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RÉSUMÉ.Nous proposons une méthode d’échantillonnage optimale pour construire un modèle
d’ordre réduit basé sur la Décomposition Orthogonales aux valeurs Propres (POD) qui soit
robuste par rapport à la variation des paramètres d’entrée. Cette méthode a été appliquée
au cas de l’écoulement confiné autour d’un cylindre de section carré lorsque le nombre de
Reynolds varie. Nous examinons également le lien entre les modes instables et la modélisation
POD. Un exemple de contrôle basé sur une approche linearisée est présenté.

ABSTRACT.We propose an optimal sampling strategy to build a robust low-order model. This idea
is applied to the construction of a vortex wake model accurate for severalregimes. In addition
we explore the relationships between unstable modes and low-order modelling. An example of
control based on a linearized approach is presented.
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1. Introduction

In fluid mechanics one of the most popular method to get a reduced-order model is
the Proper Orthogonal Decomposition (POD) originally introduced in Lumley (1967)
in turbulence context. The main drawback for flow control is that the POD basis is not
optimal to represent a flow generated with different system parameters with respect
to those used to build the basis. To get rid of this problem, different strategies can be
employed. The first one is to update the POD basis as the systemparameters change,
as for instance in an iterative optimization problem. One method is to use trust region
method (TRPOD see Bergmannet al. (2008a)), another is to calibrate over several
dynamical cases (Welleret al., 2009). Yet another method is to build a robust POD
basis that can be used all along the optimization process. This kind of POD basis can
be generated using chirp excitation (Bergmannet al., 2005) or using an appropriate
sampling of the input parameter space.

In this spirit, the first part of this study is devoted to the construction of a robust
model that can be used for control without updating of the PODbasis. The idea is
to sample in an efficient way the input parameter subspace. Two classes of sampling
methods are commonly used : theone shotmethod and theiterative one. In theone
shot method the sampling is obtained by partitioning the range ofvariation of the
input parameter space. The partitions can be found using different strategies as, for
instance, the uniform distribution, the orthogonal sampling, the Sobol algorithm etc...
An alternative strategy to the classical partition strategies is the Centroidal Voronoi
Tessellations (CVT, see Duet al. (1999) and Burkardtet al. (2007)). The main idea
of this method is to perform a partition of the space based on adensity distribution.
This kind of tessellations can be efficiently computed usingthe Lloyd algorithm (Du
et al., 2007). The main drawback of theone shotstrategy is that the number of sam-
pling points has to be fixeda-priori and, in the case of CVT, the final configuration
is strongly dependent on the initial condition. Thus, ana-priori analysis of the den-
sity function used to compute the centroidal tessellation is necessary to determine the
proper refinement when sampling the range of variation of theinput parameter. The
other class of methods (the iterative ones) consists in adding sampling points in an
iterative way. The degree of accuracy can be chosen by fixing astopping criterion. In
greedy sampling (see Bui-Thanhet al. (2008)) the new value of the input parameter
to sample is set at the maximum of the density function,i.e. where the error or the
residual given by the POD basis is larger. In this study we propose a new approach
that couples Constrained CVT and greedy methods.

In the second part of this study the control performance of a linearized low order
model of the flow is assessed. In particular, a controller is designed by the low-order
flow model which aims at stabilizing the otherwise unstable steady state of the system.
To this purpose, a linear model is used, since it can model thesmall oscillations of the
system around the target state. Indeed, designing the controller using a linear model
involves standard techniques and is simpler than using a non-linear model. Moreover,
it is also interesting to explore the capabilities of reduced-order models in estimating
unstable modes in the linear stability analysis of a flow since this aspect is typically
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very demanding in terms of computational costs. Indeed, this analysis requires codes
simulating the linearized flow equations and, possibly, generating the matrix of the
linearized system, which is not always possible when working with complex simula-
tion codes as those typically used in engineering applications. Moreover, very large
eigenvalue systems need to be solved. For this reason, the starting point of the present
analysis is just the availability of a non-linear code for simulating the Navier-Stokes
equations. The reduced order model of the linearized flow equations is built using
only this tool. However, the use of a non-linear reduced-order model for flow control,
although more expensive and complex, allows more general control strategies (i.e.mi-
nimization of general cost functions, different control targets etc...). In Welleret al.
(2009) a control strategy based on a non-linear model is reported. In that reference it
is also shown that their strategy, when used for the particular objective of stabilizing
a steady state for the system, has a clear behavior in terms ofthe spectrum of the
linearized Navier-Stokes operator around the target flow.

2. Flow configuration and POD strategies

In this study the two dimensional confined square cylinder wake flow (figure 1(a))
is chosen as a prototype of separated flow. The Navier-Stokesequations write :

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∆u [1a]

∇ · u = 0 [1b]

whereu = (u, v)T andp denote respectively the velocity and pressure fields. The
parameterRe = U∞L/ν denotes the Reynolds number, withU∞ the maximal inflow
velocity of the incoming Poiseuille flow,L the length of the side of the square cylinder
andν the kinematic viscosity. We used the same numerical methodsand parameters as
those introduced in Gallettiet al. (2004),i.e. the blockage ratioβ = L/H is equal to
1/8 and the domainΩ is (−10L, 22L)× (−4L, 4L). For control purposes we placed
two jets in opposite phase on the upper and lower faces of the cylinder, as shown in
figure 1(b). Following the modeling of the actuators in Weller et al.(2008) and Weller
et al. (2009) the boundary conditions on the jets areasΓc are :

v(x, t) = c(t), x ∈ Γc

Without loss of generality we denoteU(x, t) the flow fields that can be for instance
the velocity fieldsu(x, t) or the pressure extended fields(u(x, t), p(x, , t))T . The
flow fieldsU(x, t) can be approximated by :

U(x, t) ≃ Û [1,··· ,Nr](x, t) =

Nr∑

n=1

an(t)Φn(x) + F (x, t) [2]

where F (x, t) can be any linear combinations of flow fields as the mean field
U(x), the unstable steady flow fieldU0(x), the control function with time de-
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(a) Flow configuration and isocontour of vorticity of a snapshot
atRe = 180 (dashed lines represent negative values).

(b) Placement of jets and
sensors for control

Figure 1. Sketch of the flow configuration with control actuation.

pendent actuationc(t)Uc(x), or even zero. For both flow control strategies the ba-
sis functionsΦn(x) are computed using the snapshot method introduced by Siro-
vich (Sirovich, 1987). The temporal coefficientan(t) are solution of a reduced order
model obtained by a Galerkin projection of the Navier-Stokes equation onto the POD
basis functions.

3. POD ROM via efficient sampling of the input parameter space

The POD basis gives an optimal representation (in terms of kinetic energy when
velocity fieldsu(x, t) are used) of the snapshots database used to build the basis.
However, the optimality of the basis is lost when the system changes due to a mo-
dification of its input parameters, as it is the case in control problems (see Prabhuet
al. (2001) and Bergmannet al. (2008b)). The focus of this section is to improve the
representation capabilities of a POD basis of a given flow when the Reynolds num-
ber varies in a given rangeI = [ReL, ReR], so as to provide a single ROM that is
efficient for the considered range.

Numerically, we always considered a two dimensional laminar flow, i.e.ReR =
180. Since the system undergoes the first Hopf bifurcation atRe ≈ 65, we can consi-
der bothReL = 70 for periodic flows andReL = 40 to model the bifurcation. The
interval I is discretized with∆Re = 5, and it is denoted asIh. We will always
useNr = 31 basis functions so we simply denotẽU(x, t) ≡ Û [1,...,Nr](x, t) with
F = 0. We consider an initial databaseU [Re1,...,ReN ] computed atN different Rey-
nolds numbers. We takeNs = 200 snapshots at eachRei. We want to improve the
functional subspace enriching the database in aone-shotway by addingK sets of
snapshots with{Rei}

N+K
i=N+1 ∈ I. LetM = N + K andU [Re1,...,ReM ] be the data-

base composed byM sets of snapshots taken atRe1, . . . , ReM . The three test cases
presented in Fig. 2 are considered.

In what follows the sampling is performed according to an error estimator. As it
will be explained later, we choose theL2 norm of the Navier-Stokes residual as error
estimator. It is thus necessary to approximate the pressurefield. Following (Bergmann
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CaseA, N = 1

CaseB, N = 1

CaseC, N = 2

ReL = 40

ReL = 40

ReR = 180

ReR = 180

ReL = 70 ReR = 180

Re1 = 120

Re1 = 100

Re1 = 40 Re2 = 180

Hopf bifurcation
Re ≈ 65

Figure 2. Sketch of the three test cases for sampling. The continous horizontal line
represents the range ofRe that the POD database covers in each case.

et al., 2008b) the pressure term can be easily estimated by its POD ROM reconstruc-
tion p̃. The exact flow fieldsu andp are then approximated by :

ũ(x, t) =

Nr∑

i=1

ai(t)φi(x) [3a]

p̃(x, t) =

Nr∑

i=1

ai(t)ψi(x) [3b]

A pressure extended reduced order model is obtained projecting the Navier-Stokes
equations onto the POD basis functionsΦi(x) = (φi(x), ψi(x))

T . We use the same
model as that derived in (Bergmannet al., 2009), where we highlight the dependence
versus the Reynolds number :

Nr∑

j=1

Lij

daj
dt

=
1

Re

Nr∑

j=1

BRe
ij aj +

Nr∑

j=1

Bp
ijaj +

Nr∑

j=1

Nr∑

k=1

Cijkajak [4]

with BRe
ij = − (φi, ∆φj)Ω andBp

ij = +(φi, ∇ψj)Ω and an appropriate initial
condition. The other model coefficients can be found in (Bergmannet al., 2009). As
discussed in several papers (Gallettiet al., 2006; Bergmannet al., 2005; Coupletet
al., 2005), the initial value problem (4) can be inaccurate or even unstable. In order to
build a robust order model we applied the calibration technique described in (Weller
et al., 2008).

In the following, the reconstruction capabilities of a given POD basis is evaluated
when the Reynolds number varies in the intervalI = [ReL, ReR]. A natural way
to achieve this is to compare, at eachRe ∈ Ih, the numerical solutionU(x, t) of
the Navier-Stokes equations to the POD reconstructionŨ(x, t) computed using a
POD basis that corresponds to a given databaseU [Re1,...,ReN ]. DenotingU(x, t) the
numerical solution of the Navier-Stokes equations, the missing scales are

U ′(x, t) = U(x, t)− Ũ(x, t). [5]
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Figure 3. Evolution of the error〈U ′〉2 versus the Reynolds number.

Let Y be a vector belonging to the same subspace as the Navier-Stokes solutionU .
We defined〈Y 〉2 the average of theL2 norm over a temporal horizonT :

〈Y 〉2 =

∫

T

‖Y (x, t)‖2
T

dt. [6]

The error〈U ′〉2 indicates how the description capability of the POD basis changes
due to variations of the Reynolds number. In what follows, the temporal horizonT
is taken to be equal to three vortex shedding periods (that depends onRe). Figure 3
shows the evolution of the error〈U ′〉2 versus the Reynolds number for the three initial
databases under considerations. For all cases, we can see that the error is very small at
Rei, and then it grows when the value of the Reynolds number movesaway fromRei.
This traduces the fact that the POD basis computed from a database collected from
given dynamics is not able to give a good representation of flows that is characterized
by other dynamics. The aim is then to determine a sampling{Rei}

N
i=1 ∈ IN , (with

Re1 fixed for all cases, plusRe2 fixed for caseC), to improve the robustness of the
POD basis.

The evaluation of the errorU ′(x, t) is cpu demanding as it involves the com-
putation of the numerical solutionsU(x, t) of the Navier-Stokes equations for each
Re ∈ Ih. It is then interesting to find an accurate estimation of the error [6]. To this
end, we use the residuals of the Navier-Stokes operator,R, evaluated using the POD
ROM fields,Ũ . These residuals can be computed at low numerical costs. Indeed, we
have to solve a POD ROM (very fast) and to compute its residuals.

A comparison between the error〈U ′〉2 and its residuals based estimator〈R(Ũ)〉2
overIh is performed in figure 4. It is interesting to note that these two quantities show
a similar behavior for all the considered test cases. Indeed, the ratio〈R(Ũ)〉2/〈U

′〉2
is approximately a constant overIh for all test cases. The residuals〈R(Ũ)〉2 is thus a
good estimator of the error〈U ′〉2.
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〈R(ŨROM )〉2
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Figure 4. Comparison between the mean projection error〈U ′〉2 and the mean resi-
duals〈R(ŨDNS)〉2 for the three test cases under consideration.

In this study we will present aone shotmethod based on greedy ideas (Bui-Thanh
et al., 2007). The density function is〈R(Ũ)〉2. ResidualsR(Ũ) can be computed by
integration of the calibrated ROM [4], built from initial databaseU [Re1,...,ReN ], for
all Reynolds numbers in the discretized spaceRe ∈ Ih. Since we want a robust POD
basis, we look for a sampling{Rei}Mi=1 ∈ IM

h such that the databaseU [Re1,...,ReM ]

produces models leading to reduction (or minimization in the optimal case) of the
error evaluated over the whole subspaceIh, whereM has to be fixed as a function of
the desired robustness.

We perform a Constrained Centroidal Voronoi Tessellation procedure (Duet
al., 2003) starting from a random subspaceRez

M0

z=N+1 ∈ IM0−N , with M0 > M .
The initial Reynolds numbers[Re1, . . . , ReN ] are frozen while the new points are
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computed as being the centroids of the tessellation elements with respect to density
function 〈R(Ũ)〉2. We exclude pointk > N with the smaller average density func-
tion over thekth tessellation. This is done following greedy method in orderto refine
where the density function reaches higher values. The size of the sampling is then
M1 = M0 − 1. This is an iterative process, and whileMi > M we recompute a
new Degenerated CCVT and exclude a new pointk > N . The final configuration
Mi = M is weakly dependent on the initial configuration forM0 ≫ M . The main
steps of the Greedy Degenerated CCVT are listed in the following, its final goal being
the identification of aK-dimensional sampling to add at theN -dimensional initial
sampling.

0. Random sampling with dimensionK0 > K. (theN first points are frozen).

1) At iterationi, start sampling process with dimensionMi = Ki +N

- Perform a Constrained Centroidal Voronoi Tessellation

- if Mi =M stop

- if Mi > M go to2

2) Identify and exclude pointk > N of the element with minimum integral

- Mi+1 =Mi − 1. Incrementi = i+ 1, then go to1

The sampling method presented above can be easily transposed for input parameter
subspaces with dimension greater than one. The use of the residuals as error estimation
leads to negligible computational costs, even for high dimensional input parameter
spaces, as for instance active control space.

In order to increase the robustness we chose to addK = 2 new sampling points
in Re, with K0 = 6 for the CCVT sampling method. Both CCVT and constrained
uniform sampling CUS results restricted toIh are reported in table 1. The average

Test case CCVT sampling CUS sampling
A {100, 55, 160} {100, 70, 140}
B {120, 80, 165} {120, 90, 150}
C {40, 180, 90, 130} {40, 180, 85, 135}

Tableau 1.Sampling results withK = 2 for CCVT and CUS.

error and the standard deviation evaluated over the whole subspaceI are respectively
defined by :

E =
1

ReR −ReL

∫

I

〈U ′(Re)〉2 dRe [7]

R =

√∫

I

(〈U ′(Re)〉2 − E)
2
dRe. [8]

While the errorE measures the accuracy of the POD ROM, the standard deviation
R measures its robustness. These two quantities have been evaluated for the POD
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models built using the sampling points found with both the Greedy Degenerated
CCVT and the CUS strategies. For a scalarF we define a relative difference by
∆F = 100(FCUS − FCCV T )/FCCV T . The CCVT sampling efficiency,∆E, and
robustness,∆R, are reported in table 2. By definition, a positive difference means
that CCVT is more efficient than CUS. Since∆E and∆R are always positive, CCVT
reduced order models are more accurate and robust than the CUS ones. The CCVT
ROM gives a good behaviour in terms of reconstruction error even in presence of
a bifurcation. Thus, in a sampling procedure, one can use theDegenerated Greedy

A B C

∆E ∆R ∆E ∆R ∆E ∆R
12.850 41.470 10.854 125.741 9.150 19.804

Tableau 2.CCVT sampling efficiency∆E and robustness∆R.

CCVT to build robust parameter dependent reduced order model. This avoids huge
computational costs by using residuals estimation of the calibrated ROM instead of
the approximation error computed by projection.

4. Control based on a linearized model

In this section the linearized reduced order model of the Navier-Stokes equations in
presence of control actuation is described. The flow configuration is the same descri-
bed in fig. 1. We consider a feedback proportional control actuated by the jets sketched
in figure 1, using some measurements of vertical velocity given byNv sensors placed
atxj in the cylinder wake on the centre line. The control law with feedback gainsKj

is :

c(t) =

Nv∑

j=1

Kjv(xj , t) [9]

The aim is to find the set of feedback gainsKj that stabilizes the vortex shedding in
the cylinder wake. The same problem on the same flow configuration has been solved
in Camarriet al. (2010) without the use of reduced-order models.

The POD-based linear model is built using the snapshots obtained by a non-linear
simulation of the transient flow dynamics, which is started from the steady unstable
solution. The starting flow field, which is also the target flowof the controller, is found
using the same code, by imposing the velocity field to be symmetric with respect to
the symmetry liney = 0 and advancing the simulation in time until a steady state is
reached.
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Snapshots (Ns is their number) collected sampling a part of the transient dynamics,
obtained with a particular control lawc(t), are used to build a POD model. To this
purpose, every snapshotu(x, t) is decomposed as follows :

w(x, t) = u(x, t)− u0(x) + c(t)uc(x) [10]

whereu0(x) is the unstable steady state anduc(x) is a flow field having a jet velocity
equal to 1 and the velocity vanishing on all the other domain boundaries. This is
obtained as proposed in Gallettiet al. (2006).

Denoting{φn}n=1...Nr
theNr retained modes obtained by applying the POD to

(w(x, ti))i=1...Ns
, the low-dimensional solution is written :

ũ(x, t) = u0(x) + c(t)uc(x) +

Nr∑

n=1

an(t)φn(x). [11]

The Galerkin projection of the Navier Stokes equations ontothe POD modes yields
the same low order model derived in Welleret al. (2009).

The POD basis and the resulting model is built using the flow fields w(x, t)
(Eq. [10]) collected using different control laws which derive from different sets of
feedback gains. The POD model is calibrated using all the simulations carried out to
collect the snapshot database, and the conditioning of the calibration procedure is im-
proved as proposed in Welleret al. (2009). Moreover, it is imposed that the steady
unstable solutionu0 is also a steady solution of the reduced order model and, conse-
quently, the constant term is forced to vanish.

When the feedback control is found using the velocity field of the POD model,
Eq. [9] becomes :

c(t) =

Nv∑

j=1

Kjv(xj , t) =

Nv∑

j=1

Kj

(
v0(xj) + c(t)vc(xj) +

Nr∑

r=1

âr(t)φ
r
v(xj)

)
[12]

whereφrv(xj) are the values of the componentv of the POD modes at the sensors.
Note that when steady unstable solution is used as target solutionu0, because of the
symmetry,v0(xj) = 0 and thatc(t) can be found in explicit form from Eq. ([12]) by
trivial manipulation. In order to perform a stability analysis of the target stateu0 and
to perform an optimisation of the feedback control gains, the POD model is linearized
around the equilibrium statea∗ = 0, (which corresponds to the flow fieldu0) and
after algebraic manipulation, the low order model in matricial form becomes :





ȧ(t) = L(K,xv)a(t)

a(0) = a0
[13]

wherexv, the vector of the positions of the sensors, andK, the set of feedback gains,
are used as input parameters.
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Since the system matrixL of the linearized model depends explicitly on the feed-
back gains and on the position of the sensors, the model is predictive even when those
parameters are changed with respect to the reference ones used for calibration. As
already stated, the robustness of the model can be increasedif, before linearization,
a calibration procedure is used including several dynamicschosen by any sampling
method, as detailed in Welleret al. (2008).

The linearized equation [13] can be used to perform a classical linear analysis
of the dynamical system. Given the position of the sensors and the set of feedback
gainsK, the stable/unstable eigenvalues of the systemL can be evaluated. For each
eigenvalue, the associated eigenvector leads, by means of Eq. [10], to an estimation
of the corresponding global mode of the linearized Navier-Stokes operator. A good
accuracy on the estimation of the unstable modes of the full linearized Navier-Stokes
problem allows to use the low order model in a control procedure, as described in
the following. Note that the linearized reduced order modelis obtained by using a
simulation of a non-linear Navier-Stokes code. Moreover, the system matrixL non-
linearly depends on the feedback gainsK and on the position of the sensorsxv, and
this does not permit to use classical tools for the linear control. Thus, we propose here
an iterative control procedure based on the minimisation ofa functional cost, which is
here after described.

As explained above, the accuracy of the linearized model is an important aspect,
and this is briefly investigated in the following. As a first step, it is shown how to
reconstruct a global mode associated to an eigenvector of the linearized POD system.
The formal solutiona(t) of the system [13] is :

a(t) = ReΛtR−1a0 [14]

whereΛ is the diagonal matrix of the eigenvalues ofL, R is the matrix whose co-
lumns are the corresponding eigenvectors anda0 is the initial condition ona(t).
When Eq. [14] is substituted in Eq. [10], the fluctuating part of the velocity field
ũ′(x, t) = u(x, t)− u0(x) is obtained as follows :

ũ′(x, t) = QReΛtR−1Q−1ũ′(x, 0) [15]

with Q =
(
K(I −Kvc(xv))

−1φv(xv)
)

and ũ′(x, 0) the projection of the initial
condition over the POD modes. Thus, assuming that the eigenvalues of the physical
system are well approximated by the low order model, we can reconstruct the matrix
containing physical eigenmodesP ≈ P̃ = QR. In particular we are interested in the
estimation of the unstable modes, which correspond to eigenvalues with positive real
part.

In order to asses the accuracy of the feedback linear model described above, we
consider a Reynolds numberRe = 85, at which the instability is fully developed after
a slow transient. In Figure 5 time evolution of the lift coefficient calculated on the
cylinder with no control actuation is plotted. We recall that the simulation is carried
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out by a non-linear Navier-Stokes code. Note the quick growth of theCl after the slow
transient regime. In the figure the portion of the transient used to build the POD model

50 100 150 200 250 300
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Non dimensional time

C
l

 

 

POD database

Figure 5. Lift coefficientCl time evolution, with no control actuation atRe = 85.

is highlighted, using a continuous line. The interval is sampled consideringNt = 250
snapshots. This time interval is chosen starting when the lift coefficient reaches a value
of Cl ≈ 0.001 and including about seven quasi-periodic flow periods. We retain only
Nr = 6 POD modes to build and calibrate the linearized low order model. This is
motivated by the work documented in Gallettiet al. (2006), where it is shown that a
model similar to the one built here gives a good approximation of the unstable mode.
Thus, the unstable mode estimated by the POD model can be analyzed to explore his
observability and to consequently choose the position of the sensors for the feedback
control. In particular we used only one sensor of vertical velocity, which is placed in

Figure 6. Reconstructed v-component of the physical unstable mode.

(x = 0.3, y = 0.0), in the area of the first local minimum (maximum in terms of
module) of the v-component of the unstable mode (see figure 6). In order to test the
capability of the feedback linear low order model to estimate the physical unstable
mode in the presence of an actuation, we performed two numerical simulations of the
actuated flow using two different proportional feedback gains for the sensor placed
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as described above,i.e. k = 0.1 andk = 0.2. As in the previous case, the two time
intervals used to build the model include seven flow oscillations starting from a value
of Cl ≈ 0.001, withNt = 250 snapshots for each case.

As expected, only two unstable conjugate eigenvalues are predicted by the linear
low order model, and the estimation of the unstable eigenvalues given by reduced
model is very accurate. The percentage error on the estimation of the real and the
imaginary part of the unstable eigenvalues are respectively 7.62% and0.26% when
k = 0.1 is used and0.11% and0.12% for k = 0.2. In figure 7 the module of the

(a)

(b)

Figure 7. Isocontour of the module of the predicted (a) and the physical (b) unstable
eigenmode for the casek = 0.2. Plots obtained with the same scale level.

reconstructed unstable mode for the casek = 0.2 and the one found by a linearized
analysis of the Navier-Stokes operator are plotted. The prediction of the mode is very
accurate in the whole domain ; only a slight difference can benoted at the outflow due
to the influence of the imposed boundary conditions in the linearized Navier-Stokes
code. An analogous result is obtained in the casek = 0.1.

In order to stabilize the steady state, the unstable eigenvalues need to be moved in
the stable region of the complex plane. To this aim, while theposition of the sensors
are kept constant, a function of the gainsK is proposed, such that its minimisation is
equivalent to stabilize the system :

F(K) =
∑Nr

r=1 tanh(Re(λr(K))− λ∗Re) + αKminl=1,...,Nc
((K −K0

l )
2) [16]

whereλr are all theNr eigenvalues predicted by the linear feedback model asK

varies,λ∗Re is the stability margin required,K0

l
is the set ofl − th gains used to

build the model and the parameter,αK ≪ 1 has to be chosen as a measure of the
trust region of the low order model. In our application we useα = 0.1. The function
tanh(·) is chosen to retain the position of the eigenvalues already stable with the
margin sufficiently larger thanλ∗Re, while the other eigenvalues are modified.
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The minimisation gives an optimal set of parametersK∗ for the present model.
This set of gains are tested in a non-linear Navier-Stokes simulation after the impulsive
start of the flow. If the target state is not stabilized a new reduced order model is built
with a database obtained by adding a portion of the transientof the new dynamics
to the old POD database. During the optimisation procedure amaximum number of
dynamics in the POD database can be fixeda priori, then when the maximum number
is reached, a new set of snapshots substitutes the one with maximum distance|K −
K∗|. Again, a minimisation of the functional [16] is carried outand a new set of
parameters are obtained. The procedure is stopped when the steady state is stabilized.

In the test described here, the model built using the databases obtained withk =
0.1 andk = 0.2 is initially used for the optimization. The minimisation of[16] gives
a new value of the feedback gaink∗ = 0.44. A non-linear simulation of the Navier-
Stokes equations starting fromU0 is carried out, and the resulted flow is completely
stabilized, as shown in figure 8 and 9. In figure 8 the lift coefficients obtained with
k = 0.1, k = 0.2 andk∗ are plotted. The use of the optimised feedback gain leads to
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Figure 8. Lift coefficient obtained withk = 0.1, k = 0.2 and k∗ = 0.44. Sensor
position (0.3,0.0) andRe = 85.

a steady and vanishing lift coefficient. Thus, the flow is totally controlled as displayed
in figure 9, where the vorticity field of the flow obtained withk∗ at timet = 480 is
shown.

Finally, the reduced order model obtained by a non-linear Navier-Stokes code and
successively linearized around a steady state, is able to represent, with limited com-
putational costs, the unstable modes of the linearized Navier-Stokes operator, and a
control optimisation based on such a linearized model givesa set of input parameters
that stabilizes the actual flow. We recall that the whole procedure can be performed
starting from the simulations of a generic non-linear code as those typically used in
engineering applications.
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Figure 9. Vorticity snapshot of controlled flow withk∗ = 0.44 at timet = 480.

The obtained results allow us to use the optimisation based on the linear feedback
low order model in a control procedure for flow at higher Reynolds numbers and with
a higher number of sensors. The main difficulty is to build a POD model which is
robust with the parameters variation. Indeed the most significant computational cost
of the procedure is the update of the linear model, which needs new DNS simulations.
A more robust model is characterized by a wider trust region and needs a reduced
number of updates to complete the optimization. For this reason, the goal of future
works is to couple the two techniques described in this study, i.e. to build a robust low
order model to be used in the linearized control design strategy.
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