
Journal of Computational Physics 323 (2016) 310–321
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Bioinspired swimming simulations

Michel Bergmann a,b,c,∗, Angelo Iollo a,b,c

a Memphis Team, INRIA, F-33400 Talence, France
b Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France
c CNRS, IMB, UMR 5251, F-33400 Talence, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 March 2016
Received in revised form 18 July 2016
Accepted 19 July 2016
Available online 26 July 2016

Keywords:
Bioinspired swimming
Level set
Skeleton
Optimal transportation
Cartesian mesh
Penalization

We present a method to simulate the flow past bioinspired swimmers starting from 
pictures of an actual fish. The overall approach requires i) a skeleton graph generation 
to get a level-set function from pictures; ii) optimal transportation to obtain the velocity 
on the body surface; iii) flow simulations realized with a Cartesian method based on 
penalization. This technique can be used to automate modeling swimming motion from 
data collected by biologists. We illustrate this paradigm by simulating the swimming of a 
mackerel fish.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Autonomous swimming robots can address in the future needs such as search and rescue, environmental monitoring 
and emergency response in rapidly unfolding scenarios. Fishes have the ability to evolve in complex and unpredictable 
environments that may abruptly change. They are capable of maneuvering in ways that can hardly be achieved by present 
engineering devices. In this sense, the design of such devices can significantly benefit from bioinspired principles.

However, quantitative evaluation of the geometrical and dynamical characteristics of swimming in experiments is chal-
lenging [1,2]. In particular, precise control of the kinematics and dynamics of the experimental model is difficult; harder 
still is the accurate measurement of forces and power of a freely swimming model. In this regard, numerical models are 
well suited for such investigation.

Three-dimensional numerical simulation of swimming has only become viable in the last decade [3–8] with the progress 
of both numerical schemes and computers architectures. Nonetheless, many of the studies presented in the literature typ-
ically deal with prescribed swimmer geometries. Only few start from actual fish geometries, like for example Patankar’s 
group [4,5,9] and Mittal’s group [3,10,11] .

The aim of this paper is to model a three-dimensional swimmer starting from actual fish pictures. The first step is 
to build the three-dimensional fish profile starting from two-dimensional data retrieved from one or several subsequent 
pictures of a fish. To this end, a skeleton technique [12] is used to reconstruct the three-dimensional level set function 
describing the body surface. Then the skeleton can be deformed using an appropriate swimming law to obtain a sequence 
of level set functions corresponding to snapshots of the body surface uniformly taken at different instants. Otherwise, 
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Fig. 1. Sketch of the general flow configuration.

if a sequence of pictures of swimming is available, the body surface can be reconstructed with the same technique for each 
snapshot. The level set functions give at each instant an implicit description of the surface. This is quite different from usual 
swimming simulations where the deforming body is fully described in a Lagrangian framework.

With skeleton deformation or with a sequence of actual pictures, we typically can reconstruct only a small number of 
the snapshots necessary to simulate a swimming stroke. This is due to the fact that the time scale of the simulation is 
significantly smaller than the time step between two subsequent reconstructed three-dimensional snapshots. Moreover, the 
surface deformation velocity is required to set the boundary conditions of the flow problem. For this reason it is necessary 
to build intermediate level-set functions and to compute the deformation velocity field between subsequent reconstructed 
fish snapshots. Optimal transportation [13] is well suited to achieve this goal providing an objective model to compute 
intermediate geometries and deformation velocities.

Optimal transportation is an old topic first introduced by Monge in 1781 [14]. It consists in a distance minimization 
problem that allows to define a mapping between an initial and a final mass distribution. This problem has attracted 
considerable attention these last years especially from a numerical point of view [15–19]. Here we exploit the scheme 
introduced in [20] to define a non-linear interpolation mapping between geometries at different instants and to compute 
the corresponding deformation velocities.

In the following we describe the numerical scheme, the swimmer kinematic modeling and show validations with exam-
ples of applications.

2. Numerical modeling

2.1. Flow problem

The flow configuration is given in Fig. 1 where �s is the domain defined by the body, � f is the domain filled by the 
fluid, and � = � f ∪ �s is the whole domain. The boundary between � f and �s is noted �s .

The flow is modeled using the incompressible Navier–Stokes equations written in the fluid domain � f as follows

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + ∇ · 2μD(u) + ρg in � f , (1a)

∇ · u = 0 in � f , (1b)

where D(u) = ∇u+∇T u
2 , u = (u, v, w) is the three-dimensional velocity field, p is the pressure field, μ is the dynamic 

viscosity, ρ is the density and g is the gravity. Unsteady boundary conditions are imposed on the body boundary

u(x, t) = us(x, t) on �s, (1c)

and on the external boundary

u(x, t) = uext(x, t) on ∂�. (1d)

The dynamics of the boundary �s that represents the swimmer will be described later.
Classically, system (1) is discretized using a body fitted mesh such that the boundary condition on the body boundary 

can be easily and accurately taken into account. However, these kind of meshes are difficult to generate in complex unsteady 
geometries in three-dimensions as large mesh deformations are required when the body is displaced or is changing topology.

In this study we will use a fixed Cartesian grid. The body boundary is defined and tracked with a level set function [21]
and the boundary condition on �s is taken in account in the Navier–Stokes equation using a penalty term [22].
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We thus consider the penalized Navier–Stokes equations in the whole domain � (fluid and body):

∂u

∂t
+ (u · ∇)u = − 1

ρ
∇p + 1

ρ
∇ · 2μD(u) + g + χλ(us − u) in �, (2a)

∇ · u = 0 in �, (2b)

where boundary conditions on the body boundary are implicitly imposed through the penalty term χλ(us − u). In the 
penalty term, χ is the characteristic function (χ(x) = 1 if x ∈ �s and χ(x) = 0 elsewhere) and λ is a large penalty parameter. 
The value of λ depends on the numerical scheme used to discretize the penalty term in the momentum equation. If this 
term is solved in an explicit way, λ ≤ ρ/�t , where �t is the numerical time step. Otherwise, with an implicit discretization 
of the penalty term, no restrictions are imposed for the value of λ. It has been proven [23] that the solution of the system (2)
tends to the solution of the system (1) as 1/

√
λ and that there exist optimal λ with respect to the space discretization. We 

chose arbitrarily λ = 108.
In what follows, the characteristic function will be computed from the signed distance function φ, so that χ = H(φ)

where H denotes the Heaviside function.
The system (2) is solved in time using a projection method [24,25] and is discretized in space on a uniform Cartesian 

mesh using second order centered finite differences for the diffusive term and third-order upwind finite differences for the 
convective term.

The modeling, the details of the numerical method, as well as some validations of our approach can be found in [26,8]. 
Other immersed boundary methods based on Lagrange multipliers can impose the non-slip condition on the immersed 
surface in a different way [27–29]. We have proven that the present scheme is second-order accurate in space for velocity 
fields (in both L2 and L∞ norms), and first-order accurate for the pressure field [26]. This makes our approach suitable to 
perform accurate simulations, at least for moderate Reynolds numbers.

The resolution of system (2) requires knowledge of both the unsteady characteristic function χ and the body velocity us . 
The following sections will explain how to compute these quantities.

The velocity field in a self propelled body can be decomposed such that

us(x, t) = u(x, t) + uθ (x, t) + ũ(x, t), (3)

where ũ(x, t), u(x, t) and uθ (x, t) are the deformation, the translation and the rotation velocities, respectively. While the 
deformation velocity is imposed (by muscles), the translation and rotation velocities are the results of the hydrodynamic 
forces and torques applied by the fluid onto the body. These latter are computed integrating the Newtons laws. Once the 
body geometry is obtained (or imposed), we can deform the backbone (the midline) following swimming laws observed in 
nature. Considering that the backbone of the steady body is 0 ≤ x ≤ �, y = 0 and z = 0, we can apply a swimming law in 
the plan (x, z) that remains the backbone length to be constant.

The swimming law observed in nature for most of fishes is [30]:

z(x, t) = a(x) sin(2π(x/λ + f t)), (4a)

where the envelop is

a(x) = c0 + c1x + c2x2. (4b)

This swimming law is defined with a constant phase velocity cp = λ f , where λ and f are the wave length and the 
frequency of the oscillations. The parameters c0, c1 and c2 are adjusted to reach a maximal tail amplitude A/2 that is 
an important parameter for the swimming [31]. It has been shown [32,33] that carangiform swimming mode is close to 
c0 = 0.02, c1 = −0.12 and c2 = 0.2 for a unit length fish with 0 ≤ x ≤ 1. These parameters can be rescaled when modifying 
the fish length.

3. Generation of level set functions from pictures: the skeleton approach

Numerical simulations of fish-like swimmers [34,8] or jellyfishes [26] are possible with the scheme present above. The 
swimmer geometries were prescribed to mimic realistic fishes or jellyfishes. The motion of these swimmers was described 
in a purely Lagrangian way by tracking markers distributed on the swimmer boundary. The objective is now to simulate 
bioinspired swimmers using geometries and possibly deformation laws obtained by pictures or sequences of pictures. As an 
example we consider the definition of a swimmer starting from the mackerel fish presented in Fig. 2 (left column) [35].

As mentioned in §2, our numerical approach requires the knowledge of the level set function (distance function) asso-
ciated with a body to get a second order scheme in space. A characteristic function (mask function) is sufficient for a first 
order penalty method [34].
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Fig. 2. Skeleton steps: pictures (left), segmentation with skeleton (center) and associated level set functions (right).

Fig. 3. Re-centering (top view).

The process is synthesized in Fig. 2. We start with pictures of a mackerel fish. Top, bottom and side views are necessary. 
To rebuild fish in 3D from only three pictures (front, side, top), an underlying assumption is made: the whole cross-section 
of the fish along its length is geometrically similar to the fish on front view (front picture). A dilation takes place in width 
and another takes place in height. In the tail region of the fish, two connected components can appear on the cross section, 
each connected component will be geometrically similar to the front view. The scaling factors will be extracted from the 
thickness of the fish (from the side view) and the width (from the top view), according to the longitudinal position of the 
transverse cut.

Segmentations are first performed to extract the boundaries (black lines in center column). The distance function (right 
column) can be computed by solving Eikonal equation. Then the skeleton is computed (red lines in the center column) as 
being the center points of the inscribed circles. The natural tool to identify this information is the centerline or skeleton of 
an object as recalled in [12]. It identifies the locus of points equidistant from further points of the boundary. The special 
feature here is that the relevant skeleton is not constructed from the Euclidean distance. In order to identify the thicknesses 
and the widths of the fish, the distance is measured in a fixed direction (depending on the height or along the width) of 
the side view or top view. The skeleton is then simplified compared to the skeleton associated with the Euclidean distance. 
Thus, the top view will have a skeleton made of a line from the head to the tail of the fish, with a single point of the 
skeleton on each transverse cut.

The skeleton of the profile view for the vertical distance will consist of a central line splitting in the fish’s tail. Finally, 
for each transverse cut of the profile, the number of connected components of the profile view is the number (1 or 2) of 
points of the skeleton of this cut. This property is true thanks to the choice of the distance and is not true with Euclidian 
distance.

For a given cut, let us denote a a point of the skeleton of the profile view and let b be the point of the skeleton of the 
top view. Denote da the vertical distance from a to the boundary of the fish and db the horizontal distance from b to the 
boundary of the fish. The connected component of the cut fish associated to (a, b) can be rebuilt by a scaling (based on 
factors da and db) of the front view and translated according to the position (a, b). It also becomes possible to mirror the 
top view of the fish (or front view) by rectifying the skeleton in a line to correct the defects of shooting fish in the picture, 
see Fig. 3.

Initial rescaling of pictures has been performed so that the fish length is the same for top and side views, and height 
is the same for top and side views. A simple 3D reconstruction of the fish could then take place, but the goal is to deform 
the fish, which will have the effect of losing the notion of directional distance, more complex work is to be implemented. 
First, the skeleton of the top view (for the vertical distance) S v is distorted by law (4). The concept of directional distance is 
no longer suitable for reconstruction, then the chosen approach is to distort the classic skeleton associated with Euclidean 
distance, relying on distorted S v . This new skeleton allows to reconstruct, for the Euclidean distance, the deformed fish 
seen from top view. Then, the 3D reconstruction of the fish can be implemented by harnessing both concepts skeleton 
as shown in Fig. 4 (right). It is thus possible to generate a series of level set functions corresponding to different time 
t for the swimming law (4). In what follows, we considered the periodical swimming law (4) and uniformly extract N
snapshots for the level set function over one period (one swimming stroke). Finally, the level set functions have been 
modified (transported) with a rigid velocity so that we do not add any linear or angular translations during deformation. 
Linear and angular translations have only to be the results of the hydrodynamic forces and torques.

Note that in what follows, the level set are chosen to be the signed distance functions (positive inside the body).
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Fig. 4. Three-dimensional profiles defined by the zero isocontour of the level set function of the actual fish. Undeformed (left) and deformed (right).

4. Computation of intermediate level-sets and deformation velocities: optimal transportation

As mentioned, we have access to N (here N = 20) snapshots. We define by {ϕk}k=0,...,N−1 the level set function over a 
swimming period T referred to the center of mass of each image. Here, k denotes the time t = k T i/N for the ith swimming 
period. The number of available snapshots is of course inessential, but it is typically small compared to the number of 
snapshots necessary for a numerical simulation. It is then necessary to build missing level set function corresponding to the 
Navier–Stokes time discretization. Moreover, it is also necessary to compute the fish velocity for the penalty method. This 
velocity can be decomposed into a deformation velocity, to be computed from the subsequent N level set functions, and 
a rigid velocity computed from hydrodynamics effects. The deformation velocity is derived from an optimal transportation 
model.

Optimal transportation is a model to compute a mapping between two densities. The model assumes that the mass 
is transported along straight lines with constant initial velocity. The initial velocity is found such that to overall distance 
measured in a given norm is minimum. The formulation of the L2 optimal transportation problem is illustrated with respect 
to generic densities �0 and �1. The main step is to compute the velocity field transforming �0 into �1. Then it is possible 
to compute any desired intermediate densities for time t = r T i/N with 0 < r < 1.

Let �0(ξ), �1(x) be two smooth enough non-negative scalar density functions with compact support �0 and �1, where 
ξ, x ∈R

d and d is the space dimension. We assume that∫
�0

�0(ξ)dξ =
∫
�1

�1(x)dx.

Let X : �0 → �1 a smooth one-to-one map such that X(ξ) realizes the transfer of �0 onto �1, i.e., a map that satisfies the 
following Jacobian equation:

�0(ξ) = det(∇ X(ξ))�1(X(ξ)).

This equation is under determined with respect to X(ξ) and a solution is selected among all possible maps by introducing 
the following L2 Kantorovich–Wasserstein distance:

inf
X

∫
�0

�0(ξ)|X(ξ) − ξ |2dξ.

The L2 Monge–Kantorovich problem (MKP) corresponds to finding a map Xo such that this infimum is achieved. It has been 
proved that this problem admits a unique solution [36,37,13], which is the gradient of a.e. convex function �o : �0 →R:

Xo(ξ) = ∇�o(ξ).

The main idea of solution relies on the assumption that we dispose of a mapping at iteration n that is a perturbation 
of the optimal mapping Xo(ξ) [20]. We derive a linear perturbation equation that is used to iteratively improve the initial 
guess. Let us assume that the mapping obtained at iteration n is

Xn(ξ) = ∇ξ�o + ∇ξ�
n
ε ,

where the error �n
ε satisfies 

∥∥�n
ε

∥∥
2 ≈ ε . We define �n

0(ξ) as the initial density at iteration n that mapped by Xn(ξ) gives 
the exact final density �1(x). Then, taking a first-order Taylor expansion, we have

�n
0(ξ) := �1(Xn(ξ))det

(∇ξ Xn(ξ)
)

= �1(Xo)det
(∇ξ Xo

)
︸ ︷︷ ︸

=�0(ξ)

+det
(∇ξ Xo

)
�1(Xo)Tr

(
(∇ξ Xo)

−1∇2
ξ �n

ε

)
+ det

(∇ξ Xo
)∇x�1(Xo) · ∇ξ�

n
ε + o(ε),

where Tr denotes the matrix trace operator.
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Fig. 5. Gaussian density used in the plan y = 0. The external white contour corresponds to the fish boundary.

At first order in ε , we have

�n
0(ξ) − �0(ξ)

det
(∇ξ Xo

) ≈ �1(Xo)Tr
(
(∇ξ Xo)

−1∇2
ξ �n

ε

)
+ ∇x�1(Xo) · ∇ξ�

n
ε . (5)

The mapping update is then found by the iteration

Xn+1 = Xn − α ∇�n
ε ,

that converges to Xo as a geometric series, for α ∈ [0, 1], in the linearized approximation [38,17].
If the optimal solution and the approximated mapping are a perturbation of identity, then equation (5), with (∇ξ Xo)

−1 =
Id and Tr

(
∇2

ξ �n
ε

)
= �ξ�

n
ε , reduces to

�n
0(ξ) − �0(ξ) ≈ ∇ξ · (�1(Xn(ξ))∇ξ�

n
ε

)
(6)

that is equivalent to a semidiscretization in time of the continuity equation written in Eulerian form.

4.1. Choice of the density functions

Since the level set functions corresponding to the N fish snapshots are not strictly positive, they are not admissible 
candidates for optimal transportation. A regularized mask function (Heaviside of the level set function) is also not satisfying 
since the weight of the thin caudal fin in the mapping is very limited and the mapping tends to smear it in comparison to 
the whole body.

We thus considered Gaussian density functions defined from the level sets {ϕk}k=0,...,N−1, with a support that is ap-
proximatively equal to �/10 (� being the length of the fish) with maximum near the interface but inside the body. In 
particular, we take �0 = G(ξ, k) = exp (ϕk(ξ, t)−ϕb)2

γ + ε, with γ = 2 · 10−5, ϕb = 1.5 · 10−3 and the regularization parameter 
ε = 10−3. In a similar way, we take �1 = G(ξ, k + 1). Using these definitions of the densities to be transported, each point 
of the body surface has a comparable weight in the transportation. We denote by G0 the value of the Gaussian function 
corresponding to the swimmer surface. The density G(ξ, k) is presented in Fig. 5 where the external white line is the body 
boundary G0.

4.2. Computation of intermediate images

Starting from the optimal mapping, the computation of intermediate images is straightforward. Let X(ξ, τ ) = ξ +
τ (Xo − ξ) and

�(ξ, τ ) = �0(ξ)

det
(∇ξ X(ξ, τ )

)
We have �(ξ, 0) = �0(ξ), �(ξ, 1) = �1(Xo(ξ)) and for 0 < τ < 1 we obtain the intermediate images.

As for the initial deformation velocity, given the time step �ts between two images (here �ts = T /20), the deformation 
velocity from �0 to �1 is

ũ0 = Xo − ξ

�ts
(7)

The index 0 highlights the fact that this velocity has to be mapped to the actual position of the swimmer in space, since 
the level set snapshots are taken with respect to a center of mass fixed in space. Fig. 6 shows the reconstruction the 
intermediate density for τ = 0.5 between densities �0 and �1.

The same approach can be applied to the whole series of level sets {ϕi}N
i=0, thus computing the corresponding defor-

mation velocities and intermediate densities. Starting from these densities we can compute a characteristic function and a 
sign distance function using the fast marching approach [39,21] or by solving an Hamilton Jacobi equation [40,41]. In what 
follows, we recall that ϕ(ξ, t) are the level set function of the deformed profiles with fixed center of mass and ũ0(ξ, t) is 
the deformation velocity.
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Fig. 6. Construction of an image for τ = 0.5�ts (red) between �0 (green) and �1 (blue) in the plan y = 0. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

5. Dynamics of the swimmer

5.1. Computation of the swimmer velocity and position

Since we are interested in a self propelled swimmer, the position of the swimmer is determined with the level set 
function φ(ξ, t) that is an image of the level set function ϕ(ξ, t) obtained by the transformation characterizing the rigid 
motion (translation plus rotation), Xr(ξ, t). We have

φ(ξ, t) = ϕ(Xr(ξ, t)).

The characteristic function χ required in the penalty method is

χ(ξ, t) = H(φ(ξ, t) − G0),

where the constant G0 is defined in §4.1. We can then impose χ(ξ, t) = 1 inside the whole body, and compute the signed 
distance function for second order penalty method [26].

In the same way, the velocity of the swimmer is u0(ξ, t) = u(ξ, t) + uθ (ξ, t) + ũ0(ξ, t), where ũ0(ξ, t) is computed 
from (7). Since the position of the swimmer is modified, the velocity has to act onto the modified position and we have:

us(ξ, t) = u0(Xr(ξ, t)).

The transformation Xr(ξ, t) as well as the translation velocity u(ξ, t) and rotation velocity uθ (ξ, t) are evaluated using 
the Newton’s laws computing the forces and the torques exerted by the fluid onto the body.

5.2. Computation of the forces and the torques

The forces and the torques exerted by the fluid onto the body could be computed integrating the stress tensor T(u, p) =
−p I + μ(∇u + ∇uT ) on the body boundary. Let n be the unit outward normal vector to the interface �, and r = x − xG

with xG the mass center, the force and the torques write:

F = −
∫
�s

T(u, p)n dx, (8a)

M = −
∫
�s

r ∧T(u, p)n dx. (8b)

However, since the body boundary is defined in an implicit way as being the zero level of the sign distance function, 
integration of equations (8) is thus not straightforward. Thus we turn to moment balance as follows.

We consider an arbitrarily subdomain �̃ f delimited by the boundaries �s and �̃ f surrounding the body with domain �s

such that the forces and torques write [42]:

F = − d

dt

∫
�̃ f (t)

u dV +
∫

�̃ f (t)

(
T+ (u − u f ) ⊗ u

)
n dS −

∫
�s(t)

((u − us) ⊗ u)n dS.
(9a)

M = − d

dt

∫
�̃ f (t)

ri ∧ u dV +
∫

�̃ f (t)

r ∧ (
T+ (u − u f ) ⊗ u

)
n dS −

∫
�s(t)

r ∧ ((u − us) ⊗ u)n dS.
(9b)

where us and u f are respectively the velocities of boundaries �s and �̃ f , that might in general be different from that of 
the fluid. Of course, in many applications (like for swimmers), the integral over the �s boundary vanish due to the fact that 
we have u = us . In the following simulations, �̃ f coincides with the external boundary of the domain where homogeneous 
boundary conditions are applied, and thus u f = 0.
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Fig. 7. Evolution of the linear (U black line, V dashed line) and angular (ω) swimming velocities, normalized by the wave velocity � f for the eel test case 
presented in [43] with respect to the time, which is normalized by 1/ f .

6. Validation and application to actual pictures

6.1. Validation

6.1.1. Validation for free swimmer defined by markers
The numerical solver has been already intensively validated for several bodies where the geometry is defined by mark-

ers and the body followed in a Lagrangian way [34,26,8]. We now present a validation test case for a free swimming 
three-dimensional eel. This test case has been set up using conforming mesh by Kern and Koumoutsakos [43] from origi-
nal two-dimensional simulations done by Carling et al. [44]. This three-dimensional eel has also been studied numerically 
in [45] and [46] using immersed boundary leading to a good benchmarking test. We prescribe the deformation kinematics 
of the eel midline while the translation and rotation velocities are computed from fluid-structure interactions. Both the 
geometry profile and the deformation kinematics of the eel are fully described in [43]. The curvature of the backbone is 
prescribed along the arc length s of the midline of length � as

κ(s, t) = ∂α

∂t
= K (s) sin(2π( f t − τ (s))) tanh(π f t). (10)

The amplitude enveloppe K (s) is defined by a cubic spline that takes the values K0, K1, K2 and K3 at s = 0, �/3, 2�/3
and �, respectively, τ (s) = sτtail/�, f is the frequency of the traveling wave along the body and α is the angle made 
by the tangent vector to the midline and the axis defined by the initial body midline at rest. The Cartesian coordi-
nates can then be easily obtained. The transient deformation kinematics during the initial period 1/ f is modeled by 
tanh(π f t). The computational domain is 8� × 4� × � which is uniformly discretized by 1024 × 512 × 128 grid points 
leading to 128 mesh points along the body length. We have shown [8] that 128 points along the swimmer represents 
the best compromise between accuracy and computational costs with our numerical method. We chose the same physi-
cal constants and deformation kinematics parameters given in [43] to maximize the eel velocity, i.e. K0 = 1.51, K1 = 0.48, 
K2 = 5.74, K3 = 2.73, and τtail = 1.44. The frequency is set to f = 1 Hz and the body length is � = 1 m. The adapta-
tive time step is chosen with a classical CFL condition with cf l = 0.2. The temporal evolutions of the linear and angular 
swimming velocities for the eel test case presented in [43] are plotted in Fig. 7. The results are normalized using the 
body length � and the stroke frequency f , see [46]. The linear velocities represent thus body length per stroke. These 
velocities are computed using Newtons laws from forces and torques computed from (8). Despite the normalized ax-
ial swimming velocity at steady state slightly exceeds the ones obtained in [43] and [46] (0.51 vs. 0.47), we note good 
agreements between the overall behavior of normalized linear and angular velocities, especially with [46] where the same 
transient is used. Note that, as in [46], the V -velocity does not oscillate with zero mean value due to the initial stroke. 
Fig. 8 shows the isovorticity surface with magnitude 4. The overall behavior is consistent with previous studies [43]
and [46].

6.1.2. Validation for free swimmer defined by pictures
Our goal is then to validate the proposed method using optimal transportation comparing it with a well defined test 

case. All the following numerical simulations are performed using Cartesian mesh with �x = �y = �z = �/128 on 256 
CPUs.

In this section we do not consider an actual sequence of fish snapshots. We consider a fish model where the geometry 
is known and defined by markers. The geometry is however chosen to fit as best as possible the mackerel fish, except the 
lunate tail. Fig. 9 presents the fish geometry for this test case as well as the markers (note that we actually use two times 
more markers in each directions).
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Fig. 8. Three-dimensional isovorticity structure with magnitude 4 colored by z-velocity field, w . The same representation parameters as in [46] is used. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 9. Geometry profile used to validate the method.

Our goal is then to compare the two numerical models for the fish just defined:

• Case I (“Lagrangian”): the level set functions and the deformation velocities are given at each Navier–Stokes time step 
by following the Lagrangian markers on the body surface;

• Case II (“Eulerian”): we suppose that we only know 20 snapshots of the level set function over one stroke period. 
We have thus to compute all the missing level set as well as the deformation velocity using optimal transporta-
tion.

In both cases the length fish is � = 10 cm and the swimming law (4) is defined with frequency f = 4 Hz and c0 = −0.002, 
c1 = −0.12, c2 = 2 and λ = �. These parameters are close to those observed in nature [33]. We defined the swim-
ming law in the plan (x, z) leading to associated deformation velocities fields (̃u0, w̃0) computed from (7). A compar-
ison of the deformation velocity fields ũ0 and w̃0 obtained in cases I (“exact”) and II (approximated using optimal 
transportation) is presented in Fig. 10. The Lagrangian velocity is only defined inside the body while the Eulerian one 
is defined in the whole domain where optimal transportation is computed. A very good agreement is obtained for 
the velocity w̃0: the Eulerian deformation velocity field and the Lagrangian one continuously match at the body sur-
face. Some difference are however visible for the ũ0 component. Due to the fish configuration, the velocity ũ0 can 
be considered to be the velocity that is tangential to the body. Since optimal transportation is irrotational by defini-
tion, it is not able to model any skin rotation. The tangential velocity can not be computed if no other constraints 
are taken into account, such as done for example in [18,19] using a rigid motion constraint or a divergence-free con-
straint.

These Lagrangian and Eulerian velocities are then used to simulate the self propelled swimming in the both cases. 
According to equation (3), the swimming velocities of the center of mass xG are uG

s (t) = us(xG , t). These self propelled 
velocities are presented in Fig. 11. As expected, the swimming velocity wG

s shows good agreement between cases I and II. 
The velocity uG

s is influenced by the differences observed for the deformation velocity ũ0 in Fig. 10. However, considering 
all the modeling hypothesis, the Eulerian forward swimming velocity correctly approaches the actual Lagrangian forward 
velocity from which it has been derived.
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Fig. 10. Comparison of the deformation velocity fields obtained in cases I (“exact”, presented inside the fish) and II (approximated using optimal trans-
portation, represented outside the fish).

Fig. 11. Comparison of the self propelled velocities obtained in cases I and II. The swimming velocity is uG
s and the lateral velocity is wG

s .

6.2. Mackerel fish swimming from pictures

We have applied the method described above to recover the geometry of a Mackerel, to deform its skeleton by a swim-
ming law and to simulate swimming. Fig. 12 shows the wake flow generating by the fish built from pictures. We chose the 
same parameters as before for the swimming law, i.e. the fish length is 10 cm and the swimming frequency is f = 4 Hz. The 
swimming velocity of the mackerel fish is slightly higher than the previous test cases (uG

s ≈ −0.15 m/s). This difference can 
be explained by a different shape, and moreover by the lunate tail for the real fish.
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Fig. 12. Isovorticity representation of the wake generated by the mackerel fish starting form actual pictures.

7. Conclusions

In this work we have described a procedure to define a bioinspired geometry for a swimmer starting either from one 
image of a fish or from a sequence of images. This approach can be seen as a step closer in converting observed swimming 
pictures to a realistic numerical model, reducing arbitrary assumptions and time spent in post-processing images for data 
fitting to get body kinematics. Using this procedure it is possible to recover an Eulerian deformation velocity on the base 
of a limited number of modeling hypothesis, namely those at the base of L2 optimal transportation. We have shown an in 
silico example where we compare the swimming velocity of a swimmer whose geometry and deformation law is completely 
determined a priori, to that obtained by the identification method we propose. The results in terms of deformation velocity 
show that the irrotational hypothesis at the base of optimal transportation induces an error in the tangential velocity of 
the body. This error coupled to the discretization inaccuracies due to the fully Eulerian treatment of the geometry obtained 
from Lagrangian data reflects in an overestimation of the actual velocity of the swimmer of less than 10%. As an example 
of an actual application we have modeled a swimmer using pictures of a Mackerel. Future improvements of the results may 
be obtained by constrained optimal transportation.
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