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SUMMARY

In the context of numerical simulations of multiphysics flows, accurate tracking of an interface and consis-
tent computation of its geometric properties are crucial. In this paper, we investigate a level set technique
that satisfies these requirements and ensures local third-order accuracy on the level set function (near the
interface) and first-order accuracy on the curvature, even for long-time computations. The method is devel-
oped in a finite differences framework on Cartesian grids. As in usual level set strategies, reinitialization
steps are involved. Several reinitialization algorithms are reviewed and mixed to design an accurate and fast
reinitialization procedure. When coupled with a time evolution of the interface, the reinitialization procedure
is performed only when there are too large deformations of the isocontours. This strategy limits the num-
ber of reinitialization steps and shows a good balance between accuracy and computational cost. Numerical
results compare well with usual level set strategies and confirm the necessity of the reinitialization procedure,
together with a limited number of reinitialization steps. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In multiphysics flows (multiphase flows, fluid–solid interactions), it is essential to be able to accu-
rately track and represent the evolution of interfaces. For example, in a Lagrangian framework,
particle methods (such as front tracking algorithms [1]) or conforming meshes [2] might be used.
These techniques allow a very accurate localization of the interface but might require possibly com-
plex reseeding or remeshing algorithms, especially for large deformations of the interface. They can
be mixed with Eulerian methods and the ALE method introduced by Hirt et al. [3]. In an Eulerian
framework, an efficient way of capturing interfaces is the level set method, introduced by Osher
and Sethian [4]. It consists of the capture of an interface through the 0-isocontour of a higher-
dimensional function. This eases the treatment of topological changes and can also easily be carried
on in parallel codes, using domain decomposition, for example.

In several applications, an accurate computation of the geometric properties of the interface is
required: for example, the computation of the normal to the interface for methods with second-
order penalty terms in fluid–solid interactions [5] or for computations on numerical domains that
do not fit the physical domain [6]. For the cases of multiphysics flows where the surface tension
plays an important role, accurate computation of the curvature is a key stone. In general, distortions
of the level set function � might lead to significant errors in computing the geometric properties.
One possible way to avoid large errors is the use of the distance function instead of a generic
level set function. Unfortunately, even with a distance function as an initial state, � can derive far
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from the distance function. To circumvent the problem, Sussman et al. [7] introduced a reinitial-
ization algorithm; it consists of an algorithm capable of recomputing the distance function. The
current level set function is then replaced by this simpler function for the advection part. The
reinitialization procedure may also be used in the context of the continuum surface force method
developed by Brackbill et al. [8], where the interface is diffuse: it allows to keep a constant width for
the interface.

Keeping the level set function close to a distance function is a key point in many level set
algorithms. Besides the reinitialization procedure, other methods have been developed over the
years. One alternative is the use of the so-called extension velocity: the velocity field is modi-
fied in the domain to ensure that the transport step will keep the distance property (e.g. [9, 10]).
Another way to keep the distance property is the use of an extra term in the transport equation,
similar to the reinitialization procedures. The idea is to couple advection and reinitialization in a
single step (e.g. [11–15]). In this paper, we focus on the standard reinitialization strategy, where
advection and reinitialization are treated separately, so that the evaluation of the errors can be
performed independently.

Several methods have been developed over the years to perform the reinitialization step. It is
based on the resolution of the eikonal equation

jr�j D 1;

by either searching a stationary solution to a time-dependent Hamilton–Jacobi equation [7] or using
a Gauss–Seidel-based method as in fast marching methods [16, 17] or fast sweeping methods [18].
The original method from [7] can be modified to ensure at least first-order accuracy on the curvature
of the interface, but it is CPU consuming. The fast marching or fast sweeping methods are, on the
contrary, much quicker but might suffer from a lack of accuracy.

The usual level set strategy for an evolving interface is the following:

� Use a transport equation to update �.
� From time to time, reinitialize � with the signed distance function: this step is useful for geo-

metric properties computation, and it also eases the transport step, as the advected function is
simpler and smoother.

Although the reinitialization procedure may improve mass conservation [7], it also introduces
some error by slightly moving the interface [19]. It is then unclear what the frequency of these
reinitialization steps should be.

In this paper, we investigate a (not too expensive) level set technique that ensures a good rep-
resentation of the interface, as well as its geometrical properties, even for long times. The method
is developed in a finite differences framework on Cartesian grids. It has been developed in such a
way that parallelization should be easily and efficiently available. The strategy is based on a lim-
ited number of reinitialization steps. These steps are chosen according to the deformation of the
isocontours of the level set function. They are necessary to prevent creation of small and/or large
gradients near the interface, which could lead to numerical instabilities or increasing error on geo-
metric computations. The method presented in this paper has been developed to handle smooth
interfaces only. In some applications in fluid mechanics, singularities may appear, such as breakups
(e.g. [20]) or corners, where the curvature becomes infinite. In those cases, the accuracy of the
method would drop because of the limiters on the numerical curvature. A better representation of
such phenomena would require special treatments of the singularities and is out of the scope of the
present paper.

The paper is organized as follows: In Section 2, we present the framework and the objectives
we want to reach using a level set technique. In Section 3, we discuss high-order reinitialization
schemes, and we design a method with a balance between accuracy and computational cost. The
strategy for the coupling transport/reinitialization is discussed in Section 4. We conclude in Section 5
with a discussion about the numerical results we obtained.
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2. MOTIVATIONS

2.1. Framework

Let � D ŒxminI xmax� � ŒyminI ymax� be a 2D rectangular domain in which we want to track the
evolution of an interface � . Let us denote by �0 the initial interface. We choose to capture � through
the zero isocontour of a level set function �. U .x; t / denotes the velocity field for the advection of
� . In order to mimic multiphysics flows, we assume that U is available in the whole domain �,
either with explicit expressions or obtained by separate computations. As we are mainly interested in
incompressible fluid mechanics, we will often use divergence-free velocity fields. In this context, the
evolution of � is recovered from the evolution of �, which satisfies the non-conservative equation

@t� C U � r� D 0; (2.1)

�jtD0 D d0; (2.2)

or the conservative form, when r � U D 0,

@t� Cr � .�U / D 0; (2.3)

�jtD0 D d0; (2.4)

where d0 is the signed distance function to �0. Similarly, we will use the notation d for the signed
distance to � . Finally, we denote by n (resp. �) the normal vector (resp. curvature) on the interface
� .

The governing equations are discretized using a Cartesian mesh: we denote by Nx and Ny the
number of nodes in each direction. The mesh size in each direction is defined by

�x D
xmax � xmin

Nx � 1
; �y D

ymax � ymin

Ny � 1
:

The nodes are denoted by xi;j WD .xi ; yj / for i D 1; � � � ; Nx and j D 1; � � � ; Ny . We choose a
uniform spacing for the nodes, that is,

xi D xmin C .i � 1/�x; yj D ymin C .j � 1/�y:

For a given field F , we obviously denote by Fi;j its approximate value at node xi;j . For the sake
of simplicity, we often assume that �x D �y, but the ideas presented here can be carried out with
different mesh sizes. We sometimes also denote by h the typical mesh size (i.e. h D �x).

We work on this Cartesian grid in a finite differences framework. We then introduce the notations
D˙x and D˙y for the one-sided derivatives of a field. The definition of these quantities will differ
depending on the equation we are solving and the accuracy we want to reach.

2.2. Geometric properties computation

In the level set framework, the computation of the normal and the curvature of � is straightforward.
Recall that the normal n and the curvature � are given by

n WD
r�

jr�j
; � WD r � n: (2.5)

If � is the signed distance function, owing to the property jr�j D 1, these expressions read in an
even simpler way n D r� and � D r�. Owing to the definitions of n and �, we rewrite (2.5) as

� D
�2x�yy C �

2
y�xx � 2�x�y�xy�

�2x C �
2
y

�3=2 ; (2.6)

where �x is the first derivative of � with respect to the first variables (and similar definitions for �y ,
�xx , �xy and �yy).
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For numerical computations, the amplitude of the error depends on the chosen level set function.
Let us illustrate this fact on a simple circle of radius R D 0:6. We consider the following setting:

� WD Œ�1I 1�2; (2.7)

� WD
®
x2 C y2 D R2

¯
; (2.8)

d.x; y/ D
p
x2 C y2 �R; (2.9)

and we introduce a level set function �0 that vanishes on � ,

�0.x; y/ WD
d.x; y/

R

�
� C .x � xp/

2 C .y � yp/
2
�
; (2.10)

with � D 0:02, xp D 0:7 and yp D 0:4. We compute the curvature on � in three different ways:

1. computing r
�
r�0
jr�0j

�
, using (2.6),

2. computing r
�
rd
jrd j

�
, using (2.6), and

3. computing �d .

The last two computations are supposed to be equivalent, but the numerical approximations differ.
We use centered second-order finite differences formulas to compute the derivatives, that is,

�x;i;j D
�iC1;j � �i�1;j

2�x
; �y;i;j D

�i;jC1 � �i;j�1

2�y
; (2.11)

�xx;i;j D
�iC1;j � 2�i;j C �i�1;j

�x2
; �yy;i;j D

�i;jC1 � 2�i;j C �i;j�1

�y2
; (2.12)

�xy;i;j D
�iC1;jC1 C �i�1;j�1 � �i�1;jC1 � �iC1;j�1

4�x�y
: (2.13)

The L1 error on the curvature for different mesh sizes is represented in Figure 1. All three compu-
tations exhibit the expected second-order accuracy, but the amplitude of the error is much lower in
the case of d (reduction by a factor of 100). This example shows that if the level set function has
strong and/or weak gradients near the interface, the accuracy of the computation of the curvature is
deteriorated. Even though the three computations show a second-order convergence, it confirms that
it is interesting to work with distance functions, as it provides the lowest amplitude on the error.

Remark 1
In the advection step and in the reinitialization step, there is a need to use decentered stencils in order
to respect the direction of propagation of the information. This is not the case for the computation
of the curvature alone. Moreover, the curvature is a scalar value that we want to evaluate, but we
do not use it as part of the schemes. Therefore, we can use a different stencil, and we choose
(2.11)–(2.12)–(2.13) to keep a good accuracy with a compact stencil.

The rest of this paper is devoted to the design of a fast level set strategy involving reinitialization
steps that satisfies two requirements:

� ensure at least first-order accuracy for the computation of � and
� provide a small amplitude of the error.

The first step is the design of a fast and accurate reinitialization procedure for static interfaces.
The second step is the development of a strategy for the coupling transport/reinitialization, in order
to accurately track moving interfaces. The challenge is to carefully control the gradient of the
numerical level set function without degrading the accuracy of the numerical solution.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 79:654–675
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Figure 1. L1 error on the curvature of the interface versus 1=�x (log–log representation): curvature of the
original level set (1), curvature of the distance function (2) and Laplacian of the distance function (3).

3. HIGH-ORDER REINITIALIZATION SCHEMES

In order to ensure numerical stability of the computations, reinitialization procedures are commonly
used [7]: it consists in replacing the current level set function by the signed distance function. Given
an original level set function �0, the aim is to find � such that the eikonal equation is satisfied,
that is,

jr�j D 1; (3.1)

� D 0 on ¹�0 D 0º : (3.2)

A high-order accuracy near the interface is required to ensure good approximations of the geometric
properties. We want at least first-order accuracy on �, which means that we need at least third-order
accuracy on � (for a classical scheme) near � . Several methods, such as relaxation methods, fast
sweeping methods or fast marching methods, have been designed to solve the eikonal equation.
We start by reviewing the first two and develop a mixed method to obtain a fast reinitialization
procedure. The fast sweeping step might be replaced by a fast marching step, but this issue is out of
the scope of the present paper.

3.1. Relaxation method

Relaxation methods are based on the resolution of the unsteady PDE

@�� C sign.�0/ .jr�j � 1/ D 0; (3.3)

where 	 is a fictitious time, until the steady state is reached [7]. This equation is analogous to a
non-linear transport equation with source term:

@�� C sign.�0/
r�

jr�j
� r� D sign.�0/: (3.4)

The velocity for the transport is of magnitude 1, which means that the steady state should be reached
for 	 � Lmax, whereLmax is the maximum distance between the domain boundary and the interface.
This also implies a CFL condition for iteratively solving (3.3), which is �	 6 �x. This condition
implies that the number of iterations needed for convergence is multiplied by 2 when the mesh size
is divided by 2. This method is then a priori rather slow. In practice, we use �	 D �x=2 and a
third-order Runge–Kutta total variation diminishing (TVD) scheme for pseudo-time evolution [21].

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 79:654–675
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Figure 2. Illustration for the subcell fix. Plain circles stand for nodes close to the interface, and
empty circles are nodes away from the interface. For example, the stencil used for D˙y �i;j is

.xi;j�2Ixi;j�1Ixi;j IxAIxi;jC1/.

The relaxed eikonal Eq. (3.3) is a particular case of a Hamilton–Jacobi equation; numerical
schemes for such equations might be found in [22]. In our particular case, we rewrite (3.3) in the
semi-discrete form

@�� C S.�0/HG.D
C
x �;D

�
x �;D

C
y �;D

�
y �/ D 0;

where HG is the Godunov flux defined as

HG.a; b; c; d/ WD

²p
max.a;�b; 0/2 Cmax.c;�d; 0/2 if sign.�0/ 6 0;p
max.�a; b; 0/2 Cmax.�c; d; 0/2 if sign.�0/ > 0:

S.�0/ is a smoothed sign function defined by

S.�0/ D
�0q

�20 C jr�0j
2.�x/2

:

The accuracy of the algorithm depends on the computation of the one-sided derivatives D˙x � and
D˙y � used in the Godunov flux. No matter which method is used for the computation, the scheme
slightly moves the interface away from its original position. It has been showed by Russo and
Smereka [19] that the use of a standard WENO-5 scheme leads to a displacement that increases with
the number of iterations. To improve the accuracy of the method, it is important to be able to limit
this displacement. As most of it comes from the stencil crossing the interface, they introduced the
so-called subcell fix that ensure the displacement will stop after a certain number of iterations. Using
the subcell fix, they obtained a globally second-order accurate method. This idea has been carried
on in [23] where a third-order scheme is developed. The choice of D˙x � and D˙y � is as follows:

� if the point is close to the interface (Figure 2), use a non-uniform stencil with five points and
an ENO-3 scheme, detailed in [23];
� otherwise, use the standard WENO-5 scheme, see [24] for the original scheme or [25] for finite

differences WENO schemes.

3.2. Fast sweeping methods

Fast sweeping methods ([18] for the original method or [26] for high-order schemes) are based
on Gauss–Seidel-like iterations to solve the eikonal equation. The grid is swept in four alternating
directions, namely

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 79:654–675
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.1/ i D 1; � � �nx ; j D 1; � � �ny ;

.2/ i D nx ; � � � 1; j D 1; � � �ny ;

.3/ i D nx ; � � � 1; j D ny ; � � � 1;

.4/ i D 1; � � �nx ; j D ny ; � � � 1;

and the values of � are updated on the fly. Although fast sweeping methods are not suited for
unstructured grids, they are very efficient on Cartesian grids and likely to be efficiently used in a
parallel environment [27]. The idea is similar to fast marching methods (e.g. [17]), but instead of
following characteristics flowing from � , the nodes are updated when the characteristics are in the
direction of sweeping. The standard first-order method, denoted here by fs1, to update �i;j is the
following: freeze all values of � and find �newi;j such that

"�
s

�
�newi;j � �

x
min

�x

��C#2
C

2
4 s

 
�newi;j � �

y
min

�x

!!C35
2

D 1; (3.5)

where .x/C WD max.x; 0/, s D sign.�i;j / and �xmin is defined by

�xmin WD smin.s�i�1;j ; s�iC1;j /:

�
y
min is defined in a similar way. This first-order scheme is purely upwind and monotone, so that

it requires a number of iterations that is independent of the mesh size [28]. In [26], higher-order
methods are achieved, denoted here by fs3Z, using

�xmin WD smin.s.�i;j ��xD
�
x �i;j /I s.�i;j C�xD

C
x �i;j //;

and a WENO-3 scheme for D˙x and D˙y . Unfortunately, it requires a number of iterations that
increases with the number of degrees of freedom.

We designed a second-order method, fs2, that turned out to have a stable number of iterations,
by replacing the expressions in (3.5) by

"�
s

�
�newi;j � �

x
min

˛�x

��C#2
C

2
4
 
s

 
�newi;j � �

y
min

˛�x

!!C35
2

D 1; (3.6)

with ˛ D 2
3

and

�xmin WD

²
4
3
�i�1;j �

1
3
�i�2;j if s�i�1;j 6 s�iC1;j

4
3
�iC1;j �

1
3
�iC2;j otherwise

�
y
min WD

²
4
3
�i;j�1 �

1
3
�i;j�2 if s�i;j�1 6 s�i;jC1

4
3
�i;jC1 �

1
3
�i;jC2 otherwise

:

The complete fast sweeping scheme is as follows:

� Initialization near �: Set values in the vicinity of the interface, for example, in the band Bn WD
¹d.x; �/ 6 5�xº. These values remain untouched after.
� Initialization of other values: For the method fs1, the other values are set to ˙108 depend-

ing on the sign of d [18]. For higher-order methods fs2 and fs3Z, we use the first-order
approximation given by fs1 as the initial state.
� Iteration: Update � elsewhere by sweeping the grid in four alternating directions,
� Convergence: Stop the computation when the L1 norm between two successive iterations is

small enough.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 79:654–675
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Table I. Comparison of three fast sweeping methods (� is a circle).

fs1 fs3Z fs2

1
�x

Error coc Nit Error coc Nit Error coc Nit

20 1.21E�02 — 3 3.85E�04 — 17 1.56E�03 — 7
40 6.29E�03 0.91 3 5.25E�05 2.77 28 5.44E�04 1.47 7
80 3.18E�03 0.97 3 7.41E�06 2.77 27 1.58E�04 1.75 8
160 1.59E�03 0.99 3 1.04E�06 2.81 33 4.27E�05 1.87 8
320 8.02E�04 0.99 3 1.44E�07 2.83 43 1.11E�05 1.94 7
640 4.01E�04 1.00 3 1.99E�08 2.85 63 2.82E�06 1.97 7

The error is k� � dkL1.�/. ‘coc’ stands for computed order of convergence, and we report
the total number of iterations of the fast sweeping algorithm Nit : 1 fast sweeping iteration
corresponds to 1 sweep in each direction.

This method fs2 is only second order accurate, as it consists in the resolution of

max.sD�x �i;j I �sD
C
x �i;j I 0/

2 Cmax.sD�y �i;j I �sD
C
y �i;j I 0/

2 D 1;

where D˙x �i;j and D˙y �i;j are defined with a decentered second-order finite differences formula,
that is,

D�x �i;j D
3�i;j � 4�i�1;j C �i�2;j

2�x
; D�y �i;j D

3�i;j � 4�i;j�1 C �i;j�2

2�y
;

DCx �i;j D
�3�i;j C 4�iC1;j � �iC2;j

2�x
; DCy �i;j D

�3�i;j C 4�i;jC1 C �i;jC2

2�y
:

Methods fs3Z and fs2 are not based on the same idea, and it is not clear whether a third-order
method built similarly to fs2 is tractable or not, although similar methods have been used in the
context of fast marching algorithms [29, 30]. The three methods fs1, fs2 and fs3Z can be written
in the form (3.6). Unlike fs1 and fs2, the computation of �xmin and �ymin in fs3Z requires the cur-
rent value �i;j . This kind of relaxation effect might explain why the number of iterations increases
when h decreases in fs3Z, while it remains constant for fs1 and fs2.

We illustrate the performances of this second-order fast sweeping on the following example: �
is the square Œ�1I 1�, and � is the circle with centre .0; 0/ and radius 0.5. We initialize the fast
sweeping algorithm by setting the distance function in the narrow band Bn, and we recall that these
values remain fixed during the computation. We compare the results obtained with the methods fs1,
fs3Z and fs2. Note that for second-order and third-order methods, we first apply fs1 in order to
have a suitable initial state. We compute the L1 error on � on the whole domain � and show the
results in Table I.

As expected, this method almost reaches a globally second-order accuracy. Compared with the
high-order method in [26], the number of iterations needed to achieve convergence is relatively
small and stable, that is, does not depend on the mesh size. As the second-order scheme is not very
expensive compared with the first order, it will be handful to quickly (and rather accurately) compute
the distance function in regions far enough from the interface.

3.3. Mixed method

The main goal we want to achieve is the construction of a fast method to solve the eikonal equation,
with high-order accuracy in the vicinity of the interface, where geometric properties are of interest.

We have showed that the relaxation algorithm may be very accurate near the interface, but it is
slower than the fast sweeping approach. However, the fast sweeping method requires a good initial
guess near the interface. It is then natural to couple the two methods in the following way:

� Initialization: We use the relaxation method to fix the values of � in the narrow band Bn; for
this step, we apply the relaxation algorithm on the entire domain and stop the computation
when the accuracy near the interface is good enough.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 79:654–675
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� Fast sweeping: We use the second-order fast sweeping method to compute the distance function
far from the interface.

In order to obtain a good approximation of the distance function near the interface during the
initialization step, we only need to control the accuracy on Bn. The relaxation method has been
shown to be third order accurate near the interface [23], so we stop the computation when

k�.nC1/ � �.n/kL1.Bn/ 6 C.�x/
3; (3.7)

where C is a user defined constant. C should depend on the curvature (or its derivatives), but we
usually use the numerical value C D 1 in the numerical simulations. We define the norm as follows:

k�kL1.Bn/ WD

P
.i;j /=xi;j2Bn

j�i;j j

#¹.i; j /=xi;j 2 Bnº
: (3.8)

Assuming uniformly distributed errors, this stopping criterion ensures that the error on � in the
band Bn is of order 3; thus, the curvature is computed with at least first-order accuracy. Using an
explicit Euler method for the time discretization of (3.3), we infer that the stopping criterion (3.7)
should be equivalent to requiring

kjr�nj � 1kL1.Bn/ 6 C.�x/
2: (3.9)

Again, C is a curvature-dependent constant (possibly different from the previous one), but we
usually choose C D 1. Numerical simulations (not shown here) have been performed with both
criteria (3.7) and (3.9) and give comparable results.

Remark 2
At this stage, the fast sweeping step is performed to guarantee a valid distance function in the whole
domain. When coupled with the transport equation, the distance function is usually not required
away from the interface. However, we keep it because it ensures that the discrete problems we
solve (for any �x or �t ) are approximations of the same continuous problem (see Section 4.3).
Moreover, the computational cost of the fast sweeping step is low compared with the cost of the
partial relaxation step. If one is only interested in having the distance function near the interface, it
should be possible to use the strategy of Section 4.3 with a local criterion and the relaxation step
only. We performed some tests that suggest the same kind of behaviour for both approaches.

Remark 3
In practice, it is sufficient to replaceBn by a neighbourhood of � containing all the points needed for
the computation of geometric properties. In particular, the choice of (2.11)–(2.12)–(2.13) to compute
geometric properties allows a rather small Bn, thus reducing the number of relaxation steps.

3.4. Numerical illustrations

We illustrate the behaviour of the mixed method for reinitialization on two cases: a closed interface
and an interface crossing the boundary of � .

Example 1: Closed interface. The setting is given by (2.7)–(2.10), but with a different radius
R D 0:5. This is a slight modification of the test case of in [19] where � is an ellipse. We choose a
circle so as to have exact solutions for the distance function and the curvature.

The results of the mixed reinitialization algorithm are presented in Table II. We illustrate the
second-order accuracy of the method, using the L1 norm over the whole domain �. This second
order is due to the second-order fast sweeping step. We compute the L1 error on � in the narrow
band Bn. We observe the expected third order. We show two series of results for the L1 error on �
on the interface. The first one uses the second-order finite differences formulas (2.11)–(2.13). The
second ones uses a first-order formula for the approximation of �. The latter exhibits a clear first-
order convergence, whereas it is not that clear for the usual computation of �. However, a linear
regression on the results gives an average rate of convergence of 0.996. Even if the error seems to
deteriorate for fine meshes, it is still better to use the second-order centred finite difference formula
because the amplitude of the error is reduced by a factor of at least 10 for reasonable meshes.
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Table II. Convergence errors for example 1 (circle).

k�h � dkL1.�/ k�h � dkL1.Bn/ k�h � �kL1.�/ k�h � �kL1.�/

1
h

Error coc Error coc Error coc Error coc Nit CPU time

20 3.37E�03 — 3.12E�02 — 1.81E�02 — 8.95E�02 — 24 0.048
40 4.25E�04 2.88 1.51E�03 4.22 5.15E�03 1.75 4.01E�02 1.12 26 0.160
80 1.10E�04 1.92 2.48E�04 2.56 1.28E�03 1.98 1.91E�02 1.05 28 0.604
160 3.19E�05 1.77 2.85E�05 3.09 4.65E�04 1.44 9.38E�03 1.01 31 2.560
320 9.43E�06 1.75 3.37E�06 3.06 1.60E�04 1.53 4.52E�03 1.05 34 11.09
640 2.57E�06 1.87 6.09E�07 2.46 1.97E�04 �0.30 2.34E�03 0.95 36 46.88
1280 6.82E�07 1.91 6.98E�08 3.12 1.51E�04 0.38 1.18E�03 0.98 38 206.1

Errors on the curvature are relative errors. Nit stands for the total number of iterations required by the
reinitialization algorithm (relaxation + fast sweeping).

Figure 3. Left: distance function associated to the ‘wave-like’ interface (example 2). Right: initial level set.
The original interface �0 is the thick line. Other lines are isolines of �.

Example 2: Wave-like interface. Now, we turn our attention to a case where � crosses the
boundary of �. We use � D Œ�1I 1�2 and the interface

� WD
®
.x � x0/

2 C .y � y0/
2 D r20

¯
;

with .x0; y0/ D .�0:1I �1:2/ and r0 D 1:7; see Figure 3. � is the graph of a C1 function, and we
start with

�0.x; y/ D y � y0 �

q
r20 � .x � x0/

2:

The distance function we want to compute is depicted in Figure 3.
Note that when the interface touches the boundary of the domain, we need to extend � outside�.

For this particular case, one could choose the natural extension by the circle C0 with centre .x0; y0/
and radius r0. In order to have a method that can be easily adapted for any kind of interfaces, we
choose an extension with straight lines, tangent to � . Thus, �0 is the distance to C0 except in the
bottom-left and bottom-right corners.

With this kind of extension, we may encounter inflows for the gradient of the level set. Thus, we
have to handle part of the boundary using Dirichlet-type boundary conditions. The main difference
with usual Dirichlet boundary conditions is that the boundary values we want to enforce are a
priori unknown. Using linear extensions allows to accurately know the boundary values, so that
ideas from [31] might be considered, that is, the use of Richardson extrapolation or a Lax–Wendroff
procedure. However, the extension introduces a discontinuity line for D2� (cf. Figure 4), so that
none of these ideas prevent the loss of the third-order accuracy in a neighbourhood of � . Thus, we
choose a more naive approach to enforce Dirichlet conditions:

� Relaxation step: at the inflow boundary only, we add a Dirichlet step where we replace � by
the distance to the extension of � .
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Figure 4. The extension of � introduces the red line as a discontinuity line forD2d (hence also for �). Here,
� is part of the circle .x � x0/2 C .y � y0/2 D r20 and crosses the boundary of �.

Table III. Convergence errors for example 2.

k�h � dkL1.�/ k�h � dkL1.Bn/ k�h � �kL1.�/ k�h � �kL1.�/

1
h

Error coc Error coc Error coc Error coc Nit CPU time

40 4.84E�04 — 4.40E�03 — 7.53E�03 — 8.36E�02 — 19 0.143
80 5.50E�05 3.08 3.40E�04 3.63 3.44E�03 1.11 8.44E�02 �0.01 23 0.599
160 9.01E�06 2.59 3.94E�05 3.08 2.38E�03 0.53 8.99E�02 �0.09 25 2.468
320 2.11E�06 2.09 4.84E�06 3.01 1.14E�03 1.05 1.06E�01 �0.24 28 10.51
640 5.32E�07 1.98 9.54E�07 2.34 6.21E�04 0.87 8.44E�02 0.33 30 43.79
1280 1.40E�07 1.93 2.55E�07 1.90 3.14E�04 0.98 5.96E�02 0.50 33 186.6

� Fast sweeping step: The conditions are enforced in a band near the inflow boundary, and not
only on the boundary.

In our case, the bottom-left and bottom-right parts are Dirichlet boundaries, more precisely,
denoting @�D the inflow boundary, we have

@�D D

²
.x; y/ = .x D xmin or x D xmax/ and y 6 y0 C

q
r20 � .x � x0/

2

³
:

We present the results in Table III. Again, the global second-order accuracy is reached. The linear
extension of � introduces shocks near the intersection between � and the boundary of �; this
leads to a loss of accuracy in Bn. As a result, the L1 error on � is only second order accurate,
and the computation of the curvature is also altered. We do not have the first-order accuracy in the
L1 norm on � , but we still have it for the L1 norm. This implies that � is well computed away
from the boundary points only. Note also that the number of iterations needed for convergence is
different than for the previous example, but it is still increasing very slowly. As a comparison, for
both examples, the resolution of the eikonal equation using only the relaxation method would have
required more than 2000 iterations on the finest mesh (and then much more CPU time).

4. COUPLING TRANSPORT AND REINITIALIZATION

In this part, we investigate the coupling between the transport of the interface and the computation
of the distance function. We present results where the interface is passively advected by a velocity
field. We choose divergence-free velocity fields to emulate an incompressible flow. The challenge is
to find a strategy that avoids too many reinitialization steps, because this procedure may introduce
some errors in the position of the interface.
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4.1. Advection

Recall that we have at hand a velocity field defined on �. In some applications, a different velocity
is used for the advection step. This so-called extension velocity is supposed to keep � as close
as possible to the signed distance function and helps reduce the number of reinitialization steps.
However, distortions of � might lead to a loss of smoothness, that is, the original velocity might
be smoother than the extension velocity, and we infer that it could lead to higher errors during the
advection part. We choose to work with the original velocity, and to solve

@t� C U � r� D 0: (4.1)

Note that we use (4.1) even in the cases where U is divergence free. A WENO-5 scheme is used
to compute spatial derivatives, and the time evolution is performed with an RK3-TVD scheme. For
this advection, we use a time step that satisfies the CFL condition

�t <
�x

max jU j
:

4.2. Number of reinitialization steps

In the usual level set strategies, it is claimed that reinitialization is necessary but should not be
performed too many times. This is again due to the slight displacement of the interface induced by
the reinitialization algorithms. Even with a high-order reinitialization, the computation of the signed
distance function at each time step might lead to significant errors in the position of the interface
for long times. It is then necessary to limit the number of reinitialization steps. For a given final
time, one might think of setting a maximum number of reinitialization steps and distribute them
uniformly in time. However, it is unclear how to choose the maximum number of reinitialization
steps. Our approach is based on the fact that, during the transport of � , � slowly deviate from a
distance function. We choose to perform the reinitialization when � is ‘too far away’ from the signed
distance function.

4.3. Strategy

Recalling that the distance function has the property jrd j D 1, we introduce the quantity
rg.r�/ WD kjr�j � 1kL1.�/. We choose a threshold • > 0, and we consider the following
continuous problem:

� Initialization: Start with �0 D d0, the signed distance function to �0.
� Transport: While rg.r�/ < •, evolve � according to (4.1).
� Reinitialization: When rg.r�/ D •, set �0 D � and recompute the signed distance function
d . Set � D d and go to Transport.

The method we want to use is based on a discrete approximation of this problem. The only modi-
fication is that the reinitialization steps occur when rg.r�/ > •. Using the continuous problem as
a reference, we see that the solution we want to approximate does not depend on the mesh size or
the time step. This is a major difference compared with usual level set strategies where the reini-
tialization steps are performed every 5 or 10 time iterations and/or the reinitialization procedure
is performed only in a narrow band, typically of length 5�x, near the interface. It is then reason-
able to check if there is a convergence order. Numerical simulations tend to assess the expected
high-order accuracy.

4.4. Numerical illustrations

We illustrate the performances of the new strategy on several examples. We start by showing that the
coupling with the transport equation preserves the first-order accuracy on �. This is not the case for
usual level set strategies, and the results obtained with the new strategy compare well with standard
approaches. We then illustrate the necessity of the reinitialization procedure when steep gradients
are likely to be created. We also investigate the influence of the threshold • in the scheme, and we
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Table IV. Example 3 (vortex case).

k�h � dkL1.�/ k�h � dkL1.Bn/ k�h � �kL1.�/ .t D 4/ k�h � �kL1.�/ .t D 2/

1
h

val coc val coc val coc Nred val coc

40 8.62E�04 — 2.44E�03 — 2.11E�01 — 17 1.47E�01 —
80 8.60E�05 3.27 3.04E�04 2.95 5.59E�02 1.88 17 4.63E�02 1.64
160 3.08E�05 1.47 2.23E�05 3.73 1.41E�02 1.97 16 1.51E�02 1.60
320 9.30E�06 1.72 1.97E�06 3.48 5.22E�03 1.43 16 4.60E�03 1.70
640 2.52E�06 1.88 1.15E�07 4.09 3.65E�04 3.83 17 3.16E�04 3.86
1280 6.59E�07 1.94 1.07E�08 3.43 9.73E�05 1.91 16 2.17E�04 0.54

Errors on � and � at t D 4 (first three columns). Total number of reinitialization steps (Nred ). Error on � at t D 2
(last column).

end the section by showing that the method depends very weakly on the time step, which makes it
robust if coupled with problems where �t is modified during the simulation.

4.4.1. Closed interface and vortex. We first present some results on a moving closed interface.
Example 3: Vortex case. This example is a slight modification of the original vortex example

in [32]. The difference is that we impose a periodic velocity so as to recover the initial interface
after a given time. The computational domain is � D Œ0; 1�2. The initial interface �0 is the circle
with centre .1

2
; 3
4
/ and radius 0.15. The velocity field is given by the scalar potential:

U D cos

�

t

T

�
r?!; ! D

1

2

sin2.
x/ sin2.
y/; (4.2)

with T D 2. With this choice of U , the interface is � D �0 for t D 0, t D 2 and t D 4. The initial
level set is the signed distance to �0. We use meshes with typical length from 1=40 to 1=1280 and
perform simulations for t 2 Œ0; 4�. We use the threshold • D 0:1 for reinitialization. The computation
of the signed distance is enforced at t D 4 for each mesh. We report the results in Table IV at t D 4,
as well as the error on � at t D 2. We also report the total number of reinitialization steps during the
whole computation.

These results confirm the good behaviour of the method, even when coupled with the transport
of the interface. As expected, the number of reinitialization steps needed is almost uniform in h,
because the strategy is based on the approximation of the same continuous problem.

The results on � at t D 2 are presented because it is not a reinitialization time, but � is the original
circle. As we enforce the computation of the signed distance function at t D 4, it is natural to wonder
whether the good approximations properties that we observe is due to that last reinitialization or not.
Results at t D 2 confirm that we have the first-order accuracy on �, even for intermediate times.

Note that for this example, we obtain better results than the third-order accuracy expected for the
L1 error on � in the narrow band. This behaviour explains the higher order for the curvature.

4.4.2. Comparison with usual level set strategies. When accuracy is needed near the interface,
usual level set strategies consists of using the relaxation method. The reinitialization procedure is
performed at each time step (or every 5 or 10 time step), and a fixed number of iterations (3 or
5, e.g.) is used. We use the same setting as before and perform the computation until t D 2. We
compare four cases:

1. five iterations of the relaxation method, every five time steps;
2. three iterations of the relaxation method at every time step;
3. our new method, with • D 0:1; and
4. our new method, with • D 0:01.

Results are presented in Tables V and VI. We compare the computation of the curvature at t D 2, the
position of the interface and the volume loss. As r � U D 0, the volume should be constant, that is,
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Table V. L1 error on the curvature at t D 2 for the four cases.

Case 1 Case 2 Case 3 Case 4

1
h

Error coc Error coc Error coc Error coc

40 1.82E�01 — 1.18E�01 — 1.47E�01 — 1.22E�01 —
80 5.53E�02 1.69 6.35E�02 0.87 4.63E�02 1.64 4.16E�02 1.53
160 7.07E�02 �0.35 7.62E�02 �0.26 1.51E�02 1.61 1.30E�02 1.66
320 6.56E�02 0.11 9.56E�02 �0.33 4.58E�03 1.71 3.87E�03 1.74
640 1.10E�01 �0.75 2.01E�01 �1.07 3.27E�04 3.80 3.05E�04 3.66

Table VI. Error on the position of � and volume loss at t D 2.

Case 1 Case 2 Case 3 Case 4

1
h

pos. vol. loss pos. vol. loss pos. vol. loss pos. vol. loss

40 2.19E�03 6.82E�03 7.89E�04 1.06E�03 2.20E�03 5.67E�03 1.03E�03 2.50E�03
80 2.99E�04 9.39E�04 1.58E�04 2.72E�04 2.90E�04 4.06E�04 1.77E�04 1.53E�04

160 6.45E�05 1.86E�04 9.20E�05 2.19E�04 2.07E�05 1.88E�05 1.80E�05 1.30E�05
320 3.19E�05 7.38E�05 4.27E�05 1.15E�04 1.59E�06 9.66E�07 1.44E�06 9.25E�07
640 1.63E�05 3.66E�05 2.25E�05 6.21E�05 7.83E�08 4.30E�08 8.02E�08 3.50E�08

d

dt

Z
¹�.x/60º

1 dx D 0:

The total number of reinitialization steps for the finest mesh is respectively 256, 1240, 10 and
86 for each case. The results show that usual reinitialization strategies do not ensure an accurate
computation of �, while the new method is first order accurate on the curvature. We also notice that
both the position of � and the volume are computed more accurately with the new method. For
cases (1) and (2), they are approximated with first-order accuracy, whereas the new method exhibits
an average rate of convergence of almost 4.

The maximum deformation of � is for t D 1. In this example, the distortion is not too severe, so
that cases (3) and (4) (i.e. the new method with� D 0:1 and� D 0:01) give similar results. Table V
indicates that a rather small number of reinitialization steps is needed to obtain accurate results. In
this particular case, it is even better to use the transport equation without any reinitialization (cf. also
Section 4.4.4). However, as shown in the next section, reinitialization steps are sometimes necessary
to obtain accurate approximations.

4.4.3. Formation of steep gradients near the interface. On the previous example, because the dis-
tortion of � is not too severe, there is no creation of (very) steep gradients near the interface.
Reinitialization might be critical to accurately compute the curvature when the flow tends to create
steep gradients, for instance, in the case of the merging of two bubbles [7]. We illustrate this fact
and the behaviour of our method on two cases.

Example 4: We use the following setting:

� D Œ�1I 1�2; (4.3)

�0 D ¹y D 0º ; (4.4)

U D r?!; (4.5)

!.x; y/ D
1

2

sin.
x/2 sin.
y/2: (4.6)
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With this choice, the interface does not move, that is, � D �0. The final time is t D 6. Without
reinitialization, the isocontours of � are greatly distorted, and steep gradients appear, even in the
neighbourhood of � (cf. Figure 5).

Example 5: Flow around a circular cylinder. In the case of a flow around a motionless cylinder,
the usual form for the components of the velocity is given in polar coordinates by

Vr D

�
U1 �

K

r2

�
cos.�/; (4.7)

V� D �

�
U1 C

K

r2

�
sin.�/: (4.8)

We choose U1 D 1, K D 1, �0 is the circle with radius 1, centred at the origin, and the numerical
domain is � D Œ�3I 3�2. We slightly change the velocity field inside the cylinder to avoid the
singularity at the origin, by setting

Ur D ˛c.r/Vr ; U� D ˛c.r/V� ;

where c.r/ D min.1; r
0:5
/3 and ˛ is chosen so that kU kL1.�/ D 1. With this setting, the inter-

face does not move (even if U ¤ 0 on �). Again, without reinitialization, the isocontours of �
are severely distorted, leading to numerical issues for the transport itself (cf. Figure 5). As for

Figure 5. Isocontours of � for example 4 ( left) and example 5 (right) at t D 6 without reinitialization. � is
the dark thick line.

Table VII. Example 4: k�h��kL1.�/ at t D 6 and computed order
of convergence.

• D 0:01 • D 0:1 • D 1

1
h

Error coc Error coc Error coc

40 1.03E�02 — 1.65E�02 — 7.20EC00 —
80 2.68E�03 1.90 1.10E�03 3.84 4.11E�01 4.06
160 4.13E�04 2.68 1.54E�04 2.81 1.55E�02 4.69
320 1.50E�04 1.46 6.70E�05 1.20 8.37E�04 4.19
640 3.59E�05 2.05 5.30E�05 0.34 5.04E�05 4.04

The number of reinitialization steps for the last mesh is 175, 40 and 1,
respectively.
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Table VIII. Example 5: k�h � �kŁ1.�/ at t D 6 and computed order
of convergence.

• D 0:01 • D 0:1 • D 1

1
h

err. coc err. coc err. coc

40 7.24E�02 — 8.35E�02 — 1.40EC00 —
80 3.91E�02 0.87 1.68E�02 2.27 2.15EC00 �0.61
160 9.71E�03 1.99 5.09E�03 1.71 3.53EC00 �0.71
320 3.66E�03 1.40 2.51E�03 1.01 8.22EC01 �4.52
640 2.51E�03 0.54 1.88E�03 0.42 1.57EC02 �0.93

Figure 6. Example 3 (vortex case): error on the curvature (left) and the position (right) of � , depending on
the value of •. The squares represent the number of reinitialization steps required (logarithmic scale).

Figure 7. Example 5 (flow around cylinder): error on the curvature (left) and the position (right) of � ,
depending on the value of •. See Figure 8 for a zoom on the region • 2 Œ0I 0:3�. The squares represent the

number of reinitialization steps required (logarithmic scale).

example 4, the final time is t D 6.
For both examples 4 and 5, we compute the curvature at the final time, with three different values

of •. We enforce a reinitialization step at the end. For • D 0:01, the distortion of the isocontours of
� between two reinitialization steps is mild, whereas for • D 1, there is no reinitialization until the
final time. The L1 error on the curvature (on �) is reported in Tables VII and VIII.

In both cases, results are improved thanks to the reinitialization procedure. In example 4, a fine
mesh (640�640) is necessary to obtain comparable results. In the case of the flow around a cylinder
(example 5), reinitialization is even necessary to obtain a consistent computation of �. The compu-
tation of other quantities (not shown here), such as the position of the interface or the volume loss,
shows the same behaviour. This example confirms that the reinitialization steps are indeed necessary
in some cases to obtain stable and accurate enough numerical simulations.
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4.4.4. Impact of the threshold •. We now compare the results we obtain with several values of the
threshold • that controls the reinitialization steps. The limit • ! 0 corresponds to perform the
reinitialization procedure at every time step, for which we expect a loss of accuracy on �. The limit
• ! C1 corresponds to the case of transport alone. We test the influence of • on two examples:
the case given in Section 4.4.2 and the flow around a cylinder (4.7)–(4.8). The computations are
performed on a 160 � 160 mesh. For each case, we compute the curvature and the position of � at
the final time, respectively t D 2 and t D 6.

Results are presented in Figures 6 and 7, respectively. For each case, there seems to be an optimal
value of • that gives the lowest amplitude on both the curvature and the position of � . The error
decreases rapidly when • increases (Figure 8): it confirms that it is best not to choose a too small
threshold. This behaviour is more explicit for example 5: the error on the curvature for • D 0 is
almost 0.12 while the minimum error for • � 0:08 is almost 2:2 10�3. For values of • that are not too
small, there is a range for which the number of reinitializations (and hence the results) is comparable.
Finally, in the range of bigger •, that is, very small number of reinitialization steps, the behaviour
is different in the two examples. In the first case, the slight distortion of � and the reversibility of
the test case allow better results without reinitialization. On the contrary, in the second case, the
distortion is more severe and increases in time, so that transport alone leads to huge errors compared
with computations with reinitializations. In general cases, the behaviour of the isocontours of � is
not known a priori; the use of a rather small threshold • seems to be a good compromise to obtain
accurate results.

4.4.5. Sensitivity to the time step. We have shown that, for rather small values of •, the numerical
method we have presented gives good results compared with usual level set strategies. Recall that in
these level set strategies, a reinitialization step is performed every N time steps, where the typical
values of N are 1, 5 or 10; thus, decreasing�t increases the number of reinitialization steps. It may
lead to significant differences in the accuracy. We investigate the behaviour of our new strategy with

Figure 8. Example 5 (flow around cylinder): error on the curvature (left) and the position (right) of
� , depending on the value of •. The squares represent the number of reinitialization steps required

(logarithmic scale).

Table IX. Example 3 with T D 4.

ı D 0 ı D 0:01 ı D 0:1 ı D 1

�t

�x
Error Nred Error Nred Error Nred Error Nred

1 3.69E�01 640 3.35E�01 180 2.96E�01 17 1.76E�02 1
1/2 1.4337 1280 3.31E�01 208 2.86E�01 17 1.76E�02 1
1/4 27.158 2560 3.28E�01 220 2.82E�01 17 1.76E�02 1
1/8 31.058 5120 3.69E�01 224 2.92E�01 17 1.76E�02 1

Error k�h � �kL1.�/ and total number of reinitialization steps at t D 4 for several values of •
and �t .
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respect to the time step. The setting is that of example 3 with T D 4. Simulations are performed on
a 160 � 160 mesh, for several values of �t . The L1 error on � at t D 4 is represented in Table IX,
with different values of •. Other quantities such as the position of the interface or the volume have
been computed (results not shown) and exhibit a similar behaviour. A reinitialization step is enforced
at t D 4.

As expected, the case • D 0 shows the same behaviour as usual level set strategies, that is, the
results become worse and worse as �t decreases. On the contrary, for • > 0, the results weakly
depend on �t . Thus, the method is insensitive to �t ; in many simulations, it might be useful to
change �t according to U to improve computational efficiency. The use of • > 0 ensures that there
will be no loss of accuracy.

4.4.6. Comparison with moment of fluid methods. In this section, we give some details about the
behaviour of our strategy, compared with some other high-order methods. We quantitatively com-
pare our method with the coupled level set/moment of fluid (CLSMOF) method in [33] and give
some remarks about the comparison with gradient augmented level set methods (GALSM) in [34].
In order to compare results with the CLSMOF methods, we focus on the symmetric difference error,
that is, the sum over all the cells of the difference between the real area enclosed in the cell and the
recomputed area. An illustration is given in Figure 9. Note that we use piecewise linear reconstruc-
tion of the interface. As we have an accurate level set function, it should be possible to obtain better
estimations by using information on the derivatives of � and computing quadratic reconstruction for
example. Denoting�E (resp.�C ) the exact (resp. computed) domain enclosed by the interface, we
compute the local and global symmetric difference errors with

Ei;j WD

ˇ̌̌
ˇj�E \ Ci;j j � j�C \ Ci;j j

ˇ̌̌
ˇ Esym WD

X
i;j

Ei;j ; (4.9)

where Ci;j denotes the cell with bottom-left corner xi;j . We compare the methods on the following
example.

Figure 9. Illustration of the symmetric difference error (grey area). �C is the reconstructed interface.

Table X. Example 6 with T D 0:5 (left) and T D 8 (last column). Three different
advection scheme are used: a non conservative scheme (NC), a conservative scheme (C)
and GALSM. The symmetric difference error is not normalized by the actual area of the

circle, which is 7:069 10�2.

T D 0:5 T D 8 (C) T D 8 (NC) T D 8 (GALSM)

1

�x
Esym coc Esym coc Esym coc Esym coc

32 4.53E�04 - 1.67E�01 - 7.07E�02 - 2.15E�01 -
64 1.30E�04 1.76 6.82E�02 1.29 7.07E�02 0.00 5.97E�02 1.81
128 3.26E�05 1.98 2.33E�02 1.55 3.26E�02 1.12 1.08E�02 2.43
256 7.65E�06 2.08 4.78E�03 2.29 6.57E�03 2.31 2.74E�03 1.98
512 1.90E�06 2.00 8.94E�04 2.42 1.12E�03 2.55 1.18E�03 1.21
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Figure 10. Under-resolved grid. The interface crosses twice the left and right boundaries of the cell. The
four blank circles cannot be detected and are not used in the reinitialization procedure. Thus, information is

lost and cannot be recovered afterwards.

Example 6: Weakly and strongly distorted vortex case. We use the same geometric setting as in
example 3, but we use

U WD 2 cos

�

t

T

�
!:

We perform numerical simulations with T D 0:5 and T D 8, in order to compare results with that
in [33] and compute Esym at t D T . The case T D 0:5 is quite smooth, and numerical results
are expected to be good. On the contrary, the case T D 8 is challenging because the interface is
distorted and filaments are created. The numerical results are reported in Table X.

As expected, the results are very good for T D 0:5 even though we have used a non-conservative
scheme for the advection of �. They quantitatively compare with the result of [33, Table 3]. The
results for T D 8 are worse. We present results with a non-conservative scheme, with a conservative
scheme and for a coupling with GALSM [34] for the advection part. The use of a non-conservative
scheme for the advection equation leads to a total loss of volume on coarse grids. In this respect,
the method does not perform as well as CLSMOF on coarse grids. However, once the grid is fine
enough, we have an expected order of convergence of 2 for the symmetric difference error. The
results with GALSM on the finest mesh are not as good as expected, which might be explained by
the fact that we did not use any gradient limiter (e.g. [35]). However, for the cases (C) and (NC),
the method behaves correctly when the grid is fine enough to detect the thinnest structures. As a
comparison, the reported error on a 256 � 256 mesh is here around 4 � 10�3, while the CLSMOF
(using adaptive mesh refinement) is able to give comparable results with a 64 � 64 mesh (effective
mesh resolution [33]). There are two features that may explain the behaviour of the method on
coarse grids:

� When the inner domain enclosed by � is too thin (e.g. Figure 10), the reinitialization procedure
loses information that cannot be recovered afterwards.
� The method separates the advection from the reinitialization, so that a non-conservative

advection scheme is likely to lose volume more quickly and thus amplifies the previous point.

In the case of example 6 with T D 8, both phenomena occur. Even though the conservative scheme
or the GALSM might help improve a little the results on a coarse grid, the first phenomenon is
likely to give the major contribution to the error. So far, the intersection between � and the mesh is
computed only when the value of � changes sign between two adjacent nodes. Thus, configurations
depicted in Figure 10 are not detected. It should be possible to improve the accuracy of the method
on coarse grids with better tools to capture the intersection between � and the mesh, but this issue
is beyond the scope of this paper.

5. DISCUSSION
5.1. Numerical simulations

We have described a level set strategy that allows accurate computations of geometric properties
of an evolving interface. The strategy is based on a limited number of reinitialization and may be
coupled with any third-order accurate method to solve the transport equation. The computational
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cost is limited thanks to the reinitialization algorithm and the limited number of reinitialization
steps needed:

� The cost of one reinitialization step is quite low, but with a good accuracy for the computation
of geometric properties. For example, we have shown examples where the total number of
iterations during the reinitialization procedure does not exceed 40, even on a 1280 � 1280
mesh, while the relaxation method alone would have required nearly 2000 iterations.
� The number of reinitialization steps is controlled by the distortion of the level set itself, so

that reinitialization only occurs when flat or steep gradients are created. In other cases, the
amplitude of the error on � remains reasonable.

Compared with usual level set strategies that involves either an incomplete reinitialization or
a number of reinitialization steps that depend on the mesh size or the time step, this method
exhibits a third-order accuracy on � and then a first-order accuracy on �. This approximation result
allows the coupling between this level set strategy and a numerical scheme involving n or �. On a
computational point of view, it also allows to anticipate the behaviour of the numerical codes when
meshes are refined. These results confirm that it is interesting to have a method for which the total
number of reinitialization steps does not depend on�x or�t . We performed other simulations with
the new reinitialization procedure, but we uniformly distributed (in time) reinitialization steps. For
the same number of iterations, the results are comparable, yet a little worse on � than the strategy
presented in Section 4.3.

Although the method is third order accurate for (smooth enough) closed interfaces, the perfor-
mance is altered when the interface crosses the boundary of the domain. The main issue is that we
have artificially introduced a discontinuity by extending � with straight lines. The discontinuity line
is crossing the interface at the boundary, leading to a loss of accuracy in the computation of geo-
metrical properties (cf. Figure 4). It should be possible to recover the first-order accuracy on � in
several ways:

� use a different extension for � , to ensure that the regions where the second derivative of d is
discontinuous does not touch �; and
� use a different stencil to compute � near the boundary, to ensure that only points in the ‘smooth

regions’ are involved.

Note that it is sufficient to replace Bn (used in the relaxation step) by a neighbourhood of �
containing all the points needed for the computation of geometric properties.

Finally, the method involves a criterion to perform the reinitialization, namely, rg.r�/, and a
threshold •. We have defined rg on the whole domain �, but it is possible to use only a neighbour-
hood of � , provided it is uniform in h. The threshold can be taken as small as desired; decreasing •
increases the number of reinitialization steps needed. In general, there is no way to know if strong
deformations of � will occur, or if they could be reversible. In such cases, we have shown that it
is indeed preferable to use reinitialization, with a threshold that is not too small, in order to obtain
better results. Unfortunately, it remains not clear how to make that choice. In practice, we often use
a threshold • 2 Œ0:01I 0:1�, for which there seems to be only a few differences in the results.

5.2. Extensions of the method

Although the work presented here is only for 2D it is clear that the same strategy could be carried
out in a 3D framework without modifications. We have also chosen methods that should be eas-
ily parallelized. In the Cartesian framework, the parallelization might be performed using domain
decomposition. This should be tractable for the relaxation step, with a small loss of scaling due
to the large WENO stencil. If domain decomposition is not efficient enough for the fast sweeping
step, the strategy developed by Detrixhe et al. [27] may be used; it is based on the fact that, when
sweeping in one direction, nodes in the orthogonal diagonal are independent of one another.

The method has been illustrated on passively advected interfaces with a given velocity field, but
it might be used for other applications, provided the transport step is accurate enough. It is suitable
in the case of fluid mechanics where the velocity field is available on the whole domain. In the cases
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where U is only given on � (e.g. for surfaces moving with curvature-dependent speed, see [4]), it
still might be used with a suitable extension velocity construction [9, 36].

Finally, the method has been developed in the context of smooth interfaces, so that the high-
order accuracy of the two separate steps (advection and reinitialization) ensure a global high-order
accuracy. In the case of non-smooth interfaces, for example, interfaces with corners, non-diffusive
advection schemes have to be considered. For the reinitialization procedure, the algorithm shown
here is only first order accurate in rarefaction regions, as many other methods (e.g. [26]). However,
it is reasonable to guess that a special treatment of the corners coupled with this strategy could
improve the level set representation and is currently in progress.
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