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Abstract We review a few applications of reduced-order modeling in aeronautics 
and medicine. The common idea is to determine an empirical approximation space 
for a model described by partial differential equations. The empirical approximation 
space is usually spanned by a small number of global modes. In case of time-periodic 
or mainly diffusive phenomena it is shown that this approach can lead to accurate 
fast simulations of complex problems. In other cases, models based on definition of 
transport modes significantly improve the accuracy of the reduced model. 

M.Bergmann 
Inria, F-33400 Talence, France 
e-mail: michel.bergman@inria.fr 

T. Colin 
Universite de Bordeaux and Inria, F-33400 Talence, France 
e-mail: thierry.colin@inria.fr 

A. Iollo (i:!:s:) 
Universite de Bordeaux and Inria, F-33400 Talence, France 
e-mail: angelo.iollo@inria.fr 

D. Lombardi 
Inria, F-78153 Rocquencourt, France 
e-mail: damiano.lombardi@inria.fr 

0. Saut 
CNRS and Inria, F-33400 Talence, France 
e-mail: olivier.saut@inria.fr 

Haysam Telib 
Optimad Engineering, I-10143 Torino, Italy 
e-mail: haysam.telib@optimad.it 

A. Quarteroni, G. Rozza (eds.): Reduced Order Methods for Modeling and Computational Reduction, 
MS&A 9. DOI 10.1007 /978-3-319-02090-7 _11, © Springer International Publishing Switzerland 2014 



306 M. Bergmann et al. 

11.1 Introduction 

Progress in numerical simulation of partial differential equations (PDEs) allows ac­
curate and reliable predictions of some complex phenomena in solid and fluid me­
chanics, solid state physics, geophysics, etc., at the price of significant code devel­
opments, difficult computational set ups and large high-performance computing in­
frastructures. Using reduced-order models (ROMs) one trades accuracy for speed 
and scalability, and counteracts the curse of dimension by significantly reducing the 
computational complexity. Thus RO Ms represent an ideal building block of systems 
with real-time requirements, like interactive decision support systems that offer the 
possibility to explore various alternatives. In complex cases, the real-time require­
ments would not be met by standard numerical methods. 

The construction ofROMs for design, optimization, control and data-driven sys­
tems is a non-trivial task and various alternative ways can be followed often without 
any guarantee that the ROM will effectively model the physical phenomenon in the 
application. Focusing for example on flows or environmental phenomena, different 
states can often be characterized by the presence or absence of qualitative flow fea­
tures, by the structure of feature patterns and by the strength of such features. Proper 
orthogonal decomposition (POD) [7, 11] is a mean to extract such features from ex­
isting solution snapshots under the form of global modes. However, RO Ms based on 
such POD modes are numerically unstable in unsteady, advection dominated models. 
Stabilization can be obtained by various ad hoc techniques (see [2, 5, 14] for exam­
ple), but a general framework to determine accurate and robust unsteady ROMs is 
still lacking. Still, ROMs can be useful to model far-field conditions coupled to a 
complete model, or to regularize the solution of an inverse problem. We give in the 
following two examples in these directions. 

Another central issue for ROMs is the quality of the approximation obtained 
thanks to a reduced number of empirical modes. These modes are determined from a 
set of snapshots that are relative to a particular configuration: geometry, physical pa­
rameters, boundary conditions. When the configuration varies there is no guarantee 
that the reduced basis will adequately approximate the solution. On the other hand, 
ifthe snapshot set from which the basis is obtained includes a large number of differ­
ent configurations, by construction the reduced basis will enjoy better approximation 
properties when the configuration varies. Given the computational costs relative to a 
systematic exploration of the configuration space, optimal sampling strategies must 
be introduced. In the following, we present one strategy based on an estimation of 
the approximation error of the reduced base. 

Nevertheless, there is a fundamental difficulty in approximating with global (for 
example POD) modes the displacement of, say, a flow feature in time or across the 
parameter space. Global modes are not optimal for advection. In particular, POD 
modes reduce to Fourier modes for translation invariant signals. An alternative idea 
is to define advection modes as the solution of an optimal transportation problem. An 
application to interpolate the solution of a PDE system across the parameter space 
based on the definition of advection modes is presented in the following. 
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11.2 Systematic sampling for ROM 

We have considered an oscillating NACA0012 airfoil in a compressible flow as in 
the CTI test case from AGARD-R702 report. This case corresponds to a Mach 0.6 
flow at infinity past an oscillating NACAOO 12 airfoil. In the following the compu­
tations are inviscid; in the actual experiments the Reynolds number is 4.8 x 106 . 

The parameter space is two dimensional: the oscillating frequency varies between 
/ 1 =30Hz and / 2 =70Hz (CTI case: 50Hz) whereas the amplitude of the oscillation 
varies between aJ=1.6deg and aJ=3.6deg (CTI: 2.5deg) with an average pitch of 
am=3.0deg. We have implemented an algorithm to sample the parameter space in 
order to emich the database of the POD basis functions. The objective of this pro­
cedure is to determine a set of POD modes that minimizes the approximation error 
across the parameter space S = [ aJ , aj] x I/\ .f] . 

The main idea is to build a recursive Voronoi diagram and the corresponding 
Delaunay triangulation based on the projection error of the POD representation. 
This is an extension of what it was proposed in a one-dimensional setting in [10]. 
Let 9 n be the set of points P1 , · · · , Pn in the parameter space corresponding to ac­
tual high-fidelity simulations and 3"n the corresponding Delaunay triangulation. For 
given number M of POD modes (the size of the basis) we build a set of POD ba­
sis functions </>;, i = 1, · · · , Musing the high-fidelity simulations corresponding to 
points P1, · · · , Pn. The number of POD modes M is arbitrary fixed and is kept con­
stant during the sampling process. Then we determine the representation error E (Pk), 
k = 1, · · · ,n, corresponding to the residual in the L2 norm of the projection of high 
fidelity solutions at Pk on</>;, i = 1,- · · ,M. Let us denote V(Ts) the set of vertexes 
of Ts E ,'Yrz. We select the triangle Tmax E 3"n for which the product of its area and 
the sum of E(Pk), Pk E V(Ts), is maximum. The next point of the triangulation is the 
barycenter of Tmax. This new point is used to compute a new Delaunay triangulation. 
A Delaunay triangulation has thus to be performed at each sampling iteration. 

As an example consider Fig. 11.1. The parameter space S = [aJ, aJ] x 1/\/2] is 
mapped to the unit square ( ao = [ aJ, aJ] f--+ A= [O, l] and f = lf1 ,f2] f--+ F = [O, 1]) 
and is partitioned in 8 triangles relative to 7 simulation points that were obtained by 
iterating the method starting from points P1, P2, P3, P4. Both Delaunay triangulation 
(red) and Voronoi tessellation (blue) are presented. The new high-fidelity simulation 
point Ps is added at the barycenter of the triangle relative to points P2, P4, P5 . For 
this triangle the product of the area times the sum of the representation errors at the 
vertexes is the highest. 

The procedure implies the computation of n space correlations of high-fidelity so­
lutions for each new simulation point Pn+ 1. These operations are particularly efficient 
in the hybrid domain-decomposition ROM as the spatial extension of the snapshots 
and of the POD modes is reduced to a region close to the airfoil. The same procedure 
can be extended to higher-dimensional parameter spaces. 
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Fig. 11.1. Example of one iteration of the Voronoi tessellation algorithm. The parameter space 
subset S is represented. ao is on the ordinates and f on the abscissa. (a) typical iteration 
(iteration 3); (b) next point is added (PS) and the triangulation updated 



11.2.1 Results

We start with a POD basis, called Binitial, computed from snapshots taken at 4 points 
P1, P2, P3 and P4 (see Fig. 11.2). 20 time snapshots are uniformly taken over one 
period for each point Pi, I :::; i :::; 4. Starting from these points in parameter space, 
4 additional points, denoted by P5 , P6, P7 and Ps are determined using the method 
described above (Voronoi tessellation). A suboptimal POD basis, called Bsuhopt is 
then computed from these 8 points: P1 to Ps. We want to compare the suboptimal 
basis performance to another basis composed with the same number of sampling 
points, but chosen without any specific critria. For instance, we consider an uniform­
like basis, Buniform, computed using from P1 to P4 and P9 to P12. The points P9 to 
P12 are relative to already existing simulations that we exploit now for building a 
basis. No special criteria were used to specify these points. However, Mis the same 
for Buniform and Bsuhopt·. A summary of the high-fidelity simulation employed for 
each POD basis is represented in Table 11.1. 

Table 11.1. POD basis summary 

POD basis P1 P2 P.1 P4 Ps p6 P7 Ps P9 Pio Pu P12 

B1nilial uniform x x x x 
Buniform uniform x x x x x x x x 
Bsuhopt suboptimal x x x x x x x x 
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Table 11.2. POD Basis L2 projection errors x 104 . PT denotes the average error over the 12 
points P;. Buniform and Bsubopt are computed with 160 snapshots and Ps the standard devia­
tion. B1nitial is computed with 80 snapshots 

B1nitial 3.71 3.75 7.36 4.80 6.20 5.25 5.58 3.80 4.69 4.53 3.75 4.63 4.82 1.12 
Buniform 3.85 4.07 6.70 5.29 4.91 4.20 4.87 4.18 4.38 4.29 3.89 4.45 4.60 0.79 
Bsubopt 3.24 3.23 5.42 5.41 5.11 4.62 4.99 4.20 3.74 3.37 3.01 3.06 4.08 0.95 

The accuracy of the 3 POD basis is evaluated by computing the L2 projection error 
of the whole snapshot setP1 toP12 onto each POD basis, see Table 11.2. In particular, 
we consider the average L2 norm of the error on each variable: density, velocity 
components and speed of sound. This error norm can be biased by the normalization 
of the different physical quantities. However, in our case, the normalizations are 
such that all the variables have comparable absolute values and hence the average 
error over the different physical quantities is a reasonable measure of accuracy. The 
error PT denotes the average error evaluated over the whole set of points P1 to P12. 
The basis Bsubopt shows the best average errors of about 15% compared to Buniform. 

Even for the extra uniform sampling points P9 to P12 that are not included in the 
Bsubopt database, the errors obtained with Bsubopt are close to those obtained with 
Buniform· 

11.3 ROM by Domain Decomposition 

Let Q 0 (t) denote the two-dimensional region enclosed by the airfoil at time t and let 
Q be such that Q 0 (t) c Q c JR2 . The compressible Euler equations are defined on 
the domain Qc(t) := Q\Q0 (t). Let us also define two rectangles &t'e and a'; such that 
Q 0 (t) ca'; c &t'e c Q. The inner rectangle a'; always includes the airfoil during its 
oscillation about a point of the chord (see Fig. 11.3). 

In Qc(t), we solve the unsteady compressible Euler equations on a fixed cartesian 
mesh to second order accuracy in space and time, as explained in [6]. We collect an 
appropriate solution database of N flow snapshots. 

Let u(k) be one solution snapshot in Qc(tk), 1 :::; k:::; N, restricted to &t'e \a'; and 
defined in terms of primitive flow variables. We compute a Galerkin base of the 
form </>; = I.f=1 b;k(u(k) - U), with 1 :::; i:::; M, U = l/N''i,f=1 u(k) and where the 
coefficients b;k are found as in [8], [ 1]. This decomposition is performed individually 
for each primitive variable, i.e. the flow velocity, the pressure and the speed of sound. 
Consequently each expansion gives an optimal representation of the original dataset 
relative to each physical variable. 

Let us define D = U + 'i,~ 1 a;<f>;. The number of global global modes Mis very 
small compared to the size of the computational grid in Qc(t). 
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Fig. 11.3. Illustration of computational domain and subdomain definitions 

The hybrid computational model is obtained by coupling the cartesian grid solver 
in f4!e \Qa(t) and the Galerkin representation defined in f4!e \f4!i. To this end, we 
follow the steps below: 

• integrate the governing equations in f4!e \Qa(t) by the cartesian solver, with given 
initial conditions u(n) in ae \Qa(t) and boundary conditions on df4!e; 

• project the restriction to f4!e \f4!i of the updated solution u(n+l) on the subspace 
spanned by the POD modes </>i and hence determine i](n+ll; 

• recover the boundary conditions to be imposed at the next time step on Jae as 
the trace ofiJ(n+l) on ()f4!e; 

• goto ( 1) until convergence is attained. 

This algorithm is fully detailed in [3] for several idealized internal flows. The ratio 
between the computational cost to solve this hybrid scheme and the cost to solve the 
flow on the full domain is of the order of the ratio between the area of f4!e \Qa(t) and 
that of Qc(t). 
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11.3.1 Oscillating Airfoil in Transonic Flow 

We consider a two-dimensional flow past an oscillating NACAOO 12 airfoil. The air­
foil oscillates about a point fixed at 25% of its chord according to a sinusoidal law. 
The average angle of attack is 2.89, the amplitude of the angular excursion is 2.41 
and the frequency of oscillation is of 50Hz. The Mach number at infinity is 0.6. 

The computational domain is Q = 30c x 20c, where c is the chord, and the profile 
is positioned so that the computational domain extends for 1 Oc upwards and down­
wards, lOc upwind and 20c downwind. The computational grid is ( 4.8 x 103)2. The 
simulation has been carried out starting from a uniform initial condition correspond­
ing to the unperturbed flow. Time integration is pursued until the hysteresis cycle is 
periodic, i.e., after about two cycles of oscillation. 

We present in Fig. 11.4 typical snapshots of the Mach field where the coales­
cence of the characteristics forms a transient shock on the suction side of the airfoil. 
The hysteresis cycle is shown in Fig. 11.5 where the computational results are con­
trasted to the experimental ones. The computational results are in good agreement 
with experimental data reported in AGARD R-702. 

A collection of 65 snapshots of the flow primitive variables is taken over one 
period of oscillation once the flow is completely established. The size of the rectan­
gle including the oscillating airfoil!%; is I. I 5c x 0.2c, that of :!4:e is 2.5c x I .Ge.The 

(a)± T (bl ~r 

(d) ~ T 

Fig. 11.4. Typical Mach number snapshots 
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Fig. 11.7. First four POD modes. Left column pressure, right column vertical velocity 
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ratio between the grid points of the full computational domain and those of the hy­
brid ROM is approximately 260. This ratio corresponds to the CPU time reduction 
observed between the full computation and the hybrid ROM. 

The eigenvalues of the snapshot correlation matrix are shown in Fig. 11.6. The 
first four eigenvalues account for about 99% of the database energy for each of the 
quantities considered. In Fig. 11. 7 the first four POD modes for pressure and vertical 
velocity are shown. The third and fourth mode, whose energetic contribution is of 
less than 1 % on average, show higher spatial frequencies. 

In Fig. 11.8 we present the normal force coefficient of the actual hybrid simula­
tion for the CTI test case at 50Hz and at 70Hz. The 50Hz case corresponds to the 
snapshots used to build the POD modes. Therefore, this test case is designed to check 
to what extent the hybrid ROM is able to recover the original solution in the optimal 
situation. In Fig. 8a we show the comparison between the hysteresis curves obtained 
via the hybrid ROM and that relative to the full computation. The match is perfect. 
This means that the non-local boundary condition on aae (that corresponds to the 
trace projection operator) is indeed a very good approximation of the transmission 
conditions between o!3?!e and ()Qc(t). 

However, the most promising result is that for 70Hz shown in Fig. 8b. Here the 
hybrid ROM solution, with a boundary operator derived for the 50Hz case, is con­
trasted to the full simulation at 70Hz. The hybrid ROM starts from an arbitrary initial 
condition and after a short transient matches ahnost perfectly the full computation at 
70Hz. This case represents a remarkable situation where the ROM leads to a reliable 
prediction for a case which was not previously included in the database used to build 
the POD modes. 

In Fig. 11.9 the time history of the coefficients of the pressure modes are depicted. 
The coefficients pertinent to the Full Order Model are obtained by projecting the 
snapshots on the POD basis. The coefficients of the hybrid model are those obtained 
by the above method. An excellent match can be noticed for the first mode, both 
for 50Hz and 70Hz. For the higher modes still the comparision is very good but 
slight differences in amplitudes are present. Consequently the presented method is 
capable to determine the optimal coefficients also for cases which are not included in 
the database. The error in the force coefficent hysterisis may be decreased by using 
a more representative database. 

11.3.2 Discussion 

The hybrid ROM implementation here described has limited impact on existing full 
CFD codes: it is easy to implement since it reduces to a non-local boundary condi­
tion. The only addition operation to perform is a projection of the interior domain 
iterative solution in the space spanned by the POD modes. The validation results that 
we present show that this method is accurate also for flow conditions that were not 
included in the database used to build the POD modes. This is due to the fact that 
the ROM takes care of flow features that are in principle weakly dependent on the 
specific geometry inside 13£;. Hence, a case not encompassed in the flow database is 
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Fig. 11.9. Coefficients of the first four pressure POD modes. Comparison between full order 
and hybrid model for 50Hz (left) and 70Hz (right) 
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likely to be better approximated by the reduced basis. The whole procedure can be 
seen as the computation of an empirical Green function of the far field. 

11.4 ROM by Optimal Transport 

Here we describe a non-linear interpolation of the snapshots so that the POD modes 
may more accurately represent solutions for points in the parameter space that were 
not included in the database from which they where derived. For a complete survey 
of this field, see [12, 13]. For an efficient method to numerically solve this problem 
without obstacles see [9] and references therein. 

In order to fix ideas, we consider the case of an oscillating airfoil as in the CTI 
test case, for given oscillation amplitude (am= 2.5deg, ao = 4.deg) but for several 
oscillation frequencies. For given phase of the oscillation, i.e. for given pitch of the 
airfoil our plan is to map the solution for f = 30Hz into that off= 70Hz. Thanks to 
this mapping we can determine a non-linear estimate for the solutions at given pitch 
for 30Hz < f < 70Hz. 

11.4.1 Transport 

In Fig. 11.10 a conceptual description of transport is shown. Given a point SE Qo, 
where Q 0 c JR.d is a reference configuration, transport at time t is described by a 
mappingX( s ,t). The point x = X( s ,t) belongs to the actual physical configuration 
Q c IR.d. Let us consider a point x in the actual physical configuration. The inverse 
mapping, denoted by Y (x, t) (called otherwise backward characteristics), identifies 
the point in the reference configuration that has been transported by the direct map 

Fig. 11.10. Lagrangian description of transport: the reference configuration is Qo, points 
~ E Qo are transported by the direct mapping in X ( ~, t). Given the actual configuration Q, 
a point x E Q is sent back to its counterimage in the reference configuration by backward 
characteristics, i.e., the inverse mapping Y(x, t) 
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in x at time t. The following relations hold: 

x =X(s,t), s = Y(x,t), 

Y=X- 1, [V~X][VxY] =I, 

319 

(11.1) 

where [V ~X] is the jacobian of the transformationX( s, t) and [VxY] its inverse, i.e., 
the jacobian of the inverse mapping. Also, we have: 

J1Y+v·VxY=O, Y(x,O)=x 

v(x,t) = GliX, X(s,O) = S, 
where v is the velocity field. 

Let us consider, as an example, the inviscid Burgers equation: 

(11.2) 

(11.3) 

This equation describes a pressure-less Euler flow. Since no force is acting on the 
medium, each component of the velocity field is purely advected. In lagrangian co­
ordinates we have: 

a?x(s,t) = o ===}x(s,t) = s +v(s,o)t. (11.4) 

The solution consists of particles moving on straight lines (no acceleration). 
In order to determine the mapping, we define a suitable optimal transport problem. 

Let us associate a scalar density function p(u) 2: 0 to the solution u(x,t), in such a 
way that: 

!2 
p(x,t)dx=l,\ftElR+ (11.5) 

so that the non-negative density is normalized to 1 for all times. The choice of the 
density function is for the moment arbitrary. If u is a non-negative scalar and satisfies 
this normalization, it may be directly used as a density function. 

Let Pi, i = 1, 2 be the snapshots of the density function. The optimal transportation 
problem relative to this density pair is defined as: 

X*(p1,p2)=Arg~f{ 0 pi(s)IX(s)-sl2 ds }, subjectto 

P1(S) =p2(X(s))det(V~X). 
(11.6) 

The optimal mapping X* minimizes the cost of the L 2 transport (Monge) problem, 
among all the changes of coordinates X( s) locally keeping constant mass between 
the densities 1 and 2. The solution to this problem exists and is unique and stipulates 
that the lagrangian velocity is the gradient of a (almost everywhere) convex potential 
lfl( s). 

In particular the same problem can be rewritten in the Eulerian frame of reference. 
The optimal conditions for the minimum are the familiar conservation law for the 
density and the previously introduced inviscid Burgers equation. The main difficulty 
of the problem is that this system is equipped with initial and final condition for the 
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density but no initial condition for velocity. We therefore introduce an approximate 
Monge mapping as follows: 

(11.7) 

so that V' lJI = v(x, 0) and the inviscid Burgers equation 11.3 can be used to propagate 
in time the solution. 

11.4.2 Results 

In order to illustrate the method, we have considered the pressure distribution at 
maximum pitch of the NACA0012 at Mach=0.6 corresponding to a set up similar 
to the CTI test case. The densities P1 (x) and P2(x) correspond to the pressure dis­
tributions. Given two sets of snapshots corresponding to two different frequencies 
of oscillation, we define Pl (x) and P2 (x) as the pressure corresponding to 30Hz and 
70Hz, respectively. This can be done for each phase angle of the oscillation. The 
numerical scheme employed to determine the Monge approximate mapping (lJI) is 
a simple finite-difference second-order method. This initial mapping velocity (V'lJI) 
is used then as the initial condition for the transport problem. The initial pressure 
distribution Pl (x) corresponds tot= 0 and p2(x) to a final time arbitrarily set to 
1. The solution at any pseudo time t between 0 and 1 corresponds to a non-linear 
interpolation of the solution at a frequency of oscillation of 30 + (70 - 30) t. See 
Fig. 11.11. In this picture the actual solutions at 30Hz, 50Hz and 70Hz are shown in 
terms of pressure isolines. It should be remarked that the solution at 50Hz is not a 
linear interpolation of the solution at 30Hz and 70Hz, see Fig. 11.12. The pressure 
distribution at 50Hz, see Fig. 11.13, is found thanks to the non-linear interpolation. 
One-dimensional plots corresponding to a segment in a smooth region and in a re­
gion where the shock is present are shown. These results show that the non-linear 
interpolation method presented here can be used to determine overall reasonable 
estimates of intermediate snapshots of high-fidelity simulations not present in the 
database. 

11.5 System Identification Using ROM in Tumor Growth 
Modeling 

In this section ROMs are applied to system identification in tumor growth modeling. 
A complete description of the method is presented in [4]. 

In this work reduced order modeling is applied to the solution of an inverse prob­
lem as tool of solution regularization. In particular a set of semi-empirical eigen­
functions is built for each patient, exploiting the organ geometry retrieved from the 
first clinical exam. So the method is "patient specific". The eigenfunctions are then 
used in order to estimate parameters when new data are available from subsequent 
exams. 
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(a) 

(b) 

Fig. 11.11. (a) !so-pressure lines of the solution at 30Hz (white), 50Hz (red), 70Hz (green) 
in the region of definition of POD; the white isolines correspond to the initial condition of 
the Monge problem. (b) Results of the Monge interpolation: estimated pressure snapshot at 
50Hz. Estimated solution in white, actual solution in red. Green: actual solution at 70Hz 



322 M. Bergmann et al. 

1.1 

09 

08 

! 
i 

0.7 

O.S 

0 5 

0.4 
0 10 20 3 0 so 80 90 

ce ll lndl• 

(a) 

t .12 rn 0 "" 
1.1 

1.08 

LOG 

i 
~ 

1.04 

1.02 

10 20 30 •o 60 80 90 

(b) 

Fig. 11.12. Initial condition for the Monge problem (30Hz) and actual high-fidelity solutions 
(50Hz and 70Hz). (a) curves on a segment parallel to the abscissa where the pressure shows a 
shock wave; (b) solution on segment where the pressure is regular. The intermediate solution 
(50Hz) is not a linear interpolation of the initial condition (30Hz) and final condition (70Hz). 
"Monge" denotes here the initial condition of the Monge problem corresponding to the high­
fidelity model at 30Hz 
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Fig. 11.13. Results of the Monge interpolation at 50Hz. The continuity equation and the in­
viscid Burgers equation are integrated starting from the initial conditions (see Fig.11.12). The 
pictures show the high-fidelity model results compared to those of the non-linear interpolation 
at 50Hz. (a) solution on a segment parallel to the abscissa where the pressure shows a shock 
wave; (b) solution on segment where the pressure is regular. These are typical results across 
the field 
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The macroscopic models for tumor growth are represented by a set of PDEs ac­
counting for the phenomenological aspects of the pathology. For the present case, 
the system reduces to a set of non-linear parametric coupled PDEs that describes 
the evolution of a three-specie saturated reacting flow in a porous, isotropic, non­
uniform medium. 

The tumoral tissue is composed by two different phases, denoted by P and Q. The 
density P represents the number of dividing cells per unit volume, Q is that of the 
necrotic cells. The healthy tissue is the phase denoted by S. Equations for P, Q and 
Sread: 

()p 
Ji+ V · (vP) = (2y- l)P, (11.8) 

dQ at+ V · (vQ) = (l -y)P, (11.9) 

as 
at+ V · (vS) = 0. (11.10) 

where the velocity v models the tissue deformation and r (called the hypoxia thresh­
old) is a scalar function of the nutrient concentration. If enough nutrients are avail­
able then r = 1 and the tumor cells proliferate, otherwise they die. The healthy tissue 
evolves through an homogeneous conservation equation. 

Assuming that P + Q + S = 1 in every point of the domain, a condition for the 
divergence of the velocity field is derived. This condition, coupled with a Darcy law, 
allows to describe the mechanics of the system: 

V·v= yP, 
v = -k(P, Q)VII. 

(11.11) 

(11.12) 

The scalar function II plays the role of a pressure (or potential), and k is a perme­
ability field, satisfying: 

(11.13) 

where ki represents the constant porosity of the healthy tissue and k1 is the porosity 
of the tumor tissue. 

The equation describing the nutrients has the following form: 

-V · (D(P,Q)VC) = -aPC-AC, (11.14) 

where a is the oxygen consumption rate for the proliferating cells, A is the oxygen 
consumption coefficient of healthy tissue and D(P, Q) is the diffusivity. Boundary 
conditions and sources are set up according to the nature of the organs considered 
and will be detailed later on. The diffusivity may be written as: 

(11.15) 

The link between the nutrients concentration and the population dynamics is pro­
vided by: 

1 +tanh(R(C-Chyp)) 
r= 2 , (11.16) 



11 Reduced Order Models at Work in Aeronautics and Medicine 325 

where R is a coefficient and Chyp is called the hypoxia threshold. The resulting hy­
poxia function thus satisfies 0 ::::: r::::: 1. 

For this simple model the state variable set may be defined as X = { P, Q, C, 11}. 
The observable is defined to be Y = P + Q, as result from discussions with medical 
doctors about what is measured by CT scans in the case oflung metastases. One can 
not distinguish on images the cell species composing the tumor, but only the tumor 
mass. The control set consists in all the undetermined scalar parameters describing 
tissue properties (such as ki ,k2,Dmax, K), the tumor activities (nutrient consumptions 
a, A, and Chyp), and the fields describing the initial non-observed conditions needed 
to integrate the system (P(x, 0)). 

11.5.1 Regularized Inverse Problem 

The observable evolution is governed by: 

Y + V · (Yv) = y(C)P. (11.17) 

the divergence of the velocity field obeys: 

IarPdQ 
V ·v = y(C)P- fa(l -Y) dQ (l -Y), (11.18) 

where the expression relative to Neumann boundary condition for the pressure field 
was retained. In the case of Dirichlet boundary conditions the second term of the 
right hand side of this equation vanishes. The curl of the Darcy law reads: 

k(Y)V /\ v = Vk(Y) /\ v. (11.19) 

and the equation for the oxygen concentration field is written: 

v. (D(Y)VC) = aPC+.A.c. (11.20) 

The definition of the hypoxia function, y, is unchanged. 
The repeated index summation convention is used from now on. The non-observ-

able variables are expressed as combination of POD modes: 

P=af <f>i i= 1, ... ,Np; 

C=af<f>f i= 1, ... ,Nc; 

yP =at <Pt i= 1, .. . ,Nyp; 

v=ar<f>t i= 1, ... ,Nv, 

(11.21) 

where aP = aP (t) are scalar functions of time,</>;(-)=</>;(-) (x) are functions of spatial 
coordinates. 

The dimension of the empirical functional space, i.e., the number of POD modes 
used to reconstruct the solution, is chosen such that if additional POD modes are 
included, the reconstruction of a given field does not vary up to a certain error value 
that, in this work, was fixed at 10-4 in L2 norm. 
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Substituting these expressions in the system Eqs. (11.17) and (11.20) we obtain: 

y + a~v)y-. (Y <P/v)) = a~rP) <P/rP)' (11.22) 

r (yP) (yP) 
a(v)V. <f>·(v) = a(rP) <f>.(rP) - JQ ai <Pi dQ (1 -Y) 

I I I I IQ l -Y dQ ' 

a~v) k(Y)V A </>/v) = a~Vk(Y) A <f>/vl, 

a(C)y- · (D(Y)V,i.(C)) = aa(P) a(C) ,i.(P) ,i.(C) + Aa(C) ,i.(C) 
I '1'1 J I 'I'; '1'1 I '1'1 ' 

(11.23) 

(11.24) 

(11.25) 

The hypoxia function y, Equation (11.16), is multiplied by P, in such a way that the 
product yP is: 

(C) (C) 
a(rP),i.(rP) = a(P),i.(P) 1 +tanh(R(ai <Pi -Chyp)) 

I '1'1 J 'I'; 2 (11.26) 

The system Eqs. (11.22-11.25) was finally solved by a least square approach under 
certain constraints that are introduced below. At a given time (say to), the snapshot 
Y(to) and a subsequent snapshot Y(t1) are used to perform the computation of the 
time derivative. Let the residual of the 1-th equation be R1• We write F = 2.,1Ry and 

(11.27) 

where aP are the expansion coefficients for the variables P,C, v, yP and 7fj are the 
parameters to be identified. 

The first constraint is linked to the fact that Eq. (11.25) is an homogeneous equa­
tion with respect to the coefficients afl. If Chyp < 0 the trivial solution is a solution 
for the whole system Eqs. (11.22) and (11.26). In order to prevent the identification 
of a system with unphysical solutions we get one scalar constraint from the bound­
ary. In the case of Dirichlet boundary conditions C =Co on JQc where Qc is a blood 
vessel domain, one scalar equation is obtained of the form: 

(11.28) 

where b1 and 'A1 are the eigenvalues and the eigenfunctions of the autocorrelation 
matrix used to build the modes for the variable C, respectively. 

The second constraint to be imposed results from the observation that, since in 
the inverse problem the equation for the variable P is not solved, the latter does not 
automatically satisfy: 0:::; P:::; 1 and therefore this is a constraint (fundamental for 
the population dynamics) to be imposed. To this end the residuals are penalized as 
follows: 

(11.29) 

where c1, c2 are positive constants, set in such a way that penalization does not affect 
the stability of the procedure (in the present work (c1,c2) E [l.0,2.5]e-2). 
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In order to decrease the computational cost of the procedure a third constraint 
is imposed to define a feasible set of solutions. The solution is sought so that the 
admissible values of the POD coefficients are sought in an interval h that is obtained 
from !fb, the interval to which POD coefficients of the simulated solutions belong, by 
a stretching factor 1 + o where o is a suitable positive constant. In all the following 
simulations the value o = 0.1 was adopted. 

The hypothesis that two subsequent snapshots are close in time, or, in other words, 
that the time between two snapshots is small if it is compared with the characteristic 
evolution time of the phenomenon, is very optimistic. In order to relax this hypoth­
esis, instead of using first order finite differences, that is equivalent to perform a 
linear interpolation between the snapshots, a different kind of interpolation is used. 
However, an higher order finite difference scheme, equivalent to a polynomial inter­
polation, would require a large number of snapshots. As an alternative, still assuming 
that only two images are available, an additional hypothesis about the growth rate 
could be retained. Here, two cases are considered. In the case of exponential growth 
we write: 

Y ~ Aexp{ st}+ Bexp{ -st}= f( S), (11.30) 

where A, Bare chosen in such a way that the two available snapshots are interpolated. 
One parameter, s, is free and enters the residual minimization process. The first 
equation of the system (11.17-11.20) becomes: 

(11.31) 

In the case of a logistic-type growth we proceed in a similar way. We take 

Y ~AG( w, CY)+ BG(-w, -CY) (11.32) 

where 
wewt 

G( w, CY) = wt (11.33) 
W - CYe 

As before A and B are adjusted such that the snapshots are interpolated. In this case, 
however, we are left with two free parameters (ro and CY) that are found within the 
residual minimization process. The inverse problem finally takes the form of a non­
linear algebraic optimization problem, that is solved using a Newton trust region 
method. 

11.5.2 Realistic Case Application: A Comparison with a Standard 
Sensitivity Approach 

In Fig. 11.14 four scans covering an evolution over 45 months are presented of some 
lung metastases of a primary tumor affecting the thyroid (Courtesy Institut Bergonie). 
Even though this patient is affected by several metastases, only the study of the one 
marked in Fig. ll.14(a) will be presented. It is a quasi-steady metastasis, which 
grows very slowly and thus need only to be monitored. The results obtained by means 
of a sensitivity technique are presented, when only the first two scans were used in 
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(a) (b) 

(c) (d) 

Fig. 11.14. Scans: (a) November 2005; (b) October 2007; (c) July 2008; d) April 2009 

order to identify the system. This means that the first two images were used as data 
set to solve the inverse problem and find the set of control. Then, the direct simula­
tion were performed covering the entire evolution and the result has been compared 
to the data of the subsequent exams. 

The control set consists in the parameters and in the initial distribution for the 
proliferating cell density. In this particular test the initial density distribution for 
proliferating cells is taken: 

P(x, 0) =A exp { -8<P2
}, (11.34) 

where <P is the level set for the tumor, A the amplitude and 8 the steepness. 
This system is solved at t = 0, taking the second image at t = 0.3. The time 

derivative is approximated by a logistic interpolation. In this particular case it is 
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Table 11.3. Data set and results for realistic case, fitted with the parameters identified by 
ROM: 6 volumes measures are taken from 2D scans, resolution l.25mm 

Month 0 21.0 24.5 36.0 40.5 45.0 

Area 4.2e-3 6.5e-3 8.le-3 9.7e-3 l.03e-3 1.lOe-3 

<&"sens(%) 0.0 1.8 2.47 2.02 1.94 1.36 

8°RoM(%) 0.0 1.9 2.50 2.80 8.67 6.12 

llY - Imllsens 0.0 0.22 0.24 0.35 0.31 0.24 

llY-ImllROM 0.0 0.23 0.26 0.38 0.36 0.32 

equivalent to solve the reduced order model for the elliptic equations and to couple 
them with the residual approximation for the observable. The system is cheap from 
the computational stand point, its solution taking only few minutes on a standard 
laptop. The system was initialized with several initial conditions in order to check 
the stability and the presence of local minima. 

The database used for the present case consists of768 direct simulations, realized 
by sampling the parameters values appearing in the model as well as the parameters 
introduced to represent the initial distribution of proliferating cells (namely A and o). 
A set of20 time snapshots was retained from each of the simulations. 

In Table 11.3 the errors are compared between the sensitivity approach (when two 
images are taken into account) and the reduced order model. The ROM performs 
quite well in terms of volume in the first part of the growth. For what concerns 
L2 norms and in the second part of the growth sensitivity has substantially better 
results. The most relevant fact is that the two approaches show similar behavior in 
the very beginning (ROM is solved at t = O). It is interesting that the reduced order 
model allows to get a correct solution on a time scale that is sufficiently large, i.e. 
on a scale comparable with the interval between two subsequent medical exams. 
In Fig. 11.15 the fitting curves are shown, confirming essentially what commented 
about the errors. Let us remark that the two methods starts with exactly the same 
trend, so that the Reduced Order Model approach results in an approximation of 
the Sensitivity one int = 0. The Error contours for the third image (i.e. the first 
prediction) are shown for the two methods in Fig. 11.17. On the left, the result of 
the sensitivity is shown, the reduced order model is on the right. The differences 
between the two residuals are minimal, showing the ability of the reduced approach 
to mimic sensitivity. 

11.5.3 A Fast Rate Tumor Growth 

In order to see ifthe method is robust enough to perform the identification in a very 
aggressive case, an exponential fast growth is studied. In Fig. 11.18 the evolution 
of a metastatic nodule is shown; the evolution takes about six months, the scans are 
taken at approximately constant rate. The problem is the following one: given the 
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Fig. 11.16. Results: (a) superposition of simulation and geometry; b) volume curve with re­
spect to days 

first two scans, we try to recover the third one, after having performed the parameters 
identification. 

A database was build varying all the parameters in uniform intervals. The database 
consists in 128 simulations. For each one, 20 time frames are taken. The minimiza­
tion takes about 20 minutes on one standard CPU. In Fig. 1I.I6(a) the superposition 
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Fig. 11.17. Zoom on the tumor: difference (signed absolute error) between the third scan and 
the solution when the identification is performed by (a) sensitivity; (b) ROM 
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Fig. 11.18. Fast growing tumor: scan at (a) June 2008; (b) September 2008; (c) December 
2008 

of the simulation to the realistic geometry is shown, at the time corresponding to the 
third scan. The result is satisfactory, the volume not being too far from the measured 
one. The error is essentially a shape error. The model tends to regularize the shape, 
so that the simulated tumor is closer to a spheroid with respect to the real tumor. In 
order to prevent this error to arise two strategies are possible: the first one consists in 
modifying the model such that its dynamics is less regularizing and the second one 
consists in changing the control set. 

In Fig. 11.16(b) the volume curve is plotted with respect to days. There is a certain 
error in volume at the time corresponding to the third scan, but, in terms of time, it 
is about 15 days on a time interval of 6 months. For such a growth, featured by a 
high rate and a large final volume, not enough mechanics have been accounted for. 
As a matter of fact, tumor expansion causes some compression in the tissues and the 
constraints imposed by the thorax are not negligible. 
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11.6 Conclusions 

We have presented a set of methods where ROMs have been used to solve problems 
in applications. ROMs where not directly used for simulation, but instead as an aux­
iliary numerical expidient in conjunction with full model simulations or available 
data observations. Future investigations will need to improve model accuracy and 
robustness with respect to parameter variations, with the objective of accurate and 
robust predictive ROMs. 
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