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A space-time Finite Volume method is devised to simulate incompressible viscous flows 
in an evolving domain. Inspired by the ADER method (based on a Finite-Element-
prediction/Finite-Volume-correction approach), the Navier-Stokes equations are discretized 
onto a space-time overset grid which is able to take into account both the shape of a 
possibly moving object and the evolution of the domain. A compact transmission condition 
is employed in order to mutually exchange information from one mesh to the other. The 
resulting method is second order accurate in space and time for both velocity and pressure. 
The accuracy and efficiency of the method are tested through reference simulations.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The simulation of flows in complex unsteady geometries such as fluid-structure interaction, freely moving objects or 
moving boundaries induced by the flow itself requires specific numerical modeling. It is possible to distinguish three main 
classes of methods for these flow phenomena: the Arbitrary Lagrangian-Eulerian (ALE) methods, interface methods and 
Chimera meshes approaches. The ALE methods [1,2] are accurate and allow a sophisticate grid displacement and mesh 
adaptation after a proper reformulation of the governing equations. However, when the grid deformation is affected by an 
excessive stretch, a computationally expansive remeshing may be necessary. Consequently, further numerical errors deriving 
from the interpolation of data from the old grid to the new mesh need to be managed. In interface methods, such as Ghost 
boundary methods [3], immersed boundary methods [4] and penalization methods [5], the physical domain is discretized 
through a simple mesh, usually structured and Cartesian, not changing in time [6,7]. For this reason, the mesh does not 
necessary fit the moving boundary and a special care has to be taken to attain a sufficient degree of accuracy at the physical 
boundaries. However, because of the simplicity of the mesh and its unique aspect ratio, the presence of thin boundary layers 
could significantly affect the computational advantages of these methods. Hybrid techniques employing immersed boundary 
methods with anisotropic mesh adaptations can be employed for circumventing this problem [8].
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Our investigations focus on Chimera grids [9–12]. They consist of multiple overlapping mesh blocks that together define 
an overset grid [13–15]. The use of Chimera meshes is essentially based on a grid embedding technique for discretizing 
the possibly evolving computational domain. A major grid (background grid) is first built. It is non-conformal with respect to 
the complex shape of the domain. Then, minor grid(s) (foreground blocks) are constructed in order to describe the particular 
shape of those regions where the obstacles are located. Since the minor blocks overlap the major grid, an overlapping region 
is defined among all blocks [11]. This mesh generation strategy considerably simplifies the task of mesh adaptation in the 
case of boundary layers, changing geometry for an unsteady problem and for unsteady multiply connected domains [16–21].

In general, the numerical solution on Chimera grids is obtained by exchanging data through the fringe cells at the over-
lapping zone. For example, in [22–25], donor cells of a block in proximity of the overlapping zone provide the information 
to receptor cells of another block by polynomial interpolation. In [26] a different strategy is pursued. A coarse grid is auto-
matically generated and a connection of interpolation information at the overlapping zone is presented through a multigrid 
approach. Yet another way of making the different blocks communicate is to use some kind Domain Decomposition (DD) 
methods (e.g., Schwartz, Dirichlet/Neumann or Dirichlet/Robin methods). In particular, each mesh block is considered as a 
decomposition of the domain and the overlapping zones are the interfaces for coupling the different blocks. Accordingly to 
these approaches, iterative discrete methods are employed. For this two-way communication, the reader is referred to [27]
for further details.

Different approaches connect the background and the foreground meshes, such as the DRAGON grids [28] for which the 
overlapping zone is replaced by a unstructured grid during a further stage by preserving the body-fitting advantages of 
the Chimera meshes. In essence, a DRAGON grid consists in creating a unique block mesh from a Chimera configuration. 
However, the computational costs to generate a DRAGON grid for an evolving domain can be significant since at every time 
instance a new DRAGON mesh needs to be built.

In this paper, we propose a space-time Finite Volume (FV) scheme on Chimera grids. Our objective is to combine some 
aspects of an ALE approach, notably its flexibility with respect to grid displacement and deformation, to the multi-block 
discretization strategy of overset grids. In particular, special care is devoted to grid overlapping zones in order to devise 
a compact and accurate discretization stencil to exchange information between different mesh patches. In this regard, a 
compact transmission condition is sought to limit communications between the grids as in [29]. This means that the stencil 
constructed for the discretization at a specific cell is based only on the first layer of its surrounding cells. A second order 
transmission condition is then devised by properly defining a stencil that belong to both the back- and foreground meshes, 
over which the solution is interpolated in space and time by a suitable polynomial. This hybrid stencil allows a smooth 
discretization transition from one block to another. In particular, first a mesh-free discontinuous FEM-solution is recovered 
and then a FVM-correction is performed in any cell by using information provided by neighboring cells. Thus, for fringe 
cells, the solution is obtained by combining values from different grids.

Overall, for the numerical solution of the incompressible Navier-Stokes equations we follow a classical prediction-
projection-correction method [30,31] with a second-order accuracy in space and time. The Arbitrary high order DERivatives 
(ADER) method provides an ideal setting for the resolution of the nonlinear unsteady convection-diffusion equation with a 
moving grid. In [32–35], the authors present a method to recover an accurate solution for hyperbolic differential problems 
with an arbitrary order of accuracy on a single mesh block. The numerical scheme treats the temporal variable indistinctly 
with respect to the spatial variables by defining the solution on a space-time slab. This discretization approach, therefore, 
allows us to re-consider the problem of Chimera grids transmission conditions. Instead of time-dependent spatial trans-
mission conditions between relatively moving grid blocks, we define interpolation polynomials on arbitrarily intersecting 
space-time cells at the block boundaries. In the ADER scheme a local space-time weak solution of the problem from the 
generic time t to t +�t is computed in every single space-time cell. This solution is defined as the predictor. The predic-
tion step is local and hence embarrassingly parallel, because the solution is calculated independently of the information 
of the neighboring cells. Then, in the subsequent stage of correction, the computation of a space-time numerical flux be-
tween neighboring cells provides the appropriate stabilization of the integration scheme. We extend this method for the 
incompressible Navier-Stokes equations on overset grids, in the spirit of our previous work [36].

For the resolution of the Poisson equation in the projection step, we propose a hybrid FV method. On internal cells, a 
classical reconstruction of the gradient through the diamond formula [37,38] is employed. On fringe cells, namely the ones 
on the boundary of the overlapping zone, inspired by [39], the reconstruction of the gradient is performed by interpolat-
ing the data through an appropriate local minimization taking into account the geometry of the stencil. A characteristic 
property of interpolation at the interface between meshes is conservation. Nonconservative schemes (the most commonly 
used) are based on the local study of the particular overlapping configuration of cells used to define the interpolation itself 
[20]. The conservative interpolations, on the other hand, include patched interfaces [40,41] or arbitrary overlapping regions 
[42,43]. In general, these schemes are less attractive because, although they are relatively easy to implement in two dimen-
sions, their application in three dimensions becomes cumbersome. Moreover, even if global conservation of fluxes between 
overlapping boundaries or at the boundary of holes is guaranteed, local conservation of fluxes cannot generally be obtained. 
In our scheme for the Poisson equation, special care is devoted to the definition of a fully conservative scheme in the limit 
of a no-shift overlapping configuration, namely when the background and foreground meshes coincide in the overlapping 
region.

Among previous and related approaches, the first schemes using overset grids for the incompressible Navier-Stokes equa-
tions are those by Volkov [9] and Starius [14]. Successively, we mention for example [44–46,10,41,20] for the numerical 
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solution a wide range of PDEs. It is possible to group them into two main categories: Fractional Step methods (FSM) and 
Domain Decomposition (DD) approaches. Among the works using a FSM, we cite a recent paper1 by Meng et al. [47] where 
the authors achieve a fourth order accuracy. Concerning the DD approaches, one of the last works is by Mittal, Dutta and 
Fischer [48], in which a Schwarz-spectral approach is used by decomposing the domain with respect to the different blocks 
of the overset grid. All these works have in common the fact that fringe cells, namely the cells at the boundary of the over-
lapping regions, exchange the information by a proper interpolation. In general, a special effort is devoted to the definition 
of a quick and efficient interpolation ensuring the required order of accuracy for the final solution [47,48]. In particular, one 
of the most recent works by Sharma et al. [49] defines the following differentiation of the nodes of an overset grid:

• Field points: mesh nodes at which the governing equations are solved;
• Fringe points: mesh nodes at which the information is transferred between overlapping meshes;
• Hole points: mesh nodes at which the solution does not exist.

In this work we do not resort to this classical nodes clustering. Since we employ an ADER approach and spend part of the 
global computational costs for finding a compact stencil at the overlapping interfaces, we never need to exchange infor-
mation by interpolation. In particular, as it will be clear along the paper, the prediction step of ADER defines a free-mesh 
approach for which all nodes are undistinguished with respect to the classical clustering; successively, in the subsequent 
correction step, due to the definition of a hybrid stencil composed of nodes belonging to different meshes, the finite volume 
approach allows to automatically exchange the information of the previous step. The only interpolation is mandatory when 
a hole cell turns into an active cell due to the movement of the foreground mesh.

For the projection step (Poisson step), fringe cells are no longer exploited as donors or receptors of information. As a 
matter of fact, a proper discretization of the gradient operator is proposed at the interfaces using all the information of 
the compact hybrid stencil. Consequently, the relations described by the stiffness matrix resulting from the discretization of 
the Laplace operator automatically manages the exchange of information without going through a subsequent interpolation 
step.

The current state of the art considers chimera grids as discretization of the space. Due to the ADER method, the pro-
posed overset grids discretize the space-time continuum and, consequently, define space-time chimera meshes. This is an 
advantage that allows to evolve the domain as well as the overset grid (with a possible dependency on the solution itself) 
and, at the same time, to compute the solution over this evolving computational structure.

2. The overset grid

An overset grid or Chimera mesh is a set of mesh blocks covering the computational domain. Each block may overlap 
other block(s) in some particular sub-region(s) said overlapping zone(s). Once the multiple mesh patches are generated, they 
are collated in order to have an appropriate topology [11]. Consequently, a hole of inactive cells is defined in the background 
partition. In the sequel, the method is explained by considering a two block overset grid (i.e., the background and the 
foreground meshes). Fig. 1 shows an overset grid composed by one background mesh (in black) surrounding one foreground 
mesh (in blue). In many situations, the foreground mesh can move and deform. The overlapping zone is necessary for the 
communication and data transfer from one mesh to the other.

By considering the notation introduced in Fig. 1, surface ∂�fg/�s is the outer boundary of the subdomain discretized by 
the foreground partition. The hole-cutting takes place for all those cells whose centers of mass lie within the n-th layer of 
foreground cells starting from the foreground outer boundary. In the presented numerical results, n = 5.

The computational cell of any block mesh is quadrilateral in this work.

2.1. Automatic definition of the stencil and transmission condition

Let Tk = {�k
i }Nk

i=1 be the partition composed of Nk cells referring to the k-th block mesh. In order to simplify the notation, 
in the following we will omit the superscript k to the cell �k

i by writing �i . Let Si the stencil centered over the cell �i . 
Thus, stencil Si is the set collecting the indexes of neighboring cells to �i . By abuse of language, sometimes we will refer 
to the physical set �i ∪⋃ j∈Si

� j as the stencil.
It is possible to distinguish two classes of cells with respect to their proximity to the overlapping interface. The definition 

of the stencil depends on the class it belongs to.
If cell �i is not at the boundary of the overlapping zone (Fig. 2a), the stencil Si is composed of all the cells � j sharing 

at least one vertex with �i . Thus, if �i belongs to the partition T1, all cells � j , with j ∈ Si , also belong to T1.
If the cell �i of partition Tk is at the boundary of the interface, it is no longer possible to use the criterion of the cells 

sharing at least a vertex. In fact, there will be at least one edge eil not shared by any other cell of the same partition (see 
left edges of cell �16 in Fig. 2b). For these cells, we systematically identify other cells of partition T j ( j �= k) belonging to 

1 This paper is listed in the Overture website https://www.overtureframework.org /publications .html. We refer the reader to this website for an exhaustive 
bibliography related to the overset grids.
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Fig. 1. Sketch of the mesh configuration. The computational (i.e. fluid) domain contains the solid body whose boundary is �s . The foreground mesh (in blue) 
defines the foreground subdomain �fg whose boundary is the union of an external (dashed line) and internal (continuous line) boundary. Consequently, 
the internal foreground boundary coincides with the solid body boundary. To appreciate the figures at best, the reader is referred to the color electronic 
version of this paper.
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(a) A stencil of cells in the same partition. Continuous line 
for the stencil S13 = {7, 8, 9, 12, 14, 17, 18, 19}.
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(b) A stencil of cells not belonging to the same 
partition. Continuous line for the stencil S16 =
{1, 4, 7, 13, 14, 17, 19, 20}.

Fig. 2. Two possible stencils: on the right the stencil is in the same partition; on the left the stencil is composed of cells not belonging to the same partition.

the stencil. Let the extremes of the edge be indicated as v1 and v2 and its middle point with v3, respectively. Point c� is 
the center of mass of generic cell �� . For our numerical tests, Algorithm 1 is adopted through the two steps:

1. look for the nodes of cells of the other partition T j minimizing the Euclidean distance with respect to points vμ , 
μ = 1, 2, 3, (line 5, see Fig. 3a);

2. compute the symmetric points ṽμ of center ck
i with respect to points vμ for μ = 1, 2, 3 (line 6), then look for the cells 

of partition T j whose centers minimize the Euclidean distance with the three symmetric points (line 7, see Fig. 3b).

For the edges shared by other cells in the same partition, the cells of the stencil will be those ones sharing at least one 
vertex (as cells of indexes 13, 14, 17, 19 and 20 in Fig. 2b).

The routine presented in this section will be run whenever the foreground mesh configuration as well as the hole change.
Algorithm 1 could not define a compact stencil in the case of widely different mesh spacing between the two blocks. In 

that case, more than three points for lines 5 and 7 could be considered. Moreover, a weighted symmetry (possibly led by 
the difference between the mesh spacing) could be performed at line 6.

Concerning the hole-cutting process, in our code the surface defined by the foreground cells distant five layers of cells 
from the boundary is identified; successively all cells in the background whose centers fall inside this surface are flagged 
as inactive points. Fringe cells (on the different blocks) are identified as the ones on the cut, in background, and at the 
boundary of the foreground; finally, over them the hybrid stencil is built via Algorithm 1. For a deep literature review on 
the assembling process regarding the mesh blocks definition and the hole-cutting, we address the reader to [50] and its 
bibliography.
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(a) First step: by identifying the vertexes v1 and v2 and the 
middle point v3 of the edge on the boundary cell �16 (blue 
full dots), look for the nodes of cells in the partition T1
(black empty dots) minimizing the Euclidean distance with 
respect to those points.
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(b) Second step: by identifying the symmetric points ṽμ , 
μ = 1, 2, 3, (red full dots) of the node of the cell �16 (blue 
empty dot) with respect to the vertexes and the middle 
point of the non-shared edge, look for the nodes of cells in 
the partition T1 minimizing the Euclidean distance to those 
points.

Fig. 3. The two steps for the research of cells in the partition T1 for the cell �16 ∈ T2. To appreciate the figures at best, the reader is referred to the color 
electronic version of this paper.

Algorithm 1 Compute stencil for cells at the boundary of the overlapping zone.

Require: �k
i , ek

il, T j, Sk
i ; � j �= k, i.e. T j is the other partition with respect to Tk

1: Initialize v1 and v2 as the two vertexes of edge ek
il;

2: v3 ← (v1 + v2)/2; � Middle point of edge ek
il

3: Z j ←∅; � Temporary set of indexes of partition T j

4: for μ = 1, 2, 3 do
5: Z j ←Z j ∪ {n = 1, . . . , N j : ‖vμ − c j

n‖ ≤ ‖vμ − c j
m‖ ∀m = 1, . . . , N j};

6: ṽ ← 2vμ − ck
i ; � Symmetric point of cell-center ck

i of �k
i with respect to vμ

7: Z j ←Z j ∪ {n = 1, . . . , N j : ‖ṽ − c j
n‖ ≤ ‖ṽ − c j

m‖ ∀m = 1, . . . , N j};
8: Sk

i ← Sk
i ∪Z j ;

9: return Sk
i

3. The governing equations

Let �(t) ⊂ R2 be the computational domain, eventually evolving in time t ∈ [0, T ], with T positive real. We aim in 
studying the two-dimensional incompressible flow in the space-time domain �(t) × (0, T ) governed by the system

ρ

(
∂u

∂t
+ (u · ∇)u

)
=−∇p +μ�u in �(t)× (0, T ), (1a)

∇ · u = 0 in �(t)× (0, T ), (1b)

u(x,0)= u0(x) in �(0)× {0}, (1c)

and completed with boundary conditions over ∂�(t) × (0, T ). In system (1), the unknowns are the velocity u and the 
pressure p of the fluid of density ρ and dynamic viscosity μ. The initial condition is given by (1c) through the initial 
velocity u0. Sometimes, it is more convenient to study the nondimensionalized system of (1); in this case, through the 
incompressibility condition (1b), equations (1a) become

∂u

∂t
+∇ · (uuT )=−∇p + 1

Re
�u in �(t)× (0, T ), (2)

where Re= ρu∞L/μ is the Reynolds number, with u∞ the characteristic velocity of the fluid and L the characteristic length 
of either the physical domain or the obstacle, if it is present.

The domain �(t) is discretized with an overset mesh whose background and foreground partitions are Tbg and Tfg, 
respectively. For the sake of simplicity we consider only one foreground mesh even though it is possible to extend the 
method by employing several foreground meshes. The cells of the foreground partition define a subset �fg of the physical 
domain. The foreground mesh of coordinates X is allowed to move and deform accordingly to the motion equation

dX = V in (0, T ), (3)

dt

5
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which is a Cauchy problem of initial condition X |t=0 = X0(x). In problem (3) the force term is the mesh velocity 
V (x, t; u, p), eventually dependent on the fluid velocity and pressure (in that case systems (1) and (3) are coupled). The mo-
tion equation (3) can be imposed regardless of the physics described by system (1). However, when studying fluid-structure 
interaction phenomena, the foreground mesh is employed in order to easily take into account the generic shape of the solid 
body. Consequently, the computational domain �(t) defines the fluid domain and part of the boundary of the foreground 
subdomain �fg discretizes the boundary �s of the solid, i.e., �s ⊂ ∂�fg (see Fig. 1). Along the boundary �s the interaction 
between the fluid and the solid takes place and it mathematically reads

u = uB on �s(t)× (0, T ), (4)

where uB is the velocity of the solid body. Thus, the mesh velocity V has to coincide with the velocity uB of the body on 
the boundary �s of the solid:

V
∣∣
�s
≡ uB . (5)

Consequently, the dynamics of motion and deformation of the foreground mesh in (3) is led by condition (5).

4. The numerical method

The Navier-Stokes equations (1) are discretized using a Finite Volume (FV) scheme with the collocated cell-centered 
variables (u, p). Let the whole time interval (0, T ) be subdivided into N sub-intervals (tn, tn+1), n = 1, . . . , N − 1, of length 
�t . For a given variable φ(x, t), we indicate its evaluation at discrete time tn with φn . A fractional step method is used to 
evaluate the solution in time. In order to improve the pressure smoothness and avoid odd-even oscillation phenomena, the 
face-centered velocity

U = (u)fc (6)

is introduced as presented by Mittal et al. [51]. The symbol (·)fc is a discrete operator computing the face-centered value of 
the cell-centered input and it will be explained at the end of this section.

Based on the predictor-projection-correction non incremental Chorin-Temam scheme [30,31], the first step (predictor 
step) evaluates an intermediate velocity u∗ obtained by the resolution of an unsteady convection-diffusion equation{

∂u∗
∂t +∇ ·

(
u∗(U n)T

)− 1
Re �u∗ = 0 in �(t)× (tn, tn+1)

u∗ = un in �n × {tn} , (7)

which will be numerically solved as explained in the next subsection.
The intermediate velocity u∗ solving problem (7) is not divergence free. Thus the predicted field u∗ is projected onto a 

divergence free space through the pressure. As a matter of fact, by computing the divergence of equation

un+1 − u∗

�t
=−∇pn+1 in �(t)× (tn, tn+1) (8)

and applying the divergence condition (1b) on the velocity fluid un+1, we obtain the Poisson equation for the pressure

�ψn+1 =∇ · u∗ in �n+1, (9)

with ψ =�t p, by defining the projection step. Problem (9) refers to the cell-centered velocity field and pressure. Thus, by 
employing the face-centered intermediate velocity U ∗ = (u∗)fc, problem (9) turns into

�ψn+1 =∇ · U ∗ in �n+1, (10)

which is numerically solved as explained in Section 4.2.
The velocity fields un+1 and U n+1 at the cell-centers and face-centers, respectively, are finally corrected through equation 

(8) as

un+1 = u∗ −∇ψn+1, (11a)

U n+1 = U ∗ − (∇ψn+1)fc, (11b)

which conclude the numerical routine within the time sub-interval from tn to tn+1.
6
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4.1. The predictor solution

In this subsection the numerical scheme for the predictor equation (7) solved by the intermediate velocity u∗ is pre-
sented. The method consists in a FV predictor-corrector scheme stabilized with a Local Lax-Friederichs approach. It was 
originally presented in our previous work [36] for a generic advection-diffusion (eventually nonlinear) problem where the 
computational domain is discretized by employing overset grids. It is inspired by the ADER (Arbitrary high-order DERiva-
tives) method [32–35] and was reformulated for both the presence of the diffusion and the management of the dynamics 
for the Chimera mesh.

4.1.1. Local space-time Galerkin predictor and foreground mesh motion
The first step of the method for the unsteady convective-diffusive equation (7) consists in the research of a weak solution 

in any cell of the mesh. Let Cn
i =�i(t) × (tn, tn+1) be the physical space-time cell whose lower and upper bases represent 

the evolution of the i-th cell �i(t) from time tn to tn+1. Problem (7) is rewritten with respect to a space-time reference 
system identified by the independent variables ξ ≡ (ξ, η, τ ) in the unit cube Ĉ = (0, 1)3. As originally proposed in [52], it is 
discretized through a nodal formulation of space-time nodes given by a tensor product of three Gauss-Legendre quadrature 
points, namely {1/2, (5 ±√15)/10}, along space and time directions. This choice defines an L2(Ĉ)-orthogonal Lagrange basis 
used for the approximation of the Galerkin solution. Consequently, over a space-time cell there are 27 Gauss-Legendre nodes 
ξ̂m and 27 Lagrange polynomials θl : Ĉ→R such that

θl(ξ̂m)= δlm and
ˆ

Ĉ

θlθm dξ = δlm, l,m= 1, . . . ,27,

where δlm is the Kronecher symbol.
The component-wise problem to be solved is: find qk : Cn

i →R, k = 1, 2, such that{
∂tqk +∇ · F (qk,∇qk)= 0 in Cn

i

qk =�iun
k on �n

i

, (12)

where F (qk, ∇qk) = qqk − ∇qk/Re is the convective-diffusive term. Problem (12) is problem (7) restricted to the physical 
space time-cell Cn

i and redefined as a boundary value problem. Let En
i be the union of all cells belonging to the stencil Sn

i
centered on cell �n

i identified by the cell-center xn
i (i.e., En

i =�n
i ∪

⋃
j∈Sn

i
�n

j ). Function �iφ is the polynomial interpolation 
of a given function φ ∈ C2(En

i ), whose knowledge is only available to the cell-centers, by employing the quadratic basis of 
the polynomial space function

P2(En
i )= span

{
1, x− xn

i , y − yn
i , (x− xn

i )(y − yn
i ),

1

2
(x− xn

i )
2,

1

2
(y − yn

i )
2
}
.

In order to find the polynomial coefficients related to this basis, the constrained �iun
k(x j) ≡ un

k(x j) for any j ∈ Sn
i . The way 

the stencils are constructed, the constraints are always more than the components of the basis P2(En
i ). Thus, the polynomial 

coefficients are found in the mean-square sense.
We remark that at this stage the face-centered velocity field U is not required as originally indicated in problem (7).
In order to refer problem (12) to the reference domain Ĉ , we use a map Mi : Ĉ→ Cn

i

Mi :

⎧⎪⎨
⎪⎩

x= x(ξ,η, τ )

y = y(ξ,η, τ )

t = tn +�t τ

, (13)

such that any space-time point x≡ (x, y, t) in the physical space-time cell Cn
i is a function x= x(ξ), with ξ ∈ Ĉ (see Fig. 4). 

Time t is considered as linear function of τ of slope �t . From map (13), the Jacobian matrix J reads

J = dx

dξ
=
⎡
⎣ xξ xη xτ

yξ yη yτ

0 0 �t

⎤
⎦ , (14)

whose inverse is

J−1 = dξ

dx
=
⎡
⎣ ξx ξy ξt

ηx ηy ηt

0 0 1/�t

⎤
⎦ . (15)

Moreover, let J−1
s be the restriction to the spatial coordinates of the inverse of the Jacobian matrix (15):
7
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0 1

1

1

Mi

�n
i4

�n
i

�n
i3

�n
i2

�n
i1

�n+1
iĈ

ξ

η

τ

Cn
i

x

y

t

Fig. 4. Sketch of the map Mi from the reference space-time cell Ĉ to the physical space-time cell Cn
i . The boundary ∂Cn

i of the physical space-time cell is 
defined by the spatial cells �n

i (lower base) and �n+1
i (upper base) and by the space-time boundaries �n

i j , j = 1, . . . , 4, linking any edge of �n
i to any edge 

of �n+1
i .

J−1
s =

[
ξx ξy

ηx ηy

]
. (16)

Through (16), the problem in the reference domain reads2

∂τ qk +�tF �(∇̂qk)+�t J−T
s ∇̂ ·F �(qk, ∇̂qk)= 0 in Ĉ, (17)

with

F �(∇̂qk)=
[

ξt

ηt

]
· ∇̂qk; F �(qk, ∇̂qk)= F (qk, J−T

s ∇̂qk)=
[
F�

ξ

F�
η

]
; ∇̂ =

[
∂ξ

∂η

]
.

The hat differential operators refer to the reference space variables ξ and η in the reference space-time cell Ĉ . By abuse of 
notation and for the sake of simplicity, the solutions qk involved in both equations (12) and (17) are defined with the same 
symbol even though they take inputs in the physical space-time cell Cn

i and in the reference space-time cell Ĉ , respectively. 
In order to weaken the problem (17), we introduce the following functional space

�=
{

v ∈ L2(Ĉ) : (0,1)2 � (ξ,η) �→ v(ξ,η, τ ) ∈ H1((0,1))
}

as subspace of energy-finite functional space L2(Ĉ) of functions that associate a Sobolev H1((0, 1))-integrable function for 
any fixed reference spatial variables (ξ, τ ). Moreover, we use the following notation for any function f and g in �:

〈 f , g〉 =
ˆ

Ĉ

f g dξ ; [ f , g]τ =
1ˆ

0

1ˆ

0

f (ξ,η, τ )g(ξ,η, τ )dξdη.

Finally, for our purposes, it is identified � as a test functional space and a trial functional space Q k is defined as

Q k =
{

v ∈� : v(ξ,η,0)=�iu
n
k(x(ξ,η,0), y(ξ,η,0), tn)∧ J−1

[ ∇̂v
∂τ v

]
∈ L2(Ĉ;R3)

}
. (18)

By multiplying left and right side of (17) by a generic test function θ in � and by integrating over the reference space-time 
cell Ĉ , the weak problem reads: find qk ∈ Q k such that

[θ,qk]1 − 〈∂τ θ,qk〉 +�t 〈θ,F �(∇̂qk)〉 +�t 〈θ, J−T
s ∇̂ ·F �(qk, ∇̂qk)〉 = [θ,�iu

n
k ]0 ∀θ ∈�. (19)

2 Because of the transformation, it holds

∂tqk = ∂τ qk

�t
+F �(∇̂qk); and ∇ = J−T

s ∇̂.
8
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For the above equation, for the solution qk and the reference convective-diffusive terms F � and F � a Lagrangian polynomial 
expansion is performed by employing the already presented Lagrange basis, thus, by adopting the Einstein notation, qk =
θlq̂k,l and F� = θlF�

l , with � = �, � and l = 1, . . . , 27, where q̂k,l = qk(ξ̂ l) and F�
l = F�|

ξ̂ l
. Considering as test function the 

m-th Lagrangian polynomial θm and by using the Lagrangian expansion, we rewrite the equation (19) as

([θm, θl]1 − 〈∂τ θm, θl〉)q̂k,l +�t〈θm, θl〉F̂ �

l +�t〈θm, (ξx∂ξ + ηx∂η)θl〉F�

ξ,l

+�t〈θm, (ξy∂ξ + ηy∂η)θl〉F�

η,l = [θm,�iu
n
k ]0,

(20)

for any m = 1, . . . , 27. In the left hand side of (20), the arising matrices have a sparse pattern due to the L2-orthogonality 
of the Lagrangian basis (e.g. the mass matrix by 〈θm, θl〉 is diagonal). Matrices involving the derivatives of the map Mi , i.e. 
〈θm, (ξx∂ξ +ηx∂η)θl〉 and 〈θm, (ξy∂ξ +ηy∂η)θl〉, cannot be explicitly computed before finding the map itself. On the contrary, 
the components which do not involve the map, namely ([θm, θl]1−〈∂τ θm, θl〉) and 〈θm, θl〉, can be pre-computed once for all 
before solving problem (20). The above equation (20) is nonlinear due to the convective-diffusive terms F � and F � which 
depend on the solution qk . For this reason a fixed point problem is solved: let r be the index of the fixed point iteration, 
therefore we solve qr+1

k

([θm, θl]1 − 〈∂τ θm, θl〉)q̂r+1
k,l +�t〈θm, θl〉F̂ �,r

l +�t〈θm, (ξx∂ξ + ηx∂η)θl〉F�,r
ξ,l

+�t〈θm, (ξy∂ξ + ηy∂η)θl〉F�,r
η,l = [θm,�iu

n
k ]0,

(21)

for any m = 1, . . . , 27, where terms of fixed point index r are computed by using the previous solution qr
h . In our numerical 

tests, the fixed point iteration stops when the L2(Ĉ)-norm of residual of equation (21) is less than a fixed tolerance.
In equation (17) the local map Mi : Ĉ→ Cn

i has been involved for the computation of the local weak predictor solution. 
The local map is recovered through the movement of the foreground mesh led by the motion equation (3). Otherwise, 
namely in the background mesh, it is known a priori. The motion equation (3) is solved through an isoparametric approach by 
locally referring it to the same reference system as done for the local equation (12). This means that the spatial coordinates 
X are considered as function of the reference coordinates, i.e. X(ξ ), with ξ ∈ Ĉ . Finally, the solution of the referred motion 
equation is approximated via a Lagrangian expansion by employing the same Lagrangian basis {θm}27

m=1 built on the tensor 
combination of three Gauss-Legendre nodes in (0, 1) along any direction as previously introduced: Xh = θl X̂ l , with X̂ l =
X(ξ̂ l). Thus, from time tn to tn+1, the motion equation (3) is locally re-written as

dX

dt
= V in Cn

i , (22)

and closed by strongly imposing that the solution Xn at current time is equal to X(tn) found at the previous physical space-
time cell Cn−1

i . The local motion equation (22) is weakened in a similar way to the local equation (12) and in algebraic form 
it reads

([θm, θl]1 − 〈∂τ θm, θl〉)X̂ l =�t〈θm, θl〉V̂ l + [θm, θl]0 X̂
n
l , (23)

for any m = 1, . . . , 27, with V̂ l = V |
ξ̂ l

. The last term [θm, θl]0 X̂
n
l takes into account the initial given configuration of the 

space at time tn .
When the mesh is neither moving nor deforming, as for cells in the background, the mesh velocity is thus coincident 

with zero, i.e. V ≡ 0. In that case, the map is known a priori and it consists in the rescaling of the reference space-time cell 
Ĉ to the physical space-time cell Cn

i :{
x= x(ξ)= xi−1/2 + hx

i ξ

y = y(η)= yi−1/2 + hy
i η

, (24)

where coordinates xi−1/2 and yi−1/2 and xi+1/2 and yi+1/2 define the extremes along x- and y-direction of the physical 
space-time cell Cn

i ≡ [xi−1/2, xi+1/2] × [yi−1/2, yi+1/2] × [tn, tn+1]; and hx
i and hy

i are the length along x and y of the cell, 
respectively, i.e. hx

i = xi+1/2 − xi−1/2 and hy
i = yi+1/2 − yi−1/2.

Since the mesh motion equation (3) is essentially solved via a sort of Discontinuous Galerkin (DG) approach, possible 
numerical (and non physical) discontinuities could arise. As a matter of fact, for a given vertex X̄

n+1
j shared by a set of 

spatial cells {�n+1
i }i∈Zn+1

j
at time tn+1, there could be as many different values of the vertex, namely {X̄n+1

j,i }i∈Zn+1
j

, for 

any map Mi referring to the cell Cn
i to which �n+1

i belongs. The set Zn+1
j collects the index(es) of the cells sharing the 

vertex X̄
n+1
j . The cardinality N j of set {�n+1

i }i∈Zn+1
j

, coinciding with the cardinality of the indexes set Zn+1
j , depends on 

the position of the vertex X̄
n+1
j on the foreground mesh: it is either 1 or 2 if the vertex is on the boundary of the mesh, 
9
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otherwise it is 4, if the topology of the cell is quadrilateral. For this reason we consider a weighted average value for the 
shared vertex in order to tackle the possible arising discontinuities. As suggested in [53], we first consider a weighted 
velocity V̄

n+1
j corresponding to the vertex X̄

n+1
j

V̄
n+1
j = 1

N j

∑
i∈Zn+1

j

V̄
n+1
j,i , with V̄

n+1
j,i =

1ˆ

0

θl(ξ
∗, η∗, τ )dτ V̂ l,i, (25)

where coordinates (ξ∗, η∗) depend on the position of the coordinate X̄
n+1
j in the cell �n+1

i ; it can assume four values: 
(0, 0), (1, 0), (1, 1) and (0, 1). Once equation (23) is solved, the just found coordinates {X̂ l}27

l=1 are used for computing the 
velocity components V̂ l,i and, thus, the weighted velocities V̄

n+1
j in (25). Finally, the coordinates X̄

n+1
j at time tn+1 are

X̄
n+1
j = X̄

n
j +�t V̄

n+1
j . (26)

For another definition of the weighted vertex velocities V̄
n+1
j in (25) by exploiting the Voronoi neighborhood parameters of 

any vertex, the reader is addressed to [32].
In Algorithm 2 we resume the salient stages of the prediction step.

Algorithm 2 Prediction step.

1: Compute the foreground mesh motion (26) from the motion equation (3) and through the weighted velocity (25);
2: for i = 1, . . . , N do
3: Find the map Mi for the space-time cell Cn

i ;
4: Compute (14), the Jacobian matrix J associated to Mi ;
5: Compute J−1 and take the submatrix J−1

s as defined in (16);
6: Update the convective-diffusive terms F � and F � in the reference domain;
7: Evolve the local predictor solution through (20);

4.1.2. The space-time finite volume scheme
Once the local predictor solution qk is computed in each space-time cells Cn

i , we can perform the ADER correction 
stage. First, we rewrite the convective-diffusive equation (7) in divergence form. Let F U n (u∗k , ∇u∗k ) = U nu∗k −∇u∗k/Re, with 
k = 1, 2, be the convective-diffusion term associated to the component-wise equation (7); let ∇x,t = [∇, ∂t]T be the space-
time differential operator and, finally, let Uk = [F U n (u∗k , ∇u∗k ), u∗k ]T , k = 1, 2, be the k-component of the space-time solution, 
thus problem (7) can be rewritten as: for any k = 1, 2,

∇x,t ·Uk = 0 in �(t)× (0, T ). (27)

The objective is to find a finite volume solution for the above equation, where the finite volume is the space-time cell Cn
i , 

whose boundary reads

∂Cn
i =�n

i ∪�n+1
i ∪

4⋃
j=1

�n
i j, (28)

where the boundaries �n
i j , j = 1, . . . , 4, are the space-time boundaries of Cn

i linking any edge of �n
i at time tn to any edge 

of �n+1
i at time tn+1 (see the sketch of the physical space-time cell in Fig. 4). By integrating equation (27) over Cn

i and by 
applying the divergence theorem to the left side, we obtain‹

∂Cn
i

Un
k · nx,t d�= 0, (29)

with nx,t = [nx, nt]T = [nx, ny, nt]T being the normal unit vector to the boundary ∂Cn
i of the cell. Let ū∗,nk,i be the spatial 

average solution u∗k cell-centered in the space cell �n
i at time tn , i.e.,

ū∗,nk,i =
1

|�n
i |
ˆ

�n
i

u∗k (x, y, tn)dx dy, (30)

where |�n
i | is the measure of the spatial cell �n

i . Though (28) and (30), equation (29) explicitly is

−|�n
i |ū∗,nk,i + |�n+1

i |ū∗,n+1
k,i +

4∑
j=1

ˆ

�n

Uk · nx,t d�= 0, (31)
i j

10
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where the unknown is the average solution ū∗,n+1
k,i at time tn+1, while the last term of the left hand side is the space-time 

flux along the space-time sides 
⋃4

j=1 �n
i j . Scheme (31) is the space-time Finite Volume scheme; we remark that it is still 

exact. In order to solve (31), the integral function of the space-time flux is approximated through a Local Lax-Friederichs 
(LLF) approach:

[Uk · nx,t]�n
i j
≈�(q+k, j,q−k, j)=

1

2
(U+k, j +U−k, j) · nx,t − s

2
(q+k, j − q−k, j), (32)

where U+k, j = Uk, j(q
+
k, j) and U−k, j = Uk, j(q

−
k, j) are the space-time solution of (27) computed by solutions q+k, j and q−k, j , 

which represent the local predictor solutions outside and inside the cell, respectively, with respect to the space-time side 
�n

i j . The term s is the local stabilization coefficient depending on the face-centered velocity U n considered constant over the 
space-time side �n

i j . It reads

s= 1

2

∣∣∣∣∣U n · nx + 2nt +
√√√√[

(Un
x )2 + 4

εRe

]
n2

x + 2Un
x Un

ynxny +
[
(Un

y)
2 + 4

εRe

]
n2

y

∣∣∣∣∣, (33)

where ε is a relaxation parameter. In order to ensure a second-order convergence for the scheme, the relaxation term ε is 
chosen to be smaller than an optimal relaxation parameter ε2 [54,55] defined as

ε2 = O(1)h2
max

C2
, (34)

where hmax is the maximum characteristic length among all the cells and C2 = (1 − 2−1/2)/(2−3/2 − 1) is a parameter 
depending on the convergence rate of the scheme. In particular, the relaxation parameter ε is set as ε2/2. For further details 
concerning the stabilization term (33) and the stability of the scheme, the reader is referred to [36] and its references.

In the ADER scheme, flux is used to adjust information for contiguous cells. When overset meshes are employed, it also 
has the role of settling information from one block to the other along the fringe cells.

Equation (31) with the flux approximation (32) closes the correction stage of the ADER method. At the end of this stage, 
the cell-centered k-th component of the solution u∗,n+1

k,i is found over any cell �n+1
i at time tn+1.

4.2. The pressure equation

The second step of the fractional method is the projection step defined by the Poisson equation (10) for pressure ψn+1 =
�t pn+1 at time tn+1 on the Chimera configuration for the domain �n+1. In this section, in order to lighten the notation, 
the reference to time tn+1 is omitted for all involved variables and quantities. Let the stencil Si centered on cell �i be 
decomposed in Si = S+i ∪ S×i , with S+i of cells sharing either one or no edge with �i and S×i the remaining cells sharing 
only one vertex of �i . The proposed scheme for (10) is a spatial FV approach. Thus, by integrating over the space cell �i , 
whose boundary is ∂�i =⋃

j∈S+i γi j , and by applying the divergence theorem both to the left and right hand sides, the 
problem exactly reads∑

j∈S+i

ˆ

γi j

∇ψ · ni j dγ =−
∑
j∈S+i

ˆ

γi j

U ∗ · ni j dγ , (35)

with ni j the unit outer normal to side γi j . The integrals in (35) are approximated as∑
j∈S+i

|γi j|[∇ψ · n]i j =−
∑
j∈S+i

|γi j|U ∗i j · ni j, (36)

where |γi j| is the length of side γi j . In order to achieve the Poisson algebraic system for problem (36), the approximation 
of the face-centered normal divergence term [∇ψ · n]i j along γi j is needed. For this reason, two different strategies are 
adopted with respect to the position of the spatial cell �i : if the cell is not fringe, namely it is not at the boundary of 
the overlapping interface of its partition, the approximation is performed through a geometric reconstruction, otherwise, an 
analytic approach is employed.

4.2.1. The geometric reconstruction
By considering Fig. 5, let us consider two internal cells �1 and �2 in the same partition and sharing the edge γ of 

normal n. Let P be the face-center of γ . Moreover, let c1 and c2 be the cell-centers of the two cells and v1 and v2 be the 
extremes of edge γ . These points define the unit direction vectors dc (of the centers) and dt (tangent), respectively. The 
objective is to approximate the normal gradient [∇ψ ·n]P , applied on P , assumed to be constant over γ . It is approximated 
via the diamond formula [37,38] as
11
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v1

v2

�1

�2

•
P

◦
c1

◦
c2 dc

nγ

dt

x

y

Fig. 5. Sketch of two internal cells �1 and �2 sharing the edge γ .

[∇ψ · n]P ≈ 1

dc · n

(
ψc2 −ψc1

|c2 − c1| −
ψv2 −ψv1

|γ | dc · dt

)
. (37)

In the above approximation, due to the cell-centered nature of the scheme, an approximation of the vertex-centered quan-
tities ψv1 and ψv2 are necessary. In particular, they have to be expressed as function of some cell-centered quantities of the 
unknown pressure ψ . Let us study this approximation for vertex v1; the extension to vertex v2 trivially follows. Let S̃v1 be 
the substencil of indexes of those cells sharing vertex v1. For internal cells, the cardinality of substencil S̃v1 is equal to 4. 
Thus, let Ẽ v1 =

⋃
j∈S̃v1

� j be the subdomain composed of cells sharing the vertex v1. Finally, let �̃v1φ be the polynomial 

interpolation of a given function φ ∈ C2(Ẽ v1 ), whose knowledge is available to the cell-centers, by employing the bilinear 
basis of the polynomial space function Q0

1 = span{1, x, y, xy}. In particular, it holds that

�̃v1ψ(x, y)= αv1,1 + αv1,2x+ αv1,3 y + αv1,4xy = zT αv1 ,

with z = [1, x, y, xy]T and the unknown polynomial coefficients collected in vector αv1 . The polynomial coefficients are 
looked for by imposing that the polynomial equals the pressure at the cell-centers of the substencil (i.e., �̃v1ψ(x j, y j) ≡ψ j

for any j in S̃v1 ). This yields the resolution of linear system Av1αv1 =ψ v1
, where the row space of Av1 ∈R4×4 is defined by 

the coordinates in z j and vector ψ v1
collects the cell-centered values ψ j , with j ∈ S̃v1 . Finally we approximate as follows:

ψv1 ≈ �̃v1ψ(xv1 , yv1)= zT
v1

αv1 = zT
v1

A−1
v1

ψ v1
, (38)

that only depends on cell-centered values of ψ . This allows to finally define the i-th line of system for problem (36). The 
scheme for internal cells reads

∑
j∈S+i

|γi j|
dci j · ni j

(
ψ j −ψi

|c j − c i | −
zT

v2 j
A−1

v2 j
ψ v2 j

− zT
v1 j

A−1
v1 j

ψ v1 j

|γi j| dci j · dvi j

)
=

∑
j∈S+i

|γi j|U ∗i j · ni j, (39)

where the unknowns are the cell-centered values of ψ .

4.2.2. Truncation error and stencil at fringe cells
For the fringe cells, the diamond formula (37) for approximating the normal gradient in (35) is more complicated. In fact 

there exists at least one edge for which the second center c2 falls in the other partition. Thus, in a generic configuration, 
it could be happen that the center direction dc tends to be parallel to the tangent direction dt , implying a vanishing 
term dc · n. The approach that we adopt exploits the analytic information stored in any stencil Si centered on cell �i . Let 
Ri = Si ∪ {i} be the increased stencil which includes also the index i. Let P the generic face-centered point on which the 
pressure gradient needs to be approximated. In the sequel we provide the gradient approximation along the x-direction; 
the approximation along y similarly follows. For any j in Ri , the Taylor polynomial expansion of ψ j with respect to the 
face-centered value ψP truncated to the third-order terms is

ψ j =ψP + hx
j∂xψP + hy

j ∂yψP + hx
jh

y
j ∂

2
xyψP + 1

2
(hx

j)
2∂2

xxψP + 1

2
(hy

j )
2∂2

yyψP

+ 1

6
(hx

j)
3∂3

xxxψP + 1

4
(hx

j)
2hy

j ∂
3
xxyψP + 1

4
hx

j(h
y
j )

2∂3
yyxψP + 1

6
(hy

j )
3∂3

yyyψP + o(H3
j ),

(40)

with hx
j = x j − xP , hy

j = y j − y P and H j =max{|hx
j |, |hy

j |}. As done in the previous subsection, the objective is to represent 
the face-centered gradient as dependent on the cell-centered quantity in the stencil, i.e.,
12
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∂xψP =
∑
j∈Ri

βx
sP ( j)ψ j, (41)

with coefficients βx
sP ( j) to be found. The discrete function sP :Ri → {1, . . . , m}, with m = |Ri | being the cardinality of the 

enlarged stencil, sorts the indexes in Ri in increasing order. By plugging the Taylor expansion (40) truncated to the second 
order in (41), it holds:

∂xψP =
( ∑

j∈Ri

βx
sP ( j)

)
ψP +

( ∑
j∈Ri

βx
sP ( j)h

x
j

)
∂xψP +

( ∑
j∈Ri

β
y
sP ( j)h

y
j

)
∂yψP +

( ∑
j∈Ri

βx
sP ( j)h

x
jh

y
j

)
∂2

xyψP

+
( ∑

j∈Ri

1

2
βx
sP ( j)(h

x
j)

2

)
∂2

xxψP +
( ∑

j∈Ri

1

2
βx
sP ( j)(h

x
j)

2

)
∂2

xxψP +O
(

max
j∈Ri

H3
j

)
.

(42)

Since the right side of (42) is the approximation of the x-derivative of ψP , the conditions on the coefficients βx
sP ( j) are∑

j∈Ri

βx
sP ( j) = 0;

∑
j∈Ri

βx
sP ( j)h

x
j = 1;

∑
j∈Ri

βx
sP ( j)h

y
j = 0;

∑
j∈Ri

βx
sP ( j)h

x
jh

y
j = 0;

∑
j∈Ri

1

2
βx
sP ( j)(h

x
j)

2 = 0;
∑
j∈Ri

1

2
βx
sP ( j)(h

y
j )

2 = 0;
(43)

which can be synthesized in the linear system Mβx = bx , with M ∈R6×m , βx ∈Rm , bx ∈R6. Similar consideration can be 
assumed for the approximation of the y-derivative. For this reason, for now we consider the generic system

Mβ = b. (44)

Inspired by [39], for a general value of m, system (44) is solved by minimizing a Lagrangian function under the constraints 
defined by a convex function H :Rm →R. Let λ ∈Rν be a vector of Lagrangian multipliers. Moreover let L :Rm×Rν →R
be the Lagrangian function to be minimized defined as

L(β,λ)=H(β)− λT (Mβ − b). (45)

To minimize this function means to find the stationary point (β, λ) such that{
∂L
∂β = 0
∂L
∂λ = 0

⇐⇒
{

∂H
∂β −MT λ= 0

Mβ = b
. (46)

Let C ∈R4×m be the sub-matrix relative to the second-order constraints (led by the second line of (40)). Two cases are 
distinguished:

m≤ 10: The convex function is H(β) = 1/2βT [(1 − δ)C T C + δG]β , with ν = 6, consequently the local system to be solved 
is [ [(1− δ)C T C + δG] −MT

M O

][
β
λ

]
=
[

0
b

]
, (47)

where O is the null matrix in R6×6. This choice of the convex function H(β) is such that the discretization 
coefficients minimize the second-order truncation error encoded in matrix M and their L∞-norm is penalized by 
coefficient δ (which is put equal to 0.01 in the presented test cases) in that region of the stencil indicated by 
matrix G ∈Rm×m , as it will be later discussed.

m > 10: The convex function reads H(β) = 1/2βT β and ν = 10. Thus the local minimization system is[
I −M̃T

M̃ O

][
β
0

]
=
[

0
b

]
, (48)

with M̃ =
[

M
C

]
and I is the identity matrix in R10×10. In this case the coefficients satisfy 10 second-order accuracy 

constraints while their norm is minimized.

The scheme for the fringe cells is∑
j∈S+

|γi j|
∑
l∈Ri

(βx
si j(l)

nx,i j + β
y
si j(l)

ny,i j)ψl =
∑
j∈S+

|γi j|U ∗i j · ni j, (49)
i i
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Tb

� � T f

�
�1

2

3

4

(a) In this configuration it holds: abf ({1, 2}) = {3, 4} while 
a f b({3, 4}) = {2}.

Tb

T f

� �� �1
2 ≡ 3

4•P

(b) No-shift configuration. It holds: abf (2) = 3 = a−1
f b (2), 

a f b(3) = 2 = a−1
bf (3) and �2 ≡�3.

Fig. 6. Sketch of overlapping configurations. Black cells {1, 2} belong to the background partitions, blue cells {3, 4} to the foreground. The star symbols (�) 
and the diamond symbols (�) represent the cell-centers for cells in the background and in the foreground, respectively. To appreciate the figures at best, 
the reader is referred to the color electronic version of this paper.

where the unknowns are the cell-centered values of ψ .
Coefficients βx and β y in (49) automatically encode in the stiffness matrix of the Poisson problem (10) the information 

from one mesh to another since onto fringe cells the constructed stencils are hybrid (i.e., they are composed of cells 
belonging to the two partitions).

One goal for numerically solving the pressure problem is to have the same scheme for fringe and internal cells in the 
limit of a perfect no-shift overlapping between the background and foreground meshes. This allows to properly control the 
fluxes exiting from the background and entering in the foreground (and vice versa) and, consequently, to have a conservative 
scheme at least in this limit condition.

Let O be the set of indexes for cells in the overlapping zone. It is possible to separate this set in two sets Ob and O f

for the background and foreground, respectively, such that O =Ob ∪O f and Ob ∩O f = ∅. Moreover, let abf :Ob →O f

(and a f b :O f →Ob) be the function associating the closest background (foreground) overlapping cell to a given foreground 
(background) overlapping cell, i.e., for any i ∈Ob (and j ∈O f )

abf (i)= arg min
j∈O f

|xi − x j|
(

and a f b( j)= arg min
i∈Ob

|x j − xi|
)
. (50)

In a general overlapping configuration, it holds that a−1
f b �= abf and a−1

bf �= a f b , as it is showed in Fig. 6a. Through the 
association functions it is possible to formalize the no-shift overlapping limit configuration.

Definition 4.1 (No-shift overlapping configuration). The overlapping configuration is said to be no-shift when it holds both

abf = a−1
f b or a f b = a−1

bf ; (51a)

∀i ∈Ob ∃! j = abf (i) ∈O f such that i = a f b( j) and �i ∩� j =�k, with k= i, j. (51b)

The limit of no-shift condition takes place when all overlapping cells in the background perfectly coincide with all 
overlapping foreground cells in the foreground with a one-to-one match defined by the associations functions (an example 
is sketched in Fig. 6b).

Let us consider a fringe cell �i in a no-shift overlapping configuration for uniform Cartesian meshes of characteristic 
length h and let us suppose to compute the gradient at the face-center P of the side after which there is cell � j not 
belonging to the same partition of �i (as in Fig. 6b for cells �3, fringe, and �1, internal). If the diamond formula (37) is 
used in this case, the tangential contribution vanishes because dc · dt = 0, consequently, the diamond formula corresponds 
to the minimization of the Lagrangian functional associated to problem (44) fulfilling the second-order constraints (43)
with coefficients: βsi j(i) =−βsi j( j) =−1/h and βsi j(k) = 0 for any k ∈Ri/{i, j}. This means that the diamond formula in the 
view of the problem defined by (47) is minimizing the L∞-norm of the local parameters only in those cells of the stencil 
sufficiently far from the face-center point P (where the value of the local coefficients is put to 0). Consequently, all the 
information for the reconstruction of the gradient is recovered from the closest cells to P . This concept is encoded in matrix 
G defined as a diagonal matrix G = diag(gsi j(k))k∈Ri , with the diagonal components defined as

gsi j(k) =
{

1; k �= arg minl∈Ri |xl − xP |
0; otherwise

. (52)

With this definition, in the considered overlapping configuration, components gk assume value 1 only for k �= i, j (thus for 
all cells whose centers do not minimize the distance with the face-center P ) and the solution of problem (47) can be proved 
to provide βsi j(i) =−βsi j( j) =−1/h and βsi j(k) = 0 for any k ∈Ri/{i, j}, as defined by the diamond formula. When matrix 
G is put equal to the identity, the L∞-norm is penalized all over the stencil [39]. In the simulations of this work, matrix G
with coefficients defined by (52) is used for any overlapping configuration, allowing to have a unique scheme for internal 
and fringe cells in the limit of the no-shift overlapping condition.
14
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4.3. The face-center discrete operators on overset grids

Accordingly to the Chorin-Temam scheme presented at the beginning of Section 4, the face-centered values of the velocity 
and pressure gradient are needed. These computations take again into account either the internal or fringe position of the 
cell.

When the intermediate velocity u∗ is computed at the end of the predictor step (7), its face-centered counterpart U ∗
becomes the force term for the pressure equation (10). If the edge is shared by two cells of the same partition, the face-
centered approximation is the mean of the P2-interpolations evaluated on the face-center by using both the stencils of the 
two involved cells. On the contrary, when the side only belongs to one cell (because it is fringe), the approximation is still 
the evaluation of the polynomial interpolation on the face-center but just considering the hybrid stencil of the cell.

In the last step (11b) of the fractional step, the face-centered gradient pressure is used to correct the new face-centered 
velocity. For fringe cells, the face-centered approximation still exploits the local coefficients explained in the Section 4.2.2. 
For internal cells, through the diamond formula (37), it is possible to approximate the directional derivatives on the face-
center along the center and tangential directions. In particular they read

∂dc ψ ≈
ψc2 −ψc1

|c2 − c1| and ∂dt ψ ≈
ψv2 −ψv1

|γ | , (53)

respectively, where ∂dψ =∇ψ · d is the directional derivative of ψ along direction d. Consequently it holds[
dc,x dc,y

dt,x dt,y

][
∂xψ

∂yψ

]
=
[
∂dc ψ

∂dt ψ

]
(54)

which can be compactly written in an algebraic form as D (∇ψ)fc = w . By solving the local face-centered system (54), 
correction (11b) is finally performed.

4.4. Dynamics of the overlapping zone

During the simulation, the foreground mesh moves and, consequently, the background mesh changes its configuration in 
the zone of the overlapping as well as in the hole. Let �i(t) be a background cell in a neighborhood of the overlapping. 
From times tn to tn+1, it can happen one of the following three scenarios:

1. Cell �i(t) is present at time tn and it disappears at time tn+1 because the hole completely covers it;
2. Cell �i(t) is not present at time tn but it appears at time tn+1 because the hole gets away;
3. The overlapping zone does not drastically change its configuration with respect to cell �i(t), thus the cell is present at 

time tn and it still continues to be present at time tn+1.

The third case is trivial. For the first case, the algorithm is performed on the vanishing cell because of the computation 
of fluxes needed by the neighboring cells and at time tn+1 the cell (with data) is suppressed. For the second possibility, 
information at current time tn is missing and it is necessary for evolving the same information at next time tn+1. By 
recalling the previously introduced notation, in this case index i belongs to the overlapping background set Ob . Thus, it 
is possible to associate to it an index j = abf (i) in the foreground set O f such that information stored in �n

j is known. 
Successively, a P2-reconstruction evaluated on �i is employed by using the stencil S j of �n

j . Since there are several layers 
of cells composing the overlapping zone, this ensures stencil S j to be entirely defined in the foreground partition and, 
consequently, the reconstructed data do not need information coming from the other partition where possibly there is the 
new born cell �i , namely where data themselves want to be approximated. Finally, the algorithm is performed as usual.

5. Numerical results

In Section 5.1 the performances of the algorithm with respect to the order of grid convergence are presented. In Sec-
tions 5.2 and 5.3 validations of physical data for simulations of lid driven cavity and flows around cylinders, respectively, 
compared to the literature are presented.

5.1. Order of convergence

For measuring the order of convergence of the method we computed the L2− and L∞-norms of the mismatch between 
the numerical solutions (both velocity and pressure) and the exact ones (uex, pex) for the Taylor-Green vortexes in the 
computational domain � = (−π, π)2 at final time T = 1. The exact solution of this problem reads:

uex(x, y, t)=
[

cos(x) sin(y)exp(−2νt)
− sin(x) cos(y)exp(−2νt)

]
; pex(x, y, t)=−ρ

(cos(2x)+ sin(2y))exp(−4νt),

4

15



Fig. 7. Initial mesh configuration for Taylor-Green vortex.

with ν = 10−2π and ρ = 1. The foreground mesh originally covers the subdomain defined by a square of length π/4
centered in the origin and inclined of π/8. It is originally built by a structured mesh of cells of the same characteristic 
dimension h of cells in the background; successively, any of its vertices is randomly perturbed of a maximum length of 
h/2 (see Fig. 7). Moreover, it rigidly counterclockwise rotates around the origin of axes accordingly to the mesh velocity 
V = 1/2[−y, x]T . At the boundaries, the numerical velocity is imposed to be equal to the exact solution. In order to measure 
the space-time order of convergence, the time step �t is chosen by respecting the CFL condition; in particular, since at 
the boundaries the maximum velocity is 1, we set �t = CFL h/u∞ , with CFL = 0.4 and u∞ = 1. The studied problem is 
nondimensionalized by a characteristic length L = π ; consequently the Reynolds number is Re= 100. By looking at Fig. 8, 
the L2-norm convergence rate for both velocity and pressure is approximately 2; the L∞-norm trend does not follow any a 
priori definable convergence. It is inferred that uniform convergence does not occur as the mesh size decreases, but globally 
the number of cell-centers that cause this to occur is much less than for the rest of the nodes.

5.2. The lid driven cavity

In this section we study a lid driven cavity flow at Re = 1000. At the initial time the fluid has zero velocity inside 
the cavity � = (0, 1)2. No slip conditions (i.e., u ≡ 0) are strongly imposed on all sides of the cavity with exception to 
the upper boundary where velocity is constant and equal to [−1, 0]T . A steady foreground mesh occupies the subdomain 
(0.21, 0.79)2. Both the background and the foreground meshes are uniform and Cartesian, with a characteristic length 
h = 1/128. Moreover the overlapping configuration is no-shift. We are interested in the steady solution. This solution is 
reached when the L2-norm of the difference between the solutions at two consecutive times tn and tn+1 is less than 10−10. 
Fig. 9 shows the streamlines at the steady state. The solution presents a main vortex and two minor vortexes located towards 
the lower corners of the cavity. The main vortex originates from the upper boundary and moves to the region discretized 
by the foreground mesh. In order to quantitatively measure this movement, we consider the geometrical topological point 
where the stream-function � is maximized. Before the steady condition, this topological point moves from the background 
to the foreground by passing through the overlapping zone. Table 1 resumes the comparison of the maximum stream-
function �max and its location. Along the topological point, also the value of the vorticity ω is reported. All data from the 
literature for the comparison consider a discretization grid of 128 × 128. The validation confirms that the presence of the 
foreground mesh does not influence the performance of the simulation. The results are in good agreements with reference 
ones. No perturbations to the numerical solution are induced by the foreground mesh in the case of no-shift overlapping 
condition. Moreover, due to the no-shift overlapping configuration, on the overlapping zone stream-function and vorticity in 
background are identical to the stream-function and vorticity in foreground, respectively.
M. Bergmann, M.G. Carlino, A. Iollo et al. Journal of Computational Physics 467 (2022) 111414
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Fig. 8. Convergence analysis for Taylor-Green Vortexes in (−π, π)2 at final time T = 1 with respect to the nondimensionalized mesh size h∗ = h/L for 
velocity (a) and pressure (b). The errors are in norms L2 and L∞ .

Table 1
Comparison on the primary vortex for the lid driven cavity: maximum stream-function �max, vorticity ω and 
location of the topological point. The reference into brackets indicates the used methodology.

�max ω x y

Present 0.1171 1.9721 0.4687 0.5625
Bruneau [56] 0.1179 2.0508 0.4687 0.5625
Bruneau [56] (Upwind) 0.1180 2.0549 0.4687 0.5625
Bruneau [56] (Kawamura [57]) 0.1179 2.0557 0.4687 0.5625
Bruneau [56] (Quickest [58]) 0.1150 1.9910 0.4687 0.5625
Ghia [59] 0.1179 2.0497 0.4687 0.5625

Fig. 9. Steady streamlines for the lid driven cavity test: blue for the background and black for the foreground. To appreciate the figures at best, the reader 
is referred to the color electronic version of this paper.
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Table 2
Features of the five considered Chimera meshes for the convergence grid study. The number of cells in background 
and foreground are Nb and N f , respectively, whose sum is N . Label NB refers to the number of cells around the 
cylinder, namely the number of cells in the first inner layer discretizing the boundary of the cylinder.

Background Foreground N

h Nb min(h) max(h) N f NB

Grid1 4.00e-1 2604 2.14e-2 4.00e-1 2686 80 5290
Grid2 3.00e-1 4510 1.11e-2 3.00e-1 4554 100 9044
Grid3 3.00e-1 4510 7.90e-3 3.00e-1 7848 110 12358
Grid4 2.00e-1 10004 7.90e-3 2.00e-1 7194 110 17198
Grid5 1.00e-1 39204 6.90e-3 1.00e-1 18183 210 57387

5.3. The cylinders

In this section the method is validated by studying the flow around a cylinder that can be steady or moving. We refer 
the reader to [60] for a more specific numerical scheme for the study of the movement of the spheres embedded in an 
incompressible fluid with use of overset grids. In particular, in this work, the Navier-Stokes equations are solved in spherical 
coordinates onto the foreground mesh and the information exchange between the different blocks is performed by third-
order Lagrangian interpolation for both velocity and pressure.

Let u∞ be the fluid velocity at the inlet boundary of the computational domain. Moreover we recall that u B is the body 
velocity (i.e. of the cylinder). Let the dimensionless stress tensor T (u, p) be defined as

T (u, p)=−pI + 1

Re
(∇u +∇uT ), (55)

with I the identity tensor. The fluid dynamics force F f and torque M f exerted by the fluid on the cylinder are

F f =
˛

∂�B

T (u, p)nB dγB , (56a)

M f =
˛

∂�B

rB ∧T (u, p)nB dγB , (56b)

where nB is the unit outer normal to the cylinder and r B is the position of any point along the boundary ∂�B of the 
cylinder. We define the aerodynamics coefficients as C = 2F f /(ρu2∞D), with D the diameter of the cylinder and u∞ =
‖u∞‖. Finally, let the drag C D and lift CL coefficients be C D = C · ex and CL = C · e y , respectively, with {ex, e y} the canonical 
basis for R2.

The geometrical setting in this section is the same for all test cases. For this reason we study the grid convergence 
on one case and we consider the same set of back- and foreground meshes for all the other test cases. This test case 
simulates the flow around a steady cylinder at Re= 550 with an inlet fluid velocity u∞ = [1, 0]T . The center of the cylinder 
is located in the origin of the axis and is 8D far from the inlet boundary, 16D from the outlet boundary and 8D from 
any of the upper and lower boundary of the channel. At the boundaries, at the inlet a constant velocity u∞ is imposed, 
there are no-reflecting conditions at the outlet [61] and streamline conditions (i.e., v = 0 and ∂yu = 0) on the other two 
boundaries. Since the analytical solution for this case is not available, we compute the drag coefficient evolution in the time 
window [0, 5] for five different Chimera grid configurations, resumed in Table 2. Grid1 is the coarsest grid and Grid5 is the 
finest one. In particular, Grid3 is an intermediate configuration between Grid2 and Grid4. In fact it mixes the background 
characteristics of Grid2 with the foreground ones of Grid4. The drag coefficients from the different overset configurations are 
also compared with the one by Ploumhans and Winckelmans [62] for the same test case. Fig. 10 shows the comparison. All 
curves match the one from the literature and, from the second to the last configuration, the drag coefficient is the same. 
For this reason we use the Chimera mesh Grid3 (in Fig. 11) because, among all the meshes, it allows a good compromise 
between computational times and numerical results.

5.3.1. Steady cylinder
Let us consider the same configuration of the steady cylinder test case for a Reynolds number Re = 200. In particular we 

study the asymptotic regime (long time integration). For this test case the validation with literature is performed for the 
average drag coefficient and the Strouhal number St = f v D/u∞ , with f v the frequency of vortex shedding. The comparison 
in Table 3 shows that the results obtained with the presented scheme match the results of the literature. In Fig. 12 there 
are the plots of the drag and lift coefficients for the whole time period of integration.

5.3.2. Impulsively started cylinders
We now consider the impulsively started cylinders, namely test cases for which uB �= 0 and u∞ = 0. In this case no 

reflecting conditions are imposed also on the inlet boundary. At the initial time the cylinder is horizontally shifted of 5D
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Fig. 10. Drag coefficient for the zero test case (steady cylinder at Re= 550). The comparison is also validated with the drag coefficient from Ploumhans and 
Winckelmans (PW2000) [62].

Fig. 11. Chimera configuration of Grid3. The diameter of the cylinder is D and the maximum diameter of the foreground mesh is 10D . In background, the 
hole as a diameter of ∼ 7.4D .

Table 3
Comparison for the average drag coefficient C D and the Strouhal number St

for the steady cylinder at Re= 200.

C D St

Present 1.3430 0.1979
Bergmann [63] 1.3900 0.1999
Bergmann Iollo [64] 1.3500 0.1980
Bergmann et al. [65] 1.4000 -
Braza et al. [66] 1.4000 0.2000
He et al. [67] 1.3560 0.1978
Henderson [68] 1.3412 0.1971

towards the outlet boundary with respect to the steady test cases. For the whole time interval of integration a constant 
velocity u∞ = [−1, 0]T is imposed to the cylinder.

In these conditions, at Re = 550 we expect a similar situation with the zero test case. Thus we compute the drag 
coefficient by comparing it to both the one of the steady case and the one from the literature provided by Ploumhans and 
Winckelmans [62] as previously done. The comparison is plotted in Fig. 13. The curves for the steady and moving cases are 
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Fig. 12. Drag and lift coefficients for the steady cylinder at Re= 200.

Fig. 13. Comparison of drag coefficient between the steady and impulsively started cylinder at Re= 550. Both are compared with the results by Ploumhans 
and Winckelmans (PW2000) [62].

very similar and comparable with the reference literature data. The similarity of the two test cases is also evident from the 
color plots of the pressure at the same time t = 5 in Fig. 14.

As for the steady test cases, we also considered the impulsively started cylinder at Re = 200. By analyzing the comparison 
in Fig. 15 of the drag coefficient and data from the literature by Koumoutsakos and Leonard (KL1995) [69] and Bergmann 
et al. (BHI2014) [65], there is a good agreement with the previous studies.

5.3.3. Impulsively started then stopped cylinders
With the same boundary conditions of the previous subsection, we also consider test cases where the cylinder is im-

pulsively starting its movement and at a given time t0 it stops. For this subsection we consider a viscous-dominant flow 
at Re= 40 and a convective-dominant flow at Re = 550. For the former case the stopping time t0 = 5, while in the latter 
case the cylinder is stopped at t0 = 2.5. For both cases, before stopping, the cylinder has a constant velocity uB = [−1, 0]T . 
Figs. 16 and 17 show the plot of the evolution of the drag coefficient compared with data from literature provided by 
Koumoutsakos and Leonard [69] and Bergmann et al. [65] for both test cases. Also in this case present data match the 
previous studies.

With the same accuracy, evaluated against the test cases of Bergmann et al. [65], the validated data though the presented 
method require the mesh to be composed of a number of cells from 1 to 2 orders of magnitude less. As a matter of fact, if 
the degrees of freedom in [65] and [64] are ∼106 and ∼105, respectively, the overset grid exploits ∼104 spatial cells.
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Fig. 14. Pressure at t = 5 for steady and impulsively moving cylinders at Re= 550.

Fig. 15. Comparison of the evolution of the drag coefficient up to t = 0.25 for the impulsively started cylinder at Re= 200 with data by Koumoutsakos and 
Leonard (KL1995) [69] and Bergmann et al. (BHI2014) [65].

6. Sedimentation of a cylinder

The last test case analyzes the sedimentation of a cylinder in a cavity. In order to validate the computed data with the 
proposed method, we set the same configuration by Coquerelle and Cottet [70], Bergmann et al. [65] and Bergmann and 
Iollo [64]. The cavity is defined by the vertical channel [0, 2] × [0, 6] with a two-dimensional cylinder, with its center of 
mass originally located in (1, 4), falls subjected to the gravity up to the lower boundary. The cylinder radius is r = 0.125
with a density ρs = 1.5. The viscosity and the density of the bounding fluid are ν = 0.01 and ρ f = 1.0, respectively. The 
gravity has a modulus g =−980. The cylinder moves accordingly to

uB = V +�∧ (x− xG), (57a)

mB V̇ =−F f + m̃g, (57b)

J B�̇= M f , (57c)

where V and � are the translation and rotational velocities, respectively, and xG is the center of the cylinder; in the 
translation equation (57b) mB = πr2ρs is the cylinder mass while m̃ = πr2(ρs − ρ f ) is the difference of fluid and cylinder 
21



M. Bergmann, M.G. Carlino, A. Iollo et al. Journal of Computational Physics 467 (2022) 111414
Fig. 16. Comparison of the evolution of the drag coefficient up to t = 7.5 for the impulsively started and then stopped cylinder at Re= 40 with data by 
Bergmann et al. (BHI2014) [65].

Fig. 17. Comparison of the evolution of the drag coefficient up to t = 5 for the impulsively started and then stopped cylinder at Re= 550 with data by 
Koumoutsakos and Leonard (KL1995) [69] and Bergmann et al. (BHI2014) [65].

masses after the Archimedes’ law; in the rotational equation (57c) the cylinder inertia is denoted by J B = πr4ρs; finally F f
and M f are the fluid dynamics forces and torque defined in (56), respectively.

The background mesh is uniform and Cartesian with cells of size h = 5 × 10−2. The foreground mesh fits the cylinder 
shape with the characteristic lengths of the cell varying from 1.4 ×10−3 to 5 ×10−2. The time step is �t =min(h)/20. Since 
we are interested in simulating the cylinder up to the lower boundary, there exists a time t0 after which the foreground 
mesh overcomes the physical boundaries of the cavity, as showed in Fig. 18. In order to manage the part of the foreground 
mesh exceeding the physical domain, we extend the computational domain as �̃= (0, 2) × (−1, 2) such that the foreground 
mesh is always fully contained. Thus, the exceeding region is discretized by a part of the background and, and for any time 
t > t0, by a part of the foreground mesh. In the whole computational domain a fluid-solid single flow is considered by 
modeling a solid material in the extended part (i.e., for any y < 0). This single flow is computed via a penalization method 
[5]. With this approach the entire system is considered as a porous medium with a variable discontinuous permeability K . 
In particular, the extended domain simulates an impermeable body with a very low permeability (i.e., K # 1). In this case, 
the considered equation in place of (2) reads

∂u

∂t
+∇ · (uuT )=−∇p + 1

Re
�u + χW

K
(uW − u), (58)

where uW is the velocity of the wall, zero in our case, and χW is the characteristic function defined as
22



M. Bergmann, M.G. Carlino, A. Iollo et al. Journal of Computational Physics 467 (2022) 111414
Fig. 18. Chimera configuration for the sedimentation cylinder.

χW =
{

1, in the wall

0, elsewhere
. (59)

In the limit of K → 0, equation (58) tends to the Navier-Stokes equation (2) [5]. In this test case K = 10−8. Despite in 
principle the penalization method can be used also for the cylinder, we remark that in this case we use is only for managing 
the extended part of the computational domain. In particular, we consider the solid below the wall having the same density 
of the cylinder (i.e., ρs = 1.5). Since the new reaction term in (58) affects the velocity, with respect to the fractional Chorin-
Temam method, it is included in the predictor solution (7). Thus, it implies the ADER scheme to consider a reaction no-stiff 
source term [52]. In particular, in the local space-time Galerkin solution for equation (20), a pseudo-mass term arises as

�t

K
〈θm,χW |ξ̂ l

θl〉q̂k,l (60)

for m, l = 1, . . . , 27, with χW |ξ̂ l
= χW (x(ξ̂ l), y(ξ̂ l)) is the characteristic function composed with the spatial components of 

the reference map Mi along the l-th tensor Gauss-Legendre quadrature point. Successively, for the fixed-point problem 
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Fig. 19. Comparison of the vertical velocity v on a horizontal cut through the center of the cylinder at time t = 0.1 for the sedimentation test case with 
data by Coquerelle and Cottet (CC2008) [70], Bergmann et al. (BHI2014) [65] and Bergmann and Iollo (BI2011) [64].

Fig. 20. Comparison of the evolution of the vertical position yG of the center of the cylinder for the sedimentation test case with data by Coquerelle and 
Cottet (CC2008) [70], Bergmann et al. (BHI2014) [65] and Bergmann and Iollo (BI2011) [64].

(21), at the iteration r, this reaction term (60) yields an unknown component as �t/K 〈θm, χW |ξ̂ l
θl〉q̂r+1

k,l . During the ADER 
correction step (27), the penalization term is just added at the left hand side of the space-time divergence form as

∇x,t ·Uk + χW

K
uk = 0. (61)

In order to write the FV scheme, by integrating the above expression in the physical space-time slab Cn
i , the method 

becomes

−|�n
i |ū∗,nk,i + |�n+1

i |ū∗,n+1
k,i +

4∑
j=1

¨

�n
i j

Uk · nx,t d�+
˚

Cn
i

χW

K
uk dC = 0. (62)

Scheme (62) is not affected in the space-time fluxes by the new reaction term. For this reason, the procedure of the method 
remains the same as explained in Section 4.1. The simulation is stopped when the lowest point of the cylinder approaches 
the physical wall of the channel.

Figs. 19 and 20 show the validation for the vertical velocity on the horizontal line cutting the cylinder along the center 
and the evolution of the height of the cylinder, respectively. Present data present good agreement with all the ones from 
the literature. In particular it is possible to remark a closer match with the curves by Bergmann et al. [65]; indeed both 
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the present method and the method used in that paper are second-order accurate, while both references [64,70] present 
first-order accurate methods. Also in this case it is possible to remark the sensible decreasing of degrees of freedom needed 
by the numerical solution through the presented method with respect to the ones from the literature. In fact if the overset 
grid is composed of 9267 cells (i.e., 5964 in the background and 3663 in the foreground), grids employed in [70], [65] and 
[64] use about 3 × 106, 8 × 105 and 2 × 106 cells.

7. Conclusions

We presented a FV scheme that is second-order accurate in space and time for the solution of the incompressible Navier-
Stokes equations with moving meshes. The method is based on the Chorin-Temam fractional step method. The predictor 
velocity is solved through an extension of the ADER method for a nonlinear convective-diffusive system on a Chimera mesh 
with a compact data transmission condition for fringe cells, i.e., those cells devoted to the communication between the 
different meshes of the overset grid. The projection step exploits a FV hybrid method for the reconstruction of the pressure 
gradient. In particular a geometric approach is used for internal cells and a weighted expansion is employed for expressing 
the gradient along the fringe cells. We proved that the approaches for internal and fringe cells are the same in the limit of 
a no-shift overlapping condition. This result is achieved by properly minimizing a convex function for the local coefficients 
allowing to take into account both the second-order truncation of the solution and the distribution of data in the local 
stencil.

Overall, on the one hand, we solve for the first time the incompressible Navier-Stokes equations with an ADER-type 
scheme. On the other hand, since this method allows to treat spatial and temporal variables indistinctly, we discretize the 
evolutionary computational domain with chimera grids. This makes it possible to consider deformations that do not force 
the mesh to change topology [71].

The numerical results showed that the movement of the mesh does not introduce spurious oscillation to the numerical 
solution of the problem and that second-order accuracy is preserved in both space and time. In order to test the method, 
a wide range of canonical cases is exposed. Their validation confirms that the obtained data match the ones from the 
literature. In particular, results for tests where the exact solution is not available are always closer to the ones obtained 
by second-order methods. Moreover, at equal accuracy, the total number of cells for the overset grid (namely the degrees 
of freedom) is reduced by up to two orders of magnitude compared to the ones from the cited literature, where interface 
methods are used by employing a uniform Cartesian one-block mesh, similar to the background mesh used in this paper. 
With the sedimentation test case, we introduced a reaction term which is not present a priori in the original equation. In 
particular, we mixed the adapted ADER method for Chimera meshes with a penalization method in order not to cut part 
of the foreground mesh that overcomes the physical boundaries of the domain. This application highlights the versatility of 
the proposed method even in proximity of boundaries defined on other mesh blocks. Extension to three-dimensional flows 
on octree meshes is now envisaged.
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