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Abstract

In this Brief Communication, we determine an approximate relation which gives the mean time

power required to control the wake flow downstream from a circular cylinder. The control law is the

sinusoidal tangential velocity imposed on whole or part of the cylinder surface. The mean control

power thus depends on four parameters: the amplitude and the Strouhal number of forcing, the

control angle which defines the controlled upstream part of the cylinder and the Reynolds number.

This relation indicates that the control power grows like the square of the forcing amplitude, like

the square root of the forcing Strouhal number, linearly with the control angle and varies like the

inverse of the square root of the Reynolds number. We show that the values obtained with this

approximate relation are in very good agreement with the corresponding values given numerically.

Finally, the energetic efficiency of the control is discussed. We claimed that the most energetically

efficient control law corresponds a priori to low forcing amplitudes applied to a restricted upstream

part of the cylinder for relatively high values of the Reynolds number.
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The control of the cylinder wake flow by rotary oscillations has been intensively studied

over the last decade. The majority of these studies were motivated by the experiments of

Tokumaru and Dimotakis1 where 80% of relative mean drag reduction was empirically found

at Re = 15, 000. Due to the rapid progress achieved in computational fluid dynamics and

the remarkable developments in modern control theory (optimal and robust control mainly),

the active control of wake flows was intensively explored numerically2–4. All these studies

gave place to convincing results for the different values of Reynolds number considered.

However, in most of the cases, the cost of the control was not considered, except in Refs. 2,5.

Consequently, the energetic efficiency of a given technique of control is difficult to evaluate

and comparing the various control methods is even more delicate. It is thus of interest

to analyze the influence of the control parameters on the control power evolution. Hence,

the objective of this Brief Communication is to determine, and validate numerically, an

approximate relation giving the control power according to the different control parameters

of the cylinder wake and the Reynolds number.

Here, the incompressible and viscous flow around a circular cylinder of diameter D (ra-

dius R) is considered in a two-dimensional domain Ω. The cylinder boundary is divided

in two regions: an upstream part animated with an unsteady tangential velocity VT , and

the remainder of the cylinder which is not controlled. Hereafter, the upstream controlled

region is geometrically defined by −θc < θ < θc (see Fig. 1) where θ and θc, initialized

by convention at the front stagnation point of the cylinder, are respectively the curvilinear

coordinates of a point on Γc and the control angle. Equivalently, the controlled boundary

of the cylinder is characterized by the control surface Sc = 2θcR ℓz where ℓz is the spanwise

length of the cylinder (for two dimensional configurations, ℓz = 1). As it is generally the

case1–8, the control law is selected to be harmonic VT (t) = A0 sin(ω t) where A0 and ω re-
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spectively represent the dimensional amplitude and pulsation of forcing. For convenience,

the dimensionless velocity γ(t) = VT (t)/U∞ is introduced, where U∞ denotes the inflow

velocity. Then, the control law writes equivalently γ(t) = A sin (2πStf t) with A = A0/U∞

and Stf = Rω/(πU∞). Here, A and Stf denote respectively the nondimensionalized forcing

amplitude and Strouhal numbers. Moreover, since the control is applied only on a restricted

part of the cylinder surface, the physical problem depends implicitly on four control para-

meters, namely A, Stf , θc and the Reynolds number Re = ρU∞D/µ, where ρ and µ are

respectively the density and the dynamic viscosity of the fluid. Finally, for all the numerical

simulations used for the validation, the Navier-Stokes equations are solved in the pressure-

velocity formulation with a fractional step method in time and a finite element method in

space4.

Now, we examine the power budget related to flow control i.e. the sum of the work that

has to be done against the drag force and the work needed to control the flow. By definition,

the force which is acting on the cylinder can be expressed as F = −
∫
Γc

σn dΓ where σ is

the stress tensor and Γc is the cylinder boundary. Let FD be the total drag force obtained

by projecting F on the direction ex, the power spending related to this effort is thus given

by the relation PD(t) = FD(t)U∞.

We then focus on the power used to control the cylinder flow. If we do not account

for inertial effects related to rotating the cylinder, the control power can be evaluated by

Pc(t) = Mz(t)θ̇ where θ̇ = γ U∞/R is the angular velocity of the cylinder and Mz is the

component on the direction ez = ex ∧ ey of the moment of forces, or torque M, applied

to the obstacle. By definition, the moment of forces on a body placed in a flow is given by

M = −
∫

Γc

r ∧ σn dΓ where r = xex + yey defines the coordinates of any point on Γc. For

reasons of simplicity, we introduce the coefficient of moment defined as CMz
= Mz

1/2Mr

, where
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Mr is a reference moment given by Mr = Fr × Lr with Fr and Lr, a reference force and a

reference length, respectively. The reference force is now determined as Fr = pr×Sr where pr

and Sr are the pressure reference and surface reference, respectively. Usually pr = ρU2
∞ and

Sr = 2R ℓz. Here, the reference length Lr is selected equal to the diameter of the cylinder

D = 2R.

After some algebraic manipulations, the instantaneous coefficient of moment can be eval-

uated numerically from:

CMz
(t) =

2

Re

∫ 2π

0

(
−∂v
∂x
x2 − 2

∂v

∂y
xy + 2

∂u

∂x
xy

+
∂u

∂y
y2 − ∂u

∂y
x2 +

∂v

∂x
y2
)
dθ,

where all the variables are nondimensionalized with respect to the oncoming velocity U∞

and the cylinder diameter D. Finally, since Mz = 1
2
Mr CMz

with Mr = FrLr = 4ρU2
∞R

2ℓz,

the instantaneous power useful for rotation merely writes as PC(t) = ρU3
∞Rℓz 2γ(t)CMz

(t).

To simplify the future comparisons of the control power, let us define the time average over

a finite horizon T , corresponding to a few cylinder oscillation periods, as 〈·〉T = 1
T

∫ t0+T

t0
· dt.

The analytic formulation of the mean control power is then

PC = 〈PC〉T = ρU3
∞Rℓz 〈2γ(t)CMz

(t)〉T . (1)

Unfortunately this relation does not depend explicitly on the control parameters A, Stf ,

θc and Re. Hence, more precise developments seem necessary.

The mean time power necessary to ensure the oscillatory rotation of the cylinder can be

approximated as follows:

P̃C = −〈Sc τw A0 sin(ω t)〉T ,

where τw is the wall shear stress. To determine an expression of τw which depend on the
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control parameters and the Reynolds number, we now make the following assumptions:

H1 the oscillations of the cylinder do not affect the external flow,

H2 the effects of curvature can be neglected ( δ
R
≪ 1).

The H1 assumption is equivalent to saying that the oscillations do not diffuse outside

the presumedly laminar boundary layer of characteristic thickness9 δ = O
(√

νR
U∞

)
. This

assumption implies immediately that the Reynolds number must be sufficiently large (Re≫

1). In addition, the H1 assumption implies that we must satisfy the condition δ0
δa

≪ 1 where

δ0 = O
(√

ν
ω

)
is the thickness of the diffusion Stokes layer induced by the oscillations and δa

is the thickness of the boundary layer at the front stagnation point. Using the H1 assumption

a priori (what was checked a posteriori), we can consider that the front stagnation point

does not move. One can thus calculate the flow in the vicinity of the stagnation point

starting from the complex potential without circulation. In this case, the stream function

ψ = Im{f(z)} simply writes ψ(X,Y ) = U2
∞

(
Y − R2Y

(R+X)2+Y 2

)
with X = x− R and Y = y.

Near the stagnation point, i.e. for (X, Y ) → (0, 0), the stream function behaves like

2U∞

R
XY . Therefore, δa = O

(√
ν R
2U∞

)
and the condition δ0

δa

≪ 1 writes:

δ0
δa

= O
(√

2U∞

Rω

)
= O

(√
2

πStf

)
≪ 1. (2)

Since the velocity field is tangent to the cylinder surface near the front stagnation point,

the velocity component in the direction ey is written as:

v(r∗, t) = A0 exp

(
−
√

ω

2ν
r∗
)

sin

(
ωt−

√
ω

2ν
r∗
)
,

where r∗ = r−R (here, r represents the radial coordinate). One can then easily deduce the

expression of the wall shear stress:

τw = µ
∂v

∂r∗

∣∣∣∣
r∗=0

= −µA0

√
ω

2ν
[sin(ω t) + cos(ω t)] .
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Since we have 〈cos(ω t)sin(ω t)〉T = 0 and 〈sin2(ω t)〉T = 1
2

for T = 2kπ/ω, k ∈ N,

the mean control power becomes P̃C = Scµ
A2

0

2

√
ω/2ν. Finally, after some manipulations,

the expression of the power needed to apply the rotary oscillations to the cylinder can be

simplified as

P̃C = ρU3
∞R ℓz

√
π
θcA

2
√
Stf√

Re
. (3)

This approximate expression now depends on the four control parameters. For the nu-

merical validation, we chose to compare directly the mean control power coefficient obtained

respectively from Eq. (1) and Eq. (3). Let Pr = FrU∞ = ρU3
∞2Rℓz be the reference control

power, by definition, the mean control power coefficient is CP = 〈P 〉T/1
2
Pr. Applying this

relation to the drag power PD(t) = FD(t)U∞ we can deduce an expression for the mean

power drag coefficient:

CD
P = 〈CD〉T , (4)

where CD(t) = FD(t)/ρU2
∞Rℓz is the instantaneous drag coefficient, given for example in

Ref. 8. Similarly, the expression of the mean control power coefficient based on Eq. (1) is

CC
P = 〈2CMz

(t) γ(t)〉T , (5)

and the corresponding expression for the mean control power coefficient obtained with the

approximate relation (3) is written

CC
P =

√
π
θcA

2
√
Stf√

Re
. (6)

The control is said energetically efficient (resp. inefficient), if the value of the total mean

power coefficient CP = CD
P +CC

P (where CC
P can be evaluated either by Eq. (5), or by Eq. (6))

is lower (resp. greater) than the value obtained in the uncontrolled case (where naturally

CC
P = 0).
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Now, we will compare the results given by the approximate relation (6) to the numerical

ones given by Eq. (5). For that, we will successively represent the evolutions of the control

powers according to one of the four control parameters of the flow, the others being fixed. For

these comparisons, the parameters maintained fixed are selected among A = 5, Stf = 1, θc =

180◦ and Re = 200. Figures 2, 3, 4 and 5 show respectively the evolutions of the mean control

power coefficient versus the amplitude A, the Strouhal number Stf , the control angle θc and

the Reynolds number. Figure 2 shows an excellent agreement between the values obtained

numerically and those determined with the approximate relation. One can thus claim that

the power required to control the cylinder wake grows effectively like the square of the forcing

amplitude as the expression (3) predicted it. As it is noticeable in Fig. 3, the agreement

between the numerical and approximate expressions of the control power according to the

forcing Strouhal number is still very good, and that even if the Strouhal number is of

order unit. The small differences observed for the smallest values of the Strouhal number

can be explained by the assumptions made to derive the approximate relation, and more

particularly that given by Eq. (2). In spite of that, the values obtained numerically exceed

hardly the values found by the approximate relation. The same behavior is clearly visible in

Fig. 4 where the linear dependence of the control power as a function of the angle θc is quite

well verified. As we can see in Fig. 5, the approximate relation does not suitably predict

the variation, according to the Reynolds number, of the control power obtained numerically.

Indeed, in one hand, for Reynolds number lower than 200, the numerical values exceed those

predicted by the approximate relation. This result can be explained easily by the assumption

of laminar boundary layer (Re >> 1) carried out to determine the approximate relation.

In the other hand, for Reynolds number greater than 200, the numerical values are slightly

lower than those determined with the approximate relation. This time, these differences
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can be explained by the fact that for a value of the Reynolds number close to 200, where

a good agreement is observed, a three-dimensional Hopf bifurcation occurs10. As a normal

consequence, our two-dimensional numerical simulation cannot capture accurately three-

dimensional dynamic phenomena. However, from a qualitative point of view, the control

power seems to evolve like the reverse of the square root of the Reynolds number as it was

predicted by Eq. (3).

In this Brief Communication, we determined an approximate relation which gives, ac-

cording to the 4 parameters of controlled flow A, Stf , θc and Re, the mean power which is

necessary to control by oscillatory rotation the cylinder wake. Even if all the assumptions

used to determine this approximation are not verified exactly, we showed that this relation

was in very good agreement with the numerically given corresponding values. Consequently,

the power required for the cylinder oscillations is almost completely dissipated in the Stokes

layer. Since the control power grows with the square of the forcing amplitude, it is nearly

impossible to obtain an energetically efficient control for high amplitudes. Protas and Sty-

czek5 had numerically shown this result besides while considering as cost function the total

power in an optimal control approach. In addition, the approximate relation shows that the

control power is much less penalized by the Strouhal number than it is by the amplitude of

forcing. It is also remarkable that the control power decreases linearly with the control angle

θc. Indeed, since a gain of reduction of drag is obtained by controlling only a well defined

upstream part of the cylinder8 (and not all the surface of the cylinder as it is usually the

case), the maximum of energetic efficiency is awaited for θc lower than 180◦. Finally, the

approximate relation indicates that the control power decreases when the Reynolds number

increases. Moreover, Protas and Wesfreid7 showed that the potential gain of drag increased

with the Reynolds number. Consequently, the most energetically efficient controls should
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be obtained a priori for relatively high values of the Reynolds number.
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FIG. 1. Sketch of the controlled flow configuration.

FIG. 2. Evolution of the mean control power coefficient versus the amplitude A for

Stf = 1, θc = 180◦ and Re = 200.

FIG. 3. Evolution of the mean control power coefficient versus the Strouhal number Stf

for A = 5, θc = 180◦ and Re = 200.

FIG. 4. Evolution of the mean control power coefficient versus the control angle θc for

A = 5, Stf = 1 and Re = 200.

FIG. 5. Evolution of the mean control power coefficient versus the Reynolds number Re

for A = 5, Stf = 1 and θc = 180◦.
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