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Summary

In this paper we investigate the optimal control approach for the active
control of the circular cylinder wake flow considered in the laminar regime
(Re = 200). The objective is the minimization of the mean total drag where
the control function is the time harmonic angular velocity of the rotating
cylinder. When the Navier-Stokes equations are used as state equations, the
discretization of the optimality system leads to large scale discretized opti-
mization problems that represent a tremendous computational task. In order
to reduce the number of state variables during the optimization process, a
Proper Orthogonal Decomposition (POD) Reduced-Order Model (ROM) is
then derived to be used as state equation. Since the range of validity of the
POD ROM is generally limited to the vicinity of the design parameters in the
control parameter space, we propose to use the Trust-Region Proper Orthogo-
nal Decomposition (TRPOD) approach, originally introduced by Fahl (2000),
to update the reduced-order models during the optimization process. Benefit-
ing from the trust-region philosophy, rigorous convergence results guarantee
that the iterates produced by the TRPOD algorithm will converge to the
solution of the original optimization problem defined with the Navier-Stokes
equations. A lot of computational work is indeed saved because the optimiza-
tion process is now based only on low-fidelity models. The key enablers to an
accurate and robust POD ROM for the pressure and velocity fields are the
extension of the POD basis functions to the pressure data, the introduction
of a time-dependent eddy-viscosity estimated for each POD mode as the so-
lution of an auxiliary optimization problem, and the inclusion in the POD
ROM of different non-equilibrium modes. When the TRPOD algorithm is
applied to the wake flow configuration, this approach converges to the min-
imum predicted by an open-loop control approach and leads to a relative
mean drag reduction of 30% for reduced numerical costs (a cost reduction
factor of 1600 is obtained for the memory and the optimization problem is
solved approximately 4 times more quickly).



1 Introduction

1.1 Managing the Use of Approximation Models in Optimization

During the last decade, the optimal control theory [1] has emerged as a new
approach to solve active flow control and aerodynamic shape design problems.
Indeed, these problems can be reduced [2] to the minimization or maximiza-
tion of an objective functional J (drag or lift coefficients, concentration of
pollutant, emitted noise, mixing . . . ) according to n control or design parame-
ters c = (c1, c2, · · · , cn) (unsteady blowing/suction velocities, heat flows, . . . )
under some constraints (Navier-Stokes equations, geometric constraints . . . ).
Roughly, these optimization problems can be solved by two different class of
numerical methods, on the one hand, the methods of descent type which at
least require an approximation of the gradient of the objective functional,
and, on the other hand, the stochastic methods whose principle consists in
studying the evolution of a population of potential solutions during successive
generations (genetic algorithms, simplex method . . . ). Whatever the specific
class of numerical methods considered, the computational costs (CPU and
memory) related to the resolution of optimization problems are so important
that they become unsuited to the applications of flow control. This situa-
tion is even worse in an optimization setting where the governing equations
need to be solved repeatedly, or in closed-loop control problems, for which
the controller needs to determine his action in real time. Consequently, an
alternative approach is necessary.

In this communication, we propose to solve the aforementioned problem of
optimization by an optimal control approach in which the Navier-Stokes equa-
tions - called high-fidelity model in the multidisciplinary optimization litera-
ture - are replaced by a Proper Orthogonal Decomposition (POD) Reduced-
Order Model (ROM) - low-fidelity model - of the dynamics for the controlled
flow. The POD was originally introduced in Turbulence [3] as an unbiased
method of extraction of the Coherent Structures widely known to exist in
a turbulent flow. Essentially, this technique leads to the evaluation of POD
functions that define a flow basis, optimal in an energetic sense. Thereafter,
these POD modes can be used through a Galerkin projection on the Navier-
Stokes equations to derive a POD ROM of the controlled flow [4]. The POD
basis is determined a posteriori using experimental or numerical data previ-
ously obtained for the configuration under study. In first approximation, the
POD can be viewed as a method of information compression. Essentially, the
POD algorithm try to remove ”redundant” information (if any) from the data
base. As a consequence, the ability of POD modes to approximate any state
of a complex system is totally dependent of the information originally con-
tained in the snapshot set used to generate the POD functions. Then, despite
the energetic optimality of the POD modes, it seems difficult to build once
for all, at the beginning of the optimization process, a POD ROM able to
approximate correctly the different controlled states encountered by the flow



along the optimal path (see the discussion in [5]). Some kind of reactualization
of the POD basis during the optimization process seems essential, the main
difficulty consisting in determining the moment when a new resolution of the
Navier-Stokes equations is necessary to evaluate a new POD basis. There-
after, we will use a specific adaptive method called Trust-Region POD (TR-
POD) to update the reduced-order models during the optimization process.
This approach, originally introduced in [6], couples a trust-region method
of optimization and reduced-order models based on POD (see Sect. 2). The
principal advantages of this approach are, on the one hand, that the radius
of the trust-region corresponding to the POD ROM does not have to be fixed
by the user, but is evaluated automatically during the optimization process,
and that on the other hand, there are results of convergence proving that the
iterates produced by the TRPOD algorithm will converge to the solution of
the original optimization problem defined with the Navier-Stokes equations.

1.2 A Prototype of Massively Separated Flows: the Cylinder

Wake Flow

In this study, we are interested to control the unsteady wake flow downstream
from a circular cylinder (Fig. 1). The objective is the mean drag minimization
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Figure 1 Controlled flow configuration.

of the wake flow by rotary oscillation of the cylinder. The flow is considered as
incompressible and the fluid is supposed to be viscous and Newtonian. Wake
flows dynamics are characterized [7] by the Reynolds number Re and by the



natural Strouhal number Stn at which vortices are shed in the wake of the
cylinder (Fig. 8(a)). Traditionally, the Reynolds number is defined as Re =
U∞D/ν where D is the cylinder diameter (R is the corresponding radius),
U∞ the uniform velocity of the incoming flow and ν the kinematic viscosity of
the fluid. As for the natural Srouhal number, the common definition is Stn =
fD/U∞ where f is the frequency characteristic of the periodic behavior of the
flow. The cylinder wake is considered in the laminar regime (Re = 200). The
rotary control is characterized by the non dimensional velocity γ(t) defined
as the ratio of the tangential velocity VT to the upstream velocity U∞ i.e.

γ(t) = VT (t)/U∞. For γ = 0, the flow is naturally said uncontrolled. Contrary
to the case considered in [5] where no particular assumption was done on the
variation of the control function, γ(t) is hereafter sought as an harmonic
function of the form:

γ(t) = A sin (2πStf t)

where the amplitude A and the forcing Strouhal number Stf correspond to
two degrees of freedom for the control. The optimal control theory is then
used to determine the control vector c = (A, Stf)T which minimizes the
mean time drag coefficient of the wake. For a circular cylinder, this quantity
estimated over a finite horizon T equal to a few vortex shedding periods
writes:

〈CD〉T =
1

T

∫ T

0

∫ 2π

0

2 p nx R dθ dt

−
1

T

∫ T

0

∫ 2π

0

2

Re

(
∂u

∂x
nx +

∂u

∂y
ny

)
R dθ dt ,

(1)

where nx and ny are the projections of the external normal vector n onto
the cartesian basis vectors ex and ey respectively, and θ is an angle defining
the curvilinear coordinate of a point on Γc (see Fig. 1). Furthermore, let us
recall (see [8] for example), that in the supercritical regime of the wake flow,
every mean quantity consists of two terms, the basic flow i.e., the unstable,
steady, symmetric flow, and the mean flow correction which is due to the
vortex shedding. Consequently, the mean time drag coefficient 〈CD〉T writes:

〈CD〉T = Cbasic
D + C0

D , (2)

where Cbasic
D and C0

D represent the drag of the basic flow and the mean flow
correction respectively (see Fig. 2). Of course, at a given Reynolds number,
the contribution of the basic flow to drag cannot be modified. Then control-
ling the wake flow by rotary oscillations can only reduce the contribution of
the mean flow correction to drag. If we consider as in [8] that the drag of the
mean flow correction field can be only positive, the minimal value of drag
that can be obtained under periodic forcing conditions is that corresponding
to the basic flow. In conclusion, this flow would be thus a natural ’desired’
field in a flow tracking procedure of optimization.
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Figure 2 Variation with the Reynolds number of the mean drag coefficient. Con-
tributions and corresponding flow patterns of the basic flow and unsteady flow.

In order to validate a posteriori the control law obtained with the TRPOD
algorithm, an open-loop control study is first performed numerically. The
contours of the mean temporal drag coefficient, estimated over approximately
6 periods of vortex shedding after the transients have died out, are visualized
in Fig. 3 in the space spanned by the forcing parameters A and Stf .

2 Optimization by Trust-Region Methods and POD

Reduced-Order Models

In this section, only the principle of the Trust-Region Proper Orthogonal
Decomposition approach for flow control is exposed. For all the details of the
algorithms and in particular the proofs of convergence, the reader is referred
to [6, 11].

We consider that the flow control problem discussed in Sect. 1.1 can be
formulated as an unconstrained optimization problem

min
c∈Rn

J (φNS(c), c) (3)

where J : R
m × R

n 7→ R represents the objective functional and where
φNS and c respectively represent the state variables obtained by numerical
resolution of the state equations and the control variables. The subscript NS
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means that the state equations which connect the control variables c to the
state variables are the Navier-Stokes equations. Since an accurate computa-
tion of the state variables φ for given c is computationally expensive when
the Navier-Stokes equations are used as the state equations, the evaluation
of J during the solution of the optimization process (3) is computationally
expensive. A reduction of numerical cost can be achieved by employing a
POD ROM as the state equation. In such a way an approximate solution
φPOD of the state variables φ is obtained and the optimization problem (3)
is then replaced by a succession of subproblems of the form

min
c∈Rn

J (φPOD(c), c). (4)

Usually, a POD ROM is constructed for a specific flow configuration, e.g.,
for an uncontrolled flow or for a flow altered by a specified control. Therefore,
the range of validity of a given POD ROM is generally restricted to a region
located in the vicinity of the design parameters in the control parameter
space, the so-called trust-region. It is then necessary to update the POD ROM
during the iterative process, the crucial point being to determine when such a
reactualization must take place. Let ∆k > 0 be the trust-region radius and ck

be the control parameters obtained at an iterate k of the optimization process.
To evaluate the function J (φNS(ck), ck), it is necessary to determine the
variables φNS(ck). These variables are obtained by resolution of the high-
fidelity model, the Navier-Stokes equations. Then, we compute snapshots
that correspond to the flow dynamics forced by ck. These snapshots form the
input ensemble necessary [3] to generate a POD basis {Φk

i }i=1,...,NPOD
(here,

NPOD corresponds to the number of POD modes). This POD basis can then
be used via a Galerkin projection of the Navier-Stokes equations onto the
POD eigenvectors to derive a POD ROM for ck [11, 5]. After integration in
time of this POD ROM, the state variables φPOD(ck) are estimated, and
thus the function J (φPOD(ck), ck) is evaluated. Since this POD ROM can
be employed for an optimization cycle, we define

mk(ck + sk) = J (φPOD(ck + sk), ck + sk), (5)

as a model function for

f(ck + sk) = J (φNS(ck + sk), ck + sk), (6)

on the trust-region ‖sk‖ ≤ ∆k around ck.
One is then brought to solve approximately1 the corresponding trust-

region subproblem defined as

min
s∈Rn

mk(ck + s), s.t. ‖s‖ ≤ ∆k. (7)

1 Following the trust-region philosophy [12], it is sufficient to compute a trial step
sk that achieves only a certain amount of decrease for the model function.



In order to estimate the quality of the presumed next control parameters
ck+1 = ck + sk where sk is an approximate solution of (7), we compare
the actual reduction in the true objective, aredk = f(ck + sk) − f(ck), to
the predicted reduction obtained with the model function predk = mk(ck +
sk) − mk(ck). Essentially, it is this comparison that gives a measure for the
current models prediction capability. If the trial step sk yields to a satisfac-
tory decrease in the original objective functional in comparison to the one
obtained by the model function, the iteration is successful, the trial step sk is
accepted and the model mk is updated i.e. a new POD ROM is derived that
incorporates the flow dynamics as altered by the new control2 ck+1. Further-
more, if the achieved decrease in f indicates a good behavior of the model
mk, the trust-region radius ∆k can be increased. Now, if there is a limited
predicted decrease compared to the actual decrease, we have the possibil-
ity to decrease slightly the value of the trust-region radius. For unsuccessful
iterations, the trial step sk is not accepted, the trust-region radius ∆k is de-
creased and the trust-region subproblem (7) is solved again within a smaller
trust-region. With the contraction of the trust-region it is more likely to have
a good approximation to the true objective functional with the POD ROM.
The corresponding TRPOD algorithm is schematically described in Fig. 4.

3 Drag Minimization of the Cylinder Wake Flow by

the TRPOD Algorithm

The objective of this section is to implement the TRPOD approach presented
in Sect. 2 for minimizing the mean drag coefficient of the cylinder wake flow.

3.1 A Robust POD Surrogate for Drag Function

In order to simplify the future notations, one introduces the drag operator

CD defined as:

CD : R3 7→ R

U 7→ 2

∫ 2π

0

(
pnx −

1

Re

∂u

∂x
nx −

1

Re

∂u

∂y
ny

)
R dθ,

(8)

where U = (u, v, p)T denotes the vector corresponding to the veloc-
ity and pressure fields. By definition, CD(U) = CD(t) where CD represents
the instantaneous drag coefficient. The velocity component u and pressure p
present in the relation (8) can be obtained either by resolution of the Navier-
Stokes equations, or by estimation using a POD ROM. In this study, a special

2 Since a new snapshot ensemble is available, a new POD basis can then be deter-
mined, and finally, a new POD ROM can be derived.
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care is taken to the development of the POD ROM. First, a POD basis Φi

representative of the velocity fields u and v, as of the pressure field p was de-
termined [11]. Then, to improve the robustness of the POD ROM, the POD
basis functions which represent the dynamics of the reference operating con-
dition c, were increased by adding Nneq non-equilibrium modes corresponding
to new operating conditions, following the procedure described in [13]. In ad-
dition, a calibration procedure of the POD-Galerkin system similar to the
methods recently introduced in [14] for the pressure model was used to take
into account some modelling errors (Galerkin truncation, pressure model,. . . ).
Here, this calibration procedure corresponds to the introduction of a time-
dependent eddy-viscosity estimated for each POD mode as the solution of
an auxiliary optimization problem (see [15] for all the details). Finally, the
control function method introduced in [16] is used to determine POD basis
functions with homogeneous boundary conditions. The velocity and pressure
fields can then be expanded into the POD basis functions Φi as:

U(x, t) =

Ngal∑

i=0

ai(t)Φi(x)

︸ ︷︷ ︸
Galerkin modes

+

Ngal+Nneq∑

i=Ngal+1

ai(t)Φi(x)

︸ ︷︷ ︸
non-equilibrium modes

+ γ(c, t)U c(x)︸ ︷︷ ︸
control function

, (9)

where Ngal is the number of Galerkin modes and where U c is called
the control function. Mathematically, U c is determined as a solution of the
Navier-Stokes equations satisfying specific boundary conditions (the proce-
dure is fully described in [11, 5]).

The Galerkin projection of the Navier-Stokes equations on the space
spanned by the first Ngal + Nneq + 1 POD modes yields [11] to

d ai(t)

d t
=

Ngal+Nneq∑

j=0

Bij aj(t) +

Ngal+Nneq∑

j,k=0

Cijk aj(t)ak(t)

+ Di

d γ

d t
+



Ei +

Ngal+Nneq∑

j=0

Fij aj(t)



 γ(c, t) + Giγ
2(c, t),

(10a)

with the following initial conditions:

ai(0) = (u(x, 0), Φi(x)). (10b)

The coefficients Bij , Cijk, Di, Ei, Fij and Gi depend explicitly on Φi and
U c. Their expression could be found in [5].

Let φNS(c) = (uNS , vNS , pNS)T represent the state variables obtained
by resolution of the Navier-Stokes equations and φPOD(c) = (uPOD, vPOD



, pPOD)T be the corresponding values estimated with the POD ROM (10),
the objective functional is

f(c) = J (φNS(c)) =
1

T

∫ T

0

CD(φNS(c)) dt,

and the model function, introduced and justified in [11], is

mk(c) = J̃ (φPOD(c)) =
1

T

∫ T

0

Ngal+Nneq∑

i=0

ai(t)Ni dt,

where Ni = CD(Φi).

These two functions can then be used in a procedure of optimization
coupling trust-region methods and POD reduced-order models, following the
method presented in Sect. 2.

3.2 Solution of the Subproblem (7)

The convergence behavior of trust-region methods for general model functions
with inexact gradient information is usually based on a sufficient decrease con-
dition of the objective function (see [12] for example). In [6], these classical
results were extended and it was demonstrated that the exact solution of the
subproblem (7) is not necessary to prove global convergence of the TRPOD
algorithm. Here, because of the low computational costs of solving the POD
reduced-order model (10), an optimality system based on the POD ROM is
derived (see [2] for example) and solved. By definition, this reduced-order op-
timality system is a system of three coupled partial differential equations [11]
formed by:

1. the state equations (10)

2. the adjoint equations

d ξi(t)

dt
= −

Ngal+Nneq∑

j=0

(Bji + γ(c, t)Fji) ξj(t)

−

Ngal+Nneq∑

j,k=0

(Cjik + Cjki) ak(t)ξj(t) −
1

T
Ni,

(11a)

with terminal conditions :

ξi(T ) = 0. (11b)



3. the optimality conditions

∇cJ̃ =
1

T

∫ T

0




Ngal+Nneq∑

i=0

Li



 ∇c γ dt, (12)

with

Li = −
dξi

dt
Di + ξi


Ei +

Ngal+Nneq∑

j=0

Fijaj + 2γ(c, t)Gi


 .

This system of coupled ordinary differential equations could be solved di-
rectly using a ”one-shot method”. However, due to large storage and CPU
costs, an iterative process described in [11] is usually preferred. In this study,
the directions of descent are estimated using the Fletcher-Reeves version of
the Conjugate Gradient Method [17]. The linear search parameter is com-
puted at each iteration by the backtracking Armijo method [17], in which
the length of the step, along each direction of descent, checks the constraint
imposed by the trust-region approach. The iterative method is stopped when
two following values of the functional J̃ are sufficiently close i.e. when |∆J̃ (a)|

= |J̃ (n+1)(a) − J̃ (n)(a)| < 10−5.

3.3 Numerical Results and Discussion

As it was discussed for example in [18], a possible drawback of solving a min-
imization problem with a gradient-based optimization approach is that the
algorithm may converge to the global minimum or to some other local min-
imum of the cost function depending on the relative position of the starting
point to the minima. To alleviate this difficulty and evaluate the robustness
of the TRPOD algorithm, the optimization process will be initialized starting
from several different control parameters c0 = (A ; St) chosen at random in
the control parameter space retained for the open-loop control procedure (see
Fig. 3). Hereafter, four different initial values are employed: c0 = (1.0 , 0.2)T ,
c0 = (1.0 , 1.0)T , c0 = (6.0 , 0.2)T and c0 = (6.0 , 1.0)T .

According to the TRPOD algorithm (see Fig. 4), the radius of the trust-
region ∆ is automatically either increased, or decreased during the resolution
of the optimization process. Figure 5 represents for the different initial con-
trol parameters c0, the variations of the values of the forcing amplitude and
Strouhal number with respect to the iteration number. When the numeri-
cal convergence of the iterative procedure is achieved, the optimal control
parameters are A = 4.25 and Stf = 0.738. These values of parameters,
which entirely define the optimal control law γopt(t), are obtained in less
than ten resolutions of the Navier-Stokes equations, whatever the initial con-
dition considered (a more significant number of iterations is however repre-
sented in Fig. 5 to highlight the convergence). As it was expected by the
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Figure 5 Variations of the forcing amplitude (left) and Strouhal number (right)
with respect to the iteration number. Results obtained with the TRPOD algorithm.
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global convergence properties of the TRPOD algorithm [11, 6], these opti-
mal control parameters tend towards the values predicted by an open-loop
control approach (§ 1.2), and this, whatever the initial values used for the
control parameters (see Fig. 6 which represents the convergence in the con-
trol parameter space). This proves the performance and the robustness of
the TRPOD algorithm. Figure 7(a) represents the time evolutions of the
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Figure 7 Time evolutions of the aerodynamic coefficients for the basic flow,
uncontrolled flow (γ = 0) and optimally controlled flow (γ(t) = γopt(t)). Control
was started at time t = 0.

drag coefficients, for an uncontrolled flow and for the flow forced by the op-
timal control law γopt(t). These results are compared to those obtained for
the basic flow. According to [8], the basic flow generates a priori the low-
est3 coefficient of drag for the configuration under study. The mean drag
coefficient varies from a value equal to 〈CD

unc〉T = 1.39 in the uncontrolled
case to a value equal to 〈CD

opt〉T = 0.99 when the optimal control param-
eters are applied. The corresponding relative mean drag reduction, defined
as

(
〈CD

unc〉T − 〈CD
opt〉T

)
/〈CD

unc〉T , is equal to more than 30%. The value
of the drag coefficient for the optimally controlled flow tends towards that
obtained for the basic flow (Cbasic

D = 0.94), but with a value always slightly
higher. The polar curves (time evolution of the drag coefficient versus the
lift coefficient) are represented for the uncontrolled and optimally controlled
flow in Fig. 7(b). The shape of these curves indicates characteristically that,
for the two flow regimes, the drag coefficient oscillates at a frequency equal
to twice that of the lift coefficient. Finally, in Figs. 8(a)-8(c) we represent
the vorticity fields of the uncontrolled flow, the optimally controlled flow,

3 Recently, numerical evidence were brought [19] that, for the circular cylinder
wake flow at Re = 200, a partial control restricted to an upstream part of the
cylinder surface could lead to a mean flow correction field with negative drag.



and the basic flow, respectively. The significant vortex-shedding phenomenon
observed in Fig. 8(a) has been substantially reduced when the control is ap-
plied and the flow has been quasisymmetrized. The resulting flow approaches
the symmetric state characteristic of the corresponding basic flow as can be
awaited from the results presented in [8] and the discussion in [5]. Our results
are qualitatively similar to the effects observed in [20] and [9] and confirm
the arguments of [21] that the mean drag reduction is associated with control
driving the mean flow toward the unstable state.

(a) Uncontrolled flow (γ = 0).

(b) Optimally controlled flow (γ(t) = A sin(2πSt t) with A = 4.25 and St = 0.738).

(c) Basic flow (γ = 0).

Figure 8 Vorticity contour plot of the wake for the uncontrolled (a), optimally
controlled (b) and basic flow (c). The dashed lines correspond to negative values.



4 Conclusions

The Trust-Region POD algorithm originally introduced in [6] was used to
minimize the total mean drag coefficient of a circular cylinder wake flow in
the laminar regime (Re = 200). The key enablers to an accurate and ro-
bust POD ROM for the pressure and velocity fields were the extension of
the POD basis functions to the pressure data, the introduction of a time-
dependent eddy-viscosity estimated for each POD mode as the solution of an
auxiliary optimization problem, and the inclusion in the POD ROM of differ-
ent non-equilibrium modes. Finally, the optimal control parameters obtained
with the TRPOD algorithm are A = 4.25 and Stf = 0.738. The relative
mean drag reduction is equal to 30%. Compared to previous similar studies
where the Navier-Stokes equations are used as state equations in the opti-
mal control problem, the main advantage of the TRPOD algorithm is that it
leads to a significant reduction of the numerical costs because the optimiza-
tion process itself is completely based on reduced-order models only. Indeed,
when the state equations of the optimality system are POD ROMs instead of
the Navier-Stokes equations, a cost reduction factor of 1600 is obtained for
the memory and the optimization problem is solved approximately 4 times
more quickly. Now, if we compare to our preceding study [5], where a POD
ROM was coupled to an optimal control approach without any strategy for
updating the reduced-order model during the optimization process, the cost
reduction factors, found here, are lower. However, in this study, the use of the
TRPOD algorithm mathematically proves that the solutions converge at least
to a local optimum for the original high-fidelity problem, and less than ten
resolutions of the Navier-Stokes equations are necessary. Due to the low com-
putational costs involved in the optimization process and the mathematical
proofs of global convergence, the TRPOD algorithm is a promising method
of optimization in flow control. This approach that can easily be adapted to
other configurations, should finally lead to the current resolution of unsteady,
three-dimensional optimization problems for turbulent flows around complex
geometries.
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for Fluid Dynamics (2002)

[5] Bergmann, M., Cordier, L., Brancher, J.P.: Optimal rotary control of the
cylinder wake using POD Reduced Order Model. Phys. Fluids 17 (2005)
097101:1–21

[6] Fahl, M.: Trust-Region methods for flow control based on Reduced Order
Modeling. PhD thesis, Trier university (2000)

[7] Williamson, C.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid. Mech.
28 (1996) 477–539

[8] Protas, B., Wesfreid, J.: Drag force in the open-loop control of the cylinder
wake in the laminar regime. Phys. Fluids 14 (2002) 810–826

[9] He, J.W., Glowinski, R., Metcalfe, R., Nordlander, A., Périaux, J.: Active con-
trol and drag optimization for flow past a circular cylinder. Part 1. Oscillatory
cylinder rotation. J. Comp. Phys. 163 (2000) 83–117

[10] Homescu, C., Navon, I., Li, Z.: Suppression of vortex shedding for flow around
a circular cylinder using optimal control. Int. J. Numer. Meth. Fluids 38 (2002)
43–69

[11] Bergmann, M., Cordier, L.: Control of the cylinder wake in the laminar regime
by Trust-Region methods and POD Reduced Order Models. Soumis à J. Fluid
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