indeed, the periodic
swimming law is not stopped at the same time dur-
ing the swimming stroke, thus influencing the jump
velocity and angle at y = yI.

In what follows, we compare the dolphin’s
jump with purely ballistic trajectories. The ballistic
equations are:

⎧⎪⎨
⎪⎩

xb(t) = x0 + v0t cos(α),

yb(t) = y0 + v0t sin(α) − 1

2
gt2,

(35)

where (x0, y0) is the initial projectile position, α is
the initial trajectory orientation at (x0, y0), v0 is the
initial velocity along the α direction at (x0, y0), g =

9.81 m s−2 is the gravity acceleration, and t is the
time. Figure 13 shows the real dolphin’s trajectory and
several ballistic trajectories corresponding to different
initial positions (x0, y0).

For y0 = yI at t = 0.944 s, i.e. when the dolphin’s
center of mass reaches the water’s surface, large devi-
ations between the dolphin and ballistic trajectories
are observed. This is due to the fact that the dolphin
is still accelerating (see figure 8). For y0 = y+I = yI +

0.6 m at t = 1.117 s, the periodic swimming law is
progressively stopped. A part of the dolphin is still in
water, the acceleration is positive, and the deviation
between the real trajectory and the ballistic trajectory
is lower. Finally, for y0 = yI + 0.8 m at t = 1.23 s, the
acceleration tends to decrease to zero and the ballistic
trajectory almost perfectly matches the real dolphin’s
trajectory, until the dolphin goes back into the water
at yG = yI. This is an obvious observation, since the
forces exerted by the air on the dolphin (FX ≈ 6 N, see
figure 8) are quite low compared to the inertial effect
of a 318 kg dolphin with velocity around 6 m s−1.

4. Conclusions

In this paper, we have developed a numerical model
of a dolphin’s jump. This model deals with complex
physical phenomena such as fluid–structure interac-
tions and the liquid interface involving large deforma-
tions with possible topological changes (bubbles and
droplets). The numerical model relies on fictitious
domain approaches where the mesh used to solve the
fluid does not follow the interfaces. The CSF method
is used to model the water–air interface, and the VP
method is used to take into account the dolphin’s
body. The numerical results are qualitatively in good
agreement with dolphin jumps observed in nature.
A dolphin has to generate large forces to reach a
velocity threshold necessary for the jump. The jump
is similar to a ballistic projectile where the resistive
forces are neglected. This hypothesis is justified since
the computed resistive forces are only around 6 N for
a 320 kg dolphin with a velocity around 6 m s−1. We
are now working on optimizing the initial periodic
swimming law to generate maximal acceleration to
produce the highest jump.
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