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We consider problems governed by a linear elliptic equation with varying coefficients 
across internal interfaces. The solution and its normal derivative can undergo significant 
variations through these internal boundaries. We present a compact finite-difference 
scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel 
data structure. The main idea is to optimize the truncation error of the discretization 
scheme as a function of the local grid configuration to achieve second-order accuracy. 
Numerical illustrations are presented in two and three-dimensional configurations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Many applications like for example incompressible multi-phase fluid flows or heat conduction in non-homogeneous 
materials are characterized by strongly varying physical parameters across internal interfaces. In classical approaches these 
interfaces are treated like internal boundaries using interface fitted meshes, see for example [9] for a recent heat-conduction 
application. These methods are accurate and can lead to simple discretization schemes of the interface conditions. However, 
grid generation and handling can be costly and cumbersome when the interface geometry is evolving in time. Furthermore, 
solution in parallel typically requires time-dependent partitioning of the grid that induces additional computational costs.

In the present approach we use non-conforming hierarchical meshes to discretize the solution. The hierarchical nature of 
the grid makes mesh generation, adaptivity and partitioning very efficient and with a low-memory footprint. Since the grid 
is non-conforming to these internal boundaries, discontinuous coefficients are regularized across the interfaces. Accuracy is 
then recovered thanks to grid adaptivity.

Johansen and Colella [10] were among the first to propose adaptive block-cartesian meshes to solve the Poisson equation. 
They proposed a cell-centered second-order scheme based on local quadratic reconstructions. In the same spirit Howell and 
Bell [8] solved a Poisson problem within a projection method for incompressible viscous flows using a quadratic recon-
struction ghost-cell approach to recover appropriate accuracy at the border between different blocks. A different setting was 
proposed by Popinet [17] to solve the incompressible Euler equations with octree grids. For the Poisson solver, the author 
proposes a cell-centered discretization scheme using all first neighbors in order to recover a second-order approximation as 
a function of the local grid configuration. Losasso et al. [11] proposed a Poisson solver on octree which converges to the 
actual solution with second-order accuracy. This approach allows a discretization matrix which is symmetric so that the con-
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Fig. 1. Sketch of the domain under consideration.

vergence rate of the iterative solvers is significantly improved. Min et al. [13] recover a higher-order accuracy with a compact 
stencil at the price of moving from a cell-centered scheme to a vertex-centered scheme. Other examples of node-centered 
schemes with a direct application to level set methods are given in Losasso et al. [12] and Mirzadeh et al. [14]. Efficient 
parallel algorithms that can handle node-centered grids are presented in Burstedde et al. [3], whereas a finite-element ap-
plication is shown in Bangerth et al. [2]. Finally, a Poisson solver based on a finite-volume approach with a least-square 
reconstruction of the fluxes at the octree level jumps is proposed by Olshanskii et al. [16]. More recently, a Voronoi Inter-
face Method is presented by Guittet et al. [7] for general elliptic problems with subdomain discontinuities. In this approach 
additional degrees of freedom are placed close to the subdomain interface and a Voronoi partition centered at each of these 
points is used to discretize the equations in a finite volume approach. The solution obtained is second-order accurate.

In this work we present a cell-centered finite-difference scheme to solve a variable coefficient Poisson equation on 
quadtrees and octrees. The main idea of the method is to optimize the truncation error of the elliptic operator discretization 
as a function of the local grid configuration. The optimization problem solution is local, fast and it involves only the first 
neighbors in order to reduce communications in parallel. The scheme is second-order accurate when the coefficients vary 
smoothly through the domain. In the following we describe the method and assess its consistency, accuracy and extension to 
general hierarchical grids in two and three dimensions. Numerical illustrations are presented in two and three-dimensional 
configurations.

2. Problem definition

We consider a configuration representing an idealized composite medium. A domain � is subdivided in two parts, G
and S . We suppose that different diffusion parameters characterize the two sub-domains (Fig. 1); we have � = G ∪ S and 
γ the interface between both sub-domains. We distinguish Neumann �N and Dirichlet �D boundary conditions on the 
external boundary.

The variable coefficient Poisson problem we consider is modeled by:

−div(κ(x)∇u(x)) = g(x) in G ∪ S, (1a)

∂nu(x) = 0 on �N , (1b)

u(x) = uD(x) on �D , (1c)

[κ(x)∂nu(x)] = 0, [u] = 0 on γ , (1d)

where x ∈ R
n are the spatial coordinates and κ(x) is piecewise continuous on each subdomain but possibly discontinuous 

across γ . In that case, the solution u(x) is continuous all over the domain G ∪ S and the normal derivatives are discontinuous 
across γ .

In the following we will initially describe the data structure. Then we consider the Laplace operator and investigate its 
discretization, consistency and accuracy. We moreover detail how to accurately impose Dirichlet boundary conditions on 
unfitted grid boundaries via penalization and hierarchical grid refinement. The variable coefficient Poisson equation in the 
limit of discontinuous parameters is finally considered.

3. Hierarchical grid data structure

We consider a hierarchical data structure based on the principle of recursive decomposition of space. The decomposition 
is done into equal parts on each level. Each internal node has exactly four children (quadtree) for two-dimensional problems, 
and eight children (octree) for three-dimensional problems. The quadtree is defined in a square, the octree in a cube. For 
simplicity reasons, we describe the data structure in two dimensions (Fig. 2).



A. Raeli et al. / Journal of Computational Physics 355 (2018) 59–77 61
Fig. 2. A square decomposition and the corresponding quadtree.

Fig. 3. Global nested Z-ordering example.

The data structure is based on a linear octree [6], therefore only the leafs of the tree structure (see Fig. 2) are stored. This 
linear data structure is easily dispatched to a distributed memory architecture. In order to limit parallel communications, 
we constrain the discretization scheme to include only the first layer of neighboring cells. We use a cell centered scheme 
because it is easier to handle, but the overall process can be applied to vertex center schemes. In what follows we will 
refer to each point in the space as a cell or octant. Each cell may be the parent of four (eight in 3D) children. The root cell
is the base of the tree (often it represents the entire region before the discretization) and a leaf is a cell without any child. 
The level of a cell is defined by starting from zero for the root cell and by adding one every time a group of descendant 
children is appended. Each cell C has two kinds of neighbors: through faces following the axial directions and through 
corners following its diagonals directions.

Hierarchical grids are defined graded (or balanced) if the levels of all neighboring cells do not differ by more than one. 
This constraint has little impact on the flexibility of the discretization we propose but it may allow a gradual refinement by 
increments of two. In the following, we will mainly focus on graded grids but we will present typical results on non-graded 
grids in order to stress that the scheme can be applied without modifications.

The octree data structure is designed based on the following requirements: i) efficient access to neighboring cells; ii) ef-
ficient access to cell positions and their levels; iii) efficient access to stored data. To this end, we assign a Z-order index to 
each cell ([15], Fig. 3) thanks to the library PABLO.1

We classify the neighbors topology of an octant using a base-5 8-digits numerical key (resp. 26-digits for the 3D case). 
We define a function of the level: [L] := L − nL, with L the level of the actual octant and nL the level of the neighbor. The 
values attributed to the key elements are presented in Table 1. An example of this construction is given in Fig. 4.

This key has the following properties: it is bijective, it is easy to build and to interpret, and it is independent of the cell 
dimensions, i.e., the tree level. The use of this key can lead to a significant speed up in the grid pre-processing phase.

1 http :/ /www.optimad .it /products /bitpit/.

http://www.optimad.it/products/bitpit/
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Table 1
Key values attribution.

Assigned value Possible cases

0 � neighbor on this side
1 [L] = 0
2 [L] = 1
3 [L] = −1
4 [L] = 2
5 [L] = −2

Fig. 4. Example of bijective key construction.

Fig. 5. Discretization grid of the Laplacian in c4.

4. Cell-centered finite-difference discretization of the Laplacian

In this section we present the main idea to discretize the Laplacian. A similar approach is used for the gradients.
There are two natural choices to discretize differential operators on hierarchical grids: vertex-centered [13] or cell-

centered [17]. Here we considerer a cell-centered scheme. In this case, thanks to the data structure we use, the neighbor
configuration is more easily accessible compared to a vertex-centered scheme.

The main idea is to ensure consistency and second-order accuracy of the truncation error in the sense of finite differences 
as a function of the number of neighbors. Let us focus on a two-dimensional problem and let us consider the configuration 
in Fig. 5. As shown by Min et al. [13], if only face-adjacent cells are to be used to discretize the Laplace operator in c4 , then 
there is no locally consistent linear scheme in the sense of finite differences. Instead, we discretize the Laplace operator 
in c4 using all the points belonging to the first layer of neighbors. This will allow us to obtain more degrees of freedom 
than sufficient constraints for consistency. Possibly, as a function of the number of available points and symmetries, we will 
also ensure sufficient conditions for second-order accuracy. To see this, let h be the side length of the cell c4. To obtain a 
consistent scheme we must ensure that the discretization coefficients ai , 1 ≤ i ≤ 7 satisfy:

uxx + u yy = a1u1 + a2u2 + a3u3 + a4u4 + a5u5 + a6u6 + a7u7 + O (h).

Using standard Taylor analysis, we expand for example the solution u3 in c3 with respect to u4 in c4 and get:

u3 = u4 − h
∂u4 + h2 ∂2u4

2
+ O (h3).
∂x 2 ∂x



A. Raeli et al. / Journal of Computational Physics 355 (2018) 59–77 63
Similarly, all the other points are expanded with respect to c4. A complete Taylor analysis on all the involved neighbors
leads to the following linear system:⎛
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In the example above we must determine seven discretization coefficients ai , 1 ≤ i ≤ 7 but we only have six constraints for 
consistency. The idea is to ensure consistency and, at the same time, to minimize the deviation from second-order accuracy 
as follows.

In the general case, when the number of constraints is m, we solve the constrained minimization problem by defining an 
appropriate Lagrangian function. Let λ ∈ R

m a vector of Lagrange multipliers, a ∈ R
n the discretization coefficient vector of 

size n (the size of the stencil), M ∈Mm,n(R) the constraint matrix, f ∈ R
m the right hand side vector corresponding to the 

imposed constraints and F (a) a convex cost function from Rn to R. We define a Lagrangian function L(a, λ): Rn ×R
m → R

as follows

L(a, λ) = F (a) − λT (Ma − f ), (2)

and compute the stationary point of this function with respect to (a, λ):{
∂L(a,λ)

∂a = 0,
∂L(a,λ)

∂λ
= 0.

⇔
{

∂ F
∂a − MT λ = 0,

Ma = f .

Let B ∈ M6,n the sub-matrix corresponding to the consistency constraints, C ∈ M4,n the sub-matrix relative to the 
second-order constraints, α ∈ [0,1] and let h = 1. The discretization coefficients are then rescaled dividing by the appropriate 
value of the cell side. We distinguish two cases:

• n ≤ 10 : M = B and we take F (a) = 1/2aT
(
(1 − α)C T C + α I

)
a and the local system to be solved is(

((1 − α)C T C + α I) −BT

B 0

)(
a
λ

)
=

(
0
f

)
.

This choice of the convex function F (a) is such that the discretization coefficients minimize the second-order truncation 
error encoded in matrix C and their norm is penalized by coefficient α. We have chosen a small value of α that results 
in a stable matrix to invert and that introduces the minimal amount of regularization. We took α = 0.01 for all the 
numerical illustrations in the following. The coefficients a always satisfy 6 consistency constraints.

• n > 10 : M = (B
C

)
F (a) = 1/2aT a m = 10 I ∈Mn,n(

I −MT

M 0

)(
a
λ

)
=

(
0
f

)
.

The coefficients satisfy 10 second-order accuracy constraints while their norm is minimized.

This approach is independent of the specific grid configuration and can be applied to either graded or non-graded grids. 
Although we use a cell-centered stencil, this method can in principle be applied to vertex-centered stencils. We remark that 
the minimal number of available points including only the first neighbors in 2D is 7 if the grid is graded and 6 if the grid 
is non-graded. Therefore, the discretization will always be at least consistent.

Remark 4.1 (Uniform mesh). The discretization weights (Fig. 6) are −1.3̄ for the red point (center of the configuration), −0.3̄
for the face adjacent cells marked in green and 0.6̄ for the corner blue points. The resulting truncation error weights ensures 
order two convergence.

Remark 4.2 (Three-dimensional extension). The neighbors are found through faces, edges and vertexes. The consistency con-
straints are 10, the number of equations to obtain second order accuracy is 20. For either graded or non-graded grids, 
the scheme will be at least consistent since with graded grids we have at least 15 available points including only first 
neighbors and with non-graded 11. Beyond 30 available points, in order to limit the size of the stencil, we consider the 
minimum number of all possible neighbors satisfying consistency and second-order accuracy. Hence, where possible, neigh-
bors through edges are not considered and the stencil takes into account only neighbors through faces and vertices.
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Fig. 6. Uniform mesh configuration. The weights are enumerated following the Z-order. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

5. Internal boundaries

5.1. Dirichlet boundary conditions and penalization

Internal boundaries with Dirichlet type conditions are modeled by a penalty term [1]. Let χc be the characteristic func-
tion of a given domain c, e.g., the circle in Fig. 10. Let us consider the equation


uε = g − χc

ε
(uε − u0). (3)

We set uε = u + εũ to derive the equations satisfied by u and ũ. By identifying the terms of the same order in ε we have 
χc (u − u0) = 0 and 
u = χc ũ. This formally implies that u = u0 in the circle and 
u = g outside. Further analysis [4]
shows that ‖uε − u‖2 = O (

√
ε).

The numerical discretization of the penalized model on an unfitted boundary will introduce an additional discretiza-
tion error of order h, so that the scheme will be only first order accurate. Second-order penalization can be obtained by 
extrapolation as shown in [5].

5.2. Diffusion coefficient discontinuity

In many applications the diffusion coefficient κ(x) can abruptly vary across an interface between two positive constants 
α and β . However, the normal fluxes are continuous at the interface. We model these problems by the regularized diffusion 
function

κ(x) = α + (β − α)

(
tanh (σ · �(x)) + 1

2

)
, (4)

where �(x) is the signed distance function with respect to the interface of discontinuity and σ the regularization parameter. 
The signed distance function is obtained by solving |∇�(x)| = 1 with �(x) = 0 on the interface. Due to regularization, we 
expect a first-order convergence near the interface (in the infinite norm).

6. Results and discussion

In what follows, the linear systems are solved using the PETSc library.2 In most of the following cases, we used a block 
Jacobi preconditioning (BJACOBI) on a global flexible GMRES. In two dimensions preconditioning was not strictly necessary. 
In three dimensions, besides the Jacobi preconditioning, sub-preconditioners of type ILU were employed.

6.1. Consistency

We consider here the case κ(x) = 1. The domain is a [0,1] × [0,1] square and the grid studied is a bi-periodic lattice 
obtained by initially repeating the elementary configuration of Fig. 5 as presented in Fig. 7. It has been shown [13] that the 
numerical scheme is inconsistent for this kind of grids if we only use the face neighbors. We thus use all the neighbors
including the edge neighbors. The problem to be solved is 
u(x) = f (x). We considered a test case with the exact solu-
tion ue(x1, x2) = sin((x1 − 0.5)2 + (x2 − 0.5)2). The convergence Table 2 is obtained by subsequently subdividing each cell. 
A second-order accuracy is obtained for both L2 and L∞ norms. An example of the error distribution is given in Fig. 8.

2 https :/ /www.mcs .anl .gov /petsc/.

https://www.mcs.anl.gov/petsc/


A. Raeli et al. / Journal of Computational Physics 355 (2018) 59–77 65
Fig. 7. Example of the mesh configuration for level 4 and 5.

Fig. 8. Example of error distribution on a grid corresponding to level 6.

Table 2
Error norms and order of the scheme.

Tree level L∞ L2 Order L∞ Order L2

4 5.02265e−04 2.49066e−04
5 9.92104e−05 4.96958e−05 2.5315 2.506
6 2.23894e−05 1.13086e−05 2.2155 2.19725
7 5.36436e−06 2.72476e−06 2.087 2.075
8 1.31696e−06 6.70944e−07 2.0365 2.0305

Table 3
Convergence order for the random mesh generation. The first line in-
volves 787 degrees of freedom, the last one 3223552.

Tree level L∞ L2 Order L∞ Order L2

6 1.18078e−04 7.37138e−05 – –
7 2.93059e−05 1.94914e−05 2.010 1.929
8 6.40356e−06 4.3646e−06 2.194 2.159
9 1.52669e−06 1.02794e−06 2.068 2.086
10 3.72553e−07 2.48591e−07 2.035 2.048
11 9.20017e−08 6.10625e−08 2.018 2.025
12 2.28589e−08 1.51279e−08 2.01 2.013

6.2. Random mesh generation

To check the robustness of the scheme ruling out any possibility of error cancellation due to the regularity of the mesh, 
we applied a random algorithm to generate the grid (Fig. 9). The mesh is then subsequently refined. The convergence order 
of the method is given in Table 3.
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Fig. 9. Error distribution for random mesh generation. Levels 6, 7 and 8 respectively.

Fig. 10. Error distribution for the penalized cylinder with a maximum tree level 9 and 7 respectively.

Table 4
Numerical results for the penalized cylinder.

Tree level L∞ L2 Order L∞ Order L2

5 1.39209e−02 3.21637e−03
6 7.16906e−03 1.50085e−03 0.971 1.071
7 3.84769e−03 7.15689e−04 0.932 1.048
8 1.95191e−03 3.68745e−04 0.986 0.970
9 9.72571e−04 1.56265e−04 1.003 1.18
10 4.88266e−04 7.96255e−05 0.996 0.981

6.3. Dirichlet boundary conditions

Boundary conditions on the interior subdomain are imposed by a penalty term, see equation (3). We consider the same 
domain and exact solution ue(x1, x2) = sin((x1 − 0.5)2 + (x2 − 0.5)2) as in the previous section. The solution is penalized 
on all the mesh nodes lying inside a centered cylinder with radius equal to 0.25 with the value at the cylinder boundary. 
Equation (3) is thus solved with ε = 10−11 and u0 = sin((0.25)2 + (0.25)2). The grid is subsequently refined in a graded 
way according to the distance function � to the cylinder in a layer |�(x)| ≤ 0.2. The error distribution in the computational 
domain for tree level 7 is presented In Fig. 10. Numerical results are reported in Table 4. As expected, since the internal 
Dirichlet boundary conditions are not exactly imposed on the cylinder boundary, the maximum errors are observed near 
the cylinder boundary and the numerical solution is only first order accurate.

6.4. Uniform refinement and AMR for a multiscale problem

We investigate an idealized multiscale problem with the same domain and exact solution as in previous sections, but 
now we consider a penalized centered cylinder with radius equal to 0.01. Equation (3) is now solved with u0 = sin((0.49)2 +
(0.49)2) and ε = 10−11. The grid is refined according to the distance to the cylinder. The error distribution on the whole 
domain is presented in Fig. 11 while a zoom around the cylinder is presented in Fig. 12.
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Fig. 11. Error distribution on the whole domain for the penalized cylinder with radius equal to 0.01.

Fig. 12. Zoom on the error distribution around the penalized cylinder with radius equal to 0.01.

In what follows we compare the results obtained with our quadtree approach (AMR) to the results obtained with Carte-
sian uniform grids. The Cartesian results are obtained with the standard five-point stencil for the Laplacian operator with 
two different orderings: the Z-order (UZ) and the classical (i, j) order (US). The Laplace operator for the US ordering has a 
penta-diagonal structure while a more disperse structure is obtained for the UZ ordering. The non-uniform grid is obtained 
by mesh refinement near the cylinder with four levels of jumps between the maximal and the minimal depth of tree, en-
forcing balancing constraints through faces. In each case, the uniform grid is chosen to obtain the same degree of error 
than that obtained with the corresponding quadtree grid (see Table 5). Since maximal error is located near the cylinder 
boundary (first order penalization, see Fig. 12), the cell size for the uniform mesh is equal to the smaller mesh cell for the 
corresponding AMR quadtree grid. A comparison of the total number of points used for the uniform and quadtree grids is 
presented in Table 6. At level 15, the AMR grid has approximatively 220 times less grid points. The uniform grid is chosen 
so that infinite norm of the error is almost equal to that obtained with the corresponding quadtree grid. An intersecting 
consequence is that the L2 norms are also equivalent whatever the mesh used. It is thus not necessary to use a fine mesh in 
the whole domain. The slight differences between US and UZ errors are a consequence of the ordering that has an influence 
on the linear solvers used. The CPU time required to solve the linear system is reported in Table 7 (see Fig. 13). All the 
tests presented in this section have been solved using 96 cores on 4 nodes. The computational time needed for the AMR 
are one to two orders of magnitude smaller compared to the US grid. The computational time to solve the linear system for 
the same uniform grid can be significantly larger for the UZ ordering than that for the US Cartesian ordering. The Krylov 
space used for this test is BCGS with ASM preconditioning and ILU sub-preconditioner.

The results of this section strongly depend on the configuration studied, i.e. the ratio between the square size and the 
cylinder diameter. On the one hand, even though Z-order may significantly reduce performance of linear solvers, the number 
of grid points can be reduced to an extent that makes the solution by far faster. On the other hand, if one is interested 
in solving a linear system (at least a Poisson equation) for a non-multi-scale problem, the Cartesian grid with the usual 
Cartesian ordering is the most efficient approach.

6.5. Diffusion coefficient discontinuity

We consider now the full problem given by equations (1). The diffusion coefficient κ(x) is considered to be piecewise 
constant:
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Table 5
Errors obtained with a quadtree structure (AMR with four jumps of level) and with uniform 
grids for two different orderings (natural Cartesian, US, and Z-ordering, UZ). The size of the 
uniform grids is chosen to obtain similar errors with respect to the quadtree case.

Tree 
level

L2

US
L∞
US

L2

UZ
L∞
UZ

L2

AMR
L∞
AMR

7 5.25e−06 3.49e−05 9.30e−06 5.72e−05 – –
8 4.15e−06 2.79e−05 1.31e−06 1.29e−05 – –
9 8.96e−07 9.20e−06 2.62e−06 1.81e−05 – –
10 9.56e−07 9.09e−06 1.08e−06 1.08e−05 3.63e−06 1.07e−05
11 6.57e−07 5.75e−06 7.71e−07 8.01e−06 7.47e−07 7.99e−06
12 3.7e−07 4.16e−06 3.05e−07 2.87e−06 2.08e−07 2.87e−06
13 1.64e−07 2.05e−06 – – 1.08e−07 1.49e−06
14 6.36e−08 9.34e−07 – – 5.58e−08 7.33e−07
15 1.13e−08 3.26e−07 – – 1.16e−08 3.81e−07

Table 6
Comparison of the number of points for the quadtree (AMR) 
and uniform (US/UZ) grids.

Tree level US/UZ AMR

7 16384 –
8 65536 –
9 262144 –
10 1048576 4900
11 4194304 19012
12 16777216 76036
13 67108864 302776
14 268435456 1214512
15 1073741824 4863616

Table 7
Comparison of the computational time (in seconds) required to solve the 
linear problem for the quadtree (AMR) and uniform grids (US and UZ).

Tree level US UZ AMR

7 3.5329e−02 8.2994e−02 –
8 2.6406e−02 2.9260e−01 –
9 6.5642e−02 1.8123e+00 –
10 5.1011e−01 1.7149e+01 3.7959e−02
11 3.7639e+00 2.0778e+02 1.1091e−01
12 2.8374e+01 2.3868e+02 4.1040e−01
13 1.9036e+02 – 2.4283e+00
14 1.2410e+03 – 2.2296e+01
15 7.6472e+03 – 2.7102e+02

Fig. 13. Resolution time trend.
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Fig. 14. Numerical result obtained by AMR, superposition of analytical and numerical solution plane section, with a projection of the error and a represen-
tation of the mollification (gray part). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

κ(x) =
{

1 if x ∈ G,

100 if x ∈ S.

We are thus interested in approximating the solution of the following system:

κ(x)
u(x) = −1.0 in G ∪ S, (5a)

[κ(x)∂nu(x)] = 0 on γ . (5b)

The whole domain under consideration is the unit square [0, 1] × [0, 1]. The interface γ separating subdomains G and S
is defined by the circle with radius equal to R = 0.25 centered at (0.5, 0.5). The subdomain S is inside the leading disk 
(Fig. 14). The analytical solution considered is defined by:

u(x, y) =1

8
− 1

4κG

(
(x − 0.5)2 + (y − 0.5)2

)
in G, (6)

u(x, y) =1

8
− 1

4κS

(
(x − 0.5)2 + (y − 0.5)2

)
− R2

4

(
1 − 1

κS

)
in S. (7)

The coefficient κ is regularized with equation (4) where parameters α, β and σ are chosen such that:

α + 1

2
(β − α) = 49.5 + 1,

β − α

2
= 49.5,

σ = 100.

In what follows two classes of mesh refinements, called AMR1 and AMR2 are used.

6.5.0.1. AMR1 The first class of meshes used are refined near the mollification region around the interface γ with the 
following criteria:

• the maximal depth of the tree is fixed at value from M = 7 to M = 13;
• the squared domain is initially uniformly meshed with level M − 4;
• from M − 4 to M the mollified function (4) is evaluated on each octant. If the octant lies on the regularization zone3 it 

splits in four children;
• balance constraints are applied on the jump zones.

Examples of this kind of meshes are presented in Fig. 15. The corresponding convergence results are presented in Table 8.

3 The regularization zone is defined by |∇κ(x)| > ε, where ε is a small parameter, here 10−3.
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Fig. 15. Zoom on the AMR1 grids for levels 7 and 8.

Table 8
Convergence results for AMR1.

Tree level Mesh points L∞ L2

7 3784 2.40592e−02 1.69446e−01
8 14968 2.43815e−02 1.73977e−01
9 51472 3.86077e−02 2.77852e−01
10 112684 1.86597e−02 1.34336e−01
11 228484 2.87779e−03 1.98544e−02
12 465028 6.60242e−04 3.82096e−03
13 1124968 1.54341e−04 1.02991e−03

Table 9
Convergence results for AMR2.

Tree level Mesh points L∞ L2

7 16384 2.62959e−02 1.89502e−01
8 30868 2.56705e−02 1.84833e−01
9 59896 3.90077e−02 2.81516e−01
10 117796 1.88669e−02 1.36216e−01
11 233512 2.90886e−03 2.01399e−02
12 465028 6.60242e−04 3.82096e−03
13 1090300 1.53515e−04 1.02783e−03

6.5.0.2. AMR2 The second class of mesh refinement follows the criteria:

• the maximal depth of the tree is fixed at value from M = 7 to M = 13;
• the squared domain is initially uniformly meshed with M = 7 (16384 octants);
• from 7 to M the mollified function (4) is evaluated on each octant. If the octant lies on the regularization zone it splits 

in four children;
• balance constraints are applied on the jump zones.

Examples of this kind of meshes are presented in Fig. 16. The corresponding convergence results are presented in Table 9.
As expected, for both mesh refinements the overall error is distributed near the mollification region. The mesh can 

thus be relaxed outside the mollification region allowing to save CPU costs (time and memory). Compared to the balanced 
case, for given error level, we have here about 5 times less grid points. We study the same configuration described in the 
previous section but without the 2:1 balance constraint. An example of the unbalanced (4:1) grid is given in Fig. 17. Mesh 
convergence results are reported in Table 10.

A zoom of the unbalanced part is presented in Fig. 18.
The error distribution on the entire domain presented in Fig. 19 is comparable to the error obtained on balanced meshes 

for the same problem.

6.6. Three-dimensional problems

The extension of the numerical approach to 3D problems is quite straightforward. The number of the constraints to be 
satisfied for a consistent set of weights is 10 in 3D (6 in 2D). The numerical approach is still natively parallel.
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Fig. 16. Zoom on the AMR2 grids for levels 8 and 9 and 13.

Fig. 17. Error example, level 8, sinus analytical function.

6.6.1. Validation
This section is devoted to study the convergence error of our approach for 3D problems. We consider a sinusoidal 

solution centered in the cube [0, 1] ×[0, 1] ×[0, 1]. One level of 2:1 mesh refinement is performed inside a fictitious sphere 
with radius equal to 0.15 centered in the computational domain.

Initially, the exact solution considered is ue(x, y, z) = sin((x − 0.5)2 + (y − 0.5)2). It is invariant along the z-axis to check 
the 2D symmetry of the solution. Fig. 20 shows the matrix structure for 36128 grid points. The matrix presents several 
sub-blocks of non-zeros values coming from the Z-ordering. Note that the matrix structure is significantly different when 
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Table 10
Unbalanced test case. Sinus solution, first level 6.

Mesh points L∞ L2 Order L∞ Order L2

796 0.00138827 0.00682539 – –
3352 9.97279e−05 0.000550322 3.663 3.503
13588 2.73791e−05 0.000159641 1.846 1.764
54268 7.78934e−06 4.55914e−05 1.815 1.832
217936 1.95523e−06 1.14128e−05 2.032 2.027

Fig. 18. Zoom on the unbalanced grid.

Fig. 19. Mesh referring to Table 11. Error distribution.

Table 11
Unbalanced AMR. First case level 7.

Mesh points L∞ L2 Order L∞ Order L2

2464 1.91741e−02 4.09443e−02 – –
10180 6.39336e−03 2.76724e−02 1.55 0.553
42928 2.59668e−03 1.45533e−02 1.252 0.899

a classical Cartesian ordering is used, even if no refinements are considered. Because of this, like in the 2D case, for the 
same number of grid points the computational time required to solve the linear system will be higher using the Z-ordering 
compared to the classical Cartesian ordering. Computational efficiency will be recovered since for given error, a significantly 
smaller resolution will be required.

An error map on a cross section is presented in Fig. 21. As expected, the error is concentrated in a narrow band around 
the fictitious sphere where refinement is performed.

Let 
h be the discretized laplacian operator and ue the exact solution on mesh centers. The convergence order of the 
residual is computed as if the mesh were uniform: p = 3 ∗ ln(err1/err2)

ln(np2/np1)
, where err stands for error norm and np the total 

number of points. A convergence analysis of the residual 
hua − f is presented in Table 12. Second-order accuracy is 
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Fig. 20. Structure of the 3D matrix for the Laplacian operator with 2:1 graded grid (36128 points).

Fig. 21. Error map on a cross section for ue(x, y, z) = sin((x − 0.5)2 + (y − 0.5)2) with 2:1 refinement in a sphere.

Table 12
Study of residual order.

Tree depth level Mesh points ‖
hua − f ‖∞ Order

5 4488 7.32456e−03
6 36128 2.20676e−03 1.726
7 287680 5.98111e−04 1.888
8 2303400 1.5521e−04 1.945

obtained for the infinite norm. A map of the residuals in several cross sections is presented in Fig. 22. The smaller residuals 
are observed where the mesh is refined.

We now increase the level of jumps on a balanced mesh from one (previous example) to three. The error results are 
presented in Table 13. A second-order accuracy is almost reached for both the L2 and L∞ error norms. The distribution of 
the errors is presented in Fig. 23 for a mesh refinement with level 9 inside the sphere and 6 outside.

We now consider a 3D exact solution: ue(x, y, z) = sin((x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2). The results in terms of error 
norms are reported in Table 14. The distributions of the error on the sphere and in a cross section without the sphere are 
presented in Fig. 24. A second order accuracy is obtained, and a symmetry on the error distribution is observed.

6.6.2. Random mesh generation
We applied a random algorithm to generate an arbitrary grid also for the three dimensional extension, see Fig. 25. The 

convergence order of the method is given in Table 15.

6.6.3. Penalization
We consider two test cases. The first one is the exact penalization, i.e. the exact solution is imposed on each node lying 

inside the centered sphere with radius equal to 0.05 by a penalty term. In the second one, the exact solution of the sphere 
boundary (that is constant for the solution under consideration) is reported on each nodes inside the sphere. The mesh is 
recursively refined in a narrow band around the sphere boundary.
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Fig. 22. Representation of the residuals for the 3D Laplace operator in several cross sections.

Table 13
Laplacian resolution with AMR in a sphere. Balanced mesh, three levels of 
difference between maximal and minimal depth, 2D sinus analytical func-
tion.

Mesh points L∞ L2 Order L∞ Order L2

4880 2.41187e−04 1.16224e−04 – –
32656 7.93562e−05 4.16123e−05 1.755 1.6184
264944 2.20059e−05 1.23492e−05 1.837 1.7461
2111880 5.82872e−06 3.36007e−06 1.919 1.8813
17103976 1.50078e−06 8.76136e−07 1.947 1.9281
137484026 3.8073e−07 2.23642e−07 1.976 1.965

Fig. 23. Distribution of the errors for a mesh refinement with level 9 inside the sphere and 6 outside for 2D ue(x, y, z) = sin((x − 0.5)2 + (y − 0.5)2).

Table 14
Laplacian resolution AMR in a sphere. Balanced mesh, three levels of differ-
ence between maximal and minimal depth. ue(x, y, z) = sin((x −0.5)2 + (y −
0.5)2 + (z − 0.5)2).

Mesh points L∞ L2 Order L∞ Order L2

4880 3.9367e−04 1.97745e−04 – –
32656 1.25677e−04 7.14724e−05 1.802 1.61
264944 3.54814e−05 2.12077e−05 1.812 1.74
2111880 9.42605e−06 5.77689e−06 1.916 1.878
17103976 2.42823e−06 1.50647e−06 1.945 1.935
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Fig. 24. Distribution of the errors for a mesh refinement with level 9 inside the sphere and 6 outside for 3D sinus analytical function.

Fig. 25. Random mesh generation: initial grid.

Table 15
Convergence order for the random mesh generation. The first line involves 
736 degrees of freedom, the last one 1573888.

Tree level L∞ L2 Order L∞ Order L2

4 2.55285e−02 6.53591e−04 – –
5 4.78024e−03 1.90869e−04 2.42 1.776
6 9.45935e−05 4.51667e−05 2.337 2.079
7 2.52537e−05 1.28204e−05 1.905 1.818
8 6.53981e−06 3.39493e−06 1.949 1.916

For the first test case, the error distribution in a cross section is presented in Fig. 26. The error is minimal near bound-
aries where the solution is explicitly imposed. Errors are presented in Table 16. As expected for an exact penalization on 
the sphere interior, a second order accuracy is reached.

For the second test case, corresponding to usual penalization, the error distribution in a cross section is presented in 
Fig. 27. The error is maximal near the internal boundary. Errors are presented in Table 17. The first order penalization is 
recovered.

7. Conclusions

A cell-centered finite-difference method to solve Poisson equation on hierarchical Cartesian meshes is proposed. The main 
idea is to minimize the local second-order truncation error coefficient by an appropriate choice of the discretization weights. 
In order to reduce communications, the stencil involves only the direct neighbors, i.e. all the cells that are in contact (with 
face, edge or corner) with the cell under consideration. The data structure is based on a linear octree and it is intrinsically 
parallel. Error analysis in two and three dimensions shows that this scheme is consistent with second-order accuracy. 
For multiscale problems, this approach outperforms uniform parallel Cartesian solvers since significantly less discretization 
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Fig. 26. Error distribution in a cross section for the 3D penalized sphere test case.

Table 16
Numerical errors and convergence for the second order penalized sphere.

Level Mesh points L∞ L2 Order L∞ Order L2

6 2976 0.000238244 0.000106971 – –
7 10536 7.45466e−05 3.94184e−05 2.757 2.369
8 55672 2.43216e−05 1.19565e−05 2.019 2.15
9 380024 5.37193e−06 3.0825e−06 2.359 2.117
10 2826104 1.38687e−06 8.05033e−07 2.021 2.007
11 21907208 3.52385e−07 2.05731e−07 2.012 1.999

Fig. 27. Error distribution in a cross section for the 3D penalized sphere test case.

Table 17
Numerical errors and convergence for the first order penalized sphere.

Level Mesh points L∞ L2 Order L∞ Order L2

8 38256 1.30976e−03 1.50915e−05 – –
9 330968 6.17589e−04 6.40046e−06 1.045 0.996
10 2646512 3.50834e−04 3.71911e−06 0.815 0.783
11 21205696 1.80231e−04 1.97858e−06 0.963 0.91
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points are needed. Even if most of the examples presented in the paper deal with graded grids, it is shown that the scheme 
can be applied to non-graded grids without any modifications.
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