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RESUME.Nous proposons une méthode d’échantillonnage optimale pour corstmimodéle
d’ordre réduit basé sur la Décomposition Orthogonales aux valeuopfs (POD) qui soit
robuste par rapport a la variation des paramétres d'entrée. Cette naétleoété appliquée
au cas de I'écoulement confiné autour d’'un cylindre de section carsgl@ le nombre de
Reynolds varie. Nous examinons également le lien entre les modes isstlalenodélisation

POD. Un exemple de contréle basé sur une approche linearisée esés

ABSTRACTWe propose an optimal sampling strategy to build a robust low-order mdtés idea
is applied to the construction of a vortex wake model accurate for sexegmhes. In addition
we explore the relationships between unstable modes and low-ordetlimgdan example of

control based on a linearized approach is presented.
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1. Introduction

In fluid mechanics one of the most popular method to get a esttocder model is
the Proper Orthogonal Decomposition (POD) originallyaaiuced in Lumley (1967)
in turbulence context. The main drawback for flow controhisttthe POD basis is not
optimal to represent a flow generated with different systamameters with respect
to those used to build the basis. To get rid of this probleififerdint strategies can be
employed. The first one is to update the POD basis as the systeameters change,
as for instance in an iterative optimization problem. On¢hoe is to use trust region
method (TRPOD see Bergmam al. (2008a)), another is to calibrate over several
dynamical cases (Wellaat al,, 2009). Yet another method is to build a robust POD
basis that can be used all along the optimization process.Kiid of POD basis can
be generated using chirp excitation (Bergmahrml, 2005) or using an appropriate
sampling of the input parameter space.

In this spirit, the first part of this study is devoted to thestuction of a robust
model that can be used for control without updating of the RfaBis. The idea is
to sample in an efficient way the input parameter subspace.classes of sampling
methods are commonly used : tbre shotmethod and thé&erative one. In theone
shotmethod the sampling is obtained by partitioning the rangeaoiation of the
input parameter space. The partitions can be found usiferelit strategies as, for
instance, the uniform distribution, the orthogonal sanmplihe Sobol algorithm etc...
An alternative strategy to the classical partition stregegs the Centroidal Voronoi
Tessellations (CVT, see Det al. (1999) and Burkardét al. (2007)). The main idea
of this method is to perform a partition of the space based dergity distribution.
This kind of tessellations can be efficiently computed ushegLloyd algorithm (Du
et al, 2007). The main drawback of tleme shottrategy is that the number of sam-
pling points has to be fixed-priori and, in the case of CVT, the final configuration
is strongly dependent on the initial condition. Thus,aapriori analysis of the den-
sity function used to compute the centroidal tessellatsameicessary to determine the
proper refinement when sampling the range of variation ofrihat parameter. The
other class of methods (the iterative ones) consists inngdsiimpling points in an
iterative way. The degree of accuracy can be chosen by fixgig@ping criterion. In
greedy sampling (see Bui-Thaet al. (2008)) the new value of the input parameter
to sample is set at the maximum of the density functian,where the error or the
residual given by the POD basis is larger. In this study wepse a new approach
that couples Constrained CVT and greedy methods.

In the second part of this study the control performance afeatized low order
model of the flow is assessed. In particular, a controlleesighed by the low-order
flow model which aims at stabilizing the otherwise unstat#dedgy state of the system.
To this purpose, a linear model is used, since it can modeirtiadl oscillations of the
system around the target state. Indeed, designing theotientusing a linear model
involves standard techniques and is simpler than using dinear model. Moreover,
it is also interesting to explore the capabilities of redi+oeder models in estimating
unstable modes in the linear stability analysis of a flow sitiis aspect is typically
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very demanding in terms of computational costs. Indeed,ahalysis requires codes
simulating the linearized flow equations and, possibly,egeting the matrix of the
linearized system, which is not always possible when waykiith complex simula-
tion codes as those typically used in engineering apptinatiMoreover, very large
eigenvalue systems need to be solved. For this reasonatti@gtpoint of the present
analysis is just the availability of a non-linear code fanslating the Navier-Stokes
equations. The reduced order model of the linearized flovaggys is built using
only this tool. However, the use of a non-linear reducedeordodel for flow control,
although more expensive and complex, allows more genentlalstrategiesi(e. mi-
nimization of general cost functions, different contralgiets etc...). In Welleet al.
(2009) a control strategy based on a non-linear model isrteghaln that reference it
is also shown that their strategy, when used for the pasaticathjective of stabilizing
a steady state for the system, has a clear behavior in terrtieeafpectrum of the
linearized Navier-Stokes operator around the target flow.

2. Flow configuration and POD strategies

In this study the two dimensional confined square cylindeterfiow (figurg 1(d))
is chosen as a prototype of separated flow. The Navier-Stakestions write :

ou 1
¥ +(u-V)u=-Vp+ ﬁAu [1a]
V-u=0 [1b]

whereu = (u, v)T andp denote respectively the velocity and pressure fields. The
parameteRRe = U, L/v denotes the Reynolds number, wifh, the maximal inflow
velocity of the incoming Poiseuille flow, the length of the side of the square cylinder
andv the kinematic viscosity. We used the same numerical metandparameters as
those introduced in Galletét al. (2004),i.e. the blockage rati = L/H is equal to

1/8 and the domaifi? is (—10L, 22L) x (—4L, 4L). For control purposes we placed
two jets in opposite phase on the upper and lower faces ofyiieder, as shown in
figure[1(B). Following the modeling of the actuators in Weéeal. (2008) and Weller

et al. (2009) the boundary conditions on the jets arféaare :

v(xz,t) =c(t), xel.

Without loss of generality we denolé(x, t) the flow fields that can be for instance
the velocity fieldsu(z,t) or the pressure extended fieltis(x,t), p(z, ,t))*. The
flow fieldsU (z, t) can be approximated by :

~

N,
Ua,t) = O M@, 6) = Y~ an(t)@n(2) + F(w,1) [2]
n=1

where F(z,t) can be any linear combinations of flow fields as the mean field
U(x), the unstable steady flow fieldy(x), the control function with time de-
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Figure 1. Sketch of the flow configuration with control actuation.

pendent actuation(t)U.(x), or even zero. For both flow control strategies the ba-
sis functions®,,(x) are computed using the snapshot method introduced by Siro-
vich (Sirovich, 1987). The temporal coefficient (¢) are solution of a reduced order
model obtained by a Galerkin projection of the Navier-Sto&gquation onto the POD
basis functions.

3. POD ROM via efficient sampling of the input parameter space

The POD basis gives an optimal representation (in termsredtiki energy when
velocity fieldsu(x, t) are used) of the snapshots database used to build the basis.
However, the optimality of the basis is lost when the systéanges due to a mo-
dification of its input parameters, as it is the case in comroblems (see Prabhat
al. (2001) and Bergmanat al. (2008b)). The focus of this section is to improve the
representation capabilities of a POD basis of a given flownathe Reynolds num-
ber varies in a given rande = [Rey,, Reg], SO as to provide a single ROM that is
efficient for the considered range.

Numerically, we always considered a two dimensional lamfleay, i.e. Reg =
180. Since the system undergoes the first Hopf bifurcatioRat: 65, we can consi-
der bothRe; = 70 for periodic flows andRe; = 40 to model the bifurcation. The
interval 7 is discretized withARe = 5, and it is_denoted ag,. We will always
useN, = 31 basis functions so we simply dendi&z, t) = U!"Nl(x, t) with
F = 0. We consider an initial databagg’c1,fe~x] computed atV different Rey-
nolds numbers. We tak®&, = 200 snapshots at eacRe;. We want to improve the
functional subspace enriching the database ame-shotway by addingK sets of
snapshots witH Re; }* 1| € Z. Let M = N + K andUfier-fenl pe the data-
base composed by/ sets of snapshots taken¢,, ..., Rey;. The three test cases
presented in Fid.]2 are considered.

In what follows the sampling is performed according to ameeastimator. As it
will be explained later, we choose tlig norm of the Navier-Stokes residual as error
estimator. It is thus necessary to approximate the preéisloeFollowing (Bergmann
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Figure 2. Sketch of the three test cases for sampling. The continatzohtal line
represents the range die that the POD database covers in each case.

et al,, 2008b) the pressure term can be easily estimated by its RO iRconstruc-
tion p. The exact flow fields. andp are then approximated by :

N,.

u(zx, t) = Zai(t)@(m) [3a]
N,

pla, t) =) ai(t)i(z) [3b]

=1
A pressure extended reduced order model is obtained pirgjeitte Navier-Stokes
equations onto the POD basis functigbhgx) = (¢;(x), ¥;(x))T. We use the same
model as that derived in (Bergmagnal,, 2009), where we highlight the dependence
versus the Reynolds number :

N, da. 1 N, N, N, N,
ZLijd—tJ = EZBSGCLJ‘ +Zijaj —l—ZZCijkajak [4]
j=1 j=1 j=1 j=1k=1

with Bge = — (¢, Agj),, and Bf’j = + (¢, V), and an appropriate initial

condition. The other model coefficients can be found in (Bemgnet al, 2009). As
discussed in several papers (Gallettial, 2006; Bergmanret al., 2005; Couplett
al., 2005), the initial value problerfi](4) can be inaccurate enawnstable. In order to
build a robust order model we applied the calibration tegheidescribed in (Weller
et al, 2008).

In the following, the reconstruction capabilities of a giveOD basis is evaluated
when the Reynolds number varies in the inteta= [Rer, Reg|. A natural way
to achieve this is to compare, at eaBa € Z;, the numerical solutiol/ (x, ¢) of
the Navier-Stokes equations to the POD reconstruoﬁcfn:, t) computed using a
POD basis that corresponds to a given databa§é - e~]. DenotingU (z, t) the
numerical solution of the Navier-Stokes equations, thesimgsscales are

Uz, t)=U(z, t) — Uz, t). [5]
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Figure 3. Evolution of the errofU’), versus the Reynolds number.

Let Y be a vector belonging to the same subspace as the NaviezsStolutionU .
We definedY"), the average of thé, norm over a temporal horizdh :

The error(U’), indicates how the description capability of the POD bas&snges
due to variations of the Reynolds number. In what follows, tdmporal horizorl’

is taken to be equal to three vortex shedding periods (thadrbis onRe). Figurel3
shows the evolution of the errgt/’), versus the Reynolds number for the three initial
databases under considerations. For all cases, we careséetlerror is very small at
Re;, and then it grows when the value of the Reynolds number mawayg fromRe; .
This traduces the fact that the POD basis computed from daseacollected from
given dynamics is not able to give a good representation wkflbat is characterized
by other dynamics. The aim is then to determine a samgdlig; } Y., € Z%, (with
Re; fixed for all cases, pluge; fixed for case), to improve the robustness of the
POD basis.

The evaluation of the errot/’(x, ¢) is cpu demanding as it involves the com-
putation of the numerical solutior$(x, t) of the Navier-Stokes equations for each
Re € T,,. Itis then interesting to find an accurate estimation of terd@]. To this
end, we use the residuals of the Navier-Stokes operRtoeyaluated using the POD
ROM fields,U. These residuals can be computed at low numerical costsethdve
have to solve a POD ROM (very fast) and to compute its resgdual

A comparison between the errdi’), and its residuals based estimat@(U ),
overZ, is performed in figurgl4. It is interesting to note that these quantities show
a similar behavior for all the considered test cases. Indbedatio(R(U))s/(U’)s
is approximately a constant ov&, for all test cases. The residuag (U )), is thus a
good estimator of the errdU”)s.
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Figure 4. Comparison between the mean projection erfdf’), and the mean resi-
duals(R(Upns))2 for the three test cases under consideration.

In this study we will present ane shomethod based on greedy ideas (Bui-Thanh
et al, 2007). The density function iSR(U)).. ResidualsRk (U') can be computed by
integration of the calibrated RONI[4], built from initial tRbasel/ (1 Fen] for
all Reynolds numbers in the discretized sp&kec 7;. Since we want a robust POD
basis, we look for a samplinfRe;}M, € ZM such that the databagg !t fiea]
produces models leading to reduction (or minimization i@ tiptimal case) of the
error evaluated over the whole subspdgewhereM has to be fixed as a function of
the desired robustness.

We perform a Constrained Centroidal Voronoi Tessellatioocedure (Duet
al., 2003) starting from a random subspalﬁeziw:ﬂj\“rl € Th,—n, With My > M.
The initial Reynolds numberfRey, ..., Rex] are frozen while the new points are



8 1r¢ soumission &S - JESA

computed as being the centroids of the tessellation elenweitih respect to density
function (R(U))2. We exclude point > N with the smaller average density func-
tion over thek!" tessellation. This is done following greedy method in otderefine
where the density function reaches higher values. The ditleeosampling is then
M, = My — 1. This is an iterative process, and whilé¢; > M we recompute a
new Degenerated CCVT and exclude a new péint N. The final configuration
M; = M is weakly dependent on the initial configuration fafy > M. The main
steps of the Greedy Degenerated CCVT are listed in the follgyits final goal being
the identification of a/-dimensional sampling to add at thé-dimensional initial
sampling.

0. Random sampling with dimensidty, > K. (the N first points are frozen).
1) At iterations, start sampling process with dimensidfy = K; + N

- Perform a Constrained Centroidal Voronoi Tessellation
-if M; = M stop
- if M; > M goto2
2) Identify and exclude poirt > N of the element with minimum integral
- M;y1 = M; — 1. Increment = i + 1, then go tol

The sampling method presented above can be easily tramsfooseput parameter
subspaces with dimension greater than one. The use of ideaésas error estimation
leads to negligible computational costs, even for high disi@nal input parameter
spaces, as for instance active control space.

In order to increase the robustness we chose tofadd 2 new sampling points
in Re, with Ky = 6 for the CCVT sampling method. Both CCVT and constrained
uniform sampling CUS results restricted Zp are reported in tablel 1. The average

Test case CCVT sampling CUS sampling
A {100, 55,160} {100, 70,140}
B {120, 80,165} {120, 90,150}
c {40, 180,90, 130} | {40,180, 85,135}

Tableau 1. Sampling results witli = 2 for CCVT and CUS.

error and the standard deviation evaluated over the whblgpsueel are respectively
defined by :
1

E= ———M
RBR—RQL

/ (U'(Re))2 dRe [7]
T

R = \//I ((U'(Re))2 — E)* dRe. [8]

While the errorE measures the accuracy of the POD ROM, the standard deviation
R measures its robustness. These two quantities have bekrmtedafor the POD
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models built using the sampling points found with both thee&aly Degenerated
CCVT and the CUS strategies. For a scdiawe define a relative difference by
AF = 100(Fcys — Feovr)/Feevr. The CCVT sampling efficiencyAE, and

robustnessAR, are reported in tablel 2. By definition, a positive differemeans

that CCVT is more efficient than CUS. SingdZ andAR are always positive, CCVT
reduced order models are more accurate and robust than tBeo@é&k. The CCVT
ROM gives a good behaviour in terms of reconstruction erv@nen presence of
a bifurcation. Thus, in a sampling procedure, one can us®#uenerated Greedy

| A [ B [ g |
AE | AR | AE | AR || AE | AR
12.850| 41.470| 10.854| 125.741] 9.150 | 19.804

Tableau 2. CCVT sampling efficiencxE and robustnesaR.

CCVT to build robust parameter dependent reduced order imdHis avoids huge
computational costs by using residuals estimation of thiereded ROM instead of
the approximation error computed by projection.

4. Control based on a linearized model

In this section the linearized reduced order model of tha@teStokes equations in
presence of control actuation is described. The flow cordiipm is the same descri-
bed in fig[d. We consider a feedback proportional contralaetd by the jets sketched
in figure[d, using some measurements of vertical velocitgmivy NV, sensors placed
atz; in the cylinder wake on the centre line. The control law witedback gaink;

IS
Ny

c(t) =Y Kju(m;,t) [9]

Jj=1

The aim is to find the set of feedback galigthat stabilizes the vortex shedding in
the cylinder wake. The same problem on the same flow configurbis been solved
in Camarriet al. (2010) without the use of reduced-order models.

The POD-based linear model is built using the snapshotsnaatdy a non-linear
simulation of the transient flow dynamics, which is starteahf the steady unstable
solution. The starting flow field, which is also the target flofithe controller, is found
using the same code, by imposing the velocity field to be sytmowith respect to
the symmetry lingy = 0 and advancing the simulation in time until a steady state is
reached.
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Snapshots/{, is their number) collected sampling a part of the transignadhics,
obtained with a particular control law(¢), are used to build a POD model. To this
purpose, every snapshetx, t) is decomposed as follows :

w(z,t) = u(x,t) — ug(x) + c(t)uc(x) [10]

whereug () is the unstable steady state andx) is a flow field having a jet velocity
equal to 1 and the velocity vanishing on all the other domaionilaries. This is
obtained as proposed in Gallegtial. (2006).

Denoting{¢.},_, . the N, retained modes obtained by applying the POD to
(w(®,t:));_;. x., the low-dimensional solution is written :

(@, 1) = uol®) + clt)uc(z) + 3 an(t)eh(x). 1)

The Galerkin projection of the Navier Stokes equations ¢mtd>OD modes yields
the same low order model derived in Welkgral. (2009).

The POD basis and the resulting model is built using the flovddiev(x,t)
(Eg. [I0)]) collected using different control laws which werfrom different sets of
feedback gains. The POD model is calibrated using all thellsitions carried out to
collect the snapshot database, and the conditioning ofatfiteration procedure is im-
proved as proposed in Wellet al. (2009). Moreover, it is imposed that the steady
unstable solutionu is also a steady solution of the reduced order model andgeons
quently, the constant term is forced to vanish.

When the feedback control is found using the velocity fieldhef POD model,
Eq. [d] becomes :

N, N, N,
c(t) =D Kjo(m;,t) =Y K, <vo(mj) +e(t)ve(a;) + Y &T(t)gbZ(mj)) [12]
j=1 j=1 r=1

where ¢} (x;) are the values of the componenbf the POD modes at the sensors.
Note that when steady unstable solution is used as targgi@ot,,, because of the
symmetry,v(x;) = 0 and thate(¢) can be found in explicit form from Eq.[{[12]) by
trivial manipulation. In order to perform a stability ansiy of the target state, and

to perform an optimisation of the feedback control gaing,R®D model is linearized
around the equilibrium state* = 0, (which corresponds to the flow fietd,) and
after algebraic manipulation, the low order model in méfitorm becomes :

a(t) = L(K,z,)a(t)
[13]
a(0) = a°

wherex,,, the vector of the positions of the sensors, #gdthe set of feedback gains,
are used as input parameters.
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Since the system matrik of the linearized model depends explicitly on the feed-
back gains and on the position of the sensors, the modeldtsctikee even when those
parameters are changed with respect to the reference oedgarscalibration. As
already stated, the robustness of the model can be incrédasedore linearization,

a calibration procedure is used including several dynawmtcsen by any sampling
method, as detailed in Wellet al. (2008).

The linearized equatiof [13] can be used to perform a clak§iwear analysis
of the dynamical system. Given the position of the sensodstha set of feedback
gains K, the stable/unstable eigenvalues of the sysfeoan be evaluated. For each
eigenvalue, the associated eigenvector leads, by means. ¢I@, to an estimation
of the corresponding global mode of the linearized Navie&&s operator. A good
accuracy on the estimation of the unstable modes of theifigiitized Navier-Stokes
problem allows to use the low order model in a control procedas described in
the following. Note that the linearized reduced order mddeibtained by using a
simulation of a non-linear Navier-Stokes code. Moreovee, $ystem matrix. non-
linearly depends on the feedback gafisand on the position of the sensats, and
this does not permit to use classical tools for the lineatrobrThus, we propose here
an iterative control procedure based on the minimisatianfohctional cost, which is
here after described.

As explained above, the accuracy of the linearized modet isngortant aspect,
and this is briefly investigated in the following. As a firsggt it is shown how to
reconstruct a global mode associated to an eigenvectoe difbarized POD system.
The formal solutiora(t) of the systemI13] is :

a(t) = ReMR 'a’ [14]

where A is the diagonal matrix of the eigenvalues bf R is the matrix whose co-
lumns are the corresponding eigenvectors afids the initial condition ona(t).
When Eq. [TI#] is substituted in EJ_10], the fluctuating péfrthe velocity field
u/(x,t) = u(x,t) — uo(x) is obtained as follows :

w(z,t) = QREA'RIQu/(x,0) [15]

with Q@ = (K(I — Kv.(x,)) '¢.(z,)) andu/(z,0) the projection of the initial
condition over the POD modes. Thus, assuming that the eddiges of the physical
system are well approximated by the low order model, we ceongruct the matrix
containing physical eigenmodé#3~ P = QR. In particular we are interested in the
estimation of the unstable modes, which correspond to eddees with positive real
part.

In order to asses the accuracy of the feedback linear modetiled above, we
consider a Reynolds numbg&e = 85, at which the instability is fully developed after
a slow transient. In Figurel 5 time evolution of the lift coefffint calculated on the
cylinder with no control actuation is plotted. We recalltttize simulation is carried
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out by a non-linear Navier-Stokes code. Note the quick gnafitheC; after the slow
transient regime. In the figure the portion of the transieetito build the POD model

0.15F — pOp database phpaed

0.1r B

-0.15¢

50 100 150 200 250 300
Non dimensional time

Figure 5. Lift coefficientC; time evolution, with no control actuation &te = 85.

is highlighted, using a continuous line. The interval is ptd consideringV; = 250
snapshots. This time interval is chosen starting when fineolefficient reaches a value
of C; =~ 0.001 and including about seven quasi-periodic flow periods. ii@meonly
N, = 6 POD modes to build and calibrate the linearized low order ehothis is
motivated by the work documented in Galledtial. (2006), where it is shown that a
model similar to the one built here gives a good approxinmadibthe unstable mode.
Thus, the unstable mode estimated by the POD model can bgzaddb explore his
observability and to consequently choose the position@fstnsors for the feedback
control. In particular we used only one sensor of verticéeiy, which is placed in

o

o

(N

dbdddoooon
388 R&9-~
o o

Figure 6. Reconstructed v-component of the physical unstable mode.

(x = 0.3,y = 0.0), in the area of the first local minimum (maximum in terms of
module) of the v-component of the unstable mode (see fl[durim @rder to test the
capability of the feedback linear low order model to estiente physical unstable
mode in the presence of an actuation, we performed two noalaimulations of the
actuated flow using two different proportional feedbackngdor the sensor placed
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as described abovee. k = 0.1 andk = 0.2. As in the previous case, the two time
intervals used to build the model include seven flow osdiliet starting from a value
of C; ~ 0.001, with N; = 250 snapshots for each case.

As expected, only two unstable conjugate eigenvalues adigied by the linear
low order model, and the estimation of the unstable eigelegbiven by reduced
model is very accurate. The percentage error on the estimafi the real and the
imaginary part of the unstable eigenvalues are respegtié2% and0.26% when
k = 0.1 is used and).11% and0.12% for k = 0.2. In figure[Z the module of the

+ e

(b)

Figure 7. Isocontour of the module of the predicted (a) and the phy$maunstable
eigenmode for the cage= 0.2. Plots obtained with the same scale level.

reconstructed unstable mode for the chse 0.2 and the one found by a linearized
analysis of the Navier-Stokes operator are plotted. Théigtien of the mode is very

accurate in the whole domain ; only a slight difference candted at the outflow due

to the influence of the imposed boundary conditions in thediized Navier-Stokes

code. An analogous result is obtained in the dase0.1.

In order to stabilize the steady state, the unstable eigigesaeed to be moved in
the stable region of the complex plane. To this aim, whilegbsition of the sensors
are kept constant, a function of the gaifisis proposed, such that its minimisation is
equivalent to stabilize the system :

F(K) = Y07, tanh(Re(A(K)) — Xg,) + axmin_y v, (K — KP)?) [16]

where )\, are all theN, eigenvalues predicted by the linear feedback modekas
varies, \%, is the stability margin requiredi? is the set ofl — th gains used to
build the model and the parametery, < 1 has to be chosen as a measure of the
trust region of the low order model. In our application we use 0.1. The function
tanh(-) is chosen to retain the position of the eigenvalues alregalyles with the
margin sufficiently larger thai?, , while the other eigenvalues are modified.
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The minimisation gives an optimal set of paramet&fs for the present model.
This set of gains are tested in a non-linear Navier-Stokeslsition after the impulsive
start of the flow. If the target state is not stabilized a neswoed order model is built
with a database obtained by adding a portion of the transietiie new dynamics
to the old POD database. During the optimisation procedurec@amum number of
dynamics in the POD database can be fiagatiori, then when the maximum number
is reached, a new set of snapshots substitutes the one witimora distancd K —
K*|. Again, a minimisation of the functiond]IL6] is carried cannd a new set of
parameters are obtained. The procedure is stopped whetetduy state is stabilized.

In the test described here, the model built using the datsbalstained wittk =
0.1 andk = 0.2 is initially used for the optimization. The minimisation @8] gives
a new value of the feedback gairi = 0.44. A non-linear simulation of the Navier-
Stokes equations starting frobi® is carried out, and the resulted flow is completely
stabilized, as shown in figufé 8 arid 9. In figlite 8 the lift coaffits obtained with
k = 0.1, k = 0.2 andk* are plotted. The use of the optimised feedback gain leads to

0.1

o k=0.1 !
o k=0.2
0.081 % k optimisation

-0.021-

-0.04r-

-0.06[

-0.08[

I I I I I | |
50 100 150 200 250 300 350 400
Non dimensional time

Figure 8. Lift coefficient obtained wittk = 0.1, £ = 0.2 and k* = 0.44. Sensor
position (0.3,0.0) andze = 85.

a steady and vanishing lift coefficient. Thus, the flow isltgteontrolled as displayed
in figure[9, where the vorticity field of the flow obtained with at timet = 480 is
shown.

Finally, the reduced order model obtained by a non-lineariétzStokes code and
successively linearized around a steady state, is ablgtegent, with limited com-
putational costs, the unstable modes of the linearizedé&tokes operator, and a
control optimisation based on such a linearized model givest of input parameters
that stabilizes the actual flow. We recall that the whole pdore can be performed
starting from the simulations of a generic non-linear cosl¢hase typically used in
engineering applications.
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Figure 9. Vorticity snapshot of controlled flow withi* = 0.44 at timet = 480.

The obtained results allow us to use the optimisation basdbelinear feedback
low order model in a control procedure for flow at higher Rdgeamumbers and with
a higher number of sensors. The main difficulty is to build e&DP@odel which is
robust with the parameters variation. Indeed the most féigmt computational cost
of the procedure is the update of the linear model, which s@ed/ DNS simulations.
A more robust model is characterized by a wider trust regiwth @eeds a reduced
number of updates to complete the optimization. For thisaeathe goal of future
works is to couple the two techniques described in this sfuglyo build a robust low
order model to be used in the linearized control designesiyat
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