
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2010; 63:249–268
Published online 19 March 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2025

Numerical methods for low-order modeling of fluid flows
based on POD

J. Weller1,2, E. Lombardi2,3, M. Bergmann1,2 and A. Iollo1,2,∗,†

1INRIA Bordeaux Sud Ouest, Team MC2, 351, Cours de la Libération, 33405 Talence cedex, France
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SUMMARY

This paper explores some numerical alternatives that can be exploited to derive efficient low-order models
of the Navier–Stokes equations. It is shown that an optimal solution sampling can be derived using
appropriate norms of the Navier–Stokes residuals. Then the classical Galerkin approach is derived in
the context of a residual minimization method that is similar to variational multiscale modeling. Finally,
calibration techniques are reviewed and applied to the computation of unsteady aerodynamic forces.
Examples pertaining to both non-actuated and actuated flows are shown. Copyright q 2009 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Low-order modeling based on proper orthogonal decomposition (POD [1]) is an art based on
physical intuition and numerical analysis. Very few results exist in terms of error bounds [2] as
compared with other methods such as balanced truncation [3] for which precise estimates of the
deviation of the reduced model from the full model exist. In turn, POD models can be applied to
non-linear problems and it is computationally feasible for flows involving a large number of degrees
of freedom. Low-order modeling is based on a number of assumptions affected by a certain degree
of arbitrariness. The first choice is relative to the low-dimensional subspace where the solution is
sought. In POD, this is done by extracting from an existing database the most energetic structures
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in an average sense. Of course, in terms of L2 approximation of the space spanned by the database,
such a basis is optimal. However, the energy norm is not the only legitimate choice: for example,
enstrophy provides an optimal representation of the database vorticity and in many detached flows
one may assume that the rotational large-scale structures are the most dynamically relevant. Or,
in order to provide the correct rates of dissipation, the H1 norm can be used to take into account
the relevance of smaller scales [4]. Besides the norm, the sampling of the flow field represents an
implicit choice of the representation subspace, since the POD modes are just linear combinations
of solution snapshots: the events collected in the snapshot database determine the approximation
properties of the resulting POD modes. In this sense, the placement of the snapshots can be chosen
so that the resulting modes minimize the projection error for a given number of snapshots and
dimension of the reduced subspace, as a problem parameter is perturbed [5]. Another option, that
we detail in the following, is to sample the flow so that the residuals of the high-fidelity operator
are minimized over a range of parameter values. All these ideas aim at retrieving modes leading
to accurate and robust dynamical systems describing the time evolution of the system.

The reduced-order dynamical system can be obtained in a number of different ways. The most
popular procedure is that of representing by a modal expansion the velocity field and hence
projecting the Navier–Stokes equations (NSE) over the velocity modes. The projection step is
usually performed in the L2 sense (see for example, [1, 6]), although in principal one could choose
a different scalar product [7]. In some flow configurations the resulting pressure term is either zero
or negligible, and therefore there is no need to model pressure. There are cases where this is not
true [8], typically for internal flows. In addition pressure is needed both for computing forces and
to evaluate the high-fidelity model residuals. It may be therefore necessary to model or estimate
pressure effects. Another way of obtaining a low-order model is to minimize the high-fidelity model
residuals in some norm. By minimizing high-fidelity residuals it is very simple to include integral
constraints in the low-order model [9]. In general, this method leads to low-order models that have
a different dynamical behavior as compared with models obtained by Galerkin projection.

The simple choice of how to discretize the derivatives of the POD modes has a dramatic impact
on the asymptotic solution because of pure numerical effects. Truncation of the model also plays
a crucial role in that the non-resolved modes strongly affect the dissipation rate of the model as
well as the energy redistribution between scales. Numerical as well as modelization issues strongly
affect the performance of the model in a manner that it is not easily predictable for complex flows.
One way to circumvent this problem is to resort to model identification. The idea is to calibrate
some of the coefficients appearing in the model against the reference simulation used to build the
POD modes [10]. In other words, the modes as well as the model solution minimize the error both
in terms of database representation and in time evolution. The advantage of this procedure is that
it can be extended to several different databases so as to obtain a model that interpolates several
dynamical behaviors [11]. In a different spirit, instead of identifying the model parameters, the
effect on the resolved modes of the truncation can be modeled by appropriate closure terms. The
procedure consists in assuming that the non-resolved scales are well represented by the residuals
of the high-fidelity discrete operator [9], as it is done in some large-eddy simulation closure
models [12]. In this sense, a modeling approach was recently proposed [13] in which the mode
interactions are fed back in the dynamical system based on statistical information. The advantage
of closure models is that they need far less coefficients to be tuned compared with calibration
models.

In this paper, we show several examples of how the techniques used to model the NSE based
on empirical eigenfunctions affect the accuracy and reliability of the results.
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Figure 1. Flow configuration and vorticity snapshot at Re=200.

1.1. Numerical setup

Our test case is a two-dimensional incompressible laminar flow past a confined square cylinder
(see Figure 1). The incoming flow has a Poiseuille profile. No-slip conditions are imposed on
the cylinder and on the parallel walls. The blockage factor with reference with the figure is
L/H = 1

8 . Details about numerical setup and method are reported in [14]. This is an interesting
flow configuration as it involves detachment, wakes and interaction with walls. Another interesting
point for reduced-order modeling purposes is that there is a pressure jump to model along the
channel. Both controlled (see details in Section 5) and uncontrolled (Section 3 and Section 4)
flows are considered.

2. MODELIZATION BY EMPIRICAL EIGENFUNCTIONS

The point of departure is a finite-dimensional representation: the solution is sought in a functional
subspace V of dimension Nr that is built according to some desired properties

Ū(x, t)=
Nr∑
n=1

an(t)Un(x) (1)

In the case of classical POD models, the functions Un(x)∈V give an optimal representation
of precomputed solutions and there exist efficient ways to determine such functions [15]. We
are however faced with a number of choices. First of all, one has to agree on a criteria for
choosing Nr , i.e. the dimension of the projection space. This is usually done by fixing a threshold
for the truncation error with respect to the precomputed database. In particular, we will show that
the stability of a low-order model derived by a simple projection of the NSE strongly depends on
the number of POD modes retained.

In addition, it has to be decided what we want to represent with Ū(x, t), i.e. whether the velocity
field and the pressure field are represented or not by two separate expansions. The expansion
Ū(x, t) may represent a D={2,3} dimensional vector field for the flow velocity, or a D+1
dimensional field also taking into account the pressure. In the first case, we need an additional
finite-dimensional representation for pressure

p̄(x, t)=
Np∑
n=1

bn(t)�n(x) (2)

whereas in the latter case the pressure field is represented by one component of Un(x).
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However, coupling pressure and velocity fields has a certain degree of arbitrariness since
at least for incompressible flows the actual value of pressure is unimportant. Pressure
differences are important and hence in the definition of the norms leading to the velocity–
pressure POD modes one implicitly makes a choice of the relative weight of velocity versus
pressure.

We focus on the case where the velocity field and the pressure field are represented using two
separate expansions, for the case where the POD modes include pressure, the following discussion
is similar. The scalar coefficients an(t),bn(t) are unknowns and they can be found by using the
governing equations. Let us define the residuals of the Navier–Stokes operator by

RM (Ū, p̄)= ȧnUn+anam(Un ·∇)Um+bk∇�k−an�Un (3)

RC (Ū)=an∇ ·Un (4)

where summation is taken over repeated indexes and m,n=1, . . . ,Nr ,k=1, . . . ,Np. In the case of
usual POD modes, the residuals relative to continuity equations are identically zero as the velocity
modes are the linear combinations of velocity flow snapshots. However, in more general cases,
see, for example, [9], this may not be the case. The usual approach to obtain a system of ordinary
differential equations (ODEs) from the residuals is that of using a Galerkin approach that consists
in imposing that the residuals are orthogonal to the space spanned by the POD modes. Let the L2

scalar product over (�) be 〈·, ·〉�, and the induced energy norm ‖·‖�, we have

〈RM (Ū, p̄),Un〉� =0, n=1, . . . ,Nr (5)

where � is the flow domain. When the velocity modes are not divergence free we have also

〈RC (Ū),�n〉� =0, n=1, . . . ,Np (6)

If the POD velocity modes are divergence free, integration by parts of the pressure term in
Equation (5) eliminates pressure from the equations, except for a boundary term. This term is
usually neglected although it plays a crucial role in internal flows, where it represents the forcing
term due to pressure drop. Of course, when the POD modes are divergence free, Equation (6) is
identically satisfied. Otherwise, it represents a constraint in the integration of Equation (5). The
Galerkin approach is well suited for linear elliptic partial differential equations (PDEs) for which,
under certain assumptions, there exist proofs of well posedness as well as precise error bounds. In
fluid flows, the problem is non-linear and dominated by advection; therefore, we cannot make use
of such results and it is difficult, hence, to justify this choice on solid ground. Moreover, it can
be shown that advection-dominated flows give rise to POD Galerkin models that are numerically
unstable [4].

Another class of methods results from the idea of minimizing the norm of the residuals. Let us
consider the general case of velocity modes that are not divergence free, and let the scalar product
over space (�) and time ([0,T ]) be 〈·, ·〉T

�, and the induced energy norm ‖·‖T
�. The unknown

functions ai (t) and bn(t) are represented by a spectral formulation over appropriate collocation
points, i.e.

ai (t)=
Nt∑
r=1

âir �r (t), bn(t)=
Nt∑
r=1

b̂nr �r (t)
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where âir and b̂nr are the values of the function at the collocation points and �r (t) are Lagrange
interpolating polynomials. We are left with (Nr +Np)×Nt unknowns that solve

min
ânr ,bn

(‖RM (Ū, p̄)‖T
�+�C‖RC (Ū)‖T

�) (7)

where �C ∈R+ is a penalization weight for the continuity equation. The necessary conditions for
the minimum result in the following non-linear system of algebraic equations:

∀l∈{1, . . . ,Nt }, ∀i ∈{1, . . . ,Nr } and ∀n∈{1, . . . ,Np}

〈�̇lUi +�lLi (Ū),RM (Ū, p̄)〉T
�+�C 〈�l∇ ·Ui ,RC (Ū)〉T

� =0 (8)

〈�l∇�n,RM (Ū, p̄)〉T
� =0 (9)

where

Li (Ū)=(Ū·∇)Ui +(Ui ·∇)Ū−�Ui

In this formulation it is easy to include additional constraints. For example, it is possible to
explicitly take into account the boundary conditions, or to satisfy known first integrals of the flow
such as mass conservation. This can be done by including additional penalization terms in the
minimization of Equation (7).

Yet another option is that of relaxing the spectral ansatz for ai (t) and bn(t) and obtaining a set
of ODEs from

min
an,bn

(‖RM (Ū, p̄)‖�+�C‖RC (Ū)‖�) (10)

which results in

〈Li (Ū),RM (Ū, p̄)〉�+�C 〈∇ ·Ui ,RC (Ū)〉� =0 (11)

〈∇�n,RM (Ū, p̄)〉� =0 (12)

that can be written as ∀i ∈{1, . . . ,Nr },∀n∈{1, . . . ,Np}. This is a set of non-linear algebraic-
differential equations for ai (t) and bn(t). As mentioned, it may be practical to include pressure
together with the velocity vector in the correlation function to compute the POD modes. In this
case, we have an(t)=bn(t) and the above system reduces to the following system of ODEs
∀i ∈{1, . . . ,Nr }:

〈Li (Ū)+∇�i ,RM (Ū, p̄)〉�+�C 〈∇ ·Ui ,RC (Ū)〉� =0 (13)

In Section 4, we will see that this approach is closely linked to recent stabilization methods used
in finite elements.

We could minimize the residuals with respect to ȧn , but this would lead to the classical Galerkin
method. What is used in practice is a blend of the two approaches

〈Ui +�M (Li (Ū)+∇�i ),RM (Ū, p̄)〉�+�C 〈∇ ·Ui ,RC (Ū)〉� =0 (14)

with �M ∈R+ and ∀i ∈{1, . . . ,Nr }.
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The models proposed above enjoy different numerical properties. For example, it is known
that the Galerkin approach is unstable and that the least-square approach is dissipative. However,
a common problem is that these models are not robust with respect to variations of physical
parameters such as the Reynolds number or the effect of a control. Therefore, it was proposed to
introduce a calibration of the model [16] that would modify all or a part of the constant coefficients
resulting from the different projection methods presented above, in order to match as close as
possible the time evolution of the reference simulations. This will be explained in more details in
Section 5.

3. SAMPLING OF THE INPUT SYSTEM PARAMETERS SUBSPACE

The main drawback of POD basis functions is that they are only able to give an optimal represen-
tation of the kinetic energy included in the snapshot database. Usually, this database is collected
from a flow generated with some given system input parameters. Thus, the same basis functions
are not optimal for representing characteristics of another flow generated with different system
input parameters (see [17–19]). The aim of this section is therefore to give an efficient criterion to
sample the input parameter subspace in order to improve the robustness of the POD basis functions.
For simplicity reasons, the input parameter subspace is reduced to a Reynolds number interval
I=[ReL , ReR], where we chose ReL =70 and ReR =180. These values correspond approxi-
mately to the lower and higher bound for the 2D periodic regime for the confined square cylinder
wake flow. Numerically, I is disrcetized with �Re=5, and is denoted Ih . We note that all the
concepts introduced in this study can be easily extended to higher-dimensional control spaces, as
done in Reference [5].

The number of snapshots Ns to be collected in order to perform a POD analysis is flow
dependent. The objective is to capture all the temporal frequencies by a sufficient sampling. An
a posteriori check on the adequacy of the database can be performed by verifying if the retained
POD modes do not vary when additional snapshots are included in the database. By proceeding
in this way the sampling is sufficient although is not necessarily optimal.

In order to improve the functional subspace, we want to enlarge the database in an iterative
way by adding some snapshot sets that correspond to different Reynolds numbers Rei ∈I. Let
U [Re1,...,ReN ] be the database composed by N snapshots sets taken independently at Re1, . . . , ReN ,
where the parameter N has to be determined according to the desired accuracy of the POD basis.
The main question is to determine how to chose these Reynolds numbers to compute a robust
POD basis U(x) from database U [Re1,...,ReN ] so that the POD flow field reconstruction Ū(x, t)
(see Equation (1)) is as close as possible to the numerical solution of the NSE, U(x, t), for all
Reynolds numbers in Ih . Note that we will always use Nr =50 basis functions, even if N>1
Reynolds numbers are considered. The temporal coefficients an(t) are evaluated by projecting the
numerical solution of the NSE onto the POD basis functions, i.e.

an(t)=
∫

�
U(x, t)Un(x)dx (15)

Two class of sampling methods are commonly used for POD. The first one is based on the
Centroidal Voronoi Tessellations (CVT, see [20–22]) that can be efficiently computed using the
Lloyd algorithm [23]. The drawback of such an approach is that the number of sampling points
has to be fixed meaning that we cannot control the degree of accuracy. The second one is based
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on Greedy sampling (see [5]). This is an iterative sampling for which we can choose the degree
of accuracy by fixing a stopping criterion. In this study we will present a hybrid sampling method
that couples both ideas.

To illustrate our sampling method, we will consider an initial database U [Re1] composed of
Ns snapshots collected at Re1 =100. Note that we will always use Ns =200 in this study, so
the database U [Re1,...,Rek ] is composed of k×Ns snapshots. As we can see in Figure 2, the error
defined by

〈U′〉2 =
∫
T

‖U′(x, t)‖2 dt (16)

where U′(x, t)=U(x, t)−Ū(x, t) denotes the missing scales, grows when we move away from
the sampling point Re1 =100. Indeed, we have 〈U′〉2 ∝|Re−Re1|. The Greedy method consists
in sampling the input parameter subspace where the error is maximal, namely

ReGRE
k =arg max

Re
〈U′〉2 (17)

For instance ReGRE
2 =180 in Figure 2. In order to reduce the CPU costs, one usually uses the

residual of the Navier–Stokes operator evaluated with the POD flow field reconstruction, Ū (see
Equation (1)), denoted RM (Ū), instead of using the error (16) (see [5]). Using such an approx-
imation, the new points Rek,k=2, . . . ,N can be computed as being the centroids of the Greedy
region (CGR) IGRE

k

ReCGR
k =

∫
IGRE

k
Re�(Re)dRe∫

IGRE
k

�(Re)dRe
with �(Re)=〈RM (Ū)〉2 (18)

where the Greedy region is

1. centred on the Greedy value ReGRE
K ,

2. with radius mini∈[1;N−1] |ReGRE
K −Rei |,

3. restricted to IGRE
K ⊂I.

70 80 90 100 110 120 130 140 150 160 170 180

5.0E-05

1.0E-04

1.5E-04

Figure 2. Evolution of the error 〈U′〉2 versus the Reynolds number.
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Table I. Evolution of the average error (19) versus the number of CGR sampling points.

k 1 2 3 4 5

ReCGR
k 100 152 81 170 126

JCGR
k 60×10−4 16×10−4 7.7×10−4 3.6×10−4 3.0×10−4

ReGRE
k 100 180 70 140 80

JGRE
k 60×19 ·2−4 19.2×10−4 12.9×10−4 6.1×10−4 4.5×10−4

Figure 3. Evolution of the average error J versus the number of sampling points for the centroidal
Greedy region (CGR) and the Greedy (GRE) sampling methods.

Note that this criterion can be easily transposed for input parameter subspaces with dimension
greater than one. For instance, the Greedy regions are intervals, disks, spheres and hyper-spheres
for dimensions 1, 2, 3 and greater than 3, respectively.

We can see in Table I that this criterion enables a significant reduction of the average error,
noted J, evaluated on the input parameter subspace I under consideration, i.e.

J=
∫
I

〈U′〉2
2 dRe (19)

This a priori centroidal Greedy region sampling method gives points that are more efficient
than the Greedy ones (see Figure 3). Moreover, they are very close to the a posteriori optimal
ones (see [24]).

4. MODEL BY CLOSURE TERMS

This section is devoted to stabilizing the reduced-order models by means of closure terms in
the spirit of least-squares methods presented in Section 2. To be more precise the idea is to
use the variational multiscale method (VMS, see [9, 12]) in order to take into account in the
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ROM the fine scales that are not calculated by standard POD-Galerkin ROMs. The VMS method
is an improvement of the standard streamline upwind Petrov–Galerkin (SUPG). It is based on
approximating the fine scales using the residuals of the Navier–Stokes operator computed with the
truncated POD flow fields. In order to compute the Navier–Stokes residuals the pressure field is
needed. We then use the pressure extended model introduced in Reference [9]

Nr∑
j=1

Li j
da j

dt
=

Nr∑
j=1

Bi ja j +
Nr∑
j=1

Nr∑
k=1

Ci jka jak (20a)

with initial conditions

ai (0)=(U(x, 0),Ui (x))�, i=1, . . . ,Nr (20b)

whereU=(/,�)T denotes the POD basis. For the purpose of reduced-order modeling one wants to
use a very small number Nr of POD basis functions in expansion (1). As it was already mentioned,
the dissipative missing scales (high-order POD modes, namely Ui , i>Nr ) are then not taken into
account in the ROM. Thus, due to a lack of dissipation, the solution of ROM (20) can either
converge toward erroneous limit cycles or even diverge in an exponential way (see Figure 4). It
seems thus it is necessary to introduce into the ROM (20) the effects of the missing scales. In the
spirit of the VMS method the missing scales u′ and p′ can be approximated using the residuals
of the governing equations

u′ �−�M RM (21a)

p′ �−�CRC (21b)
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Figure 4. Comparison of the projected (NS: ♦) with the predicted (standard pressure ROM: —) limit
cycles over 1000 vortex shedding periods.
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where �M and �C denote some constant parameters to be fixed. We recall that the vector functions
RM and RC denote, respectively, the residuals of the momentum and continuity equations evaluated
with the POD fields (1) with Ū=(ū, p̄)T. After some algebra manipulations, the VMS model is

Nr∑
j=1

Li j
da j

dt
=

Nr∑
j=1

Bi ja j +
Nr∑
j=1

Nr∑
k=1

Ci jka jak+Fi (t) (22a)

with initial conditions

ai (0)=(U(x,0),Ui (x))�, i=1, . . . , Nr (22b)

where

Fi (t) = (ū·∇/i +∇�i , �M RM (x, t))�+(∇ ·/i , �C RC (x, t))�

+(ū·(∇/i )T,�M RM (x, t))�

−(∇/i ,�MRM (x, t)⊗�M RM (x, t))� (23)

Note that neglecting the two last terms of (23) leads to the SUPG model. These two additional
terms come from the variational multiscale developments described in Reference [12]. The VMS
ROM (22) with (23) is then stable as one can see from the long time integration performed in
Figure 5.
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Figure 5. Comparison of the projected (NS: ♦) with the predicted (VMS ROM: —) limit cycles
over 1000 vortex shedding periods.
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In comparison with the calibrated models introduced in Section 5.4, the VMS model requires
the calibration‡ of only two parameters, namely �M and �C . Moreover, the VMS model can be
used for a very long time integration. Unfortunately, it is less obvious to fit the VMS model to
several dynamics as it can be done using calibrated models.

5. MODEL BY CALIBRATION

5.1. Controlled flow setup

The controlled flow configuration is the same as that described in Section 1.1. The actuators are
two jets placed on the upper and lower faces of the cylinder. The presence of the actuators is
modeled by imposing a new boundary condition on a small surface �c of the cylinder boundary:

u(x, t) ·n(x)=c(t), x∈�c

The jets are normal to the walls and are driven in opposite phase, as shown in Figure 6:

v(x, t)=c(t), x∈�c

For control purposes, using measurements of the vertical velocity at points x j in the cylinder
wake, we can define a proportional control law

c(t)=
Nv∑
j=1

K jv(x j , t)

where Nv denotes the number of sensors used. We could then use the model to compute the set
of feedback gains K j that minimizes the vortex shedding in the cylinder wake.

5.2. The POD basis

In our case, a numerical simulation of the NSE is performed over a time interval [0,T ], and the
velocity field is saved at Ns time instants ti ∈[0,T ]. This yields a data set {ui (x)=u(x, t i )}i=1..Ns .

In the case of forced flow, the snapshots depend on the control law c(t) used. In this section, we
consider a classical POD basis derived from numerical simulations obtained using several different
control laws c(t) while all the other parameters (such as Reynolds number or domain geometry)
will be the same.

The data set used for the POD is therefore written as

{ui,�(x)=}i=1..Ns ,�=1..Nc

where Nc denotes the number of control laws considered. If C={c1,c2, . . . ,cNc} is the set of
control laws used to obtain the database, the ensuing POD basis is denoted by /(C).

‡Note that these parameters can be found using some scaling arguments (see [25] for more details), so that no
mobilization is required.
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Figure 6. Placement of synthetic jet and sensors for control.

5.3. Dealing with the boundary conditions

In the non-controlled case, we lift the boundary conditions on the velocity fields by defining a new
set of snapshots

wi (x)=ui (x)− û(x)

where û is some reference velocity field that satisfies the same boundary conditions as the snapshots.
In the present configuration, it can be the steady unstable solution or a time average of the
snapshots uk .

When an extra boundary condition is imposed on the cylinder for control purposes, the snapshots
are chosen to be

wi (x)=ui (x)− û(x)−c(t i )uc(x)

where uc(x) satisfies the following criteria:

uc(x)=0 on �\�c and uc(x)=1 on �c

In practice we use the velocity field proposed in [16]

uc(x)= 1

c�
(û′(x)− û(x))

where û′ is obtained in the same way as û but applying a constant control equal to c� on �c . The
low-dimensional solution is now written:

ū(x, t)= û(x)+c(t)uc(x)+
Nr∑
k=1

ak(t)/ j (x) (24)

5.4. POD-Galerkin reduced-order model with calibration

We consider the simple velocity model (as opposed to the pressure extended model (20)). Extra
terms appear in the reduced-order model due to the presence of control:

ȧi (t)= Ai +Bi ja j (t)+Ci jka j (t)ak(t)+Ei ċ(t)+Fic
2(t)+Gic(t)+Hi ja j (t)c(t) (25a)

with initial conditions

ai (0)=〈u(·,0),Ui (·)〉, i=1, . . . ,Nr (25b)
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where

Ei =〈uc,/i 〉

Gi =−〈(û·∇)uc,/i 〉−〈(uc ·∇)û,/i 〉+
1

Re
〈�uc,/i 〉

Fi =〈(uc ·∇)uc,/i 〉
Hi j =〈(uc ·∇)/ j ,/i 〉+〈(/ j ·∇)uc,/i 〉

Setting:

Xi =[Ai ,{Bi j } j=1,...,Nr , {Ci jk} j,k=1,...,Nr ,Ei ,Fi ,Gi ,{Hi j } j=1,...,Nr ]T

and

f(a(t),c(t), ċ(t)) = [1,{a j (t)} j=1,...,Nr ,{a j (t)ak(t)} j,k=1,...,Nr , ċ(t),c
2(t),c(t),

{a j (t)c(t)} j=1,...,Nr ]
the Equation (25a) can be written in the compact form:

ȧi (t)= f(a(t),c(t), ċ(t)) ·Xi

As discussed in several papers [16, 18, 26], the initial value problem (25) can be inaccurate, even
unstable, for it may not take into account enough of the flow dynamics. Indeed, although a number
Nr of modes can be sufficient to capture most of the flow energy, the neglected modes continue
to play an important role in the flow dynamics through their interaction with the resolved ones.

In order to build a robust order model we applied the calibration technique described in [11].
Following that approach, the system coefficients contained in matrix X are adjusted to fit the
solution of (25) to several dynamics.

We consider a database that includes simulations obtained with Nc different control laws to
calculate the POD basis. The system coefficients obtained by Galerkin projection of the NSE on
the Nc-control low-dimensional subspace are denoted X̂. The calibration procedure then consists
in choosing X as the solution of

min
X

Nr∑
i=1

Nc∑
�=1

∫ T

0
( ˙̂a�

i (t)−f(â�(t),c�(t), ċ�(t)) ·Xi )
2dt+�

Nr∑
r=1

‖Xi −X̂i‖2 (26)

where

â�
i (t)=〈u�(·, t),/i 〉

and where � is the Tikhonov regularization parameter and is chosen �1. Following the idea of
[10], all the elements of X are calibrated except the N 3

r terms Ci jk . We recall that this is due to
the assumption that the errors in the Galerkin model are mainly due to the fact that it neglects the
small scales and therefore a large part of the viscous effects, and Ci jk results from the projection
of the convective term.

We refer to a model built using Nc control laws as an Nc-control model. Such a model is
denoted by M(C) where C={c1, . . . ,cNc}.
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5.5. Lift and drag modeling

In this section we present a technique for evaluating the forces on the body using the POD model
developed. We define the lift and the drag coefficients on the square cylinder in the classical way

CL(t)=
∫
S((p(x, t)− p0) ·n̄(x)+�(x, t) · t̄(x))dS

1
2U

2
0 S

· j̄

CD(t)=
∫
S((p(x, t)− p0) ·n̄(x)+�(x, t) · t̄(x))dS

1
2U

2
0 S

· ī

where p0,U0 are the reference pressure and velocity at the inflow and � is the viscous stress tensor.
In order to calculate the lift and drag coefficients we have to provide an estimation of the

pressure field around the square cylinder. A POD procedure is performed also for the pressure
fields. This leads to a set of POD pressure modes �n . The pressure at each time instant can be
developed in terms of the first N p

r modes

p̄(x, t)= p̂(x)+c(t)pc(x)+
N p
r∑

i=1
bi (t)�i (x) (27)

where p̂(x) and pc(x) are the pressure fields of the same reference solutions used to satisfy the
boundary conditions for the velocity.

We recall the Poisson equation for incompressible flows:

�p(x, t)=−∇ ·(u(x, t) ·∇u(x, t)) (28)

Using the expansion for p̄(x, t) and ū(x, t) in terms of the first Nr and N p
r modes, respectively,

and given a control law c(t), the projection of the Poisson equation onto the retained pressure
modes leads to the following system:

L p
ilbl(t) = Ap

i +B p
i j a j (t)+C p

i jka j (t)ak(t)+F p
i c

2(t)+Gp
i c(t)+H p

i j a j (t)c(t)

1 � i, l�N p
r

1 � j, k�Nr

(29)

where

L p
i j =(�� j ,�i )

Ap
i =−(� p̂,�i )−(∇ ·(û·∇û,�i ))

B p
i j =−((∇ ·(û·∇/ j ),�i )−(∇ ·(/ j ·∇û),�i ))

C p
i jk =−(∇ ·(/ j ·∇/k),�i )

Gp
i =−((∇ ·(û·∇uc)),�i )−((∇ ·(uc ·∇û)),�i )−(�pc,�i )

F p
i =−((∇ ·(uc ·∇uc)),�i )

H p
i j =−((∇ ·(uc ·∇/ j )),�i )−((∇ ·(/ j ·∇uc)),�i )
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We denote this model P(C) where C={c1, . . . ,cNc} is again the set of control laws used to
obtain the database. This model enables to calculate the pressure coefficients bi (t) at each time
instant at which the velocity coefficients ai (t) are known.

In order to fit the pressure model to the database solutions, we again perform a multiple control
calibration procedure described above (26) for the Poisson model. We let b̂i (t) be the temporal
coefficients obtained by projecting the pressure (calculated by solving the NSE) onto the POD
subspace. The coefficients Xp are chosen by minimizing the norm of the residual obtained by
substituting b̂i (t) into (29) (as previously C p

i jk results from the Galerkin projection and is not
calibrated).

Once the dynamic low-order model M(C) is integrated the calculated velocity coefficients ar (t)
are used with the model P(C) in order to estimate the pressure coefficients br (t). Both sets of
coefficients are then used to estimate the lift and drag coefficients.

5.6. Results

The described technique was applied in order to build a low-order model of the actuated flow
around a confined square cylinder for Reynolds number Re=150, with feedback control laws.
Different velocity models with one and more control laws and their predictions with different
controls are analyzed in [11]. As in [11] actuation by jets is started only once the flow is fully
developed. With the control turned on the simulation is performed for about seven shedding cycles,
and Ns ≈200 snapshots are saved. The non-dimensional duration of the time interval is T �50.
The number of POD modes retained for the reduced-order model for the velocity is Nr =60.

We chose three different feedback configurations that give three control laws, which we denote
c1(t), c2(t) and c3(t), shown in Figure 7. The figure also shows the drag coefficients obtained for
each control law. For each control law a simulation of the NSE is performed and 200 snapshots
are saved for each simulation. We then defined two control sets, a 1-control set and a 2-control set

C2 ={c2}
C1,2 ={c1,c2}

For each Ci , we computed a POD basis /(Ck) as described in Section 5.2 and a calibrated reduced-
order model Mk =M(Ck) by solving problem (26). The control law c3(t) was chosen to be a test
control law, and was used as input for the NSE and for the reduced-order models M(Ck) defined
above.

The first aim of calibration, which is attained with the above method, is that a model M({c})
fitted to a certain control, provides accurate results when integrated with that control. However,
for estimation and control purposes the model needs to be accurate when integrated with different
control laws. The benefit of using Nc-control models with Nc>1 was shown in [11]. To illustrate
this point we consider the projection of the solution induced by c3 onto the POD subspaces
span{/(Ck)} (for k=2 and k=(1,2)), and the solutions obtained by solving systems Mk with
input c3. Model M2 could be expected to give better results than model M1,2 due to the fact that
the dynamics induced by c3 are closer to those induced by c2 than to those induced by c1. This
can be seen by comparing the coefficients resulting from the projections onto span{/(C1,2)} of the
three different solutions, or by comparing the resulting lift coefficients (see Figure 7). However,
model M1,2 turns out to give a lower reconstruction error than M2. Estimations of the third modal
coefficient by the 1- and the 2-control models are plotted in Figure 8.
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Figure 11. CD and CL DNS versus CD and CL obtained by model integration of {M2 −P2} using c2.

The modal coefficients ai (t) given by the two models Mk are then used in the pressure models
Pk to obtain the pressure modal coefficients bi (t). The number of POD pressure modes retained is
N p
r =60. Figure 9 shows the estimations of some coefficients resulting from solving {M1,2 −P1,2}

with c=c1 and c=c2. In this example, the 2-control velocity–pressure model provides a good
approximation of the pressure coefficients for the two dynamics that it was fitted to by calibration.

In Figure 10 the same coefficients are plotted when the dynamic models are integrated using the
test control law c3. The results obtained with the 1-control model are also shown: for approximation
of the pressure coefficients the 2-control model gives better results than the 1-control model.

We now look at the velocity–pressure model’s capacity to predict the time history of the drag
and lift coefficients. Figure 11 shows the lift and drag coefficients resulting from integrating model
{M2 −P2} with c=c2. The 1-control model proves to be able to reproduce the forces on the
cylinder for the dynamic to which it was fitted. Figure 12 shows similar results obtained with the
2-control model.
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In Figure 13 the DNS lift and drag coefficients are shown together with the predictions of the 1-
control and 2-control models. The figure shows that the 2-control model is able to almost perfectly
reconstruct the coefficients over a limited time interval, while the 1-control model diverges after
only a few time steps.

6. CONCLUSIONS

In this paper we emphasize the different numerical choices that lead to a low-order model. We do
not provide a detailed analysis of each option; however, we present numerical evidences to illustrate
the discussion. We considered a low-order model that includes pressure and that is obtained in a
Galerkin-least-squares framework. It is based on a closure term that can be interpreted either as the
modelization of the effect of the small scales on the large ones, or as a classical penalization term.
This model is stable for configurations where classical POD models are unstable. Future work
will be devoted to extend the Galerkin-least-squares model to control configurations. On the other
hand, we showed how robust models can be obtained by identifying a set of parameters appearing
in the system of ODEs. This procedure enables, for example, the prediction of aerodynamic forces
with a good degree of accuracy. Finally, we showed that the optimal solution sampling leads to
significantly lower representation errors in terms of the POD modes. To make this option viable,
we plan to use the reduced-order model to make the sampling process more efficient.
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