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A B S T R A C T

This article presents a data-based methodology to build Reynolds-Averaged Navier–Stokes (RANS) wall
models for aerodynamic simulations at low Mach numbers. Like classical approaches, the model is based on
nondimensional local quantities derived from the wall friction velocity 𝑢𝜏 , the wall viscosity 𝜇𝑤, and the wall
density 𝜌𝑤. A fully-connected neural network approximates the relation 𝑢+ = 𝑓 (𝑦+, 𝑝+). We consider reference
data (obtained with RANS simulations based on fine meshes up to the wall) of attached turbulent flows at
various Reynolds numbers over different geometries of bumps, covering a range of wall pressure gradients.
After training the neural networks on a subset of the reference data, the paper assesses their ability to accurately
recover data for unseen conditions on meshes that have been trimmed from the wall up to an interface height
where the learned wall law is applied. The network’s interpolation and extrapolation capabilities are quantified
and carefully examined. Overall, when tested within its interpolation and extrapolation capabilities, the neural
network model shows good robustness and accuracy. The global error on the skin friction coefficient is a few
percent and behaves consistently over all the considered test cases.
. Introduction

The availability of reliable and accurate wall laws is one of the main
hallenges of modern CFD. Wall models are mandatory for applying
arge Eddy Simulations (LES) in representative aeronautical applica-
ions, which remain out of reach if all turbulent scales are solved in
he boundary layers (Piomelli, 2008). Modeling the near-wall region is
lso needed for Reynolds-Averaged Navier–Stokes simulations (RANS)
hen using immersed boundary methods (IBM) (Mittal and Iaccarino,
005) to represent physical boundaries, one major tool in the highly
ompetitive industrial design environment that requires fast and reli-
ble simulations. Additionally, even though RANS simulations are now
ffordable for complex configurations, lightweight RANS computations
re crucial for parametric studies, flow control, or shape optimization,
here numerous simulations are often needed. Therefore, even with

he current progress in available computational power, there is still the
eed to reduce the cost of such simulations.

In wall-bounded flows, a large number of computational cells are
equired to resolve the boundary layer profiles to correctly represent
he strong gradients established in the wall-normal direction. Thus,
all-resolved RANS simulations require the first computational cell

o be in the viscous sublayer at a wall distance below 𝑦+ = 1. Wall

∗ Corresponding author.
E-mail address: denis.sipp@onera.fr (D. Sipp).

models allow for loosening these grid requirements, thus reducing the
grid size. The computational cost gain is linked to this reduction as
well as a lower aspect ratio of near-wall cells, resulting in a reduced
computational stiffness (Kalitzin et al., 2005).

The existence of universal wall laws for turbulent boundary layers
relies on boundary layer theory, scaling arguments, and dimensional
analysis. When the flow quantities vary slowly in the streamwise di-
rection (as compared to the wall-normal direction), the shape of the
streamwise velocity profile 𝑢∥(𝑦) becomes invariant in the inner region
of the boundary layer when scaled with appropriate quantities, here the
wall viscosity 𝜇𝑤, the density 𝜌𝑤 and the friction velocity 𝑢𝜏 , computed
using the skin friction 𝜏𝑤:

𝑢𝜏 =
√

𝜏𝑤
𝜌𝑤

with 𝜏𝑤 = 𝜇𝑤
𝜕𝑢∥
𝜕𝑦

|

|

|

|

|𝑦=0
. (1)

In the absence of streamwise pressure gradient, it is straightforward to
show that:

𝑢+ = 𝑓 (𝑦+), 𝑢+ =
𝑢∥
𝑢𝜏

𝑦+ =
𝜌𝑤𝑢𝜏
𝜇𝑤

𝑦, (2)

where 𝑦+ is the dimensionless wall distance and 𝑢+ the dimensionless
streamwise velocity. From dimensional analysis, it is then possible to
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show that 𝑢+ = 𝑦+ close to the wall and that 𝑢+ follows a logarithmic
rofile for large 𝑦+ (in the inner region). In the presence of streamwise
ressure gradients or separation, these wall laws need to be adapted. A
ew non-dimensional parameter steps in, the streamwise wall pressure
radient:

+ = 𝑓 (𝑦+, 𝑝+), 𝑝+ =
𝜇𝑤
𝜌2𝑤𝑢3𝜏

𝜕𝑝
𝜕𝑥

, (3)

where 𝑥 is the streamwise coordinate. This additional parameter has
been introduced by Afzal (2001), who gave an analytical expression
for the evolution of the nondimensional streamwise velocity

𝑢+ = 𝜅−1

[

𝑙𝑜𝑔(𝑦+) − 2𝑙𝑜𝑔

(
√

1 + 𝑝+𝑦+

2

)

+ 2
(

√

1 + 𝑝+𝑦+ − 1
)

+ 𝜅𝐵

]

.

(4)

Even if Afzal’s wall law includes the effects of the pressure gradient
on the boundary layer evolution, Eq. (4) is valid only in the logarithmic
region of the boundary layer. Additionally, it can only be applied for
adverse (i.e., positive) pressure gradients due to the square root in
the expression. In practice, this may cause implementation issues and
possible convergence problems when trying to impose the wall model.

More recently, more sophisticated wall laws have been
introduced (Piomelli, 2008; Kawai and Asada, 2013). These new non-
equilibrium zonal models involve the resolution of the boundary layer
equations on a sub-grid placed between the wall and the first grid
point. But these approaches significantly increase the computational
cost compared to analytical models and may still lack generality in
some flow configurations. Additionally, accounting for the pressure
gradient with such approaches may lead to numerical difficulties when
using IBM, as reported by Capizzano (2016) for instance.

In the present article, contrary to Zhou et al. (2021), we choose
the dimensionless quantities (𝑦+, 𝑝+) and 𝑢+ for the input and output
of our data-driven model, respectively. Neural networks are then used
as universal interpolators on physically-scaled data to find a relation
𝑢+ = 𝑓 (𝑦+, 𝑝+). This straightforward approach is bound to provide more
general results than a direct estimation of dimensional quantities. Given
that there would exist a universal law 𝑢+ = 𝑓 (𝑦+, 𝑝+) for the near-wall
region, once learned with enough data, this law could be used for any
unseen geometry or unseen flow conditions.

The scope of the present work is restricted to RANS simulations.
The paper describes in detail the practical implementation of such
an approach and quantifies its performance in several test cases. To
our knowledge, such work is absent from the existing literature. It
may serve as a baseline for future articles that would follow a similar
strategy using larger, higher-fidelity training datasets. Additionally,
the resulting wall model is shared on a GitHub repository1 so that it
may be straightforwardly integrated in any CFD code following the
implementation details given in the paper.

The paper is organized as follows. First, the flow configurations con-
sidered in the article are presented (Section 2). Then, the wall modeling
approach is detailed (Section 3), as well as the architecture, training
strategy, and CFD implementation of the neural network (Section 4).
The last section presents the results obtained with the data-based model
on training and unseen configurations (interpolation and extrapolation
conditions) before concluding.

2. Flow configurations and dataset

2.1. CFD solver

The reference datasets are based on wall-resolved RANS simulations
with the Spalart–Allmaras (S–A) turbulence model. We use ONERA’s

1 Link: https://github.com/RomMic/Data-driven-wall-models-for-
eynolds-Averaged-Navier-Stokes-simulations.git
2

finite volume structured cell-centered compressible solver FASTs (Ivan
et al., 2021) for both the wall-resolved computations and the test of
the wall models. All convective fluxes are discretized with the Roe flux
scheme (Roe, 1981) extended to third-order with a MUSCL strategy.
The steady solution of the S–A RANS equations is then computed using
a local time-stepping technique, with a CFL value set to 20. All flow
computations in this paper are initialized with a constant field (free-
stream conditions), then converged with a decay of the residual norms
of six orders of magnitude at least.

2.2. Flow configurations

The chosen configuration is a flow over a bump. It displays both
favorable and adverse pressure gradients. Reference and training data
are obtained from a set of fine wall-resolved RANS simulations over
different bump geometries, inspired by a documented test case from
NASA (Rumsey, 2021). In the following, (𝑋, 𝑌 ) designates the Cartesian
coordinate system associated with the bump configuration, while (𝑥, 𝑦)
refers to the local wall-tangent and wall-normal system. The Mach
number (based on free-stream quantities) is set to 𝑀 = 0.2, the refer-
nce temperature for the Sutherland law is the free-stream temperature
∞ = 300K. The Reynolds number 𝑅𝑒 is based on free-stream quantities

and a reference length 𝐿 = 1𝑚 (consistently with Rumsey (2021)),
which roughly corresponds to the length of the bump. Unless stated
otherwise, all quantities are made non-dimensional using the length 𝐿,
the free-stream velocity, temperature, and density. The bump geometry
is then defined as:

𝑌 (𝑋) =

⎧

⎪

⎨

⎪

⎩

ℎ ⋅ sin
( 𝜋
0.9

𝑋 − 𝜋
3

)4
0.3 ≤ 𝑋 ≤ 1.2

0 0 < 𝑋 < 0.3 and 1.2 < 𝑋 < 1.5,
(5)

here ℎ is the height of the bump. Eq. (5) is used for 𝑋 ∈ [0, 1.5],
hich corresponds to the adiabatic wall extent. The simulation domain

pans 𝑋 ∈ [−5, 6.5] and 𝑌 ∈ [0, 5], as shown in Fig. 1(a), where
he chosen boundary conditions are also depicted (these boundary
onditions are the same than the NASA case (Rumsey, 2021)). Slip
oundary conditions are applied upstream and downstream from the
diabatic wall.

Training and evaluation data are extracted for a well-established,
ully turbulent boundary layer. Thus, the extraction zone for the
atasets is restricted to the range 𝑋 = 0.3 to 𝑋 = 1.2 (corresponding to
he bump region, see Fig. 1(b)). Various Reynolds numbers and bump
eights ℎ are considered to build the training and test datasets. The
onsidered Reynolds numbers are 𝑅𝑒 = 106, 𝑅𝑒 = 3⋅106, 𝑅𝑒 = 6⋅106 and
𝑒 = 107. Considered bump heights ℎ are 0.05, 0.06, 0.07, and 0.08.
hey are selected to yield a weak to moderate pressure gradient along
he geometry without inducing flow separation. A flow configuration
ith ℎ = 0 (flat plate geometry) is also used as a test case.

Fig. 2 shows the (𝑅𝑒, ℎ)-combinations considered for the present ar-
icle. The complete dataset (training + test) consists in 14 simulations.
he training dataset (red dots) includes cases with moderate adverse
ressure gradient 𝑝+ (for instance, ℎ = 0.05 and 𝑅𝑒 = 6 ⋅ 106), but

also a case with higher dimensionless pressure gradients approaching
flow separation (ℎ = 0.07 and 𝑅𝑒 = 106). This may be seen in Figs. 3
and 4, which show respectively the skin friction coefficient 𝐶𝑓 (almost
reaching zero for one of the cases) and the non-dimensional pressure
gradient 𝑝+ (exhibiting a very strong value for vanishing 𝐶𝑓 ) of the
training cases.

The other configurations are used for testing. The test dataset
contains five configurations that combine ℎ and 𝑅𝑒 values within the
range used for training (testing interpolation capabilities of the model
in the (ℎ,𝑅𝑒)-space), and five configurations that go beyond this range
(testing extrapolation capabilities).

The ratio between the bump height ℎ and the boundary layer
thickness 𝛿 at 𝑋 = 0.3 for all the flow configurations is shown in

Table 1. Due to the presence of strong pressure gradients which affects

https://github.com/RomMic/Data-driven-wall-models-for-Reynolds-Averaged-Navier-Stokes-simulations.git
https://github.com/RomMic/Data-driven-wall-models-for-Reynolds-Averaged-Navier-Stokes-simulations.git
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Fig. 1. Bump case: Simulation domain, boundary conditions and geometry details.
Fig. 2. Training and test datasets obtained from different combinations of Reynolds number and bump height ℎ.
the velocity profiles, the standard 𝛿99 definition commonly used for
flat plates cannot be applied here. Instead, the boundary layer edge
and the associated boundary layer thickness 𝛿 are estimated through
the vanishing of the shear stress and flow vorticity following the work
of Cliquet et al. (2008). More details are given in Appendix D. Table 2
shows the strongest non-dimensional pressure gradient for all flow
configurations. It reveals that the case (ℎ = 0.08, 𝑅𝑒 = 3⋅106) involves 𝑝+
values that exceed by two orders of magnitude the training values (thus
explaining some convergence problems discussed later for this case).

2.3. Computational grid for reference data

A fine-structured grid is used to obtain reference data for both
training and testing cases. From 𝑋 = 0.3 to 𝑋 = 1.2, the grid is uniform
3

Table 1
Ratio between bump height ℎ and boundary layer thickness 𝛿 at 𝑋 = 0.3 for all flow
configurations.
ℎ∕𝛿 at 𝑋 = 0.3

ℎ = 0 ℎ = 0.05 ℎ = 0.06 ℎ = 0.07 ℎ = 0.08

𝑅𝑒 = 1 ⋅ 107 11.76 15.69
𝑅𝑒 = 8 ⋅ 106 11.54
𝑅𝑒 = 6 ⋅ 106 9.26 11.11 12.96
𝑅𝑒 = 3 ⋅ 106 0.0 8.62 10.16 11.86 13.56
𝑅𝑒 = 1 ⋅ 106 7.04 8.57 9.85

along the curvilinear coordinate 𝑥. Over the bump, 100 computational
points are placed, giving a 𝛥𝑥 ≈ 0.01. Upstream of the bump, in
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Fig. 3. Streamwise evolution of the skin friction coefficient 𝐶𝑓 for the four cases used for training.
Fig. 4. Streamwise evolution of the dimensionless pressure gradient 𝑝+ for the four cases used for training.
the zone ranging between 𝑋 = 0 and 𝑋 = 0.3, the mesh is refined
following an exponential distribution in the streamwise direction: the
smallest cells located at the leading edge start with a spacing 𝛥𝑥 ≈
0.001, which progressively increases to conform to the bump region
at 𝑋 = 0.3. The downstream part of the mesh (i.e., in the zone from
𝑋 = 1.2 and 𝑋 = 1.5) mirrors the upstream one such that the full
grid is symmetrical with respect to the bump geometry. Finally, the
streamwise structure of the mesh is completed from the bump geometry
to the edges of the simulation domain with a growing mesh spacing
characterized by a growth ratio of 10%. In the wall-normal direction,
the first computational point is placed at the same distance from the
wall for all streamwise locations, giving a dimensionless wall distance
between 𝑦+ = 0.01 and 𝑦+ = 0.6 along the bump for all the different
cases for the training database. A 2% growing ratio for the cell size is
used in the wall-normal direction.

Note that the case ℎ = 0.05 and 𝑅𝑒 = 3 ⋅ 106 corresponds to the
documented test-case from NASA (Rumsey, 2021), on which the current
numerical setup has been validated (see Appendix A).

3. Wall model strategy

3.1. General strategy

When using wall laws, the flow is split into two regions: the near-
wall region where the flow is modeled and a second region where the
conventional integration scheme of the RANS equations takes over. The
present strategy uses the wall model to impose a Neumann boundary
condition at the interface compatible with the wall law. The wall law
can therefore be seen as a Dirichlet-To-Neumann map. Similarly to a
Robin boundary condition, it transforms the 𝑢 velocity (Dirichlet) at
the RANS interface into a normal velocity derivative 𝜕𝑦𝑢 (Neumann) at
that same location. The Neumann condition is enforced by imposing
4

Table 2
Strongest non-dimensional adverse pressure gradient for all flow configurations.

Strongest non-dimensional adverse pressure gradient 𝑝+

ℎ = 0 ℎ = 0.05 ℎ = 0.06 ℎ = 0.07 ℎ = 0.08

𝑅𝑒 = 1 ⋅ 107 0.014 0.099
𝑅𝑒 = 8 ⋅ 106 0.017
𝑅𝑒 = 6 ⋅ 106 0.013 0.023 0.051
𝑅𝑒 = 3 ⋅ 106 0.0 0.025 0.048 0.137 258.2
𝑅𝑒 = 1 ⋅ 106 0.076 0.187 1.997

the exchanged numerical flux to the cells of the RANS region located
near the interface. To do so, 𝑛 layers of ghost cells (𝑛 being the size
of the numerical stencil of the RANS spatial scheme) are added to the
inner region, and their state is imposed by the wall model. Everything
below these ghost cells does not affect the RANS computation (because
it is outside of the numerical stencil of the RANS region’s cells).

For this strategy to work, the height of the cells close to this
interface should be small enough to resolve the local wall normal
gradients of the flow variables. For example, if this interface is located
in the log-layer, we may impose 𝛥𝑦+ = 𝜅𝑦+𝛥𝑢+ with 𝛥𝑢+ ≈ 1. Hence,
𝛥𝑦+ can be significantly larger than the value 𝛥𝑦+ ≈ 1 that is required
close to the wall, typically 𝛥𝑦+ ≈ 41 if the interface is located close to
𝑦+ ≈ 100.

In practice, the grids that include the ghost cells are obtained by
‘‘trimming’’ resolved RANS grids, obtained by removing the first cells
near the wall, up to the desired 𝑦+ location where Neumann condition
is applied. A sufficient number of cells to build the numerical stencil
of the first RANS resolved cell layer is kept below the interface (ghost
cells) to enforce the Neumann boundary condition.

A schematic example of the grid structure is given in Fig. 5. A
classic grid for the wall-resolved simulation (a) is compared to the
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Fig. 5. Example of grid structure for RANS simulations in the near-wall region. Comparison between a standard wall refined grid and a ‘‘trimmed’’ grid.
trimmed grid (b) used with the presented wall model. The numerical
stencil for the RANS integration of the first cell above the wall model
interface is also shown in Fig. 5(b). In the present case, the adopted
numerical scheme involves two wall-modeled cell layers below the
RANS interface. Below them, all cells that would be kept are not
actually used for the computation of the RANS region; consequently,
no refinement constraint affects the cell size. A single coarse cell is thus
employed as in Fig. 5(b).

The advantage of this strategy is that it decreases the global num-
ber of solution grid points in the near-wall region without affect-
ing grid resolution in the RANS region above wall model enforce-
ment. Consequently, a correct evaluation of tested wall functions is
achieved since the numerical error induced by grid coarsening (see, for
instance, Kalitzin et al. (2005)) is limited.

The following sections provide specific details regarding the com-
putation of the needed flow quantities imposed at the ghost cells: the
modeling of flow temperature and density (Section 3.2), the velocity
components (Section 3.3), and of the S–A variable (Section 3.4). Note
that in this section, we assume that a wall model 𝑢+ = 𝑓 (𝑦+, 𝑝+) is
known. Its derivation is explained later on in Section 4.

3.2. Temperature, density, and pressure gradient

The wall-normal temperature profiles are assumed to follow the
Crocco–Busemann relation (van Oudheusden, 2006) adapted for adi-
abatic wall conditions:

𝑇 (𝑦) = 𝑇𝑤 − 𝐴
(

𝑢∥(𝑦)2 + 𝑢⟂(𝑦)2
)

, with 𝐴 =
𝑇𝑤 − 𝑇𝑒

𝑈2
𝑒

, (6)

where 𝑇𝑤 is the wall temperature, 𝑇𝑒 and 𝑈𝑒 = 𝑢∥(𝛿)2 + 𝑢⟂(𝛿)2 are the
flow temperature and velocity magnitude outside the boundary layer
of thickness 𝛿 (𝑢∥ and 𝑢⟂ being respectively the tangential and normal
velocity components with respect to the wall). Crocco–Busemann’s
equation sets the relation between the flow temperature and the veloc-
ity magnitude for the modeled cell layers in the near-wall region. Since
𝐴 and 𝑇𝑤 are unknown, they have to be determined for applying the
relation to the ghost cells. Assuming that the Crocco–Busemann tem-
perature profile extends along the boundary layer, Eq. (6) continuity
can be enforced at the interface between wall-modeled cells and RANS
ones.

The wall temperature 𝑇𝑤 and the ratio 𝐴 are determined, at each
solver time step, by fitting the Crocco–Busemann’s relation to the first
two cells in the resolved RANS region, above the enforcement of the
wall model. Once 𝑇𝑤 and 𝐴 are determined, it is possible to extend
Crocco–Busemann’s temperature profile to all modeled cell layers in
the near-wall zone.
5

In the boundary layer, the wall-normal pressure gradient 𝜕𝑝∕𝜕𝑦 is
zero. The density profile can thus be obtained using the perfect gas
law with the temperature profile obtained from Crocco–Busemann’s
law combined with pressure data at the first cell of the resolved RANS
region.

Additionally, since the temperature 𝑇 and density 𝜌 evolution are
known, the wall density 𝜌𝑤 and wall molecular viscosity 𝜇𝑤 can be de-
termined through the chosen viscosity model (in our case, Sutherland’s
law).

Finally, the pressure 𝑝 being constant in the wall-normal direction,
the pressure gradient 𝜕𝑝∕𝜕𝑥 in the modeled region may be obtained by
projecting the pressure gradient evaluated at the RANS interface along
the tangent direction 𝑥.

3.3. Velocity components

The wall model provides a functional relation between 𝑢+, 𝑝+, and
𝑦+ (Eq. (3)). In developed form, it reads:

𝑢∥(𝑦)
𝑢𝜏

= 𝑓

(

𝜌𝑤𝑢𝜏
𝜇𝑤

𝑦,
𝜇𝑤
𝜌2𝑤𝑢3𝜏

𝜕𝑝
𝜕𝑥

)

. (7)

The previous section detailed how 𝜌𝑤, 𝜇𝑤, and 𝜕𝑝∕𝜕𝑥 can be estimated.
Therefore, the only values missing to determine the tangential veloc-
ity 𝑢∥(𝑦) is the wall quantity 𝑢𝜏 . Its computation is explained in the
following.

The skin-friction velocity 𝑢𝜏 is computed by using flow data sampled
from a point 𝑆 far from the wall but within the inner region of the
boundary layer. Specifically, the tangential velocity 𝑢𝑆∥ and correspond-
ing wall distance 𝑦𝑆 at 𝑆 are needed. The friction velocity 𝑢𝜏 may be
obtained by solving the non-linear equation

𝑔(𝑢𝜏 ) = 0, (8)

where

𝑔(𝑢𝜏 ) = 𝑓

(

𝜌𝑤𝑢𝜏
𝜇𝑤

𝑦𝑆 ,
𝜇𝑤
𝜌2𝑤𝑢3𝜏

𝜕𝑝
𝜕𝑥

)

−
𝑢𝑆∥
𝑢𝜏

, (9)

has been obtained by feeding Eq. (7) with sampling point and wall
data. The solution to this nonlinear equation is obtained by an iterative
Newton–Raphson method that reads

𝑢𝑛𝜏 = 𝑢𝑛−1𝜏 −
𝑔(𝑢𝑛−1𝜏 )
𝑔′(𝑢𝑛−1𝜏 )

. (10)

The derivative 𝑔′ is obtained analytically:

𝑔′(𝑢𝜏 ) =
𝜌𝑤 𝑦𝑆 ⋅

𝜕𝑓
+ −

3𝜇𝑤
2 4

𝜕𝑝
⋅
𝜕𝑓

+ +
𝑢𝑆∥
2
. (11)
𝜇𝑤 𝜕𝑦 𝜌𝑤𝑢𝜏 𝜕𝑥 𝜕𝑝 𝑢𝜏



International Journal of Heat and Fluid Flow 99 (2023) 109097M. Romanelli et al.
Fig. 6. Schematic representation of wall model methodology to determine the tangential velocity profile within the modeled region.
A guess for the skin friction velocity 𝑢𝜏 is required to initialize
the Newton–Raphson procedure. For this, we use the simpler Werner
and Wengle’s wall law (Werner and Wengle, 1993), which can be
reformulated as follows:

𝑢𝜏
(

𝑢𝑆∥
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

√

√

√

√

𝜇𝑤𝑢𝑆∥
𝜌𝑤𝑦𝑆

if 𝑢∥ ≤
𝜇𝑤

4𝜌𝑤𝑦𝑆
𝐴

2
1−𝐵

[

1 + 𝐵
𝐴

(

𝜇𝑤
2𝜌𝑤𝑦𝑆

)𝐵
𝑢𝑆∥

+ 1 − 𝐵
2

𝐴
1+𝐵
1−𝐵

(

𝜇𝑤
2𝜌𝑤𝑦𝑆

)1+𝐵
]

1
1+𝐵

otherwise,

(12)

with 𝐴 = 8.3 and 𝐵 = 1
7 .

The iterative process is applied until the residual value of 𝑔 ap-
proaches zero within a given tolerance (set in the following to 10−9).
Once the skin friction 𝑢𝜏 is obtained, Eq. (7) can be used to determine
the wall tangent velocity 𝑢∥(𝑦) at any height 𝑦 in the modeled region:

𝑢∥(𝑦) = 𝑢𝜏 ⋅ 𝑓

(

𝜌𝑤𝑢𝜏
𝜇𝑤

𝑦,
𝜇𝑤
𝜌2𝑤𝑢3𝜏

𝜕𝑝
𝜕𝑥

)

. (13)

The Newton–Raphson procedure to compute 𝑢𝜏 is summarized in algo-
rithm 1 and Fig. 6 illustrates the general methodology to compute 𝑢∥(𝑦)
within the modeled region.

Algorithm 1: Computation of 𝑢𝜏
Inputs : 𝑢𝑆

‖

, 𝑦𝑆 , 𝜌𝑤, 𝜇𝑤, 𝜕𝑝∕𝜕𝑥
Initialize 𝑢𝜏 with equation (12)

Compute 𝑔 ← 𝑓
(

𝜌𝑤𝑢𝜏
𝜇𝑤

𝑦𝑆 , 𝜇𝑤
𝜌2𝑤𝑢3𝜏

𝜕𝑝
𝜕𝑥

)

−
𝑢𝑆
‖

𝑢𝜏
(equation (8))

while |𝑔| > 10−9 do

Compute 𝑔′ ← 𝜌𝑤
𝜇𝑤

𝑦𝑆 ⋅ 𝜕𝑓
𝜕𝑦+ − 3𝜇𝑤

𝜌2𝑤𝑢4𝜏

𝜕𝑝
𝜕𝑥 ⋅ 𝜕𝑓

𝜕𝑝+ +
𝑢𝑆
‖

𝑢2𝜏
(equation (11))

Update 𝑢𝜏 ← 𝑢𝜏 − 𝑔∕𝑔′

Compute 𝑔 ← 𝑓
(

𝜌𝑤𝑢𝜏
𝜇𝑤

𝑦𝑆 , 𝜇𝑤
𝜌2𝑤𝑢

3
𝜏

𝜕𝑝
𝜕𝑥

)

−
𝑢𝑆
‖

𝑢𝜏
(equation(8))

end

Finally, the wall normal velocity 𝑢⟂ is assumed to behave linearly
in the inner-wall region, so that:

𝑢⟂(𝑦) = 𝑢𝑆⟂ ⋅
𝑦
𝑦𝑆

. (14)

This law is used to fill in the ghost cells below the interface. This ap-
proximation for 𝑢⟂ is non-conservative, and more elaborated handling
of this component may be considered in future works. However, it does
not represent an issue for the quasi-equilibrium boundary layers that
are involved in the present work. The error introduced in the wall-
normal direction 𝑢⟂ has been found to be negligible since the main
velocity component is tangential to the wall surface (see Section 5.5
for the study of mass conservation issues).
6

3.4. Spalart–Allmaras variable

Kalitzin et al. (2005) studied the Spalart–Allmaras variable �̃� in the
near wall region of a quasi-equilibrium boundary layer. They showed
that the behavior of the dimensionless S–A variable defined as:

�̃�+ =
𝜌�̃�
𝜇

(15)

can be modeled as

�̃�+ = 𝜅𝑦+, (16)

in the inner region of the boundary layer (viscous sublayer and logarith-
mic layer). Here, 𝜅 = 0.41 is the Von Kármán constant. The presented
wall models set the S–A variable �̃� to respect Eq. (16) in the ghost cells
below the interface. The accuracy of this model and its impact on the
results are discussed in Section 5.3.

4. Neural network training and implementation

4.1. Feedforward neural network

In this work, a Feedforward Neural Network (FNN) with different
inputs learns the functional 𝑓 (⋅). It is presented in the following section
after a brief general introduction to FNN.

An FNN consists of an input layer, multiple hidden layers, and an
output layer. Each of these hidden layers contains a variable number
of nodes or neurons. The number of nodes in input and output layers is
respectively imposed by the number of inputs and outputs of the neural
network (NN). Every layer of the NN is dense, i.e., fully connected with
the previous layer: every node of a single layer receives information
from all nodes belonging to the previous layer and passes information
to all nodes of the next layer.

Considering a layer 𝐿 containing 𝑁𝐿 neurons. In the following,
the superscript (⋅)(𝐿) denotes quantities associated with this layer. The
output 𝑂(𝐿)

𝑖 of the 𝑖th neuron is given by:

𝑂(𝐿)
𝑖 = 𝑓 (𝐿)

𝑖 (𝑊 (𝐿)
𝑖 + 𝑏(𝐿)𝑖 ), (17)

where 𝑓 (𝐿)
𝑖 is the so-called activation function of the layer, 𝑏(𝐿)𝑖 is a

scalar value (called a bias), and 𝑊 (𝐿)
𝑖 is the weighted inputs to the node

𝑖 of layer 𝐿, obtained from a linear combination of the outputs of the
previous layers:

𝑊 (𝐿)
𝑖 =

𝑁𝐿−1
∑

𝑗=1
𝑤(𝐿)

𝑖,𝑗 𝑂
(𝐿−1)
𝑗 , (18)

where 𝑤(𝐿)
𝑖,𝑗 is the weight coefficient linking the 𝑗th neuron from layer

𝐿−1 to the 𝑖th neuron of layer 𝐿. The weights coefficients and biases are
the trainable scalar parameters that are optimized during the training
phase of a neural network.

The activation functions 𝑓 (𝐿)
𝑖 add non-linearity to the network,

allowing it to fit complex nonlinear patterns. This enables the NN to
be trained on more complex tasks and perform better than a simple
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Fig. 7. Training samples colored by (a): the probability density function 𝑃𝑖 of the sample density, (b): the loss weighting coefficient 𝑤𝜌𝑖 = 1∕𝑃𝑖 used during neural network training.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
linear regression on data. In the present work, the Exponential Linear
Unit (ELU) activation function is chosen for all neurons:

𝑓𝐿
𝑖 (𝑥) =

{

𝑥 𝑥 > 0
𝛼(𝑒𝑥 − 1) 𝑥 ≤ 0,

(19)

with the hyperparameter 𝛼 set to 1 in our case. The choice for ELU
is driven by improved learning characteristics compared to other com-
monly used activation functions (e.g., ReLu) (Clevert et al., 2015).

4.2. Loss function definition and optimization strategy

The proposed wall model is data-driven, meaning the neural net-
work is built upon training by data extracted from wall-resolved RANS
simulations. The NN training optimizes 𝑤(𝐿)

𝑖,𝑗 and 𝑏(𝐿)𝑖 for all neurons
by minimizing a loss function 𝜖 that evaluates the error between RANS
data and NN predictions.

A first approach would be to consider the mean square error (MSE)
for the loss function:

MSE = 1
𝑁𝑆

𝑁𝑆
∑

𝑖=1
(𝑓𝑁𝑁 (𝑦+𝑖 , 𝑝

+
𝑖 ) − 𝑢+𝑖,𝑟𝑒𝑓 )

2, (20)

where 𝑁𝑆 is the number of samples. Yet, it puts more emphasis on the
high 𝑢+ values since reducing the relative error of a given percentage
becomes more advantageous for high 𝑢+ values. Using the mean square
relative error (MSRE):

MSRE = 1
𝑁𝑆

𝑁𝑆
∑

𝑖=1

(

𝑓𝑁𝑁 (𝑦+𝑖 , 𝑝
+
𝑖 ) − 𝑢+𝑖,𝑟𝑒𝑓

𝑢+𝑖,𝑟𝑒𝑓

)2

, (21)

yields also difficulties for 𝑢+ values close to zero since it may diverge
even for very small absolute errors. Additionally, the relation 𝑢+ =
𝑓 (𝑦+, 𝑝+) learned with the MSRE loss function was found to be wavy,
which was problematic for the determination of the friction velocity
within the Newton–Raphson algorithm.

The present work followed the work of Park (2022) to address the
issues mentioned above, with a loss function based on a logarithmic
expression of the error:

𝜖 = 1
𝑁𝑆

𝑁𝑆
∑

𝑖=1
𝑤𝜌 𝑖

|

|

|

|

|

|

log
(

𝑓𝑁𝑁 (𝑦+𝑖 , 𝑝
+
𝑖 ) + 1

𝑢+𝑖,𝑟𝑒𝑓 + 1

)

|

|

|

|

|

|

+
𝜆2
𝑁𝑆

‖

‖

‖

𝑤𝐿‖
‖

‖2
. (22)

The first term in (22) is the mean absolute logarithmic error between
the NN output 𝑓𝑁𝑁 (𝑦+𝑖 , 𝑝

+
𝑖 ) and the corresponding reference value 𝑢+𝑖,𝑟𝑒𝑓

from the training dataset. This error function does not present the prob-
lems mentioned above. The coefficient 𝑤𝜌𝑖 is a weighting scalar that
accounts for the sample distribution in the training dataset. A similar
7

coefficient was used in the work of Zhou et al. (2021), and following
their approach, we chose the weight to be inversely proportional to the
sample density:

𝑤𝜌 𝑖 =
1
𝑃𝑖

. (23)

This term corrects learning issues that appear when the training sam-
ples are unevenly distributed: without the scaling 𝑤𝜌, regions in the
(𝑦+, 𝑝+) plane where the sample distribution is dense are artificially
favored since the network attempts to minimize an average error over
all samples. In our case, using 𝑤𝜌 has shown improved results for
high 𝑝+ values, where there is a limited number of samples in the
training dataset. Without this regularization, the network focuses on
reducing the error for low 𝑝+ values since it corresponds to most
training samples.

A smooth probability density function 𝑃 is obtained through a
kernel density estimation (KDE) technique. It is estimated as the super-
position of kernels, each of them being centered at the location (𝑦+𝑗 , 𝑝

+
𝑗 )

of a sample from the dataset:

𝑃 (𝑦+𝑖 , 𝑝
+
𝑖 ) = 𝑃𝑖 =

1
𝑁𝑆

𝑁𝑆
∑

𝑗=1

1
𝜎𝑦+𝜎𝑝+

𝐾

(

𝑦+𝑗 − 𝑦+𝑖
𝜎𝑦+

,
𝑝+𝑗 − 𝑝+𝑖
𝜎𝑝+

)

. (24)

Here 𝜎𝑦+ and 𝜎𝑝+ are respectively the standard deviation of the dataset
with reference to 𝑦+ and 𝑝+ values and the Kernels are bivariate normal
distributions:

𝐾(𝛥𝑦+, 𝛥𝑝+) = 1

2𝜋
√

1 − 𝑟2
exp

[

− 1
2(1 − 𝑟2)

(

𝛥𝑦+2 − 2𝑟𝛥𝑦+𝛥𝑝+ + 𝛥𝑝+2
)

]

,

(25)

with 𝑟 such that |𝑟| < 1 being the Pearson correlation coefficient
between 𝑦+ et 𝑝+ distributions. Fig. 7 shows both the sample density
𝑃𝑖 of the dataset and the resulting coefficients 𝑤𝜌𝑖.

The second term in the loss function 𝜖 is an 𝐿2 regularization that
avoids dominance of certain weights 𝑤𝐿

𝑖,𝑛 by penalizing high valued
ones. It is a common strategy in deep learning to help train and
avoid over-fitting by forcing a homogeneous weights distribution. It
is weighted by the parameter 𝜆2, which has been empirically set to
𝜆2 = 0.001 through trial-and-error. But the sensitivity to 𝜆2 is rather
weak: different values have been tested, and when 𝜆2 is in the range
[0.001,0.01], the results are nearly identical to those presented in the
paper. The training of the neural network is then carried out using a
gradient-based algorithm, in our case, the Adam algorithm (Kingma and
Ba, 2014). We use the deep-learning library TensorFlow (Anon, 2022).

Overfitting is monitored by splitting data into a training and a val-
idation dataset. The training dataset is used to update the parameters
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of the network during the optimization. The validation dataset is only
used to evaluate the so-called validation loss. Overfitting can then be
diagnosed if the validation loss significantly departs from the training
loss. The training dataset is obtained through a random selection of
85% of data, while the validation data consist of the remaining 15%.
More details on the neural network training are given in Appendix C.
4.3. Neural network architecture and training results

The neural network is trained to estimate, from the dimensionless
wall distance 𝑦+ and the dimensionless pressure gradient 𝑝+, the dimen-
sionless velocity 𝑢+ (see Eq. (2)). This fixes the structure of input and
output layers in the neural network, which are respectively composed
by two and one neurons. Since the dynamical range of each input
strongly differs (e.g., 𝑦+ ∈ [0, 102] and 𝑝+ ∈ [−0.02, 2]), an additional
hidden layer is added after the input layer to allow the NN to simply
rescale the input values (called ‘‘Normalization layer’’ in Fig. 8).

In the context of wall-modeled RANS simulations, the neural net-
work architecture (number of nodes and hidden layers) strongly im-
pacts the CFD solver’s CPU cost. For this reason, the neural network
structure has been optimized to minimize the number of operations
without compromising the accuracy of the prediction (see Appendix B).
The resulting optimized structure of the neural network comprises
four main hidden layers, made of ten, ten, ten, and seven neurons,
respectively. A schematic diagram of the NN architecture is given in
Fig. 8.

The inner region of the boundary layer, which is modeled by the
present wall law, extends approximately up to 𝑦

𝛿 ≤ 0.15. Training
ata, as well as the location of the interface for the wall model during
esting, need to be located within this inner region. We have focused the
earning process on samples satisfying 𝑦+ ≤ 100. This limit corresponds
o the largest range of 𝑦+ that is entirely contained within the 15% of
he boundary layer thickness at each streamwise station.

The resulting learned relation 𝑢+ = 𝑓 (𝑦+, 𝑝+) is shown in Fig. 9,
which also displays the training RANS dataset (only values below
𝑦+ ≤ 100 have been considered). An additional representation in the
(𝑦+, 𝑝+)-space may be seen in Fig. 10. The learned evolution of the
dimensionless velocity 𝑢+ expressed by the NN well reproduces the
training dataset for the considered pressure gradients. Note that due
to the geometric symmetry of the bump and its low height, the value
range of the (dimensional) pressure gradient 𝜕𝑝∕𝜕𝑥 obtained in a given
simulation is approximately symmetric (same maximal amplitude for
positive and negative values). However, since the boundary layer flow
is not symmetric with respect to the geometry (the friction velocity 𝑢
8

𝜏

in particular), the range of dimensionless values 𝑝+ is not symmetric,
explaining why training data contains larger positive 𝑝+ values than
negative ones.

As seen in Fig. 10, the learning samples roughly cover 𝑝+ ∈ [−0.02, 2]
and 𝑦+ ∈ [0, 100]. To extend the capabilities of the model, if values
beyond this range are encountered, then the neural network is replaced
by a simple linear extrapolation based on 𝜕𝑓𝑁𝑁∕𝜕𝑦+ and 𝜕𝑓𝑁𝑁∕𝜕𝑝+

valuated on the borders of the training domain, i.e., 𝑦+ ≈ 100 and
+ ≈ 2. This extrapolation is visible in Fig. 10.

.4. Implementation in the CFD solver

The resulting neural network is implemented in the FORTRAN
ource code of the CFD solver FASTs (described in Section 2.1). As
hown by Eqs. (17) and (18), dense feedforward neural networks are

chain of matrix operations (plus biases) followed by a nonlinear
ector function performed between the inputs and outputs of each
N layer. Therefore, generating a code that reproduces the learned

elation 𝑢+ = 𝑓 (𝑦+, 𝑝+) is straightforward for given weights of the
etwork. The CFD code has been modified to read the NN param-
ters (architecture, weights, biases, and activation functions) and to
valuate the NN. Additionally, the derivatives of the neural network
with respect to the inputs 𝑦+ and 𝑝+) are needed for the Newton
lgorithm and the implementation of the Neumann boundary condition
see Section 3). For this, the FORTRAN code emulating the NN is
lgorithmically differentiated to get 𝜕𝑓∕𝜕𝑦+ and 𝜕𝑓∕𝜕𝑝+. This has been
one using TAPENADE (INRIA Tropics team and INRIA Ecuador team,
021), a source-to-source automatic differentiation engine. TAPENADE
enerates source codes corresponding to the two derivatives, which are
ntegrated within the solver.

.5. Summary of the general wall model strategy

Section 3 explains how the wall model is used within the solver,
hile Section 4 details how the wall model is obtained using a neural
etwork trained with reference data. The complete procedure may
herefore be summed up as follows:

• Offline phase:

1. Wall resolved reference RANS simulations are used to com-
pute a training database containing (𝑢+, 𝑦+, 𝑝+) tuples.
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Fig. 9. Wall distance and pressure gradient informed neural network. Selected training data and learned wall normal evolution of the dimensionless velocity 𝑢+.
2. A neural network is trained to learn the general relation
𝑢+ = 𝑓 (𝑦+, 𝑝+) from the training database. Adequate choice
of the loss function and parameters of NN (architecture,
weights, biases) are presented in Section 4.

3. The NN representing function 𝑢+ = 𝑓 (𝑦+, 𝑝+) is translated
into a FORTRAN code. This code is differentiated using
TAPENADE to get FORTRAN routines that evaluate 𝜕𝑓∕𝜕𝑦+

and 𝜕𝑓∕𝜕𝑝+.
4. The three FORTRAN routines (𝑓 , 𝜕𝑓∕𝜕𝑦+, 𝜕𝑓∕𝜕𝑝+) are

implemented in the CFD software and compiled.

• Online phase:

1. The CFD solver reads the NN parameters (architecture,
weights, biases) defining the wall-law 𝑓 .

2. The wall-law 𝑓 and its derivatives are used to determine
and apply boundary conditions at the RANS interface fol-
lowing the numerical strategy described in Section 3. In
particular, this requires solving (at each streamwise loca-
tion) for the skin-friction velocity 𝑢𝜏 from the knowledge of
𝑢𝑆∥ at the RANS interface 𝑦𝑆 (Newton–Raphson algorithm
1) and imposing the velocities predicted by the wall-law
within the ghost cells of the modeled region (to mimic the
Neumann boundary condition, see Fig. 6)

5. Results and discussions

5.1. Test procedure

This section presents the results obtained using the neural network
as a wall model, tested on various flow configurations and geometries
defined in Section 2. The results are compared with the wall-resolved
RANS simulation for the same parameters. The wall model is applied
to structured trimmed grids, as explained in Section 3. The numerical
stencil of the spatial scheme in the solver includes two cell layers below
the RANS interface, placed to a chosen value of 𝑦+. Therefore, two
layers of cells below the interface are kept from the reference mesh;
all other cells below in the wall-normal direction are merged into a
single coarse cell. Fig. 5b illustrates this grid structure. The coarse cell
is beyond the numerical stencil of the RANS region and is consequently
unused during the RANS computation. The wall model is applied to the
first three layers of cells, and the standard RANS integration takes over
from the fourth cell center above the wall. The sampling point is taken
at the fifth cell from the wall in the RANS integrated zone.

The wall model is only applied to established turbulent boundary
layers. For this reason, the complete simulation domain for the wall-
modeled computation is limited to 𝑋 ∈ [0.3, 1.5], with an inflow
9

Fig. 10. Contours of learnt relation 𝑢+ = 𝑓 (𝑦+ , 𝑝+) (colored iso-lines) and training
dataset points (filled colored circles). The relation beyond 𝑦+ ≈ 100 and 𝑝+ ≈ 2 is
obtained through linear extrapolation. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

condition that injects the fully developed boundary layer computed
from the reference simulation at 𝑋 = 0.3. Wall model performances
are evaluated on the bump geometry only, from 𝑋 = 0.3 to 𝑋 = 1.2,
which corresponds to the extraction zone for the training data.

For each configuration, three 𝑦+ values are considered for the RANS
interface: 𝑦+ ≈ 10, 30, 50. The first RANS-integrated cell is thus placed
in the buffer layer, between the buffer layer and the logarithmic region,
and in the logarithmic region, respectively.

The following subsections show first the global error for all the
covered configurations, then more detailed results are presented and
discussed for some selected cases.

5.2. Global errors

To evaluate the capabilities of the model, the wall model is tested on
the ten test configurations proposed in 2, but also on the four training
flows to obtain reference errors. The evaluation is thus performed both
on seen and unseen configurations. Evaluating the model on all config-
urations allows comparing the error due to the approximate learned
relation for 𝑢+ and the impact of the assumptions made on other
variables (temperature, density, and eddy viscosity, see Section 3).

The evaluation of the global performances of the wall model is based
on the estimation of the skin friction coefficient 𝐶𝑓 on under-resolved
grids compared to fully-resolved RANS simulations. A 2-norm error is
computed between the reference RANS results and the simulation with
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Table 3
2-norm global error of the wall-modeled simulation on the skin friction coefficient 𝐶𝑓

ith respect to the reference wall-resolved RANS simulation for three different RANS
nterface positions and different combinations of bump height ℎ and Reynolds number
𝑒.
RANS interface at 𝑦+ ≈ 10

ℎ = 0 ℎ = 0.05 ℎ = 0.06 ℎ = 0.07 ℎ = 0.08

𝑅𝑒 = 1 ⋅ 107 0.72% 0.88%
𝑅𝑒 = 8 ⋅ 106 0.75%
𝑅𝑒 = 6 ⋅ 106 0.77% 0.8% 0.85%
𝑅𝑒 = 3 ⋅ 106 0.61% 0.84% 0.93% 0.92% a

𝑅𝑒 = 1 ⋅ 106 1.26% 1.35% 1.54%

RANS interface at 𝑦+ ≈ 30

ℎ = 0 ℎ = 0.05 ℎ = 0.06 ℎ = 0.07 ℎ = 0.08

𝑅𝑒 = 1 ⋅ 107 1.68% 2.09%
𝑅𝑒 = 8 ⋅ 106 1.92%
𝑅𝑒 = 6 ⋅ 106 1.94% 2.27% 2.53%
𝑅𝑒 = 3 ⋅ 106 1.21% 2.94% 3.41% 3.76% 3.98%
𝑅𝑒 = 1 ⋅ 106 5.54% 6.28% 6.84%

RANS interface at 𝑦+ ≈ 50

ℎ = 0 ℎ = 0.05 ℎ = 0.06 ℎ = 0.07 ℎ = 0.08

𝑅𝑒 = 1 ⋅ 107 2.9% 2.63%
𝑅𝑒 = 8 ⋅ 106 3.06%
𝑅𝑒 = 6 ⋅ 106 3.05% 3.36% 3.54%
𝑅𝑒 = 3 ⋅ 106 1.91% 3.57% 4.0% 4.34% 4.58%
𝑅𝑒 = 1 ⋅ 106 4.59% 5.1% 5.63%

aIndicates that the computation failed to converge (non-convergence of the
Newton–Raphson loop from algorithm 1).

the wall model. The global 2-norm error 𝑒2 is obtained as follows

𝑒2 =
‖

‖

‖

𝐶𝑓 (𝑋𝑖) − 𝐶𝑓,𝑟𝑒𝑓 (𝑋𝑖)
‖

‖

‖2
‖

‖

‖

𝐶𝑓,𝑟𝑒𝑓 (𝑋𝑖)
‖

‖

‖2

=

√

∑

𝑖[𝐶𝑓 (𝑋𝑖) − 𝐶𝑓,𝑟𝑒𝑓 (𝑋𝑖)]2
√

∑

𝑖[𝐶𝑓,𝑟𝑒𝑓 (𝑋𝑖)]2
(26)

where 𝑋𝑖 are all the streamwise locations for 𝑋 between 0.3 and 1.2.
Table 3 shows the global error 𝑒2 computed for all the flow config-

urations and the three interface positions considered. The model shows
good performances overall, with an error of 6.84% at most.

The global error for the training configurations (i.e. ℎ = 0.05−𝑅𝑒 =
106, ℎ = 0.05−𝑅𝑒 = 6⋅106, ℎ = 0.07−𝑅𝑒 = 106 and ℎ = 0.07−𝑅𝑒 = 6⋅106)
s close to the error for unseen configurations. This shows that the
earned relation does not suffer from interpolation or extrapolation
ssues in the range of flow conditions considered. However, the error
ncreases as the RANS interface is further away from the wall, and
t appears to reduce when lower 𝑝+ values are encountered, both for

lower bump height and an increase in the Reynolds number. This
bservation provides information on the main source of error in the
resent model, and it is further developed in Section 5.3.

The simulation case (ℎ = 0.08, 𝑅𝑒 = 3 ⋅ 106) fails to converge when
he RANS interface is close to the wall (i.e. 𝑦+ ≈ 10). This configuration
equires very high values of 𝑝+, well beyond the extrapolation capabil-
ties of the proposed neural network (two orders of magnitude higher
han the highest value encountered during training). Yet, the problem
oes not persist for cases with a higher interface (i.e., 𝑦+ = 30 and
+ = 50). This is due to an overestimate of the skin friction coefficient
𝑓 and skin friction velocity 𝑢𝜏 , drastically reducing the sensed value
f 𝑝+ fed to the neural network. The cause of this overestimation of
riction in high 𝑝+ valued areas is addressed in Section 5.4.

Nonetheless, this unconverged case is interesting because it bounds
he extrapolation capabilities of the model. It appears that it may be
nable to treat (quasi)separated boundary layers due to the attached
ature of the flows considered for training. This limitation, as well as
ossible solutions, are further discussed in conclusion.

.3. Interpolation test results

Interpolation capabilities of the model (evaluated on the interpo-
10

ation test configurations defined in Section 2) are presented in more
etail in this section. The following results compare the obtained
rofiles for different flow variables from the wall models. It provides a
ore detailed view of the modeling errors. For conciseness, let us focus

n the case ℎ = 0.06 and 𝑅𝑒 = 3 ⋅ 106 (results on the other interpolation
ases are similar). It is referred to as an interpolation case because it
nvolves a combination of Reynolds number and bump height inside
he training range values.

Fig. 11 shows the skin friction coefficient 𝐶𝑓 along the wall and
ts error with respect to the wall-resolved simulation. The error 𝑒 is
ormalized by the mean 𝐶𝑓 value of the reference simulation over the
all, such that

(𝑋𝑖) =
𝐶𝑓 (𝑋𝑖) − 𝐶𝑓,𝑟𝑒𝑓 (𝑋𝑖)

𝐶𝑓,𝑟𝑒𝑓

, (27)

with 𝑋𝑖 referring to the equally spaced solution points in 𝑋−coordinate
irection along the considered portion of the wall, 𝐶𝑓 the estimation of
riction coefficient from the wall model, 𝐶𝑓,𝑟𝑒𝑓 the estimation of friction
oefficient from the wall-resolved simulation and 𝐶𝑓,𝑟𝑒𝑓 its mean value
ver the wall (the local value is not used for normalization to avoid
rtificial divergence of the error when 𝐶𝑓 becomes too close to zero).
ote that this error is purposely defined as a signed value (to evaluate
otential model under/overestimation).

Globally, the wall model accurately estimates the skin friction evo-
ution along the bump geometry, with the error increasing as the height
f the interface increases. A maximum local error of 2%, 8.5% and 8.6%
s found for respective 𝑦+ values of 10, 30 and 50. The maximum error
s found near the top of the bump or near its downstream bottom area
where high 𝑝+ values are expected). Note that since the average value
f 𝐶𝑓 is used to normalize the error, it is expected to find larger errors
here 𝐶𝑓 reaches its maximal value.

Fig. 12 shows tangential velocity profiles obtained at 𝑋 = 0.75 (top
f the bump) and at 𝑋 = 0.95 (downstream bottom area). The curves
resent the results of the wall model for the three considered RANS
nterface positions to the reference wall-resolved RANS simulation. At
he top of the bump, the model closely matches fully resolved RANS
esults. In the downstream bottom area, the model still fits the RANS
imulation when the model interface is located at 𝑦+ ≈ 10. The error
ncreases for simulations with higher interfaces with a tendency to
verestimate the velocity. Simulation with an interface at 𝑦+ ≈ 30 and
+ ≈ 50 show a very similar error and behavior.

The temperature evolution from the wall at 𝑋 = 0.75 and 𝑋 = 0.95
re shown in Fig. 13. For brevity, density profiles are omitted here
ince their behavior closely reproduces those of the temperature. Again,
he profiles depart further from the reference as the interface height
ncreases. Nonetheless, for all simulations, the relative error on the
emperature is very limited (below 1%) compared to the wall-resolved
imulation.

Fig. 14 shows the evolution of the dimensionless velocity 𝑢+ with
he wall distance 𝑦+ obtained from the wall model at 𝑋 = 0.75 and 𝑋 =
.95. The lower end of the curve (near-wall region) is fixed by the wall
odel, while the upper behavior is driven by the S–A RANS integration

ased on the values of the modeled region. The near-wall area shows a
lose match with respect to the reference RANS simulation. However,
he integration in the RANS region yields a more significant error that
ncreases with the wall distance. Overall, the profiles display a good
greement with the reference solution at 𝑋 = 0.75, while only the wall
odel with an interface at 𝑦+ ≈ 10 well agrees with the RANS results

n the downstream bottom area (𝑋 = 0.95). Again models with 𝑦+ ≈ 30
and 𝑦+ ≈ 50 interfaces show similar behavior.

Fig. 15 shows the dimensionless S–A variable �̃�+ at 𝑋 = 0.75 and
𝑋 = 0.95. Again, the errors increase with higher wall distances at
the first cell. The overall discrepancy appears limited at the top of
the bump, while differences are found more relevant in the down-
stream bottom area of the bump. These differences explain the error
behavior linked to the wall model strategy. The downstream bottom

+
part of the bump displays a high 𝑝 value, which appears to strongly
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Fig. 11. Bump interpolation case (ℎ = 0.06 and 𝑅𝑒 = 3 ⋅106). Skin friction coefficient 𝐶𝑓 along the 𝑋−coordinate direction and its normalized error with respect to the wall-resolved
RANS simulation. Wall distance at first RANS computed cell: 𝑦+ ≈ 10, 𝑦+ ≈ 30, 𝑦+ ≈ 50.
Fig. 12. Bump interpolation case (ℎ = 0.06 and 𝑅𝑒 = 3 ⋅ 106). Wall normal evolution of tangential velocity at 𝑋 = 0.75 (top of the bump) (a) and at 𝑋 = 0.95 (b). Wall distance at
first RANS computed cell: 𝑦+ ≈ 10, 𝑦+ ≈ 30, 𝑦+ ≈ 50.
influence the dimensionless S–A variable �̃�+ compared to the modeled
one (dashed line). The S–A variable in the presence of strong adverse
pressure gradients tends to depart from a linear behavior for lower 𝑦+

values, which explains the growing error observed for higher RANS
interface (other modeling assumptions or approximations do not have
an increasing error for higher 𝑦+). This also explains why the global
error from Table 3 tends to increase for lower 𝑅𝑒 and higher ℎ: higher
𝑝+ values are expected with lower Reynolds numbers and higher bump
heights, leading to more significant errors on �̃�+.
11
The error on the S–A variable impacts the RANS integration above
the model interface. It strongly affects flow quantities sensed at the
sample point. For this reason, a high error on �̃�+ leads to underesti-
mated 𝑝+ values at the sample point. Thus, the wall model converges
toward overestimated solutions for the skin friction coefficient. The
opposite situation happens at the top of the bump, where the poor
modeling of �̃�+ for higher interface height yields underestimated 𝐶𝑓 .
Additionally, for lower Reynolds number configurations, the dimen-
sionless S–A �̃�+ variable departs more rapidly from a linear behavior,
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Fig. 13. Bump interpolation case (ℎ = 0.06 and 𝑅𝑒 = 3 ⋅ 106). Wall normal evolution of temperature at 𝑋 = 0.75 (top of the bump) (a) and at 𝑋 = 0.95 (b). Wall distance at first
RANS computed cell: 𝑦+ ≈ 10, 𝑦+ ≈ 30, 𝑦+ ≈ 50.
Fig. 14. Bump interpolation case (ℎ = 0.06 and 𝑅𝑒 = 3 ⋅ 106). Wall normal evolution of dimensionless velocity 𝑢+ at 𝑋 = 0.75 (top of the bump) (a) and at 𝑋 = 0.95 (b). Wall
distance at first RANS computed cell: 𝑦+ ≈ 10, 𝑦+ ≈ 30, 𝑦+ ≈ 50.
Fig. 15. Bump interpolation case (ℎ = 0.06 and 𝑅𝑒 = 3 ⋅ 106). Wall normal evolution of dimensionless S–A variable �̃�+ at 𝑋 = 0.75 (top of the bump) (a) and at 𝑋 = 0.95 (b). Wall
distance at first RANS computed cell: 𝑦+ ≈ 10, 𝑦+ ≈ 30, 𝑦+ ≈ 50.
which explains the observed error differences for different values of 𝑅𝑒
in Table 3 as the interface is moved upward.

5.4. Extrapolation cases

Extrapolation capabilities of the model have been tested on unseen
configurations during the training process with Reynolds number 𝑅𝑒
12
and a bump height ℎ combinations beyond the range of values met in
the training dataset. For almost all tested configurations, the error and
conclusions are similar to those from the interpolation cases: the error
on the 𝐶𝑓 evolution, velocity, temperature, density, and eddy viscosity
profiles is the highest near the top of the bump and its downstream
bottom area, with the same tendencies to over/underestimate the flow
variables as previously. The performance assessment on the particular
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Fig. 16. Flat plate case (𝑅𝑒 = 3 ⋅ 106). Skin friction coefficient 𝐶𝑓 along the 𝑋−coordinate direction and its normalized error with reference to wall-resolved RANS simulation.
Wall distance at first RANS computed cell: 𝑦+ ≈ 10, 𝑦+ ≈ 30, 𝑦+ ≈ 50.
case of a zero-pressure flat plate (ℎ = 0) is covered in Section 5.4.1.
For ℎ ≠ 0, the error becomes significant and may lead to convergence
problems when the flow is close to separation. This is discussed in more
detail in Section 5.4.2.

5.4.1. Flat plate case
The extrapolation capabilities of the model have been tested on

the flat plate flow at 𝑅𝑒 = 3 ⋅ 106. Fig. 16 shows respectively the
predicted skin friction coefficient 𝐶𝑓 and its relative error 𝑒 with respect
to wall-resolved RANS (the normalizing value is the averaged value of
𝐶𝑓 )

The model appears to be well adapted to quasi-equilibrium bound-
ary layer since the skin friction coefficient is well reproduced by the
neural network. The local normalized error does not exceed 3% even
when the model interface is located at 𝑦+ ≈ 50; yet, better performances
are achieved when the interface is located closer to the wall.

5.4.2. Near separation case
This section focuses on the case ℎ = 0.08 and 𝑅𝑒 = 3 ⋅106. This is the

test case with the strongest adverse pressure gradient, the flow being
on the verge of separation. Thus, it is the most challenging case for
our wall model, which was not designed to handle separated regions.
Convergence problems appeared when the RANS interface was close to
the wall, as reported in Table 3. Fig. 17 shows the results obtained
for the cases that were able to converge (interface at 𝑦+ ≈ 30 and
𝑦+ ≈ 50). One may see that the evolution of 𝐶𝑓 is qualitatively good.
However, the error curve shows that the behavior is slightly erratic near
the point where 𝐶𝑓 approaches zero. Additionally, the figure shows the
model’s tendency to overestimate 𝐶𝑓 in this region. As in Section 5.3,
this overestimation becomes less significant when the interface is closer
to the wall. That explains why only the case with the interface at
13
Table 4
Relative 2-norm global error on the skin friction coefficient 𝐶𝑓 of the
wall modeled simulation with respect to the reference wall-resolved
RANS simulation. Bump interpolation case (ℎ = 0.06 and 𝑅𝑒 = 3 ⋅106) for
three different RANS interface positions. Comparison between the wall
distance and pressure gradient informed neural network 𝑢+ = 𝑓 (𝑦+ , 𝑝+)
and solely wall distance informed neural network 𝑢+ = 𝑓 (𝑦+). 2-norm
error of wall distance and pressure gradient informed neural network is
extracted from Table 3.
ℎ = 0.06 - 𝑅𝑒 = 3 ⋅ 106

𝑢+ = 𝑓 (𝑦+ , 𝑝+) 𝑢+ = 𝑓 (𝑦+ , 𝑝+ = 0)

𝑦+ ≈ 10 2.4% 3.04%
𝑦+ ≈ 30 3.69% 4.57%
𝑦+ ≈ 50 4.0% 6.41%

𝑦+ ≈ 10 failed to converge: the modeling error on �̃�+ is smaller. Thus
the encountered values of 𝑝+ become closer to the reference, i.e., too
high to be handled properly by the model. These results show that the
wall model may handle reasonably large values of 𝑝+ (such as those
encountered when the interface is higher, underestimated due to the
S–A variable modeling), but it reaches its limit for the case 𝑦+ = 10.

5.4.3. Influence of dimensionless pressure gradient
To assess the importance of including or not the dimensionless

pressure gradient 𝑝+ as an input parameter to the wall law 𝑢+ =
𝑓 (𝑦+, 𝑝+), the selected interpolation case of the bump flow with ℎ = 0.06
and 𝑅𝑒 = 3⋅106 has been evaluated by imposing 𝑝+ = 0 in the previously
learned wall law during the CFD computation, i.e., 𝑢+ = 𝑓 (𝑦+, 𝑝+ =
0). Fig. 18 shows the normalized error on skin friction coefficient 𝐶𝑓
comparing the neural network fed with the wall distance 𝑦+ and the
dimensionless pressure gradient 𝑝+ and the same neural network solely
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Fig. 17. Near separation case (ℎ = 0.08 and 𝑅𝑒 = 3 ⋅ 106). Skin friction coefficient 𝐶𝑓 along 𝑋−coordinate direction and its normalized error with reference to wall-resolved RANS
simulation. Wall distance at first RANS computed cell: 𝑦+ ≈ 50.
fed with the wall distance 𝑦+. Overall, the pressure gradient-informed
wall model manages to reproduce wall-resolved RANS simulation bet-
ter. Significant differences between neural networks are detected at the
top of the bump (i.e., 𝑋 = 0.75) and downstream of the bump geometry
(i.e., 𝑋 = 0.95), where the highest pressure gradients are expected.

Table 4 shows 2-norm global errors on the skin friction coefficient
𝐶𝑓 computed with wall distance and pressure gradient informed neural
network 𝑢+ = 𝑓 (𝑦+, 𝑝+), and solely wall distance-informed neural
network 𝑢+ = 𝑓 (𝑦+, 𝑝+ = 0). The 2-norm error of wall distance and
pressure gradient informed neural network is extracted from Table 3.
The capabilities of the pressure gradient-fed neural network to estimate
better local skin friction coefficient 𝐶𝑓 is also confirmed on global
2-norm errors.

5.5. Mass conservation

As mentioned earlier, the present wall model strategy does not en-
force the conservation of mass, which may be problematic for internal
flow simulations. The mass loss in our configurations is evaluated by
integrating the mass flux over the limits of the computational domain
𝛺 (i.e., 𝑋 = 0.3, 𝑋 = 1.2 and 𝑌 = 5) by excluding the lower wall where
the wall law is applied (since no mass flux exists there):

∮𝛺
𝜌𝒖 ⋅ 𝒏𝑑𝛺, (28)

with 𝒏 the exterior normal to the contour. This quantity is supposed to
be null, and mass non-conservativity is characterized by the ratio
∮𝛺 𝜌𝒖 ⋅ 𝒏𝑑𝛺
𝜌∞𝑈∞𝛿

. (29)

The lost mass rate is normalized with respect to the free-stream flow
rate entering a section of height 𝛿, which corresponds to the boundary
14
layer thickness at the beginning of the evaluation zone (i.e., 𝑋 = 0.3).
The maximum loss equals 0.44% for the case ℎ = 0.07 and 𝑅𝑒 =
107 with the RANS interface at 𝑦+ ≈ 50. For external aerodynamics,
such an error may be acceptable; for internal flows, where the mass-
flow rate may be an important quantity, such an error might become
problematic.

6. Conclusion

This work presents a new deep learning-based approach to wall
models for RANS simulations inspired by classical wall laws. The pro-
posed wall models rely on wall dimensionless quantities, here the wall
distance 𝑦+ and the wall pressure gradient 𝑝+, to reconstruct the dimen-
sionless wall velocity 𝑢+ profiles in wall-bounded region. The model
provides embedded neural networks to the CFD solver code, which
forces the primitive variables in modeled cells at a given interface near
the wall, below which the RANS computation is disabled. It is equiva-
lent to a Neumann boundary condition (whose exact value depends on
the RANS velocity computed at the interface) applied to the conven-
tional RANS region. This new approach may be interesting, particularly
for RANS simulations with immersed boundary method simulations
(IBM). One known shortcoming is that the proposed methodology
could lead to conservativity problems, even though it was found to be
negligible in the present work. However, further considerations of the
problem are required to extend the validity domain of the wall model,
which may be an exciting research direction for the future. For instance,
more advanced treatments to impose the near wall behavior of the
turbulence model. The modeling of the Spalart–Allmaras variable in the
present case or the wall normal velocity component could be explored.
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Fig. 18. Bump interpolation case (ℎ = 0.06 and 𝑅𝑒 = 3 ⋅ 106). Normalized error 𝑒 of skin friction coefficient 𝐶𝑓 obtained by solely wall distance informed neural network
(𝑢+ = 𝑓 (𝑦+ , 𝑝+ = 0)). Wall distance at first RANS computed cell: 𝑦+ ≈ 10, 𝑦+ ≈ 30, 𝑦+ ≈ 50.
The deep learning-based approach consists of a wall distance and
pressure gradient-informed neural network trained on a dataset ex-
tracted from a fine wall-resolved RANS simulation of the flow over a
bump. The training process has been performed with different Reynolds
number conditions and pressure gradient levels based on the bump
height. The neural network has been tested and compared with a
fully resolved RANS simulation. The test cases were selected both
from the training dataset and unseen configurations of the bump flow,
characterized by a different combination of Reynolds number and bump
height. The particular case of a flat plate was also included for testing.
The benchmark cases have been run with varying interface heights to
test the proposed wall model with various wall distances of the RANS
interface. The wall distance and pressure gradient informed network
yields accurate results for almost all the test cases and grids. However,
the model underestimates the skin friction coefficient, with an error
that increases as the interface height becomes higher.

One test case was particularly challenging. Convergence issues were
found for nearly-separated cases with a strong adverse pressure gradi-
ent. This was expected since no particular treatment has been designed
to enable the network to handle such cases. This may be addressed
in the future by including a significant number of nearly-separated
and separated cases in the training database. But this raises questions
about the general strategy to follow: one may attempt to train one
general network to handle all the cases or several specialized networks
coupled with an automatic way of selecting which one to use. The latter
approach may require exploring clustering techniques.

Even though relatively simple geometries characterize the test cases,
this work highlights the potential of neural networks for wall-bounded
region modeling. In particular, searching a relation between non-
dimensional quantities mechanically gives the network extrapolation
capabilities, enabling, for instance, simulation for Reynolds number
beyond the range considered for training. This would not be possible if
one tries to estimate dimensional quantities.

The present results may be the starting point for further studies
and investigations required to overcome the issues encountered during
this work and extend the validity domain of these deep-learning-based
wall models to more complex problems, even in the presence of signif-
icant pressure gradients and flow separation. A methodology has been
proposed to optimize the computational cost of the network. But this
question may require more extensive attention and future work since
it is a critical point in the context of wall models for CFD.
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Appendix A. Validation of bump case setup

The bump case is inspired by a RANS simulation well documented
by NASA in the context of a study about turbulent modeling techniques
for RANS simulation (Rumsey, 2021). Validation of the case is achieved
by a solution comparison with NASA simulation of the flow over a
bump characterized by an height ℎ of 0.05. A Reynolds number 𝑅𝑒 =
3 ⋅ 106 and a Mach number 𝑀 = 0.2 are considered to match the NASA
case. The free-flow temperature is 𝑇 = 300 K.

The original NASA solution was obtained on a 1409 × 461 struc-
tured grid, through the compressible cell-centered code CFL3D with the
Spalart–Allmaras turbulence model. Roe’s Flux Difference Splitting and
a UMUSCL upwind approach are used for the computation, while a first-
order upwinding is adopted for the advective terms of the turbulence
model.

In Fig. A.19, the tangential velocity at the top of the bump (𝑋 =
0.75) and skin friction coefficient 𝐶𝑓 are compared for the NASA
computation and for the dataset extraction case. The results show that
both simulations match closely, validating the presented case setup.

Appendix B. Optimization of neural network structure

Since the structure of the neural network involved in the wall model
strongly determines its computational cost, an optimization process has
been carried out to find optimal network architectures with respect
to the accuracy/cost trade-off. This appendix presents the followed
methodology and gives the main insights that emerged from the op-
timization results. They may serve as guidelines for future network
design. In particular, it aims at answering two questions: how deep
should the network be, and what would be the proper width of each
layer? To do so, we start with a given network architecture with 𝐿ℎ
hidden layers containing each a rather large number of neurons 𝑁𝐿,
and we define an optimization process that deactivates the least useful
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Fig. A.19. Validation of bump case setup. Comparison of NASA results and wall-resolved RANS simulation of the flow over a bump with an height ℎ = 0.05. Tangential velocity
to surface at 𝑋 = 0.75 (top of the bump) (a) and skin friction coefficient 𝐶𝑓 over the bump (b).
Fig. B.20. Schematic diagram of the feedforward neural network with multiple hidden layers used for structure optimization process.
neurons. This yields a network architecture where the layer width is not
constant anymore and has been reduced with minimal impact on the
accuracy. The process has been repeated for several numbers of layers
𝐿ℎ, and is described below.

An optimization network is created by adding a gate directly after
every hidden layer neuron. These additional nodes multiplies their in-
put by a scalar (no activation function and no bias) which is a trainable
parameter of the network. These gates are then densely connected to
the downstream hidden layer. Therefore, suppressing a neuron from the
network is equivalent to setting its gate’s weight to zero. A schematic
diagram of such a gated neural network is given in Fig. B.20.

The initial network, composed of 𝐿ℎ layers and 16 neurons each,
is first trained without gates following the procedure described in
Appendix C to minimize the loss 𝜖 defined in Eq. (22). Then, gates are
added after all hidden-layer neurons and their weight is initialized to
1. The training is launched again (by keeping the same optimization
parameters) with the following modified loss 𝜖′:

𝜖′ = 𝜖 +
𝜆1
𝑁𝑆

‖

‖

‖

𝑤𝐿
𝑜
‖

‖

‖1
, (B.1)

where 𝑤𝐿
𝑜 is a vector containing all the weights of the gates and

𝑁𝑆 the number of training samples. This extra L1 regularization term
promotes sparsity and pushes toward setting some gates to zero. During
the optimization, when a gate’s weight drops below 0.01, it is perma-
nently set to zero. Other threshold values, ranging from 0.01 to 0.1
have been tested. The highest values have been found to significantly
affect the NN’s accuracy. The penalization coefficient 𝜆1 controls the
cost/accuracy trade-off by balancing the sparsity penalization with the
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rest of the loss (that promotes accuracy). Different values between
0.001 and 1 have been tested (the higher 𝜆1, the more deactivated
neurons) for different network depths 𝐿ℎ (2, 3, and 4). Once the op-
timization is converged, one gets the width of each layer. The resulting
architecture is then evaluated through the mean absolute percentage
error (MAPE) defined as

MAPE = 1
𝑁𝑆

𝑁𝑆
∑

𝑖=1

|

|

|

|

|

|

𝑓𝑁𝑁 (𝑦+𝑖 , 𝑝
+
𝑖 ) − 𝑢+𝑖,𝑟𝑒𝑓

𝑢+𝑖,𝑟𝑒𝑓

|

|

|

|

|

|

. (B.2)

The error is thus monitored against the number of remaining hidden
layer neurons and the number of operations in hidden layers (an
operation here is considered as a link between two neurons, which
corresponds to computing a quantity of the form 𝑤(𝐿)

𝑖,𝑗 𝑂
(𝐿−1)
𝑗 + 𝑏(𝐿)𝑖 , see

Eq. (17). This provides Pareto fronts which are shown in Fig. B.21.
Overall, the three and four hidden layer neural networks showed

similar levels of accuracy, while two hidden layer networks displayed
significantly lower performances. As expected, a too low number of
remaining nodes results in a steep drop of accuracy.

The four hidden layer neural network trained with an L1 penal-
ization coefficient of 𝜆1 = 0.001 (green circle) is retained as final
architecture, motivated by a willing to favor accuracy over cost for
this first methodological paper. This neural network, composed by 10,
10, 10 and 7 nodes in the hidden layers, allows to more than halve
the number of operations performed by the starting network given by
four hidden layers of 16 nodes each while maintaining the same level
of accuracy (all lighter architectures yield a decreased accuracy). Note
that the other obtained architectures (not shown here) systematically
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Fig. B.21. Results of structure optimization process. Mean Absolute Percentage Error (MAPE) given by neural networks with reference to the whole dataset. MAPE as function of
hidden layers nodes (a) and MAPE as function of hidden layers operations (b).
have more neurons in the first layers than in the final ones. This may
therefore be considered as a general guideline for network design when
one wants to reduce the network size without carrying out a similar
optimization task.

Appendix C. Training process of neural networks

This section details the training process performed on the neural
network and gives all information needed to reproduce the results from
the paper.

Training is performed using the Adam algorithm to minimize the NN
loss given in Eq. (22), based on the mean absolute logarithmic error
with an L2 regularization term to penalize high valued weights and
biases. Details on the learning rate are provided below. The training
dataset consists of the 85% of the available data, while the validation
dataset is composed of the remaining 15%. Evaluating the training
vs. validation loss functions is a standard way in machine learning to
introduce a stopping criterion for training to prevent the overfitting
of the model. During each epoch, the NN and the descent algorithm
are fed with the complete set of training data. Training data are given
using mini-batches of 16 samples. Using a standard validation stopping
criterion as mentioned above, the training of the neural network re-
quired 2004 epochs. The stopping criteria, based on the validation loss,
stops the training if the loss value does not decrease of 10−2 during
the last 400 iterations. At the end of the training process, weights
and biases which gave the lowest value of validation loss during the
training process are selected to build the neural network. The evolution
of training and validation loss during the training process is given in
Fig. C.22.

During the NN training, the convergence of the optimization algo-
rithm is helped by a reduction of the learning rate over the advance-
ment of epochs, as perceptible from Fig. C.22. The starting learning rate
for the Adam algorithm is set to 0.001. Loss oscillations visibly reduce
as the learning rate is decreased. The learning rate reduction is driven
by the loss value. The learning rate is reduced by steps of 20% until a
minimum value of 10−8 is achieved. Each reduction step is performed
if the mean loss value over the last 40 epochs does not vary.

Appendix D. Boundary layer thickness definition

One common way to define the boundary layer thickness 𝛿 is as the
distance to the wall where the flow velocity inside the boundary layer
reaches 99% of the external velocity magnitude or asymptotic velocity,
i.e. 𝑈 (𝛿) = 0.99𝑈𝑒. However, when pressure gradients in the streamwise
direction are present, external boundary layer velocity varies along
the considered flow, consequently the previous definition becomes not
17
Fig. C.22. Training and validation loss evolution during training process.

adapted. Therefore, along the bump, another better-suited definition of
𝛿 is needed.

The boundary layer edge can thus be estimated through an another
estimation method which relies on the boundary layer definition. The
following details the approach from Cliquet et al. (2008). At boundary
layer edge, the shear stress 𝜏 and the flow vorticity 𝛺 must become
small. The total shear stress can be defined as

𝜏 = 𝜏𝑙 + 𝜏𝑡 = 𝜇 |𝛺| + 𝜇𝑡 |𝛺| , (D.1)

where the laminar component of shear stress 𝜏𝑙 and the turbulent shear
stress 𝜏𝑙 are computed through the laminar and turbulent viscosity,
respectively 𝜇 and 𝜇𝑡.

The boundary layer thickness 𝛿 is defined such as

𝛿 = min
(

𝛿𝛺 , 𝛿𝜏
)

, (D.2)

where 𝛿𝛺 and 𝛿𝜏 are the wall normal distances where 𝜖𝛺 and 𝜖𝜏
reach respectively small empirical values as 0.001 and 0.015. The two
parameters 𝜖𝛺 and 𝜖𝜏 are defined as it follows

𝜖𝛺 =
|𝛺|

|𝛺|𝑚𝑎𝑥
𝜖𝜏 =

|𝜏|
|𝜏|𝑚𝑎𝑥

. (D.3)

As an example, the estimated boundary layer thickness for the wall-
resolved RANS case with ℎ = 0.06 and 𝑅𝑒 = 3 ⋅ 106 is represented over
velocity magnitude contours in Fig. D.23.
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Fig. D.23. Velocity magnitude contours for the wall-resolved RANS case with ℎ = 0.06
and 𝑅𝑒 = 3 ⋅ 106. Boundary layer thickness represented with dashed line.
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