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A domain decomposition method which couples a high and a low-fidelity model is 
proposed to reduce the computational cost of a flow simulation. This approach requires 
to solve the high-fidelity model in a small portion of the computational domain while 
the external field is described by a Galerkin-free Proper Orthogonal Decomposition (POD) 
model. We propose an error indicator to determine the extent of the interior domain and to 
perform an optimal coupling between the two models. This zonal approach can be used to 
study multi-body configurations or to perform detailed local analyses in the framework of 
shape optimisation problems. The efficiency of the method to perform predictive low-cost 
simulations is investigated for an unsteady flow and for an aerodynamic shape optimisation 
problem.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

One of the main issues in the simulation of fluid flows is the definition of appropriate boundary conditions. In most cases, 
the dilemma of the boundary conditions dictates de-facto the choice of the computational domain. Generally speaking, the 
computational domain is extended from the region of interest until its boundaries fall in a region for which some values 
or model for the boundary condition may be derived. Unfortunately, even when relaxing on the position of the boundary 
condition, exact information regarding the values are unknown in most cases. The dominant approach consists in trying 
to minimise the spurious effects of the boundary conditions by locating them as far as possible from the crucial region 
or at some natural choices (like sonic throats in nozzles). In fact, one of the crucial (empiric) engineering know-how, is 
to evaluate the trade-off between size of the computational domain and accuracy of the boundary conditions and how 
this choice impacts on the over-all design work-flow. A systematic approach to this problem is still out of reach for most 
industries, since error-bounds and uncertainties should be propagated and quantified throughout the entire design process.

In external aerodynamics the computed body forces are particularly sensitive to the location of the far-field boundaries 
where undisturbed values are assumed. In order to reduce the computational domain, two different families of approaches 
can be found in literature. A first set of family focuses on the implementation of absorbing and non-reflecting boundary 
conditions for both compressible and incompressible flows (see for example [1] and [2]). The main idea behind these meth-
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ods is to allow the correct propagation of starting waves, which are generated at the body, out of the computational domain 
as if the domain was unbounded. The use of these boundary conditions introduces several benefits but the requirements 
on the size of the computational domain can still be demanding. For example, the distance between a lifting body and the 
far-field boundary modelled with non-reflecting boundary conditions is up to hundreds times the characteristic size of the 
body [3].

Another family uses simplified flow models to derive boundary conditions closer to the solid. These techniques rely 
on the observation, that non-linear, viscous or rotational effects decay far from the body and that a simpler model may 
express the boundary conditions. Such an approach was proposed by Thomas and Salas [4] for flows around lifting bodies 
through a point vortex correction method. In their approach, the velocity boundary condition is improved by introducing a 
correction given by the velocity induced by a point vortex located on the body, whose intensity is derived by monitoring the 
circulation around the body. In other words, the knowledge of the computed flow field inside the domain is used to correct 
and improve automatically the boundary condition. In this way, the size of the computational domain can be significantly 
reduced without introducing a significant dependence of the solution on the shape of the external boundary. A similar 
approach has been proposed for the continuation of inviscid vortex patches in 2D configurations [5].

For internal flows, inlet and outlet conditions may be even harder to derive if the simulated component is part of large 
complex system. For these cases, multi-scale methods, which introduce a two-way coupling between the component (mod-
elled through an high-fidelity model) and the system (modelled through a network of lumped coefficients) have proven to 
be a viable approach (see for example [6]). The two-way coupling is achieved through the boundary conditions, computed 
by the network model and used for the high-fidelity computation, and the lumped coefficients, computed by the high-
fidelity model and used in the network model. The cost of re-iterations introduced by the two-way coupling is generally 
much lower than using the high-fidelity model throughout the entire system. For example, the performances of aerospace 
propulsion systems are usually evaluated by using this approach [7]. Another application concerns the simulation of the 
heart and its interaction with the circulatory system [8].

For the sake of the later discussion, we can say that boundary conditions are (sub) models, which may predict the values 
of flow variables at the boundary. The errors introduced depend on the position of the boundary and on the sophistication 
of the model. The easiest boundary conditions impose just a value, while more complicated boundary conditions may mimic 
an entire system.

Lately, empirical Reduced Order Models (ROM) are gaining considerable attention as a generic framework for reducing 
the computational cost of complex simulations. Most ROMs rely on an offline phase where numerical experiments are per-
formed in order to collect the empirical knowledge necessary to derive the ROM. Within an online phase, the ROMs may be 
evaluated at a very competitive cost, which is generally orders of magnitude less than the original Full Order Model (FOM). 
Several ROM approaches are nowadays available: Proper Orthogonal Decomposition (POD) [9–17]), Proper Generalised De-
composition (PGD) [18], Reduced Basis (RB) [19,20], Dynamic Mode Decomposition [21], Empirical Interpolation Method 
(EIM) [22], Discrete Empirical Interpolation Method (DEIM) [23], hierarchical model reduction [24].

Proper Orthogonal Decomposition is an attractive choice to define the reduced solution space. The POD algorithm allows 
to identify the most relevant structures in the flow field starting from a collection of snapshots [9]. This allows a significant 
compression of the information because just a few modes can contain the information, which is associated to several 
snapshots, especially in unsteady problems.

In the classical POD approach the equations which govern the flow field are projected onto the POD basis by means of a 
Galerkin projection [11,12,25]. This makes it possible to get a set of ordinary differential equations which describe the time 
evolution of the POD coefficients. A typical application of this approach is the study of flow control problems [26–28]. This 
approach is very powerful since it reduces significantly the number of degrees of freedom of the discretisation. However, the 
POD-Galerkin method can give unstable results, especially for high Reynolds number flows because it misses the stabilisation 
effects related to the truncated small scales. The classical remedy for this problem is based on the introduction of artificial 
dissipation terms which make the model stable [25,29–32]. Alternative techniques based on Petrov–Galerkin projections are 
also possible [33,34]. All these approaches are characterised by a strong reduction in the number of degrees of freedom of 
the discretisation but their application to the prediction of general non-linear problems is challenging because they often 
require problem-dependent stabilisation terms.

A further burden of these approaches, especially in an industrial context, is the cost of the offline phase, which is 
often not discussed. The number of numerical realisations in order to have a representative database is strongly dependent 
on the size of the parameter space and on the non-linearity of the problem. Since POD modes are linear combinations 
of snapshots, non-linear behaviour could be recovered by sufficiently fine-grained sampling of the parameter space or by 
the use of local models based on machine learning techniques [35,36]. For example, in aerodynamic shape optimisation 
O(10)–O(100) parameters are generally used and very non-linear effects like flow separation, recirculation bubbles, shocks 
and turbulence are the rule rather than the exception. In these cases, the cost of the generation of the requested database 
may not be amortised by the subsequent cost savings due to the ROM.

A further obstacle in projection based ROMs is the difficulty to account for geometrical modifications of the com-
putational domain. Finite-element solvers can account for different element mappings if the connectivity vector remains 
unaltered throughout the database. If re-meshing of the domain is necessary or if topological changes are present, it may 
be very difficult or impossible to employ these methods.
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In this work, a zonal Galerkin-free POD method is derived through a domain decomposition approach in which an high-
fidelity solver is applied in a subset of the computational domain while the solution in the external region is described 
by a POD reconstruction. The core of this hybrid approach is a technique to derive near-field boundary conditions for the 
high-fidelity solver. This methodology can be seen as a generalisation of the point vortex correction method: instead of 
introducing a boundary correction based on one mode whose shape is decided a-priori (the point vortex), a general set of 
correction modes (the POD modes) is automatically built from an empirical basis. The POD reconstruction is then dynami-
cally coupled to the high-fidelity solution by introducing some compatibility conditions in a weak sense. This methodology 
is not restricted to any class of problems, and may be adopted for simulations of compressible and incompressible flows of 
external and internal problems. Anyhow the expected computational gains may vary significantly depending on the consid-
ered problem.

Although this zonal approach gives a less impressive reduction of the computational cost with respect to the POD-
Galerkin approach, this methodology may be a more suitable alternative for an industrial context. The method does not 
suffer from instability when non-linear phenomena are present and it does not need a priori a very fine sampling in order 
to predict them correctly. Since the method uses the canonical high-fidelity solver where the POD basis fails to reproduce 
non-linear effects, it simply exempts the reduced basis from this responsibility. For non-linear problems, it will be shown 
in the test cases considered in this paper that the sampling influences the size of the domain where the high-fidelity solver 
must be employed. Consequently the method will benefit from a finer sampling, since the high-fidelity domain may be 
further reduced while keeping error-bounds constant. Furthermore the method does not rely on any one-to-one mapping 
of the computational domain. Mesh and even topological changes in the geometry can be handled in a straight-forward 
manner.

While the basic idea of this approach has been proposed by Buffoni et al. [37], in this work we present how to exploit 
the empirical basis in order to decide the domain-decomposition and how to derive an optimal coupling between the POD 
reconstruction and the high-fidelity solver. Furthermore the methodology is extended to incompressible flows.

The paper is outlined as follows. In section 2, in order to demonstrate that this approach is compatible with virtually 
any CFD tool, two solvers are presented, which have been enhanced with the proposed technology. In section 3, the zonal 
Galerkin-free POD approach is depicted. In section 4.1, a prediction error indicator is presented and employed to define the 
domain decomposition and to perform an optimal coupling between the high-fidelity solver and the POD reconstruction. 
In section 5, the performance of this methodology is evaluated by performing a study on the interaction between a vortex 
and a NACA0012 airfoil at low Reynolds numbers. In section 6, the methodology is applied in the framework of shape 
optimisation of an automotive test case in order to reduce aerodynamic drag solving the Reynolds Averaged Navier Stokes 
(RANS) equations. A critical discussion of the methodology, concluding remarks and an outline of further improvements are 
presented in a final section.

2. High-fidelity discretisation of incompressible Navier–Stokes equations

The flow fields studied in this work are described by the incompressible Navier–Stokes equations (NS) or by the incom-
pressible Reynolds Averaged Navier–Stokes (RANS) equations. The NS equations are:

∂u

∂t
+ (u · ∇)u = − 1

ρ
∇p + ν∇2u,

∇ · u = 0,

(1)

where u and p are the velocity and pressure fields, and ν = μ/ρ is the kinematic viscosity, with μ the dynamic vis-
cosity and ρ is the density. The RANS equations are obtained by applying an average operator on the previous equa-
tions and introducing a closure model. The RANS model used in this work is the Spalart–Allmaras [38] one equation 
model.

The simulations reported in this work are performed with two different numerical models in order to test the zonal 
Galerkin-free POD approach with different numerical schemes and physical models. In particular, the simulations on 
the interaction between the airfoil and the vortex are performed by means of an immersed boundary cartesian code. 
The simulations related to the automotive shape optimisation problem are performed through the OpenFoam package 
[39].

2.1. Projection scheme for low Reynolds number unsteady flow

The incompressible Navier–Stokes equations are solved by means of an incremental fractional step method based on the 
approach of Chorin–Temam [40]. The method requires to perform a prediction step by integrating the momentum equation 
with time step �t in order to get an approximate intermediate state:

u∗ − un

= − 1 ∇ p̄ − [(u · ∇)u]n+ 1
2 + ν∇2un+ 1

2 , (2)

�t ρ
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where p̄ is an approximation of the pressure field at time n + 1
2 , and the convection and diffusion terms at time n + 1

2 are 
obtained with an Adams–Bashforth extrapolation. Usually we chose p̄ = pn and we have:

u∗ = un + �t

[
− 1

ρ
∇pn −

(
3

2
(un · ∇)un − 1

2
(un−1 · ∇)un−1

)
+ ν

(
3

2
∇2un − 1

2
∇2un−1

)]
. (3)

The space discretisation is based on finite differences evaluated on cartesian meshes with spacing h for cell centred
collocated variables. The convective terms are approximated by a third order upwind scheme. The diffusive terms are ap-
proximated by a second order centred scheme.

The intermediate velocity field u∗ is not divergence-free. It is corrected by solving a Poisson problem on the pressure 
correction variable �̂ which makes it possible to get a divergence free velocity field at the end of the time step (un+1):

�̂ = �t(pn+1 − pn). (4)

∇2�̂ = ρ∇ · u∗
f . (5)

un+1 = u∗ − 1

ρ
∇�̂, (6)

where u∗
f is the face centred velocity field built from cell centred velocities u∗ [41],

u∗∗ = u∗ + �t

ρ
∇pn

∣∣
cc ,

u∗
f = I(u∗∗) − �t

ρ
∇pn

∣∣
f c ,

where I denotes a function of interpolation from cell centred to face centred position. The subscripts cc and f c denote cell 
centred (over 2h) and face centred derivatives (over h), respectively. The use of u∗

f helps removing the possible odd-even 
oscillations.

Appropriate boundary conditions are imposed on u∗ and �̂ to solve (3) and (5).
The presence of bodies immersed into the fluid is taken into account by a penalization term γχ(û − u∗) which is added 

to the right hand side of (3). The characteristic function is χ = 1 inside the body and χ = 0 elsewhere, γ � 0 is the 
penalization parameter and û is the body velocity on nodes inside the body. In order to improve the accuracy in the wall 
region, the body velocity û is artificially modified in the first layer of points inside the body to get a second order accurate 
velocity discretisation [42,43].

2.2. Steady simulation of RANS equations

For the solution of the steady-state RANS equations, we use simpleFoam, an OpenFOAM solver based on a cell-centred
finite volume method, implementing the SIMPLE pressure–velocity coupling proposed by Patankar [44]. As shown in [45], 
the method relies on the derivation of an explicit equation for the pressure, starting from the semi-discretised form of the 
momentum equation:

apup = H(u) − ∇p, (7)

where ap are the matrix diagonal coefficients and H(u) contains both the neighbours contributions and the source terms 
apart from the pressure gradient.

The continuity equation can be discretised in terms of the face fluxes as:

∇ · u =
∑

f

s · u f = 0, (8)

where s is the face area vector and u f represents the velocity interpolated on the face, which is obtained from Eq. (7):

u f =
(

H(u)

ac

)
f
−

(
1

ap

)
f

(∇p) f . (9)

Substituting Eq. (9) into Eq. (8), we obtain the discretised pressure equation:

∑
f

s ·
[(

1

ap

)
f

(∇p) f

]
=

∑
f

s ·
(

H(u)

ap

)
f

. (10)

Eq. (7), Eq. (8) and Eq. (10) are solved iteratively through under-relaxation, until convergence is attained. First, the 
momentum equation is under-relaxed implicitly and solved in order to obtain the predicted velocity u	 , using the pressure 
field from the previous iteration to compute the pressure gradient term. u	 is then used in the pressure equation to evaluate 



M. Bergmann et al. / Journal of Computational Physics 352 (2018) 301–325 305
Fig. 1. Zonal simulation based on domain decomposition.

the new pressure distribution. Once that the new p is obtained, the face fluxes are corrected and the new pressure field to 
be used in the momentum predictor step is computed by under-relaxing p.

The equations are discretised with Gaussian integration, using different schemes for each term. For the gradient terms, 
we use a second-order accurate centred scheme for p and u and a cell limited version for turbulent quantities. The Laplacian 
terms are approximated by a blending of a bounded, first order, non-conservative scheme and an unbounded, second order, 
conservative scheme. The convective terms in the turbulence equations are discretised using a total variation diminishing 
(TVD) bounded scheme, whereas linear upwind differencing is employed in the momentum equation.

3. A zonal Galerkin-free POD model

The main idea is to solve the high-fidelity model where a given degree of accuracy is required and to approximate the 
solution by an empirical modal representation elsewhere. The objective is to reduce the extent of the domain where a 
high-fidelity simulation is performed, see Fig. 1.

The empirical low-dimensional representation is obtained by a previously computed database of high-fidelity solutions 
on a large computational domain (
) for different working conditions or system configurations. This first step is performed 
offline. The sampling of the parameter space will strongly influence the accuracy of the modal representation and hence the 
ability to perform actual predictions (configurations not included in the database). In this sense, several techniques for an 
efficient sampling of the parameter space have been proposed in the literature (adaptive sampling for POD-base surrogates 
[46], adaptive sampling based on a leave-one-out error indicator [36,47], compact POD bases [48], greedy approaches based 
on Voronoi tessellation [49]). Here, we will limit ourself to a simple cartesian sampling of the parameter space as explained 
in the following.

The whole computational domain (
) includes three regions: a domain (
H F ) where a high degree of accuracy is re-
quired, a domain (
L F ) where the solution is represented by empirical modes (here POD modes) and an overlapping region 
(
O ). We have:


H F ⊂ 
, 
L F ⊆ 
 and 
O = 
H F ∩ 
L F . (11)

The high-fidelity solution and the low-order representation are matched in the overlapping domain 
O as explained in the 
following. Moreover, a criterium to determine 
H F based on an error indicator will be introduced in Section 4.2.

3.1. POD modal representation in 
L F

The zonal method described in this paper can be applied to different modal representations such as reduced basis [19,
20] or stability modes [50–53] approaches. Here we focus on Proper Orthogonal Decomposition (POD) for the description of 
the external region.

The phenomena considered in the present study are described by the incompressible Navier–Stokes equations or by the 
incompressible Reynolds Averaged Navier–Stokes (RANS) equations. A modal description of the velocity field ũ and of the 
pressure field p̃ is:

ũ(x, t) = fu(x, t) +
N∑

i=1

ûi(t)�i(x) ûi ∈R,�i ∈R
d,x ∈ 
L F ,

p̃(x, t) = f p(x, t) +
N∑

p̂i(t)�i(x) p̂i ∈ R,�i ∈R,x ∈ 
L F ,

(12)
i=1
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where N is the number of modes, d is the space dimension and �i and �i are the velocity and pressure modes, respectively. 
The variable x identifies the position in space and the parameter t represents the time if unsteady problems are considered. 
In steady problems, the parameter t can be seen as a parameter which identifies the working condition or the configuration 
of the system.

In some applications it is useful to set the forcing fields (fu and f p) equal to the average fields obtained by applying 
an average operator to all the configurations in the database. For example, in external aerodynamic problems the average 
velocity field is a key quantity because it fixes the far field velocity magnitude.

According to the approach of Sirovich [9] the POD modes (�i , �i ) can be computed as a linear combination of Ns

snapshots (u j(x) = u(x, t j), p j = p(x, t j)). Here, to fix notations, we briefly detail the procedure for the velocity field but it 
can be applied exactly in the same way for any other variable. In this work, the POD modes describe the difference between 
ũ and fu , hence we have

�i(x) =
Ns∑
j=1

b j
(
u j(x) − fu(x, t j)

)
. (13)

Let define the discrete scalar product operator 〈·, ·〉
L F according to the numerical scheme which is used in the high-
fidelity model. In this work a finite volume (FV) scheme on unstructured meshes or a finite difference (FD) scheme on 
uniform cartesian meshes are used and hence we have

〈g(x),h(x)〉
L F =
∫


L F

g(x) · h(x)d
 ≈
N p∑
l=1

g(xl) · h(xl)Vl, (14)

where Np is the number of degrees of freedom used by the numerical scheme to describe the solution in 
L F and Vl is the 
volume related to the lth cell of the discretisation. Let || · ||
L F be the norm related to this scalar product.

The procedure for computing the coefficients b j is based on a maximisation problem. The POD modes are found such 
that the projection of the snapshots on the modes is maximised:

max
b j

[
Ns∑

k=1

〈uk(x) − fu(x, tk),�i(x)〉2

L F

]
= 0 subject to ||�i(x)||
L F

= 1 1 ≤ i, j ≤ Ns. (15)

When Eq. (13) is substituted in Eq. (15) an eigenvalue problem is obtained. The eigenvectors of the resulting system 
give the coefficients b j required by Eq. (13). The associated eigenvalues rank the contribution of each POD mode to the 
representation of the snapshot database.

In this work two completely independent POD basis are built for the velocity and pressure fields.
The approach described here for pressure and velocity is applied exactly in the same manner also to the variables of the 

turbulence model when RANS equations are considered.
The eigenvalues (λi ) related to the POD modes allow to estimate the contribution given by each mode to the reconstruc-

tion of the snapshots. The sum of all the eigenvalues can be seen as the Total Information (energy) Content related to the 
fluctuations in the snapshots. The Relative Information Content (R IC ) indicator can be defined as:

R IC(N) =
∑N

i=1 λi∑Ns
i=1 λi

0 ≤ N ≤ Ns, (16)

where Ns is the number of snapshots and hence the maximum possible size of the POD basis.
Assuming that the eigenvalues are ordered with decreasing value, it is possible to choose the size (N) of the POD basis 

by truncating the expansion after the first term which guarantees a given level of information R IC > σE (for example 
99.9%).

3.2. Galerkin-free POD model

In 
O both the high-fidelity and the POD modal representation are defined. This region is the key to perform the 
coupling between the two models in the zonal simulation. On one hand, the POD solution is used to define the boundary 
conditions required by the high-fidelity solver. On the other hand, the high-fidelity solution inside the overlapping region 
is used to evaluate the POD expansion coefficients (ûi and p̂i ) which appear in Eq. (12). This introduces a feedback of the 
high-fidelity solution onto the POD reconstruction which will be updated at each time step according to the evolution of 
the high-fidelity solution.

In order to compute the coefficients of the POD expansion, a minimisation problem is defined. In particular, the distance 
between the POD reconstruction (ũ, p̃) and the high-fidelity solution (u, p) is minimised in the L2-norm sense in the 
overlapping region, in order to match the two representations:
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{ûi}N
i=1 = argmin

[〈
u(x, t) − ũ(x, t),u(x, t) − ũ(x, t)

〉

O

]
. (17)

{p̂i}N
i=1 = argmin

[〈
p(x, t) − p̃(x, t), p(x, t) − p̃(x, t)

〉

O

]
. (18)

This leads to the definition of a small linear system (size N) whose solution gives the coefficients of the expansion (ûi , 
p̂i ) which match the POD and the high-fidelity solutions at the current iteration of the zonal simulation:

N∑
i=1

ûi(t)
〈
�i(x),� j(x)

〉

O

= 〈
u(x, t) − fu(x, t),� j(x)

〉

O

1 ≤ j ≤ N. (19)

N∑
i=1

p̂i(t)
〈
�i(x),� j(x)

〉

O

= 〈
p(x, t) − f p(x, t),� j(x)

〉

O

1 ≤ j ≤ N. (20)

The overlapping region shown in Fig. 1 consists in a layer of points close to the boundary of the high-fidelity domain. 
However, more general shapes can be considered. A possible criterium for the choice of the overlapping region is reported 
in Section 4.3.

4. Definition of �H F and �O

4.1. A prediction error indicator

The zonal approach requires to split the computational domain in a region described by the high-fidelity solution and 
a region described by the POD reconstruction. However, it is not clear how to perform this splitting a priori. In order to 
answer this question an offline error indicator obtained from the snapshot database is proposed.

The main idea is to identify the regions where the representation of the flow field by the POD basis is strongly affected 
by a change in the input parameters. In order to find these zones we apply a leave-one-out strategy to the simulation 
database which contains the information from Nsp sampling points, where a sampling point represents a configuration in 
the space of the parameters. This method requires to iteratively remove each sampling point from the database in turn 
and to use the remaining simulations to build a new POD basis. This new basis then is used to approximate the missing 
configuration and to get an insight on the ability of the basis to reconstruct new configurations.

The leave-one-out method belongs to the class of the cross-validation techniques used for model selection in statistics 
[54] and can be used as a procedure to perform adaptive sampling for building robust POD models [36,47].

In this work, the leave-one-out strategy is not used to improve the sampling of the database but to get an error distri-
bution map which can be exploited to choose the size of 
H F and 
O .

In order to clarify the strategy, we apply this approach to the velocity field but the same analysis can be performed on 
any other variable which appears in the governing equations. Let the database include Nsp sampling points and Nk

s be the 
number of snapshots related to the kth sampling point. This means that the number of snapshots in the database will be 
equal to Ns = ∑Nsp

k=1 Nk
s .

The Nk
s snapshots of the kth simulation (in the following denoted as uk

j) are removed from the database and the remain-

ing snapshots are used to build a POD basis. In this offline phase, we set 
L F = 
. The missing snapshots uk
j are projected 

onto the POD basis in the domain 
L F :

PP O D(uk
j(x)) = fu(x, t j) +

N∑
i=1

〈
uk

j(x) − fu(x, t j),�i(x)
〉

L F

�i(x). (21)

The projection PP O D(uk
j) is compared with the missing high-fidelity snapshot (uk

j ). The differences between these two 
fields are used to define an error indicator (ek

j(x)) which represents an estimate of the error that would be associated to 
the prediction of new configurations out of the database.

When the analysis is applied to the velocity field a possible approach is to define the error indicator as the error on the 
velocity magnitude (|u| = √

u · u):

ek
j(x) =

∣∣∣|uk
j(x)| − |PP O D(uk

j)(x)|
∣∣∣ . (22)

The maximum of the reconstruction error (ek(x)) is computed over all the Nk
s snapshots of the kth simulation that was 

removed from the database. The same quantity is computed for all the Nsp configurations in the database and finally the 
maximum between all the configurations is computed (e(x)). The pseudocode reported in the Algorithm 1 summarises the 
method.

The procedure is simplified when steady problems are considered because in that case there is only one snapshot for 
each simulation (Nk = 1, 1 ≤ k ≤ N ).
s sp
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Algorithm 1 Compute error indicator.
1: for (k=1, Nsp ) do{
2: Remove the Nk

s snapshots of the kth simulation from the database
3: Build a POD basis with the remaining snapshots
4: for ( j=1, Nk

s ) do{
5: Compute the projection (PP O D (uk

j)) of the snapshot uk
j onto the POD basis

6: Compute the error indicator field ek
j(x) =

∣∣∣|uk
j(x)| − |PP O D (uk

j)(x)|
∣∣∣

}
7: ek(x) = max

1≤ j≤Nk
s

(ek
j(x))

}
8: e(x) = max

1≤k≤Nsp

(ek(x))

4.2. Determination of 
H F

The error indicator field e(x) obtained by the analysis of the database can be used to estimate the required extension of 
the high-fidelity domain 
H F . In particular, the error indicator shows which are the zones where the solution is strongly 
influenced by the working conditions and where the POD reconstruction introduces large approximation errors. We propose 
to choose the size of 
H F by defining a threshold on the acceptable error σR . Ideally, 
H F should be chosen as the set of 
points in which the reconstruction error e(x) is larger than the threshold σR :


̃H F = {x ∈ 
 : e(x) > σR} . (23)

In this way, the regions where the POD model is not able to perform accurate predictions are directly studied by means of 
the high-fidelity solver. Practically, Eq. (23) would lead to an irregular shape of the computational domain and so 
H F can 
be chosen as a rectangular box which includes 
̃H F .

The extension of 
H F could become similar to the size of the full domain 
 for small values of the error threshold σR . 
In this case the computational gain of the zonal approach would vanish. The occurrence of such a situation would mean 
that the POD basis is not suitable to perform predictive simulations with the required accuracy. In other words, the database 
does not contain enough information and should be improved.

The error indicator field e(x) obtained at the end of the leave-one-out procedure does not allow to identify which are 
the regions in the parameters space which require more exploration to improve the database. However, it is possible to 
compare the Nsp different error fields ek(x) obtained during the leave-one-out analysis: if ek(x) is significantly larger for 
certain values of k then it is useful to add new sampling points in the parameters space in the neighbouring of the kth 
sampling point. An example of this strategy is adopted in [36].

4.3. Determination of 
O

After choosing the size of 
H F it is necessary to define the overlapping region 
O . The most natural choice would be to 
set the overlapping region equal to the entire high-fidelity region 
H F . In this way, the coefficients of the POD expansion 
would be computed by minimising the distance between the high-fidelity and the POD reconstruction in all the points of 

H F . However, this choice could be suboptimal when performing predictive zonal simulations.

This aspect can be understood by considering the prediction error distribution obtained by the Algorithm 1. The error 
distribution shows that the regions where the reconstruction error is maximum are inside 
H F . This means that there are 
some points inside 
H F in which the POD basis is not able to predict properly the solution of a new configuration. It 
could be useful to investigate how the inclusion of these points into the overlapping region will influence the prediction 
error on a given goal function. In particular, it is possible to exclude from the overlapping region all those points which are 
characterised by a prediction error larger than a given threshold (σO ). In other words, if the POD basis gives a very poor 
prediction in a region it could be better not to use that region for the computation of the POD coefficients. The previous 
idea can be exploited in the framework of a leave-one-out strategy to evaluate the effects of the choice of the overlapping 
region on the prediction error related to a given goal function. The procedure is described by the pseudocode reported 
in Algorithm 2 where σmin

O , σmax
O and �σO represent the boundaries and the sampling size of the range in which σO is 

investigated. This analysis can be done offline and requires Nsp
σmax

O −σmin
O

�σO
zonal POD simulations.

Algorithm 2 Test overlapping region.
1: for (k=1, Nsp ) do{
2: Remove the Nk

s snapshots of the kth simulation from the database
3: Build a POD basis with the remaining snapshots
4: for (σO = σmin

O , σmax
O , �σO ) do{

5: Define the overlapping region as 
O = {x ∈ 
H F : e(x) < σO }
6: Perform a zonal POD simulation with the chosen overlapping region
7: Evaluate the prediction error on a goal function from the zonal POD simulation

}
}



M. Bergmann et al. / Journal of Computational Physics 352 (2018) 301–325 309
In general it is possible to perform the previous analysis for each state variable which appears in the physical model in 
order to define an ad-hoc overlapping region for each variable. Alternatively, it is possible to perform the study only on a 
single variable (for example the velocity) and then the same overlapping region can be used for all the variables (velocity, 
pressure and turbulence model’s variables).

4.4. Extension of 
L F and goal function

The leave-one-out strategy described at the beginning of this Section is based on the use of a POD basis defined on the 
full computational domain (
). This is a natural choice that can be always done when Algorithm 1 is applied during the 
offline analysis.

As far as the zonal POD simulations are concerned, there are several possible choices about the extension of 
L F . In 
particular, the extension of the zone in which the POD solution is needed depends on the goal function which is under 
study. Consider for example the configuration reported in Fig. 1. If the goal is the prediction of the force on the airfoil then 
the zonal simulation can be performed by using a POD basis which is defined only in the high-fidelity region (
H F ) and 
in a layer of points on its boundary in order to define the boundary conditions required by the high-fidelity solver. This is 
due to the fact that the goal function can be directly computed by integrating the solution inside the high-fidelity domain 
(
H F ) and the knowledge of the external solution is useless for this purpose. In this way, the POD basis can be efficiently 
exploited to describe only the useful information and the energy ranking of the modes will not be affected by the structures 
in the external flow field. This means that less modes could be required to get a given accuracy level with respect to a POD 
basis defined everywhere. This approach will be used in the example of Section 5.

On the other hand, there are configurations in which the goal function is an integral quantity which depends on both 
the internal high-fidelity solution and the external POD reconstruction. The problem studied in Section 6 is an example. 
In this case, the POD basis used for the predictive zonal POD simulations must be defined also in the external region 
(
 ⊃ 
L F ⊃ 
H F ).

5. An unsteady laminar problem: interaction between a NACA0012 airfoil and a vortex

In this Section the unsteady interaction between a NACA0012 airfoil and a vortex is studied. The vortex can be seen as a 
simplified model of gust. This example is used to test the ability of the zonal POD approach to perform low cost predictive 
simulations. In particular, some high-fidelity simulations are performed for different gust configurations and then the results 
are used to perform low cost predictions for new gust configurations.

The chosen working conditions are characterised by a Reynolds number based on the chord length equal to Re = 1000
and an angle of attack α = 5◦ . In this configuration, the flow field is laminar and steady. All the lengths and velocities which 
will appear in the following will be considered dimensionless and normalised with respect to the airfoil chord (c) and the 
far field velocity magnitude (U∞). The initial velocity field is given by the steady solution perturbed by the introduction of 
a vortex whose centre is in (−3, 0). The magnitude of the velocity perturbation induced by the vortex is described by the 
following equation:

q =
{

U0
r
R if r < R

U0
R2

r2 if r ≥ R
(24)

where q, r, R and U0 are the magnitude of the induced velocity, the distance from the vortex centre, the vortex characteristic 
radius and the vortex characteristic speed, respectively. The initial velocity magnitude field is reported in Fig. 2.

The interaction between the vortex and the airfoil leads to a strong increase in the lift coefficient (Cl) of the airfoil which 
is a key quantity in the design of a wing because it defines the load applied to the structures.

Fig. 2. Initial condition for the NACA0012-vortex test case (velocity magnitude field).
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The high-fidelity simulations used to build the database are performed with the following setup. The computational 
domain 
 is chosen sufficiently large (−8 < x < 8, −4 < y < 4) to include the vortex into the initial solution. The projection 
scheme described in Section 2.1 is used for the discretisation of the Navier–Stokes equations. As far as boundary conditions 
are concerned, the following choices are done for the velocity variable: Dirichlet boundary conditions are used for the inlet 
on the left side; symmetric boundary conditions are used on the lateral boundaries; non-reflecting boundary conditions [2]
are used for the outlet on the right side. Homogeneous Neumann boundary conditions are imposed for pressure on all the 
boundaries.

A uniform cartesian mesh with 1600 × 800 points is used for the discretisation of 
. The mesh size is �x = �y = 0.01
so there are 100 points on the chord of the airfoil. The lift coefficient for the undisturbed airfoil computed with the chosen 
mesh resolution (Cl = 0.25) is in good agreement with the results available in the literature (Cl = 0.25 according to [55]).

5.1. Forcing terms for zonal POD simulations with time-dependent BCs

The procedure described in Section 3.2 makes it possible to update automatically the boundary conditions of the zonal 
POD simulation according to what is happening inside 
H F . However, particular care should be taken in the definition of 
the forcing terms (fu , f p) which appear in Eq. (12) when dealing with problems characterised by time-dependent BCs.

Consider a body which is subjected to a time dependent perturbation in the incoming velocity, for example a gust or a 
vortex which interacts with the body. At the beginning of the simulation the gust is far from the body. The purpose of the 
zonal POD approach is to reduce the cost of the simulation by reducing 
H F to a region close to the body. However, this 
means that 
H F could not include the gust at the initial time step. According to Eqs. (17) and (18), the POD coefficients are 
computed by using the information which is present inside 
H F : if the gust is not inside 
H F (and so it is not inside 
O ), 
the coupling procedure will never activate the modes related to the gust and so the gust will never enter inside 
H F .

In order to avoid this shortcoming, it is possible to augment the forcing terms with functions (ug and pg ) which approx-
imately describe the translation of the gust:

fu(x, t) = ū(x) + ug(x, t),

f p(x, t) = p̄(x) + pg(x, t),
(25)

where the quantities ū(x) and p̄(x) represent the time averaged velocity and pressure fields obtained from a high-fidelity 
simulation without the gust.

The terms ug and pg represent just a pure convection of the initial perturbation. They do not include any dissipative 
effect and they do not take into account the interaction between the gust and the body: these corrections will be introduced 
by the POD modes.

In other words, the POD modes will now be used to describe the difference between the real solution and an artificial 
solution in which the interaction between the gust and the body is neglected.

Thanks to this approach, it is possible to perform a zonal POD simulation even if the gust is not inside 
H F at the initial 
time: the time dependent forcing terms will automatically update the boundary conditions of the high-fidelity solver in 
order to force the gust to enter into 
H F .

5.2. Number of modes and number of snapshots

First of all, a study on the convergence of the POD modes is performed in order to understand how many modes and 
how many snapshots are required. The attention is focused on a single simulation for a given vortex configuration and the 
flow field is uniformly sampled in time in order to have 20, 40, 80 and 160 snapshots. The snapshots are used to build POD 
bases defined on the full domain 
, so here we set 
 = 
L F . The eigenvalue analysis performed on the POD bases obtained 
with 20 and 160 snapshots shows that 12 modes are enough to describe 99% of the R IC for both pressure and velocity (see 
Eq. (16)).

In order to understand how many snapshots are required to assure the convergence of the first 12 POD modes the 
analysis presented in Table 1 is performed. In particular, four POD bases are built using 20, 40, 80 and 160 snapshots 
respectively. The quantity reported in the Table 1 represents the relative variation of the pressure mode (�i ) defined as

�m
n (�i) =

√(
�n

i − �m
i ,�n

i − �m
i

)

L F∣∣∣∣�n

i

∣∣∣∣

L F

=
√(

�n
i − �m

i ,�n
i − �m

i

)

L F

, (26)

where n and m are the number of snapshots used to build the POD bases and the denominator was simplified thanks to the 
fact that all the modes have unit norm by definition. The data show that when the number of snapshots is increased the 
modes converge quickly. Similar results are obtained by checking the convergence of the velocity modes. According to these 
results, the following study will be performed by taking 130 snapshots from each simulation, i.e. Nk

s = 130, 1 ≤ k ≤ Nsp . The 
first four modes for the velocity magnitude field are shown in Fig. 3.
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Table 1
Convergence of the POD pressure modes w.r.t. the number of snapshots.

Mode i �40
20(�i) �80

40(�i) �160
80 (�i)

1 1.11e−02 6.59e−04 1.03e−04
2 3.41e−02 4.23e−03 3.00e−03
3 1.61e−01 1.19e−02 7.29e−03
4 2.00e−01 1.65e−02 8.46e−03
5 1.65e−01 1.05e−02 3.82e−03
6 1.43e−01 5.86e−03 2.12e−03
7 1.75e−01 4.29e−03 1.50e−03
8 2.47e−01 4.98e−03 2.76e−03
9 2.06e−01 6.69e−03 4.02e−03
10 4.21e−01 8.60e−03 2.20e−03
11 4.08e−01 9.06e−03 6.19e−03
12 5.74e−01 1.09e−02 3.07e−03

Fig. 3. First four POD modes for the velocity magnitude field (energy decreasing from top to bottom).

5.3. Analysis of the database: choice of the zonal setup

Three different databases of high-fidelity simulations (with Nsp = 4, 9, 25 in turn) are created by considering several 
values of vortex intensity and characteristic radius. In particular, a uniform sampling of the space of the parameters is 
chosen in the range 0.2 ≤ U0 ≤ 0.3 and 0.2 ≤ R ≤ 0.4. More efficient sampling techniques (see Section 3) could be used 
when the dimension of the parameter space is increased but the uniform sampling is sufficient for the purpose of this 
work. The sampling points belonging to the 2 × 2, 3 × 3 and 5 × 5 databases are shown in Fig. 4.

The time evolution of the lift coefficient for the high-fidelity simulations included in the 3 × 3 database is reported in 
Fig. 5 showing its strong dependency on the chosen parameters. The time variable which appears in this plot and in the 
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Fig. 4. Gust parameters for the configurations used in the databases and in the predictive simulations.

Fig. 5. Lift coefficient history (high-fidelity simulations included in the 3 × 3 database).

following ones is normalised with respect to the convection reference time obtained from the chord length and the far field 
velocity magnitude.

The study presented in Section 5.2 showed that 130 snapshots contain enough information to properly describe the 
unsteady flow structures which characterise a single simulation. For this reason, in the following analysis 130 snapshots will 
be collected from each sampling point in the parameter space, i.e. Nk

s = 130, 1 ≤ k ≤ Nsp . The snapshots are pre-processed 
by removing the undisturbed steady field and the artificial forcing terms related to the considered gust configuration. The 
analysis of the R IC (see Eq. (16)) shows that 45 POD modes are sufficient to get 99% of the information in the database, for 
all the three considered databases. For this reason, in all the following simulations the size of the POD basis will be fixed 
to N = 45.

The databases are analysed according to the leave-one-out strategy described in Section 4.2. The results are presented 
in Fig. 6 which shows the prediction error indicator map for the velocity magnitude. The larger error values are localised 
close to the body (whose centre is in (0, 0)). The error map is defined everywhere, also inside the solid body, because the 
high-fidelity solver is based on a penalised immersed boundary approach in which the numerical solution is defined also 
inside the body. The results in Fig. 6 show that when the database is enriched the maximum reconstruction error is reduced 
and the region where the error indicator is significant becomes smaller.

This last effect is also put in evidence in Fig. 7 where the required number of mesh points in 
H F is reported as a 
function of σR . In particular, for each value of σR , the plot shows the number of mesh points required by the smallest 
rectangle which includes the region 
̃H F (see Eq. (23)). The number of mesh points is normalised with respect to the 
number of mesh points in 
 to give a direct evaluation of the reduction of the number of degrees of freedom. The plot 
shows that, for a given database, the size of 
H F must be increased if σR is reduced. Furthermore, for a given threshold 
σR , the size of 
H F decreases when the database is improved. This last effect is particularly evident for σR > 0.1. For 
smaller values of σR , the gain obtained by increase the number of sampling points in the database from 3 × 3 to 5 × 5 is 
not particularly strong. The 3 × 3 and 5 × 5 databases will be considered for the following analysis and for the predictive 
simulations.
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Fig. 6. Prediction error indicator on the velocity magnitude (normalised w.r.t. U∞) for 2 × 2 (top), 3 × 3 (middle) and 5 × 5 (bottom) databases.

Fig. 7. Number of mesh points in 
H F (normalised w.r.t. the number of mesh points in 
) as a function of σR for different databases.
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Table 2
Threshold σO and percentage number of points in the overlapping region (N
O /N
H F).

σO /U∞ 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

N
O /N
H F 1.1% 4.1% 6.9% 12% 18% 29% 39% 47% 55% 63%

Fig. 8. Error on the predicted max Cl as a function of the threshold σO (database 3 × 3).

The domain 
H F for the zonal POD simulations is chosen by defining a threshold on the reconstruction error (σR =
15%U∞) and by choosing a rectangular box sufficiently large to contains all the points characterised by an error larger than 
this threshold, for both the 3 × 3 and 5 × 5 databases:


H F =
{

x = {x, y}T : −1 < x < 3,−0.5 < y < 0.5
}

⊃ {x ∈ 
 : e(x) > 0.15U∞} . (27)

In the following study the extension of 
H F will be kept constant while different databases will be used to build the POD 
basis required by the predictive zonal simulations: this makes it possible to verify the convergence of the zonal approach 
when the database is enriched.

The mesh resolution in the predictive zonal simulations is equal to the mesh resolution of the high-fidelity simulations 
(100 points on the chord of the airfoil) and so there are 400 × 100 mesh points in 
H F . The high-fidelity solver used for 
these simulations requires the imposition of boundary conditions for the variable u∗ and the pressure at the end of the time 
step. For this reason, the POD velocity modes are built from snapshots of the variable u∗ and also the coupling projection 
(Eq. (17)) is performed with reference to this variable. Dirichlet boundary conditions are used in the zonal POD simulation 
for both velocity and pressure.

The measured computational time of the zonal POD simulation is approximately 60 times smaller then a corresponding 
high-fidelity simulation performed on 
 in the considered setup. This large speed-up is related to the fact that uniform 
cartesian meshes are adopted in this test case. The use of adaptive non-uniform meshes would reduce the cost of an 
high-fidelity simulation in 
 and the benefits of the zonal POD approach. However, the need to accurately describe the 
translation of the gust from its initial position to the airfoil would require a significant number of degrees of freedom in the 
far field even in the presence of adaptive non-uniform meshes [56]. For this reason, the zonal POD approach can be useful 
in this kind of problems even when using non-uniform meshes.

The overlapping region is chosen according to the procedure reported in Section 4.3 and applied to the velocity magni-
tude error indicator. The overlapping region obtained by this study is used to perform the projection for both velocity and 
pressure in the zonal POD simulation. In particular, ten values of the threshold σO are tested by uniformly increasing σO

from 1% to 10% of the far field velocity magnitude.
When the 3 × 3 and 5 × 5 databases are considered, there are 9 and 25 sampling points, respectively. Therefore 90 

and 250 zonal POD simulations are performed offline during this preliminary study. The computational cost related to this 
analysis is affordable because a zonal POD simulation is 60 times faster than a high-fidelity simulation in the considered 
setup and so the cost of this analysis is comparable to the cost of a few high-fidelity simulations.

The percentage of mesh points in 
O with respect to the total number of mesh points in 
H F is reported in Table 2 as 
a function of the threshold σO for the analysis performed on the 3 × 3 database. A similar behaviour is obtained for the 
5 × 5 database.

The results of the study of the choice of 
O for the database 3x3 are reported in Figs. 8 and 9 which refer to different 
criteria for the evaluation of the quality of the zonal POD simulations. In Fig. 8 the error on the predicted maximum 
lift coefficient (Cmax) is reported as a function of σO . This error represents a key parameter because the maximum lift 
l
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Fig. 9. L2-norm error on the predicted Cl as a function of the threshold σO (database 3 × 3).

coefficient is a fundamental quantity required during the design of the structure. The plot shows that, in the considered 
example, the best choice for the overlapping region can be obtained by setting the threshold on the reconstruction error 
between σO = 6% and σO = 7% of U∞ . This optimum choice corresponds to include between 29% and 39% of the points of 

H F into 
O , according to Table 2.

An alternative criterium can be defined by computing the L2-norm of the lift coefficient in the simulated time interval. 
The plot of this error as a function of σO is reported in Fig. 9. In this case the error reduces very slowly for σ0 ≥ 7% of U∞ .

Both the considered criteria show that, in the considered test case, the prediction error grows when the threshold is 
chosen too small. This could be explained by observing that the choice of a small threshold will leave only a few points in 
the overlapping regions. In particular, the selected points are characterised by the lowest reconstruction error: usually this 
corresponds to choose the points in which all the snapshots are almost identical and the modes are almost zero. In this 
configuration, the least square minimisation used for the coupling (Eqs. (17) and (18)) can lead to inaccurate results.

When the threshold is increased the two considered criteria show a different behaviour. The prediction error on the 
maximum lift coefficient has a mimimum and then tends to increase. The effect could be explained by the fact that when 
the threshold is too large then the overlapping region includes points in which the POD basis is not able to properly predict 
the new high-fidelity solution: the attempt to minimise the distance between the two solutions in these regions could 
deteriorate the reconstruction in the other regions.

In contrast, the L2-norm error on the lift coefficient evaluated during the simulated time interval shows a monotone 
decreasing behaviour when σO is increased for almost all the configurations. This simple comparison shows that the choice 
of the overlapping region should be always related to the chosen goal function.

In the considered example all the configurations in the database give the minimum error for almost the same choice of 
the parameter σO . However, it is possible to get a more general behaviour in which different optimum values are obtained 
when exploring the space of parameters. In this case, a possible approach is to set σO in a predictive zonal simulation equal 
to the optimal value obtained on the closest database sampling point during the offline analysis. This last general strategy 
will be adopted in the predictive simulations reported in the following.

5.4. Predictive zonal POD simulations

The zonal POD setup obtained by the analysis of the database is now used to perform some predictive simulations in 
order to test the ability of the method to predict the behaviour of the system for configurations which are not present in 
the database.

First of all, a check is performed in order to quantify the contribution given by the POD modes to the definition of the 
boundary conditions in the zonal simulation. The results of this test are reported in Fig. 10. The plot shows the evolution of 
the lift coefficient for a reference high-fidelity simulation performed on the large domain 
 and some predictive simulations 
performed on the small domain 
H F with different approaches.

A first prediction is done by using the high-fidelity solver on the small domain 
H F and by setting the same kind of 
boundary conditions used for the high-fidelity simulation in 
. Since the boundaries of the domain are now very close to 
the body, the flow field is strongly affected by the proximity of the boundary and so the solution is completely altered. Even 
the steady lift coefficient is very far from the reference value.

A better prediction can be performed by using the boundary conditions given by Eq. (12) with N = 0 POD modes. This 
means that the boundary condition will be equal to the undisturbed steady field (computed on 
) plus the forcing terms 
which describe the advection of the vortex. This approach improves significantly the quality of the results and can be 
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Fig. 10. Evaluation of the contribution given by the POD modes to the boundary conditions of a predictive zonal simulation (U0 = 0.21, R = 0.34).

Fig. 11. Comparison between predictive zonal POD simulations and high-fidelity results (U0 = 0.21, R = 0.39).

considered as an improved boundary condition with a correction term defined a priori. However, this approach misses the 
interaction between the vortex and the body.

Finally, a zonal POD simulation (with N = 45 POD modes built from the 3 × 3 database) is performed in order to show 
how the introduction of the POD modes improves the boundary conditions.

A second test is performed to verify that effects of the choice of the overlapping region on the quality of a predictive 
zonal simulation. Fig. 11 shows the history of the lift coefficient for a test configuration not-included in the database. The 
plot shows a comparison between the predictions obtained by the zonal POD approach for three different choices of the 
overlapping region (σO = 5%, 7% and 9% of U∞) and the reference values obtained by a high-fidelity simulation. The POD 
basis is obtained from the 3 × 3 database. The effects of the choice of the overlapping region are clearly visible in Fig. 11. 
The results obtained by setting the tolerance σO = 7% of U∞ show a good prediction of the maximum lift coefficient. 
However, larger errors can be seen after the first oscillation (see for example at the dimensionless time = 4). In contrast, 
the result obtained by setting σO = 9% of U∞ show a smaller averaged distance from the reference solution but they are 
characterised by a larger error on the maximum lift coefficient. The plot shows also the results obtained by setting σO = 5%
which are characterised by larger errors with respect to both the previous optimal choices.

Finally, the ability of the zonal approach to predict new configurations is investigated in 25 test configurations generated 
by using the pseudo-random Sobol sequence. Their position in the parameter space is reported in Fig. 4. In each zonal 
simulation the parameter σO is chosen equal to the optimal value related to the closest database configuration in the space 
of the parameters, following the results of the offline analysis reported in Section 5.3. In order to evaluate the error of the 
predictions, 25 high-fidelity simulations are performed on 
 and used as a reference. The results are reported in Figs. 12
and 13, for the percentage error on Cmax

l and the L2-norm error on the Cl , respectively. Both figures show in the top that 
the prediction error becomes very large when the POD reconstruction is not included in the definition of the boundary 
conditions (which means setting N = 0 in Eq. (12)). However, when 45 modes of the POD basis obtained from the 3 × 3
database (middle) and 5 × 5 database (bottom) are included, the error is significantly reduced.



M. Bergmann et al. / Journal of Computational Physics 352 (2018) 301–325 317
Fig. 12. Percentage error on the Cmax
l for predictive zonal simulation with N = 0 (top), N = 45 from database 3 × 3 (middle) and N = 45 from database 

5 × 5 (bottom).

6. A steady turbulent problem: aerodynamic shape optimization of a car section

In this Section, the zonal POD approach is used to speed-up the simulations required by an aerodynamic shape opti-
mization problem, i.e. the shape optimization of the front bumper of a 2D car section, aimed at minimising the overall drag 
coefficient (Cd).

Evolutionary algorithms typically require a large number of high-fidelity functional evaluations in order to find the 
global optimum. Therefore the computational cost of the optimization process is often prohibitive for large-scale aerody-
namics problems. Here the zonal POD approach is used to provide low-cost function evaluations during the optimisation 
process.

A database of high-fidelity simulations is obtained by varying the bumper geometry and solving the RANS equations 
in the corresponding domain, using the method described in Section 2.2. All the simulations are performed at a Reynolds 
number equal to Re = 4.87 · 106, employing the Spalart–Allmaras turbulence model [38] and wall functions for near-wall 
treatment.

The computational domain 
 is discretized by a hex-dominant polyhedral mesh of 93388 cells, generated for the base-
line configuration by means of snappyHexMesh, the mesh generation utility supplied with OpenFOAM. This mesh is then 
deformed through a Free-Form Deformation (FFD) technique [57] in order to obtain the meshes corresponding to other 
bumper configurations. For this application we use the PyGeM python library [58]. The parametrization is localized in the 
front area and the deformation is controlled by a lattice of 4 × 6 control points. Most of the points are fixed in order to 
assure a smooth transition between the deformed and the fixed region of the domain: only the three points highlighted in 
Fig. 14 are allowed to move in the x–y plane. The same displacement is applied to the three control points, resulting in 
only two design parameters for the optimization process (xcp and zcp displacements).

The proposed methodology has been integrated into the OpenFOAM toolbox, in order to enable the analysis of complex 
geometries and different physical models.
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Fig. 13. L2-norm error on the Cl for predictive zonal simulation with N = 0 (top), N = 45 from database 3 × 3 (middle) and N = 45 from database 5 × 5
(bottom).

Fig. 14. Mesh morphing: baseline configuration (red control points) and deformed configuration (blue control points). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

6.1. Analysis of the database: choice of the zonal setup

The database is created considering different values of the parameters in the range −0.18 ≤ xcp ≤ 0.18 and −0.30 ≤
zcp ≤ 0.30. As in Section 5.3, the sampling is uniform and three different databases with 2 × 2, 3 × 3 and 5 × 5 points are 
considered (see Fig. 15). Since steady RANS simulations are performed, only one snapshot is obtained for each sampling 
point (Nk

s = 1 and Ns = Nsp).
A separate POD basis is then computed for each physical quantity (i.e. u, p and Spalart–Allmaras variable ν̃), after pre-

processing the fields by choosing the forcing terms of Eq. (12) as the average fields among the snapshots. As a consequence, 
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Fig. 15. Control points displacements used in the databases and in the predictive simulations.

Fig. 16. Magnitude of the mean velocity field (top right) and of the first three velocity POD modes (energy decreasing from top to bottom and left to right).

the maximum size of the POD basis will be equal to Ns − 1. The velocity mean field and first three modes are shown in 
Fig. 16.

Using the leave-one-out strategy described in Section 4.2, it is possible to compute the prediction error indicator map 
for all the physical quantities. The larger error values are localised close to the front bumper and in the turbulent wakes. 
Fig. 17 shows the reduction of the maximum error on the velocity magnitude obtained by enriching the initial database.

For this application, the initial database of 9 snapshots shows sufficiently small errors and therefore it will be used in 
the following analysis and during the optimization. The RIC analysis described in Section 3.1 showed that in this test case 
all the snaphots introduce relevant information and so we set the size of the POD basis equal to N = Ns − 1 = 8.


H F , i.e. the domain used for the zonal POD simulations, is a quasi-rectangular box containing the deformable part of 
the geometry and all the cells characterized by a prediction error σR larger than a certain percentage of the far field velocity 
magnitude U∞ . The mesh in 
H F is a subset of the original mesh in 
, and therefore it maintains the same resolution and 
topology. Fig. 18 shows how the size of 
H F for a given σR can be reduced by enriching the initial database of solutions. 
We choose to include in 
H F all the cells where σR > 0.01U∞: such domain contains 9551 cells, resulting in a reduction 
of the problem size by a factor 10.

The boundary conditions are updated at every solver iteration solving the minimisation problem described in Section 3.2. 
Dirichlet or Neumann conditions are imposed depending on the sign of the flux. For inflow boundaries, we use the POD 
modes to recover u and ν̃ and the gradient of p, whereas for outflow boundaries we prescribe p and the gradients of u
and ν̃ normal to the boundary. In order to obtain the global Cd of the car, the converged solution is prolonged outside 
H F , 
reconstructing the outer fields as a combination of the POD modes.

The relative importance of the two regions, i.e. 
H F and 
 \ 
H F , for the evaluation of the global aerodynamic coeffi-
cients is shown in Table 3 for a high-fidelity simulation not included in the database: the flow solution in 
H F accounts for 
approximately 31% of Cd and 69% of Cl . Table 3 shows also the effectiveness of the zonal POD approach. In particular, we 
perform different zonal POD simulations, using Nsp = 9 and Nsp = 4: as expected, the richer database guarantees a better 
approximation of the solution.
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Fig. 17. Prediction error indicator on the velocity magnitude (normalised w.r.t. U∞) for 2 × 2 (top), 3 × 3 (centre) and 5 × 5 (bottom) database.

Fig. 18. Number of cells in 
H F normalized with respect to the number of cells in 
 as a function of the prediction error threshold σR .

Table 3
Contribution of the flow solution in 
H F to the global aerodynamic coefficients for a predictive simulation (xcp =
0.13568, zcp = 0.08935).

Simulation type Cd Cl

in 
 in 
H F in 
 in 
H F

High-fidelity 0.015075 0.004716 −0.143092 −0.099199
Zonal POD with Ns = 9 and N = 0 0.016346 0.006969 −0,120436 −0.096443
Zonal POD with Ns = 4 and N = 3 0.015271 0.004795 −0.146132 −0.100173
Zonal POD with Ns = 9 and N = 8 0.015153 0.004791 −0.142726 −0.098935

In order to evaluate the contribution given by the POD reconstruction to the definition of the BCs of the zonal simulation, 
we performed also a zonal simulation with N = 0 POD modes (i.e. BCs derived only from the average field). The results 
reported in Table 3 show that the introduction of the POD modes reduces the percentage error on Cd from 8.4% (when 
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Fig. 19. C p distribution at the underbody varying the POD reconstruction of the boundary conditions for a predictive simulation (xcp = 0.13568, zcp =
0.08935): contributions are represented by solid lines in 
H F and by dotted lines in 
 \ 
H F .

Fig. 20. L2-norm error on the 
H F boundary conditions as a function of the threshold σO (database 3 × 3).

Table 4
Threshold σO and percentual number of points in the overlapping region (N O /NH F ).

σO /U∞ 0.6% 1.0% 1.7% 2.9% 4.8% 8.1% 13.5% 22.5% 37.5% 62.5%
N O /NH F 40.7% 51.0% 62.9% 73.0% 88.7% 95.5% 98.2 % 99.3% 99.9% 100%

N = 0) to 0.5% (when N = 8). The same trend can be observed in Fig. 19, where we report the distribution of the pressure 
coefficient C p on the vehicle underbody surface in both 
H F (solid lines) and 
 \ 
H F (dotted lines).

The overlapping region is chosen by testing the configurations in the database (see Fig. 15) for different values of the 
threshold σO , logarithmically spaced between 0.1% and 10% of U∞ . Fig. 20 shows the results obtained by the application 
of the leave-one-out method to the configurations belonging to the database 3 × 3. Here the quality of the choice of 
O
is evaluated by checking the error of the reconstructed boundary conditions on ∂
H F . For this purpose, the error indicator 
εO is chosen as the L2-norm of the difference between the exact value of u evaluated on ∂
H F and its POD reconstruction 
calculated during the zonal simulation, normalised with the L2-norm of the exact velocity on ∂
H F .

In the considered sample, the approximation of the boundary conditions can be considered good for most of the thresh-
olds: there is little variation with σO , meaning that it would be possible to take the whole 
H F as overlapping region. The 
best results for in-sample configurations are obtained for σO = 1.0% and σO = 1.7% of U∞ . For the following optimization, 
we choose σO = 0.017U∞ , with 
O including the 62.9% of the cells in 
H F , as shown in Table 4.

6.2. Predictive zonal POD simulations

The ability of the zonal approach to perform predictive simulations is investigated also for this application. As in Sec-
tion 5.4, we test 25 configurations not included in the database and generated through a pseudo-random Sobol sequence 
(see Fig. 15 for the distribution of the new points in the parameter space). The results are shown in Fig. 21, where we report 
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Fig. 21. Percentage error on the overall Cd predictive zonal simulations with N = 0 (left) and N = 8 (right) using the 3 × 3 database.

Fig. 22. L2-norm error on the 
H F boundary conditions as a function of the threshold σO for some predictive simulations.

the percentage error on the overall Cd with respect to the high-fidelity simulation. In particular, two different approaches 
are compared: in Fig. 21 (left) we set Ns = 9 and N = 0 (i.e. no POD reconstruction of the boundary conditions), whereas 
in Fig. 21 (right) Ns = 9 and N = 8. The zonal POD approach with N = 8 behaves well on the parameter space, with an 
average error of 0.93% (maximum error 3.01%) compared to the 7.00% (maximum error 14.83%) obtained with N = 0. The 
overlapping regions for the predictive simulations is fixed and chosen as described in Section 6.1. In Fig. 22 we report the 
error of the reconstructed boundary conditions for different thresholds of σO for two of the 25 predictive simulations: as 
expected, the trend is similar to the one observed in Fig. 20.

6.3. Optimisation framework

The optimisation procedure is driven by an Efficient Global Optimization (EGO) algorithm [59], provided by the Dakota 
toolkit [60]. Starting from a sample of true simulations, a Gaussian Process approximation (kriging) of the objective function 
is build during each EGO iteration. Such true simulations are constituted by a limited number of high-fidelity simulations 
in 
 plus several zonal POD simulations. In particular, 9 high-fidelity simulations are performed in 
 using the simpleFoam
solver for turbulent, incompressible flow, in order to generate the initial database of snapshots and build the corresponding 
POD basis. When the algorithm requires a new function evaluation to improve the kriging approximation of the response 
surface, a zonal POD is performed. The new point in the parameter space is chosen by maximising an Expected Improvement 
Function [60], providing balance between exploiting regions with good solutions and exploring regions where the prediction 
uncertainty is high. The zonal POD simulations are performed in a small subset of the original mesh, close to the deformed 
zone. Fig. 23 shows a comparison between the extension of the computational domain used by the full-order simulations, 

, and the domain of the zonal POD simulations, 
H F .

The overall drag coefficient of the car, i.e. the goal function of the optimization, is computed by summing the contribution 
obtained through the high-fidelity solver in 
H F and the one given by the POD reconstruction on 
 \ 
H F .
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Fig. 23. Full high-fidelity domain 
 (in grey) and zonal high-fidelity domain 
H F (in red). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 24. Drag coefficient as a function of the design parameters (left) and relative error of the zonal POD model with respect to the reference high-fidelity 
simulations (right).

6.4. Results

The optimisation process is stopped when the Expected Improvement Function becomes smaller than a given threshold 
[60]. The optimum is found after 23 zonal POD functional evaluations. In terms of computational costs, the zonal approach 
allows to significantly reduce the total cost of the optimization process compared to a strategy based on high-fidelity 
simulations performed on 
. The computational time required by a high-fidelity simulation in 
 is approximately equal to 
4000 s, whereas a zonal POD simulation needs roughly 400 s. As a result, if we consider the overall cost of the optimization, 
given by taking into account the 23 zonal simulations plus the 9 high-fidelity simulations in 
 required to build the initial 
database, and compared it with the cost of an analogous optimization performed using only the full model, we save around 
the 65% of the computational time.

The response surface of the problem is reported in Fig. 24 (left) where the drag coefficient is plotted as a function of 
the two design parameters. In Fig. 24 (right), instead, it can be observed the variation of the relative error on Cd between 
the reference high-fidelity solution and the zonal solution. With respect to the baseline configuration (Cd = 0.01527), the 
optimum configuration (Cd = 0.01456), evaluated with the zonal POD model, shows a reduction of the 4.6% with an error 
on the accuracy of the prediction smaller than 1.0%. This trend is confirmed by the high-fidelity simulations performed 
a-posteriori.

7. Conclusions

A technique to perform zonal Galerkin-free POD simulations is presented. The approach requires an offline training for 
the definition of a POD basis obtained by some preliminary high-fidelity simulations. The POD basis is then exploited for 
predictive low cost zonal simulations. In particular, the computational domain in the zonal simulation is split between a 
low-fidelity and a high-fidelity region. The POD basis is used for the description of the external solution in the low-fidelity 
region while the high-fidelity solver is applied only in the regions where the flow field depends strongly on the choice of 
the design parameters. This makes the method suitable to perform predictive low cost simulations in the framework of an 
optimisation procedure.

In order to apply the zonal approach to the simulation of general flow fields it is necessary to clarify how to split the 
computational domain between the high-fidelity and the low-fidelity regions and how to couple the two solutions. Some 
possible techniques to address these problems during the offline training are proposed in this work.

A prediction error indicator based on a leave-one-out strategy is used to define an error map which allows to identify the 
regions where the POD basis cannot properly predict new configurations: these regions will be described by the high-fidelity 
solver during the zonal simulation.
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The leave-one-out strategy is also used to perform a preliminary study which allows to perform an optimal coupling 
between the high and low-fidelity solutions. In particular, the technique allows to identify an optimal overlapping zone 
which minimises the prediction error on a certain goal function.

The zonal approach is applied in this work to two different test cases: the simulation of the effects of a gust on an airfoil 
and the aerodynamic shape optimisation of a car section.

The first problem is studied by the introduction of some forcing terms in the ROM reconstruction which allows to 
generalise the zonal approach to problems with time-dependent far field boundary conditions. The obtained results show 
that the proposed approach can be used to perform predictive simulations.

The second test case shows a possible application of the zonal approach as a low cost predictive tool in the framework of 
shape optimisation procedures. In particular, the approach appears to be particularly convenient for problems in which only 
local perturbations of the geometry are considered. Similar benefits can be expected in multi-body configurations when the 
optimisation is focused on the shape of a single body.

An advantage of the zonal approach is that it can be easily implemented in an existing high-fidelity solver with respect 
to other acceleration techniques: it is just necessary to introduce a function for the projection of the solution onto the POD 
basis and the evaluation of the boundary conditions.

In conclusion, the zonal approach has been successfully applied to the unsteady laminar Navier–Stokes equations and to 
the steady RANS equations. The application of the method to the unsteady RANS equations should not introduce additional 
problems and should follow what is done for the unsteady laminar Navier–Stokes equations. However, the extension to the 
study of turbulent flows by means of Direct Numerical Simulations or Large Eddy Simulations is much more challenging 
because of the wide range of scales which appear in the solution and which require a very large POD basis.
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